2017年闵行区高考数学二模考试含答案

合集下载

上海市闵行区2017年中考二模数学试卷含答案

上海市闵行区2017年中考二模数学试卷含答案

上海市闵行区2017年中考二模数学试卷含答案(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答 题一律无效. 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证 明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.在下列各式中,二次单项式是 (A )21x +;(B )213xy ;(C )2xy ;(D )21()2-.2.下列运算结果正确的是 (A )222()a b a b +=+; (B )2323a a a +=; (C )325a a a ⋅=;(D )112(0)2a a a-=≠. 3.在平面直角坐标系中,反比例函数(0)ky k x=≠图像在每个象限内y 随着x 的增大而减小,那么它的图像的两个分支分别在 (A )第一、三象限; (B )第二、四象限; (C )第一、二象限;(D )第三、四象限. 4.有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的 (A )平均数;(B )中位数;(C )众数;(D )方差. 5.已知四边形ABCD 是平行四边形,下列结论中不正确的是 (A )当AB = BC 时,四边形ABCD 是菱形; (B )当AC ⊥BD 时,四边形ABCD 是菱形; (C )当∠ABC = 90o 时,四边形ABCD 是矩形;(D )当AC = BD 时,四边形ABCD 是正方形.6.点A 在圆O 上,已知圆O 的半径是4,如果点A 到直线a 的距离是8,那么圆O 与直线a 的位置关系可能是(A )相交; (B )相离; (C )相切或相交; (D )相切或相离.二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:21+2-= ▲ .8.在实数范围内分解因式:243x -= ▲ .91的解是 ▲ .10.已知关于x 的方程230x x m --=没有实数根,那么m 的取值范围是 ▲ .11.已知直线(0)y kx b k =+≠与直线13y x =-平行,且截距为5,那么这条直线的解析式为 ▲ .12.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小杰过马路时,恰巧是绿灯的概率是 ▲ .13.已知一个40个数据的样本,把它分成6组,第一组到第四组的频数分别是10、5、7、6,第五组的频率是0.1,那么第六组的频数是 ▲ .14.如图,已知在矩形ABCD 中,点E 在边AD 上,且AE = 2ED .设B A a =u u r r ,BC b =uu u r r,那么CE =uu u r ▲ (用a r 、b r的式子表示). 15.如果二次函数2111y a x b x c =++(10a ≠,1a 、1b 、1c 是常数)与2222y a x b x c =++(20a ≠,2a 、2b 、2c 是常数)满足1a 与2a 互为相反数,1b 与2b 相等,1c 与2c 互为倒数,那么称这两个函数为“亚旋转函数”.请直接写出函数232y x x =-+-的“亚旋转函数”为 ▲ .16.如果正n 边形的中心角为2α,边长为5,那么它的边心距为 ▲ .(用锐角α的三角比表示) 17.如图,一辆小汽车在公路l 上由东向西行驶,已知测速探头M 到公路l 的距离MN 为9米,测得此车从点A 行驶到点B 所用的时间为0.6秒,并测得点A 的俯角为30o ,点B 的俯角为60o .那么此车从A 到B 的平均速度为 ▲ 米/秒.3 1.732≈2 1.414) 18.在直角梯形ABCD 中,AB // CD ,∠DAB = 90o ,AB = 12,DC = 7,5cos 13ABC ∠=,点E 在线段AD 上,将△ABE 沿BE 翻折,点A 恰巧落在对角线BD 上点P 处,那么PD = ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)120183(1)2cos 45+821-+--+o.20.(本题满分10分)解方程组:221;20.y x x xy y -=⎧⎨--=⎩ 21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)已知一次函数24y x =-+的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内作直角三角形ABC ,且∠BAC = 90o ,1tan 2ABC ∠=. (1)求点C 的坐标;(2)在第一象限内有一点M (1,m ),且点M 与点C 位于直线AB 的同侧,使得ABC ABM S S ∆∆=2, 求点M 的坐标.A BD (第14题图)E ABOCxy ABD C(第18题图)M N(第17题图) l22.(本题满分10分)为了响应上海市市政府“绿色出行”的号召,减轻校门口道路拥堵的现状,王强决定改父母开车接送为自己骑车上学.已知他家离学校7.5千米,上下班高峰时段,驾车的平均速度比自行车平均速度快15千米/小时,骑自行车所用时间比驾车所用时间多14小时,求自行车的平均速度? 23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)如图,已知在△ABC 中,∠BAC =2∠C ,∠BAC 的平分线AE 与∠ABC 的平分线BD 相交于点F ,FG ∥AC ,联结DG .(1)求证:BF BC AB BD ⋅=⋅; (2)求证:四边形ADGF 是菱形. 24.(本题满分12分,其中每小题各4分)如图,已知在平面直角坐标系xOy 中,抛物线22y ax x c =-+与x 轴交于 点A 和点B (1,0),与y 轴相交于点C (0,3). (1)求抛物线的解析式和顶点D 的坐标; (2)求证:∠DAB=∠ACB ;(3)点Q 在抛物线上,且△ADQ 是以AD 为底的等腰三角形,求Q 点的坐标.25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分) 如图,已知在Rt △ABC 中,∠ACB = 90o ,AC =6,BC = 8,点F 在线段AB 上,以点B 为圆心,BF 为半径的圆交BC 于点E ,射线AE 交圆B 于点D (点D 、E 不重合).(1)如果设BF = x ,EF = y ,求y 与x 之间的函数关系式,并写出它的定义域; (2)如果2ED EF =,求ED 的长;(3)联结CD 、BD ,请判断四边形ABDC 是否为直角梯形?说明理由.ABEGCF D(第23题图)A B O Cxy (第24题图) DCC ED闵行区2017学年第二学期九年级质量调研考试数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.C ;2.C ;3.A ;4.B ;5.D ;6.D .二、填空题:(本大题共12题,每题4分,满分48分)7.5; 8.23)(23)x x (; 9.1x =; 10.94m <-; 11.153y x =-+;12.512; 13.8; 14.13a b -r r ; 15.2132y x x =+-; 16.5cot 2α(或52tan α);17.17.3; 18.212.三、解答题:(本大题共7题,满分78分) 19.解:原式=21122+……………………………………(2分+2分+2分+2分)2=.……………………………………………………………………(2分) 20.解:由②得:20x y -=,+0x y =…………………………………………(2分)原方程组可化为120y x x y -=⎧⎨-=⎩,1y x x y -=⎧⎨+=⎩………………………………(2分)解得原方程组的解为21x y =-⎧⎨=-⎩,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩…………………………………(5分)∴原方程组的解是21x y =-⎧⎨=-⎩,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩……………………………………(1分)21.解:(1)令0y =,则240x -+=,解得:2x =,∴点A 坐标是(2,0).令0x =,则4y =,∴点B 坐标是(0,4).………………………(1分)∴22222425AB OA OB ++1分)∵90BAC ∠=,1tan 2ABC ∠=,∴5AC =过C 点作CD ⊥x 轴于点D ,易得OBA DAC ∆∆∽.…………………(1分) ∴2AD =,1CD =,∴点C 坐标是(4,1).………………………(1分) (2)11255522ABC S AB AC ∆=⋅=⨯.………………………………(1分) ∵2ABM ABC S S ∆∆=,∴52ABM S ∆=.……………………………………(1分)∵(1M ,)m ,∴点M 在直线1x =上;令直线1x =与线段AB 交于点E ,2ME m =-;……………………(1分) 分别过点A 、B 作直线1x =的垂线,垂足分别是点F 、G ,∴AF +BG = OA = 2;……………………………………………………(1分)∴111()222ABM BME AME S S S ME BG ME AF ME BG AF ∆∆=+=⋅+⋅=+1152222ME OA ME =⋅=⨯⨯=…………………(1分) ∴52ME =,522m -=,92m =,∴(1M ,92).……………………(1分)22.解:设自行车的平均速度是x 千米/时.………………………………………(1分)根据题意,列方程得7.57.51154x x -=+;……………………………………(3分)化简得:2154500x x +-=;………………………………………………(2分) 解得:115x =,230x =-;…………………………………………………(2分)经检验,115x =是原方程的根,且符合题意,230x =-不符合题意舍去.(1分)答:自行车的平均速度是15千米/时.………………………………………(1分)23.证明:(1)∵AE 平分∠BAC ,∴∠BAC =2∠BAF =2∠EAC .∵∠BAC =2∠C ,∴∠BAF =∠C =∠EAC .…………………………(1分) 又∵BD 平分∠ABC ,∴∠ABD =∠DBC .……………………………(1分) ∵∠ABF =∠C ,∠ABD =∠DBC ,∴ABF CBD ∆∆∽.…………………………………………………(1分) ∴AB BF BC BD=.………………………………………………………(1分) ∴BF BC AB BD ⋅=⋅.………………………………………………(1分) (2)∵FG ∥AC ,∴∠C =∠FGB ,∴∠FGB =∠F AB .………………(1分)∵∠BAF =∠BGF ,∠ABD =∠GBD ,BF =BF ,∴ABF GBF ∆∆≌.∴AF =FG ,BA =BG .…………………………(1分) ∵BA =BG ,∠ABD =∠GBD ,BD =BD ,∴ABD GBD ∆∆≌.∴∠BAD =∠BGD .……………………………(1分) ∵∠BAD =2∠C ,∴∠BGD =2∠C ,∴∠GDC =∠C ,∴∠GDC =∠EAC ,∴AF ∥DG .……………………………………(1分) 又∵FG ∥AC ,∴四边形ADGF 是平行四边形.……………………(1分) ∴AF =FG .……………………………………………………………(1分) ∴四边形ADGF 是菱形.……………………………………………(1分)24.解:(1)把B (1,0)和C (0,3)代入22y ax x c =-+中,得9603a c c ++=⎧⎨=⎩,解得13a c =-⎧⎨=⎩.……………………………………(2分) ∴抛物线的解析式是:223y x x =--+.……………………………(1分) ∴顶点坐标D (-1,4).……………………………………………(1分) (2)令0y =,则2230x x --+=,13x =-,21x =,∴A (-3,0)∴3OA OC ==,∴∠CAO =∠OCA .…………………………………(1分)在Rt BOC ∆中,1tan 3OB OCB OC ∠==.………………………………(1分)∵32AC =2DC =25AD =, ∴2220AC DC +=,220AD =;∴222AC DC AD +=,ACD ∆是直角三角形且90ACD ∠=,∴1tan 3DC DAC AC ∠==,又∵∠DAC 和∠OCB 都是锐角,∴∠DAC =∠OCB .…………………(1分) ∴DAC CAO BCO OCA ∠+∠=∠+∠,即DAB ACB ∠=∠.……………………………………………………(1分) (3)令(Q x ,)y 且满足223y x x =--+,(3A -,0),(1D -,4)∵ADQ ∆是以AD 为底的等腰三角形,∴22QD QA =,即2222(3)(1)(4)x y x y ++=++-, 化简得:220x y -+=.………………………………………………(1分) 由222023x y y x x -+=⎧⎨=--+⎩,……………………………………………………(1分) 解得113411141x y ⎧-+=⎪⎪⎨-⎪=⎪⎩,223411141x y ⎧--=⎪⎪⎨+⎪=⎪⎩. ∴点Q 的坐标是3411141-+-⎝⎭,3411141---+⎝⎭.…(2分)25.解:(1)在Rt △ABC 中,6AC =,8BC =,90ACB ∠=∴10AB =.……………………………………………………………(1分) 过E 作EH ⊥AB ,垂足是H ,易得:35EH x =,45BH x =,15FH x =.…………………………(1分)在Rt △EHF 中,222223155EF EH FH x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,∴10(08)y x =<<.………………………………………(1分+1分) (2)取ED 的中点P ,联结BP 交ED 于点G∵2ED EF =,P 是ED 的中点,∴EP EF PD ==. ∴∠FBE =∠EBP =∠PBD .∵EP EF =,BP 过圆心,∴BG ⊥ED ,ED =2EG =2DG .…………(1分) 又∵∠CEA =∠DEB ,D EB CF ∴∠CAE =∠EBP =∠ABC .……………………………………………(1分)又∵BE 是公共边,∴BEH BEG ∆∆≌.∴35EH EG GD x ===.在Rt △CEA 中,∵AC = 6,8BC =,tan tan AC CECAE ABC BC AC∠=∠==, ∴66339tan 822CE AC CAE ⨯⨯=⋅∠===.……………………………(1分)∴9169782222BE =-=-=.……………………………………………(1分)∴6672125525ED EG x ===⨯=.……………………………………(1分)(3)四边形ABDC 不可能为直角梯形.…………………………………(1分)①当CD ∥AB 时,如果四边形ABDC 是直角梯形, 只可能∠ABD =∠CDB = 90o . 在Rt △CBD 中,∵8BC =,∴32cos 5CD BC BCD =⋅∠=,24sin 5BD BC BCD BE =⋅∠==∴321651025CD AB ==,32853245CE BE -==; ∴CD CE AB BE≠. ∴CD 不平行于AB ,与CD ∥AB 矛盾.∴四边形ABDC 不可能为直角梯形.…………………………(2分) ②当AC ∥BD 时,如果四边形ABDC 只可能∠ACD =∠CDB = 90o .∵AC ∥BD ,∠ACB = 90o , ∴∠ACB =∠CBD = 90o . ∴∠ABD =∠ACB +∠BCD > 90o . 与∠ACD =∠CDB = 90o 矛盾.∴四边形ABDC 不可能为直角梯形.…………………………(2分)EBC F。

闵行区2017学年第二学期高三年级质量调研考试

闵行区2017学年第二学期高三年级质量调研考试

闵行区2017学年第二学期高三年级质量调研考试 化学试卷 考生注意: 1.答卷前,考生务必在答题纸上将学校、姓名及考生号填写清楚,并在规定的区域填涂相关信息。

答题时客观题用2B 铅笔涂写,主观题用黑色水笔填写。

2.本试卷共有39题,共4页。

满分100分,考试时间60分钟。

3.请将答案写在答题纸上,考试后只交答题纸,试卷由考生自己保留。

相对原子质量:H-1 C-12 O-16 Na-23 一、选择题(本题共40分,每小题2分,每题只有一个正确选项) 1.关于 说法错误的是 A .质子数为7 B .中子数为7 C .质量数为14 D .相对原子质量为14 2.含有极性共价键的电解质是 A .CaCl 2 B .H 2O C .NH 3 D .CH 4 3.电解饱和食盐水的阳极产物是 A .NaOH B .H 2 C .HCl D .Cl 2 4.丙烷和丁烷是液化石油气的主要成分,它们互为 A .同系物 B .同素异形体 C .同分异构体 D .同位素 5.不能鉴别Fe 2+和Fe 3+的是 A .氯水 B .盐酸 C .氢氧化钠溶液 D .硫氰化钾溶液 6.钾、钠两种单质的化学性质相似,理由是 A .同一主族元素 B .化学键相同 C .都是金属元素 D .化合价相同 7.碳化硅(SiC )常用于电炉的耐火材料。

关于SiC 说法正确的是 A .易挥发 B .能导电 C .熔化时破坏共价键 D .属于分子晶体 8.接触法制硫酸中,通常不采取的措施是 A .硫铁矿粉碎 B .接触室中通入过量空气 C .接触室控制温度约450 ℃ D .使用高压 9.用酒精和浓硫酸为原料制取纯净的乙烯。

下列使用的装置和试剂均正确的是A .B .C .D .…………………………密○………………………………………封○………………………………………线○………………………… 147N10.一定条件下,下列物质与Cl2反应不能生成HCl的是A.甲烷B.乙烯C.苯D.水11.关于硝酸铵说法正确的是A.属于共价化合物B.溶于水放热C.受热易分解D.属于有机氮肥12.不能通过置换反应制取的是A.Fe(OH)3B.Fe3O4C.Al(OH)3D.Al2O313.海水提溴一般需要经过浓缩、氧化和提取三个步骤。

(完整word版)2017年闵行区高考数学二模试卷含答案,推荐文档

(完整word版)2017年闵行区高考数学二模试卷含答案,推荐文档

2017年闵行区高考数学二模试卷含答案 2017.04一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸上相应编号的空格内直接填写结果. 1. 方程()3log 212x +=的解是 .2. 已知集合{}{}11,1,0,1,M x x N =+≤=-则M N =I .3. 若复数122,2z a i z i =+=+(i 是虚数单位),且12z z为纯虚数,则实数a =.4. 直线23x y ⎧=-⎪⎨=⎪⎩t 为参数)对应的普通方程是 .5. 若()1(2),3n n n x x ax bx c n n -*+=++++∈≥N L ,且4b c =,则a 的值为 .6. 某空间几何体的三视图如右图所示,则该几何体的侧面积是 .7. 若函数()2()1xf x x a =+-在区间[]0,1上有零点,则实数a 的取值范围是 .8. 在约束条件123x y ++-≤下,目标函数2z x y =+的最大值为 .9. 某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,则这名学生在上学的路上到第二个路口时第一次遇到红灯的概率是 .10. 已知椭圆()222101y x b b+=<<,其左、右焦点分别为12F F 、,122F F c =.若此椭圆上存在点P ,使P 到直线1x c=的距离是1PF 与2PF 的等差中项,则b 的最大值为 .11. 已知定点(1,1)A ,动点P 在圆221x y +=上,点P 关于直线y x =的对称点为P ',向量AQ OP '=u u u r u u u r,O 是坐标原点,则PQ u u u r 的取值范围是 .12. 已知递增数列{}n a 共有2017项,且各项均不为零,20171a =,如果从{}n a 中任取两项,i j a a ,当i j <时,j i a a -仍是数列{}n a 中的项,则数列{}n a 的各项和2017S =___.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13. 设a b r r 、分别是两条异面直线12l l 、的方向向量,向量a b r r 、的夹角的取值范围为A ,12l l 、所成的角的取值范围为B ,则“A α∈”是“B α∈”的 ( )(A) 充要条件 (B) 充分不必要条件 (C) 必要不充分条件 (D) 既不充分也不必要条件14. 将函数sin 12y x π⎛⎫=-⎪⎝⎭图像上的点,4P t π⎛⎫⎪⎝⎭向左平移(0)s s >个单位,得到点P ',若P '位于函数sin 2y x =的图像上,则( )(A) 12t =,s 的最小值为6π(B) 2t =,s 的最小值为6π(C) 12t =,s 的最小值为12π (D) t =s 的最小值为12π15. 某条公共汽车线路收支差额y 与乘客量x 的函数关系如下图所示(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变车票价格,减少支出费用;建议(Ⅱ)不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则 ( )(A) ①反映了建议(Ⅱ),③反映了建议(Ⅰ)(B) ①反映了建议(Ⅰ),③反映了建议(Ⅱ) (C) ②反映了建议(Ⅰ),④反映了建议(Ⅱ) (D) ④反映了建议(Ⅰ),②反映了建议(Ⅱ)16. 设函数()y f x =的定义域是R ,对于以下四个命题: (1)若()y f x =是奇函数,则(())y f f x =也是奇函数; (2)若()y f x =是周期函数,则(())y f f x =也是周期函数; (3)若()y f x =是单调递减函数,则(())y f f x =也是单调递减函数; (4)若函数()y f x =存在反函数1()y f x -=,且函数1()()y f x f x -=-有零点,则函数()y f x x =-也有零点.其中正确的命题共有 ( )(A)1个 (B) 2个 (C) 3个 (D) 4个三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17. (本题满分14分,本题共有2个小题,第1小题满分6分,BBAB CPQ D第2小题满分8分)直三棱柱111C B A ABC -中,底面ABC 为等腰直角三角形, AC AB ⊥,2==AC AB ,41=AA , M 是侧棱1CC 上一点,设h MC =. (1)若C A BM 1⊥,求h 的值;(2)若2h =,求直线1BA 与平面ABM 所成的角.18. (本题满分14分,本题共有2个小题,第1小题满分6分,第2小题满分8分)设函数()2xf x =,函数()g x 的图像与函数()f x 的图像关于y 轴对称. (1)若()4()3f x g x =+,求x 的值;(2)若存在[]0,4x ∈,使不等式(+)(2)3f a x g x --≥成立,求实数a 的取值范围.19. (本题满分14分,本题共有2个小题,第1小题满分6分,第2小题满分8分)如图所示,PAQ ∠是某海湾旅游区的一角,其中ο120=∠PAQ ,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸AP 和AQ 上分别修建观光长廊AB 和AC ,其中AB 是宽长廊,造价是800元/米,AC 是窄长廊,造价是400元/米,两段长廊的总造价为120万元,同时在线段BC 上靠近点B 的三等分点D 处建一个观光平台,并建水上直线通道AD (平台大小忽略不计),水上通道的造价是1000元/米.(1) 若规划在三角形ABC 区域内开发水上游乐项目,要求ABC △的面积最大,那么AB 和AC 的长度分别为多少米?(2) 在(1)的条件下,建直线通道AD 还需要多少钱?20. (本题满分16分,本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分)设直线l 与抛物线24y x =相交于不同两点A B 、,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.(1) 若AOB △是正三角形(O 为坐标原点),求此三角形的边长;(2) 若4r =,求直线l 的方程;(3) 试对()0,r ∈+∞进行讨论,请你写出符合条件的直线l 的条数(只需直接写出结果).21. (本题满分18分,本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分)已知()y f x =是R 上的奇函数,(1)1f -=-,且对任意(),0x ∈-∞,()11x f x f x x ⎛⎫=⎪-⎝⎭都成立.(1) 求12f ⎛⎫-⎪⎝⎭、13f ⎛⎫- ⎪⎝⎭的值;(2) 设1()()n a f n n*=∈N ,求数列{}n a 的递推公式和通项公式;(3) 记121321n n n n n T a a a a a a a a --=++++L ,求1lim n n nT T +→∞的值.闵行区2016-2017学年第二学期高三年级质量调研考试数学试卷参考答案与评分标准一. 填空题 1.4x =; 2.{1,0}-; 3.1; 4.10x y +-=; 5.16; 6.; 7.1,12⎡⎤-⎢⎥⎣⎦; 8.9; 9.29; 1011.; 12.1009;二. 选择题 13.C ; 14.A ; 15.B ; 16.B . 三. 解答题17.[解](1)以A 为坐标原点,以射线AB 、AC 、1AA 分别为x 、y 、z 轴建立空间直角坐标系,如图所示,则)0,0,2(B ,)4,0,0(1A ,)0,2,0(C ,),2,0(h M ……………………2分),2,2(h BM -=,)4,2,0(1-=A ……………………4分由C A BM 1⊥得01=⋅C A BM ,即0422=-⨯h解得1=h . ……………………6分 (2) 解法一:此时(0,2,2)M()()()12,0,0,0,2,2,2,0,4AB AM BA ===-u u u r u u u u r u u u r……………8分设平面ABM 的一个法向量为(,,)n x y z =r由00n AB n AM ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u u r得00x y z =⎧⎨+=⎩所以(0,1,1)n =-r……………………10分 设直线1BA 与平面ABM 所成的角为θ则11sin 5n BA n BA θ⋅===⋅r u u u r r u u u r ……………12分所以arc θ= 所以直线1BA 与平面ABM所成的角为arc ………………14分 解法二:联结1A M ,则1A M AM ⊥,1,AB AC AB AA ⊥⊥Q ,AB ∴⊥平面11AAC C …………………8分 1AB A M ∴⊥1A M ∴⊥平面ABM所以1A BM ∠是直线1BA 与平面ABM 所成的角; ……………………10分 在1A BM Rt △中,11A M A B ==所以111sin 5A M A BM AB ∠===……………………12分所以1arcsin5A BM ∠= 所以直线1BA 与平面ABM所成的角为arc ………………14分 18.[解](1)由()4()3f x g x =+得2423xx-=⋅+ ……………………2分223240x x ⇒-⋅-=所以21x =-(舍)或24x=, ……………………4分 所以2x = ……………………6分 (2)由()(2)3f a x g x +--≥得2223a xx +-≥ ……………………8分2223a x x +≥+2232a x x -⇒≥+⋅ ……………………10分而232xx-+⋅≥,当且仅当[]4232,log 30,4x x x -=⋅=∈即时取等号…12分所以2a ≥211log 32a ≥+.………………………………14分 19.[解](1)设AB 长为x 米,AC 长为y 米,依题意得8004001200000x y +=, 即23000x y +=, ………………………………2分1sin1202ABC S x y ∆=⋅⋅o y x ⋅⋅=43 …………………………4分 y x ⋅⋅=28322283⎪⎭⎫ ⎝⎛+≤y x=2m当且仅当y x =2,即750,1500x y ==时等号成立,所以当ABC △的面积最大时,AB 和AC 的长度分别为750米和1500米……6分 (2)在(1)的条件下,因为750,1500AB m AC m ==.由2133AD AB AC =+u u u r u u u r u u u r…………………………8分得222133AD AB AC ⎛⎫=+ ⎪⎝⎭u u u r u u u r u u u r22919494AC AC AB AB +⋅+=…………………………10分 2244117507501500()15009929=⨯+⨯⨯⨯-+⨯250000= ||500AD ∴=u u u r, …………………………12分1000500500000⨯=元所以,建水上通道AD 还需要50万元. …………………………14分 解法二:在ABC ∆中,ο120cos 222AC AB AC AB BC ⋅-+==7750= ………8分在ABD ∆中,ACAB AC BC AB B ⋅-+=2cos 222775075021500)7750(750222⨯⨯-+=772= …………………………10分 在ABD ∆中,B BD AB BD AB AD cos 222⋅-+=772)7250(7502)7250(75022⋅⨯⨯-+==500 …………12分 1000500500000⨯=元所以,建水上通道AD 还需要50万元. …………………………14分解法三:以A 为原点,以AB 为x 轴建立平面直角坐标系,则)0,0(A ,)0,750(B)120sin 1500,120cos 1500(οοC ,即)3750,750(-C ,设),(00y x D ………8分由2CD DB =u u u r u u u r ,求得⎪⎩⎪⎨⎧==325025000y x ,所以(D …………10分所以,22)03250()0250(||-+-=AD 500=……………………12分1000500500000⨯=元所以,建水上通道AD 还需要50万元. …………………………14分20.[解] (1)设AOB △的边长为a ,则A的坐标为1(,)22a ±………2分所以214,22a a ⎛⎫±=⋅ ⎪⎝⎭所以a =此三角形的边长为 ……………………………4分 (2)设直线:l x ky b =+当0k =时,1,9x x ==符合题意 ……………………………6分当0k ≠时,224404x ky b y ky b y x=+⎧⇒--=⎨=⎩…………………8分222121216()0,4,42(2,2)k b y y k x x k b M k b k ∆=+>+=+=+⇒+11,AB CM AB k k k k⋅=-=Q 2223225CM k k k b k k b ∴==-⇒=-+- 22216()16(3)003k b k k ∴∆=+=->⇒<<4r ===Q()230,3k ∴=∉,舍去综上所述,直线l 的方程为:1,9x x == ……………………………10分 (3)(][)0,24,5r ∈U 时,共2条;……………………………12分()2,4r ∈时,共4条; ……………………………14分 [)5,r ∈+∞时,共1条. ……………………………16分21.[解](1)对等式()11x f x f x x ⎛⎫=⎪-⎝⎭,令11(1)12x f f ⎛⎫=-⇒-=-=-⎪⎝⎭所以112f ⎛⎫-=- ⎪⎝⎭ ……………………………2分 令1111222233x f f f ⎛⎫⎛⎫⎛⎫=-⇒-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1132f ⎛⎫-=- ⎪⎝⎭……………………………4分 (2)取1x n =-,可得111()()1f f n n n =--+,………………6分 即111()()1f f n n n=+,所以11()n n a a n n*+=∈N1(1)(1)1,a f f ==--=所以数列{}n a 的递推公式为1111,()n n a a a n n*+==∈N ……………………………8分 故()13212211111111221!n n n n n a a a a a a a a a a n n n ---⋅⋅⋅⋅==⋅⋅⋅=---L ………………10分 所以数列{}n a 的通项公式为1(1)!n a n =-. …………………12分(3)由(2)1(1)!n a n =-代入121321n n n n n T a a a a a a a a --=++++L 得111110!(1)!1!(2)!2!(3)!3!(3)!(1)!0!n T n n n n n =+++++⋅-⋅-⋅-⋅--⋅L ……14分1(1)!(1)!(1)!(1)!11(1)!1!(2)!2!(3)!3!(3)!(2)!1!n n n n n T n n n n n ⎡⎤----⇒=++++++⎢⎥-⋅-⋅-⋅--⋅⎣⎦L 101232111111112(1)!(1)!n n n n n n n n n n T C C C C C C n n ---------⎡⎤⇒=++++++=⎣⎦--L ……16分 12!nn T n +⇒=则12limlim 0n n n nT T n +→∞→∞== ……………………………18分。

2017年上海市闵行区中考数学二模试卷(有答案)

2017年上海市闵行区中考数学二模试卷(有答案)

2017年上海市闵行区中考数学二模试卷(有答案)闵行区2017学年第二学期九年级质量调研考试学年第二学期九年级质量调研考试数 学 试 卷(考试时间100分钟,满分150分)分)考生注意:考生注意:1.本试卷含三个大题,共25题.题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答 题一律无效.一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证 明或计算的主要步骤.或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】题纸的相应位置上】1.在下列各式中,二次单项式是.在下列各式中,二次单项式是 (A ) ; (B ) ; (C ) ; (D ) .2.下列运算结果正确的是.下列运算结果正确的是(A ) ; (B ) ;(C ) ; (D ) .3.在平面直角坐标系中,反比例函数.在平面直角坐标系中,反比例函数 图像在每个象限内y 随着x 的增大而减小,那么它的图像的两个分支分别在的图像的两个分支分别在(A )第一、三象限;)第一、三象限; (B )第二、四象限;)第二、四象限;(C )第一、二象限;)第一、二象限; (D )第三、四象限.)第三、四象限.4.有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的名学生成绩的(A )平均数;)平均数; (B )中位数;)中位数; (C )众数;)众数; (D )方差.)方差.5.已知四边形ABCD 是平行四边形,下列结论中不正确的是是平行四边形,下列结论中不正确的是(A )当AB = BC 时,四边形ABCD 是菱形;(B )当AC ⊥BD 时,四边形ABCD 是菱形;(C )当∠ABC = 90o 时,四边形ABCD 是矩形;(D )当AC = BD 时,四边形ABCD 是正方形.是正方形. 6.点A 在圆O 上,已知圆O 的半径是4,如果点A 到直线a 的距离是8,那么圆O 与直线a 的位置关系可能是的位置关系可能是(A )相交; (B )相离; (C )相切或相交; (D )相切或相离.)相切或相离.二、填空题:(本大题共12题,每题4分,满分48分)分)7.计算: ▲ .8.在实数范围内分解因式: ▲ .9.方程.方程的解是 ▲ . 10.已知关于x 的方程的方程没有实数根,那么m 的取值范围是 ▲ . 11.已知直线.已知直线 与直线与直线平行,且截距为5,那么这条直线的解析式为 ▲ . 12.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小杰过马路时,恰巧是绿灯的概率是 ▲ .13.已知一个40个数据的样本,个数据的样本,把它分成把它分成6组,第一组到第四组的频数分别是10、5、7、6,第五组的频率是0.1,那么第六组的频数是 ▲ .14.如图,已知在矩形ABCD 中,点E 在边AD 上,且AE = 2ED .设 , ,那么 ▲ (用 、 的式子表示).的式子表示).15.如果二次函数.如果二次函数 ( , 、 、 是常数)与是常数)与 ( , 、 、 是常数)满足是常数)满足 与 互为相反数,互为相反数, 与 相等, 与 互为倒数,那么称这两个函数为“亚旋转函数”.请直接写出函数请直接写出函数 的“亚旋转函数”为 ▲ .16.如果正n 边形的中心角为边形的中心角为 ,边长为5,那么它的边心距为 ▲ .(用锐角.(用锐角 的三角比表示)比表示)17.如图,一辆小汽车在公路l 上由东向西行驶,已知测速探头M 到公路l 的距离MN 为9米,测得此车从点A 行驶到点B 所用的时间为0.6秒,并测得点A 的俯角为30o ,点B 的俯角为60o .那么此车从A 到B 的平均速度为 ▲ 米/秒.(结果保留三个有效数字,参考数据:考数据:, ) 18.在直角梯形ABCD 中,AB // CD ,∠DAB = 90o ,AB = 12,DC = 7, ,点E 在线段AD 上,将△ABE 沿BE 翻折,点A 恰巧落在对角线BD 上点P 处,那么PD = ▲ .三、解答题:(本大题共7题,满分78分)分)19.(本题满分10分)计算:计算:. 20.(本题满分10分)解方程组:解方程组:21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)分)已知一次函数已知一次函数的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内作直角三角形ABC ,且∠BAC = 90o , .(1)求点)求点 的坐标;的坐标;(2)在第一象限内有一点M (1,m ),且点M 与点与点C 位于直线AB 的同侧,使得的同侧,使得, 求点M 的坐标.的坐标.22.(本题满分10分)分)为了响应上海市市政府“绿色出行”的号召,减轻校门口道路拥堵的现状,王强决定改父母开车接送为自己骑车上学.车接送为自己骑车上学.已知他家离学校已知他家离学校7.5千米,上下班高峰时段,千米,上下班高峰时段,驾车的平均速度比自驾车的平均速度比自行车平均速度快15千米/小时,骑自行车所用时间比驾车所用时间多千米/小时,骑自行车所用时间比驾车所用时间多小时,求自行车的平均速度?平均速度?23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)分)如图,已知在△ABC 中,∠BAC=2∠C ,∠BAC 的平分线AE 与∠ABC 的平分线BD 相交于点F ,FG ∥AC ,联结DG .(1)求证:)求证:; (2)求证:四边形ADGF 是菱形.是菱形.24.(本题满分12分,其中每小题各4分)分)如图,已知在平面直角坐标系xOy 中,抛物线中,抛物线 与x 轴交于轴交于点A 和点B (1,0),与y 轴相交于点C (0,3).).(1)求抛物线的解析式和顶点D 的坐标;的坐标;(2)求证:∠DAB=∠ACB ;(3)点Q 在抛物线上,且△ADQ 是以AD 为底的等腰三角形,求Q 点的坐标.点的坐标.25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)分)如图,已知在Rt △ABC 中,∠ACB = 90o ,AC =6,BC = 8,点F 在线段AB 上,以点B 为圆心,BF 为半径的圆交BC 于点E ,射线AE 交圆B 于点D (点D 、E 不重合).不重合). (1)如果设BF = x ,EF = y ,求y 与x 之间的函数关系式,并写出它的定义域;之间的函数关系式,并写出它的定义域; (2)如果)如果 ,求ED 的长;的长;(3)联结CD 、BD ,请判断四边形ABDC 是否为直角梯形?说明理由.是否为直角梯形?说明理由.闵行区2017学年第二学期九年级质量调研考试数学试卷学年第二学期九年级质量调研考试数学试卷参考答案及评分标准参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分)分)1.C ;2.C ;3.A ;4.B ;5.D ;6.D .二、填空题:(本大题共12题,每题4分,满分48分)分)7.5; 8. ; 9. ; 10. ; 11. ;12. ; 13.8; 14. ; 15. ; 16. (或(或); 17.17.3; 18. .三、解答题:(本大题共7题,满分78分)分)19.解:原式.解:原式 ……………………………………(2分+2分+2分+2分)分).……………………………………………………………………(2分)分)20.解:由②得:.解:由②得: , …………………………………………(2分)分)原方程组可化为原方程组可化为 , ………………………………(2分)分)解得原方程组的解为解得原方程组的解为 , …………………………………(5分)分)∴原方程组的解是∴原方程组的解是 , ……………………………………(1分)分)21.解:(1)令)令 ,则,则 ,解得:,解得: ,∴点A 坐标是(2,0).).令 ,则,则 ,∴点B 坐标是(0,4).………………………(1分)分) ∴ .………………………………(1分)分)∵ , ,∴,∴. 过C 点作CD ⊥ 轴于点D ,易得,易得 .…………………(1分)分)∴ , ,∴点C 坐标是(4,1).………………………(1分)分)(2) .………………………………(1分)分)∵ ,∴,∴ .……………………………………(1分)分)∵ , ,∴点M 在直线在直线 上;上;令直线令直线 与线段AB 交于点E , ;……………………(1分)分)分别过点A 、B 作直线作直线的垂线,垂足分别是点F 、G , ∴AF+BG = OA = 2;……………………………………………………(1分)分) ∴…………………(1分)分)∴ , , ,∴,∴ , .……………………(1分)分)22.解:设自行车的平均速度是.解:设自行车的平均速度是 千米/时.………………………………………(1分)分) 根据题意,列方程得根据题意,列方程得 ;……………………………………(3分)分)化简得:化简得: ;………………………………………………(2分)分)解得:解得: , ;…………………………………………………(2分)分) 经检验,经检验, 是原方程的根,且符合题意,是原方程的根,且符合题意, 不符合题意舍去.(1分)分)答:自行车的平均速度是15千米/时.………………………………………(1分)分) 23.证明:(1)∵AE 平分∠BAC ,∴∠BAC=2∠BAF=2∠EAC .∵∠BAC=2∠C ,∴∠BAF=∠C=∠EAC .…………………………(1分)分) 又∵BD 平分∠ABC ,∴∠ABD=∠DBC .……………………………(1分)分) ∵∠ABF=∠C ,∠ABD=∠DBC ,∴ .…………………………………………………(1分)分)∴ .………………………………………………………(1分)分)∴ .………………………………………………(1分)分)(2)∵FG ∥AC ,∴∠C=∠FGB ,∴∠FGB=∠FAB .………………(1分)分) ∵∠BAF=∠BGF ,∠ABD=∠GBD ,BF=BF , ∴ .∴AF=FG ,BA=BG .…………………………(1分)分)∵BA=BG ,∠ABD=∠GBD ,BD=BD ,∴ .∴∠BAD=∠BGD .……………………………(1分)分)∵∠BAD=2∠C ,∴∠BGD=2∠C ,∴∠GDC=∠C ,∴∠GDC=∠EAC ,∴AF ∥DG .……………………………………(1分)分) 又∵FG ∥AC ,∴四边形ADGF 是平行四边形.……………………(1分)分) ∴AF=FG .……………………………………………………………(1分)分) ∴四边形ADGF 是菱形.……………………………………………(1分)分) 24.解:(1)把B (1,0)和C (0,3)代入)代入 中,中,得 ,解得,解得 .……………………………………(2分)分)∴抛物线的解析式是:∴抛物线的解析式是: .……………………………(1分)分)∴顶点坐标D (-1,4).……………………………………………(1分)分) (2)令)令 ,则,则, , ,∴A (-3,0) ∴ ,∴∠CAO=∠OCA .…………………………………(1分)分)在 中,中, .………………………………(1分)分)∵ , , , ∴ , ;∴ , 是直角三角形且是直角三角形且, ∴ ,又∵∠DAC 和∠OCB 都是锐角,∴∠DAC=∠OCB .…………………(1分)分) ∴ ,即 .……………………………………………………(1分)分)(3)令)令 , 且满足且满足, ,0), ,4) ∵ 是以AD 为底的等腰三角形,为底的等腰三角形,∴ ,即,即, 化简得:化简得: .………………………………………………(1分)分)由 ,……………………………………………………(1分)分) 解得解得, . ∴点Q 的坐标是的坐标是 , .…(2分)分)25.解:(1)在Rt △ABC 中,中,, , ∴ .……………………………………………………………(1分)分)过E 作EH ⊥AB ,垂足是H ,易得:易得: , , .…………………………(1分)分)在Rt △EHF 中,中,, ∴ .………………………………………(1分+1分)分)(2)取)取的中点P ,联结BP 交ED 于点G ∵ ,P 是 的中点,∴的中点,∴. ∴∠FBE =∠EBP =∠PBD .∵ ,BP 过圆心,∴BG ⊥ED ,ED =2EG =2DG .…………(1分)分) 又∵∠CEA =∠DEB ,∴∠CAE=∠EBP=∠ABC .……………………………………………(1分)分) 又∵BE 是公共边,∴是公共边,∴ .∴.∴. 在Rt △CEA 中,∵AC = 6, , ,∴ .……………………………(1分)分) ∴ .……………………………………………(1分)分)∴ .……………………………………(1分)分)(3)四边形ABDC 不可能为直角梯形.…………………………………(1分)分) ①当CD ∥AB 时,如果四边形ABDC 是直角梯形,是直角梯形,只可能∠ABD =∠CDB = 90o .在Rt △CBD 中,∵中,∵, ∴ .∴CD 不平行于AB ,与CD ∥AB 矛盾.∴四边形ABDC 不可能为直角梯形.…………………………(2分)分) ②当AC ∥BD 时,如果四边形ABDC 是直角梯形,是直角梯形,只可能∠ACD =∠CDB = 90o .∵AC ∥BD ,∠ACB = 90o ,∴∠ACB =∠CBD = 90o .∴∠ABD =∠ACB +∠BCD > 90o .与∠ACD =∠CDB = 90o 矛盾.矛盾.∴四边形ABDC 不可能为直角梯形.…………………………(2分)分)。

2017年上海市闵行区七宝中学高考数学二模试卷(解析版)

2017年上海市闵行区七宝中学高考数学二模试卷(解析版)

2017年上海市闵行区七宝中学高考数学二模试卷一.填空题1.(3分)若集合A={x||x|<1},B={x|2x>1},则A∪B=.2.(3分)若a为实数,则,则|1+ai|=.3.(3分)函数的最小正周期为.4.(3分)将满足的封闭图形绕y轴旋转一周所得的几何体的主观图面积为.5.(3分)多项式的展开式中,x2项的系数为.6.(3分)已知等差数列{a n}满足a4=a2+a1,则=.7.(3分)A盒中有3张足球票和3张篮球票,B盒中有2张足球票和4张篮球票,甲盒A 中任意抽取一张票,乙从B盒中任取抽取一张票,则两人至少抽到一张足球票的概率为.8.(3分)方程9x+m•3x+m﹣1=0有唯一解,则实数m的取值范围是.9.(3分)记椭圆的左右焦点分别为F1,F2,斜率为1的直线l过椭圆的右焦点F2(1,0),且与椭圆在第一象限交于点P,∠PF1F2=15°则椭圆的长轴长为.10.(3分)若函数f(x)=|x|﹣1+ax(x∈R)存在反函数,则a的取值范围是.11.(3分)已知函数f(x)=2x,g(x)=x2﹣ax,对于不相等的实数x1,x2,设,都有现有如下命题:①对于不相等的实数x1,x2,都有m>0;②对于任意实数a及不相等的实数x1,x2,都有n>0;③对于任意实数a及不相等的实数x1,x2,都有m=n;④存在实数a,对任意不相等的实数x1,x2,都有m=n,其中所有的真命题是.12.(3分)在△ABC中,内角A<B<C,记,则的取值范围为.二.选择题13.(3分)已知两条直线“”是“直线l 1与直线l2的夹角为60°”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件14.(3分)函数的图象如图所示,则下列结论成立的是()A.a>0,b<0,c<0B.a>0,b>0,c<0C.a<0,b>0,c>0D.a>0,b<0,c>015.(3分)如图,在平面直角坐标系xOy中,两个非零向量,与x轴正半轴的夹角分别为和,向量满足=,则与x轴正半轴夹角取值范围是()A.(0,)B.(,)C.(,)D.(,)16.(3分)已知函数,集合A={x|f(x)=k,n∈N},若不相等的实数a,b∈A且都有a+b∈Z,则满足条件的a,b(不考虑a,b的顺序)的组数为()A.36B.58C.62D.74三.简答题17.某小区打造休闲场地,将一块直角三角形空地ABC用一条长为16m的道路MN分成两部分(点M在边AB上).分别种植花卉和铺设草坪,其中花卉面积为S1,草坪面积为S2,且S1≤S2,已知AB=32m,AC=24m,∠A=90°,求S1的最大值(本题中道路都指线段).18.如图,把长为6,宽为3的矩形折成正三棱柱ABC﹣A1B1C1,三棱柱的高度为3,矩形的对角线和三棱柱的侧棱BB1,CC1的交点记为E,F.(1)求三棱柱ABC﹣A1B1C1的体积;(2)求三棱柱中异面直线AE与A1F所成角的大小.19.函数f(x)对任意的x∈R满足:f(﹣x)=﹣f(x),f(x+2)=f(x),当x∈(0,1)时,.(1)求出函数在R上零点;(2)求满足不等式f(sinθ)>﹣f(cosθ)的实数θ的范围.20.已知双曲线的左右顶点分别为A,B,A(﹣2,0).直线l:x=1和两条渐近线交于点E,F,点E在第一象限且,P是双曲线上的任意一点.(1)求双曲线的标准方程;(2)是否存在点P使得△OEP为直角三角形?若存在,求出点P的个数;(3)直线P A,PB与直线l分别交于点M,N,证明:以MN为直径的圆必过定点.21.已知n位数满足下列条件:①各个数字只能从集合{1,2,3,4}中选取;②若其中有数字4,则在4的前面不含2.将这样的n位数的个数记为a n.(1)求a2,a3;(2)探究a n+1与a n之间的关系,求出数列{a n}的通项公式;(3)对于每个正整数k,在a k与a k+1之间插入2k﹣1个得到一个新数列{b n},设S n是数列{b n}的前n项和,试探究S n=2017能否成立?写出你探究得到的结论并给出证明.2017年上海市闵行区七宝中学高考数学二模试卷参考答案与试题解析一.填空题1.(3分)若集合A={x||x|<1},B={x|2x>1},则A∪B={x|x>﹣1}.【解答】解:集合A={x||x|<1}={x|﹣1<x<1},B={x|2x>1}={x|x>0},则A∪B={x|x>﹣1}.故答案为:{x|x>﹣1}.2.(3分)若a为实数,则,则|1+ai|=.【解答】解:由,得(a+)i=2i,即a+=2.解得a=1.∴|1+ai|=|1+i|=.故答案为:.3.(3分)函数的最小正周期为π.【解答】解:∵=2﹣2sin x cos x=2﹣sin2x.∴最小正周期T==π.故答案为:π.4.(3分)将满足的封闭图形绕y轴旋转一周所得的几何体的主观图面积为8.【解答】解:将满足的封闭图形绕y轴旋转一周所得的几何体是圆锥,圆锥的底面半径为:2,高为4,几何体的主视图图是等腰三角形,面积为:=8.故答案为:8.5.(3分)多项式的展开式中,x2项的系数为56.【解答】解:∵多项式=(1+)•(x7+7x6+21x5+35x4+35x3+21x2+7x+1),故展开式中x2项的系数为21+35=56,故答案为:56.6.(3分)已知等差数列{a n}满足a4=a2+a1,则=2.【解答】解:等差数列{a n}满足a4=a2+a1,设公差为d,则a1+3d=2a1+d,可得d=a1,通项公式:a n=a1+(n﹣1)d=a1+a1(n﹣1),S n=na1+=na1+,则=====2.故答案为:2.7.(3分)A盒中有3张足球票和3张篮球票,B盒中有2张足球票和4张篮球票,甲盒A 中任意抽取一张票,乙从B盒中任取抽取一张票,则两人至少抽到一张足球票的概率为.【解答】解:A盒中有3张足球票和3张篮球票,B盒中有2张足球票和4张篮球票,甲盒A中任意抽取一张票,乙从B盒中任取抽取一张票,则两人至少抽到一张足球票的概率为:p=1﹣=.故答案为:.8.(3分)方程9x+m•3x+m﹣1=0有唯一解,则实数m的取值范围是{m|m<1}.【解答】解:令t=3x,方程9x+m•3x+m﹣1=0化为t2+mt+m﹣1=0,方程9x+m•3x+m﹣1=0有唯一解,等价于t2+mt+m﹣1=0只有1个正数解,可得:m﹣1<0或,解得m<1.故答案为:{m|m<1}.9.(3分)记椭圆的左右焦点分别为F1,F2,斜率为1的直线l过椭圆的右焦点F2(1,0),且与椭圆在第一象限交于点P,∠PF1F2=15°则椭圆的长轴长为.【解答】解:斜率为1的直线l过椭圆的右焦点F2(1,0),则直线的倾斜角为45°,则∠PF1F2=135°,∵∠PF1F2=15°,∴∠F1PF2=30,∴sin15°=sin(45°﹣30°)=由正弦定理可得==,∴|PF1|=2c,|PF2|=(﹣)c,∴2a=|PF1|+|PF2|=(+)c=,故答案为:+.10.(3分)若函数f(x)=|x|﹣1+ax(x∈R)存在反函数,则a的取值范围是a>1或a <﹣1.【解答】解:函数f(x)=|x|﹣1+ax存在反函数,当x>0时,f(x)=(1+a)x﹣1,a>﹣1时,递增;a<﹣1减;当x<0时,f(x)=(a﹣1)x﹣1,a>1递增;a<1递减,综上可得a>1或a<﹣1时,f(x)在R上存在反函数,故答案为:a>1或a<﹣1.11.(3分)已知函数f(x)=2x,g(x)=x2﹣ax,对于不相等的实数x1,x2,设,都有现有如下命题:①对于不相等的实数x1,x2,都有m>0;②对于任意实数a及不相等的实数x1,x2,都有n>0;③对于任意实数a及不相等的实数x1,x2,都有m=n;④存在实数a,对任意不相等的实数x1,x2,都有m=n,其中所有的真命题是①④.【解答】解:对于①,任取x1≠x2,则,①正确;对于②,由二次函数的单调性可得g(x)在(﹣∞,)单调递减,在(,+∞)单调递增,可取x1=0,x2=a,则,②错误;对于③,由①知,m=2,=x2﹣a,则m=n不恒成立,③错误;对于④,由①知,m=2,由③知,n=x1+x2﹣a,若m=n,则x1+x2﹣a=2,只需x1+x2=a+2即可,④正确.故答案为:①④.12.(3分)在△ABC中,内角A<B<C,记,则的取值范围为(1,).【解答】解:内角A<B<C,可得a<b<c,则>1,>1,则=min{,},当≤,可得min{,}=,由>≥,即1+>,即有()2﹣﹣1<0,解得1<<;当>,可得min{,}=,由<<,即﹣1<,即有()2﹣﹣1<0,解得1<<,综上可得的取值范围为(1,).故答案为:(1,).二.选择题13.(3分)已知两条直线“”是“直线l 1与直线l2的夹角为60°”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【解答】解:直线l2:x﹣y+1=0,化为:y=x+1,可得斜率为,倾斜角为60°.由直线l1与直线l2的夹角为60°,可得直线l1的倾斜角为0°或120°.∴﹣m=0或﹣m=tan120°,解得m=0,或.∴”是“直线l1与直线l2的夹角为60°”的充分不必要条件.故选:B.14.(3分)函数的图象如图所示,则下列结论成立的是()A.a>0,b<0,c<0B.a>0,b>0,c<0C.a<0,b>0,c>0D.a>0,b<0,c>0【解答】解:由x+b≠0得x≠﹣b,由﹣b>0得b<0,排除B,C,f(0)=>0,则c<0,排除D,由f(x)=0得ax2+c=0,即ax2=﹣c,∵f(x)=0有两个根,则a>0,故选:A.15.(3分)如图,在平面直角坐标系xOy中,两个非零向量,与x轴正半轴的夹角分别为和,向量满足=,则与x轴正半轴夹角取值范围是()A.(0,)B.(,)C.(,)D.(,)【解答】解:由得,即与x轴正半轴的夹角的取值范围应在向量,与x轴正半轴的夹角之间,由于非零向量,与x轴正半轴的夹角分别为和,∴向量,与x轴正半轴的夹角范围是(,)∴与x轴正半轴的夹角的取值范围是(,)故选:B.16.(3分)已知函数,集合A={x|f(x)=k,n∈N},若不相等的实数a,b∈A且都有a+b∈Z,则满足条件的a,b(不考虑a,b的顺序)的组数为()A.36B.58C.62D.74【解答】解:函数,集合A={x|f(x)=k,k∈N},若k=0,可得x=1,4,6,8,10,12,14,16,18;若k=1可得x=,,,,,,,,;若k=2可得x=,5,9,13,17;若不相等的实数a,b∈A且都有a+b∈Z,则k=0有=36个;k=1有5×4=20个;k=2有=6个.综上可得,共有36+20+6=62.故选:C.三.简答题17.某小区打造休闲场地,将一块直角三角形空地ABC用一条长为16m的道路MN分成两部分(点M在边AB上).分别种植花卉和铺设草坪,其中花卉面积为S1,草坪面积为S2,且S1≤S2,已知AB=32m,AC=24m,∠A=90°,求S1的最大值(本题中道路都指线段).【解答】解:如图设BN=x,BM=y,∵AB=32m,AC=24m,∠A=90°,∴cos,sin,S1=,在△BMN中,由余弦定理得,,162,∴xy≤40×16.∴S1=≤192,故S1的最大值为192.18.如图,把长为6,宽为3的矩形折成正三棱柱ABC﹣A1B1C1,三棱柱的高度为3,矩形的对角线和三棱柱的侧棱BB1,CC1的交点记为E,F.(1)求三棱柱ABC﹣A1B1C1的体积;(2)求三棱柱中异面直线AE与A1F所成角的大小.【解答】解:(1)∵把长为6,宽为3的矩形折成正三棱柱ABC﹣A1B1C1,三棱柱的高度为3,∴正三棱柱的底面边长为2,∴三棱柱ABC﹣A1B1C1的体积:V=S△ABC×AA1==3.(2)∵矩形的对角线和三棱柱的侧棱BB1,CC1的交点记为E,F,∴CF=4,BE=2,以A为原点,在平面ABC中过A作AB的垂线为x轴,以AB为y轴,AA1为z轴,建立空间直角坐标系,A(0,0,0),E(0,2,2),A1(0,0,6),F(,1,4),(0,2,2),=(),设三棱柱中异面直线AE与A1F所成角为θ,则cosθ===,∴θ=arccos,∴三棱柱中异面直线AE与A1F所成角为arccos.19.函数f(x)对任意的x∈R满足:f(﹣x)=﹣f(x),f(x+2)=f(x),当x∈(0,1)时,.(1)求出函数在R上零点;(2)求满足不等式f(sinθ)>﹣f(cosθ)的实数θ的范围.【解答】解:(1)根据题意,函数f(x)对任意的x∈R满足f(﹣x)=﹣f(x),则f(x)是奇函数,则有f(0)=0,又由f(x+2)=f(x),则f(x)是周期为2的周期函数,当x∈(0,1)时,,该区间上不存在零点,又由函数f(x)为奇函数,则当x∈(﹣1,0)时,f(x)也不存在零点,当x=﹣1时,f(﹣1+2)=f(﹣1)=f(1)又f(﹣1)=﹣f(1),即f(﹣1)=f(1)=﹣f(1),则f(﹣1)=f(1)=0,即在区间[﹣1,1]上的零点为﹣1,1,0,又由函数f(x)是周期为2的周期函数,则f(x)在R的零点为x=k,即{x|x=k,k∈Z}(2)根据题意,f(x)为奇函数,则不等式f(sinθ)>﹣f(cosθ)等价为f(sinθ)>f(﹣cosθ),当﹣1<x<1时,函数的导数f′(x)==>0,即函数f(x)在(﹣1,1)上是增函数,则此时不等式等价为sinθ>﹣cosθ,则不等式的解集为(2kπ﹣,2kπ+),k∈Z,20.已知双曲线的左右顶点分别为A,B,A(﹣2,0).直线l:x=1和两条渐近线交于点E,F,点E在第一象限且,P是双曲线上的任意一点.(1)求双曲线的标准方程;(2)是否存在点P使得△OEP为直角三角形?若存在,求出点P的个数;(3)直线P A,PB与直线l分别交于点M,N,证明:以MN为直径的圆必过定点.【解答】解:(1)由题意可得a=2,双曲线的渐近线方程为y=±x,可得E(1,),F(1,﹣),即有=2,解得b=2,双曲线的方程为﹣=1;(2)由E(1,),OE的斜率为,与OE垂直的直线的斜率为﹣,可得以O为直角顶点的P有两个;以E为直角顶点的P有两个;以P为直角顶点,则P在以OE为直径的圆上,圆的方程为(x﹣)2+(y﹣)2=1,联立双曲线的方程﹣=1,无实数解,综上可得满足题意的点P的个数为4;(3)证明:设P(m,n),可得3m2﹣n2=12,由P,A,M三点共线可得k P A=k AM,即=,可得y M=;由P,B,N三点共线可得k PB=k BN,即=,可得y N=,即有MN的中点为(1,),|MN|=||,即有MN为直径的圆的方程为(x﹣1)2+(y﹣)2=()2,化为(x﹣1)2+y2+y﹣9=0,由y=0且(x﹣1)2=9,可得x=4或x=﹣2,即以MN为直径的圆必过定点(﹣2,0),(4,0).21.已知n位数满足下列条件:①各个数字只能从集合{1,2,3,4}中选取;②若其中有数字4,则在4的前面不含2.将这样的n位数的个数记为a n.(1)求a2,a3;(2)探究a n+1与a n之间的关系,求出数列{a n}的通项公式;(3)对于每个正整数k,在a k与a k+1之间插入2k﹣1个得到一个新数列{b n},设S n是数列{b n}的前n项和,试探究S n=2017能否成立?写出你探究得到的结论并给出证明.【解答】解:(1)先考虑两位数,若个位数为1或2或3,则每种情况下,十位上都有4种选择;若个位数为4,则十位数上有3种选择.所以,a2=3×4+3=15;接下来考虑三位数,若个位数是1或2或3,每种情况下符合条件的数字都有a2个;若个位数字为4,则百位和十位都不能选2,每个数位上都有三种选择,此时,有32=9种.因此,a3=3a2+9=3×15+9=54;(2)若个位数为1或2或3,则每种情况符合条件的都有a n种情况;若个位数为4,则前面n个数位上,每个数位上只能选择1、2、3种的某一个,共有3n种情况.a1=4,综上所述,,且a1=4.在等式的两边同时除以3n+1,可得,即,所以,数列{}是以为首项,以为公差的等差数列,所以,,∴;(3)由a n=(n+3)•3n﹣1,可得a1=4,a2=15,a3=54,a4=189,a5=648,a6=2187,显然S36=4+15+54+189+648+×(1+2+4+8+16)=920<2017,S37=3107>2017,故S n=2017不能成立.。

上海市闵行区高2020届高2017级高三二模考试数学试题及参考答案解析

上海市闵行区高2020届高2017级高三二模考试数学试题及参考答案解析

上海市闵行区2020届高三二模数学试卷一、填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1.设集合{}{}1,3,5,7,47A B x x ==≤≤,则A B = __________.【参考答案】{5,7} 【试题解析】根据交集的定义,即可求解.【详细解答】{}{}1,3,5,7,47A B x x ==≤≤{5,7}A B =.故答案为:{5,7}.本题考查集合的运算,属于基础题.2.已知复数z 满足1i z i ⋅=+(i 为虚数单位),则Im z =__________. 【参考答案】1- 【试题解析】把已知等式变形,再由复数代数形式的乘除运算化简得答案. 【详细解答】解:由1i z i ⋅=+,得21(1)()1i i i z i i i ++-===--, ∴Im 1z =-. 故答案为:1-.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.若直线10ax by ++=的方向向量为()1,1,则此直线的倾斜角为__________.【参考答案】4π【试题解析】利用直线的方向向量算出直线的斜率,进而求出直线的倾斜角. 【详细解答】解:∵直线10ax by ++=的方向向量为()1,1, ∴直线的斜率为1,∴直线的倾斜角为4π. 故答案为:4π. 本题主要考查了直线的方向向量,以及直线的倾斜角,是基础题.4.记n S 为等差数列{}n a 的前n 项和,若3122S S S =+,12a =,则5a =__________. 【参考答案】6 【试题解析】利用等差数列的通项公式求和公式即可得出. 【详细解答】解:设等差数列{}n a 的公差为d ,31212,2S S S a =+=,3232222d d ∴⨯+=⨯+⨯+,解得1d =.则5246a =+=. 故答案为:6.本题考查了等差数列的求和公式,考查了推理能力与计算能力,属于基础题. 5.已知圆锥的母线长为10,母线与轴的夹角为30,则该圆锥的侧面积为_. 【参考答案】50π 【试题解析】根据勾股定理得出圆锥的底面半径,代入侧面积公式计算即可得出结论. 【详细解答】解:设底面的半径为r ,则sin 3010=5r =⨯ ∴该圆锥的侧面积510=50S ππ=⨯⨯ 故答案为50π本题考查了圆锥的性质和侧面积公式,解决本题的关键是根据勾股定理求得圆锥底面半径.6.81x ⎫⎪⎭二项展开式的常数项为________. 【参考答案】28 【试题解析】利用二项展开式的通项公式求出展开式的通项,令通项中x 的指数为0,求出r 的值,将r 的值代入通项公式,求出展开式的常数项.【详细解答】解:831x x ⎛⎫- ⎪⎝⎭展开式的通项为()()8483318811rrrr rr r T C x C x x --+⎛⎫=-=- ⎪⎝⎭,令8403r -=,解得2r,所以常数项为()22038128T C x =-=故答案为:28本题解决二项展开式的特定项问题,常利用的工具是二项展开式的通项公式,属于中档题. 7.若x 、y 满足|1|x y <+,且1y ≤,则3x y +的最大值为__________. 【参考答案】5 【试题解析】画出约束条件不是的可行域,判断目标函数经过的点,求出最大值. 【详细解答】解:由x 、y 满足|1|x y <+,且1y ≤,画出可行域如图所示,11y x y =⎧⎨=+⎩可得A (2,1), 则目标函数3z x y =+在点A (2,1)取得最大值, 代入得35x y +=,故3x y +的最大值为5. 故答案为:5.本题考查线性规划的应用,画出约束条件的可行域以及找出目标函数经过的点是解题关键. 8.从1,2,3,4,5,6,7,8,9中任取3个不同的数,并从小到大排成一个数列,此数列为等比数列的概率为__________.(结果用最简分数表示)【参考答案】128【试题解析】先求出基本事件总数3984n C ==,再用列举法求出此数列为等比数列包含的基本事件有4个,由此能求出此数列为等比数列的概率.【详细解答】解:从1,2,3,4,5,6,7,8,9中任取3个不同的数,并从小到大排成一个数列,基本事件总数3984n C ==,此数列为等比数列包含的基本事件有:(1,2,4),(1,3,9),(2,4,8),共3个, ∴此数列为等比数列的概率为318428P ==. 故答案为:128. 本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.9.已知直线1:l y x =,斜率为()01q q <<的直线2l 与x 轴交于点A ,与y 轴交于点()00,B a ,过0B 作x 轴的平行线,交1l 于点1A ,过1A 作y 轴的平行线,交2l 于点1B ,再过1B 作x 轴的平行线交1l 于点2A ,…,这样依次得线段01B A 、11A B 、12B A 、22A B 、…、1n n B A -、n n A B ,记n x 为点n B 的横坐标,则lim n n x →∞=__________.【参考答案】1aq-【试题解析】先由题设条件得出点123,,B B B 的坐标,根据它们之间的关系求出点n B 的坐标,然后利用数列极限的运算性质求出lim n n x →∞.【详细解答】解:∵斜率为()01q q <<的直线2l 与x 轴交于点A ,与y 轴交于点()00,B a ,直线1:l y x =, ∴A 1(a ,a ).∵A 1B 0∥x 轴,∴B 1(a ,aq +a ),A 2(aq +a ,aq +a ). ∵B 1A 2∥x 轴,∴B 2(aq +a ,aq 2+aq +a ). 同理可得:A 3(aq 2+aq +a ,aq 2+aq +a ),B 3(aq 2+aq +a ,aq 3+aq 2+aq +a ),…,B n (aq n ﹣1+aq n ﹣2+aq n ﹣3+…aq 2+aq +a ,aq n +aq n ﹣1+aq n ﹣2+aq n ﹣3+…aq 2+aq +a ),∵x n 为点B n 的横坐标,∴x n =aq n ﹣1+aq n ﹣2+aq n ﹣3+…aq 2+aq +a .故x n 是首项为a ,公比为q (0<q <1)的等比数列的前n 项的和, 由数列极限的运算性质得:lim 1n n a x q→∞=-. 故答案为:1a q-.本题主要考查数列在实际问题中的应用及数列极限的求法,属于中档题. 10.已知()2f x +是定义在R 上的偶函数,当12[2,,)x x ∈+∞,且12x x ≠,总有12120()()x x f x f x -<-,则不等式()131(12)x f f +-+<的解集为__________.【参考答案】()1,+∞ 【试题解析】根据题意可得出()2f x +在[)0,+∞上单调递减,且()1312(102)x f f +-+<+-,从而根据原不等式即可得出13110x +-->,解出x 的范围即可.【详细解答】解:∵12[2,,)x x ∈+∞,且12x x ≠时,()()12120x x f x f x -<-,∴()f x 在[)2,+∞上单调递减, ∴()2f x +在[)0,+∞上单调递减, ∴由()131(12)x f f +-+<得()1312(102)x f f +-+<+-,∴13110x +-->,解得1x >,∴原不等式的解集为()1,+∞. 故答案为:()1,+∞.本题考查了偶函数的定义,偶函数在对称区间上的函数的单调性的特点,减函数和增函数的定义,考查了计算能力,属于基础题.11.已知A 、B 、C 是边长为1的正方形边上的任意三点,则AB AC ⋅的取值范围为__________. 【参考答案】1,24⎡⎤-⎢⎥⎣⎦【试题解析】建系,设A (a ,0),B (p ,q ),C (r ,s ),利用不等式,考虑极限情况求范围. 【详细解答】解:建系如图,M (1,0),N (1,1),P (0,1),设A (a ,0),B (p ,q ),C (r ,s ),其中a ,p ,q ,r ,s ∈[0,1],(,)(,)()()(10)(10)112AB AC p a q r a s p a r a qs ⋅=-⋅-=--+≤-⨯-+⨯=,当且仅当10p r q s a ====⎧⎨=⎩或1a q s p r ===⎧⎨==⎩时,等号成立;(,)(,)()()()()0()()AB AC p a q r a s p a r a qs p a r a a p r a ⋅=-⋅-=--+≥--+=---2124p r -⎛⎫≥-≥- ⎪⎝⎭,当且仅当10a p r a p r qs -=-⎧⎪-=⎨⎪=⎩,即12100a p r qs ⎧=⎪⎪⎪=⎨⎪=⎪=⎪⎩或12010a p r qs ⎧=⎪⎪⎪=⎨⎪=⎪=⎪⎩时,等号成立.故答案为:1,24⎡⎤-⎢⎥⎣⎦.本题考查了正方形的性质、考查向量坐标表示,数形结合思想,极限思想,考查了推理能力与计算能力,属于中档题.12.已知函数()sin cos 4sin cos f x x x x x k =+--,若函数()y f x =在区间(0,)π内恰好有奇数个零点,则实数k 的所有取值之和为__________. 【参考答案】221 【试题解析】 【分析】 讨论0<x ≤2π时与2π<x <π时函数解析式,令k =sin x +cos x ﹣4sin x cos x ,换元,根据二次函数的单调性即可得出答案.【详细解答】解:(1)当0<x ≤2π时,设k =sin x +cos x ﹣4sin x cos x , 令t =sin x +cos x 2sin(x +4π),则t ∈2], k =t ﹣2(t 2﹣1)=﹣2t 2+ t +2,t ∈2]为单调函数,则可知当t =1时,即k =1时,一解; 当t 2时,即k 22时,一解;当1<t 时,﹣2<k <1时两解; (2)当2π<x <π时,设k =sin x ﹣cos x ﹣4sin x cos x ,令t =sin x ﹣cos x sin(x ﹣4π),则t ∈],k =t +2(t 2﹣1),t ∈]也为单调函数,则可知当1<t 时,即1<k <时两解,当t 时,即k 2+时一解,综上:k =1或k ﹣2或k 2+,故所有k 的和为1.故答案为:1.本题考查函数零点与方程根的转化,换元思想,分类讨论思想,属于中档偏难题. 二、选择题(本大题共4题,每题5分,共20分)13.在空间中,“两条直线不平行”是“这两条直线异面”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件【参考答案】B 【试题解析】在空间中,“两条直线不平行”,可得:这两条直线异面或相交,即可判断出结论. 【详细解答】解:在空间中,“两条直线不平行”,可得:这两条直线异面或相交. ∴“两条直线不平行”是“这两条直线异面”的必要不充分条件. 故选:B.本题考查了空间中两条直线位置关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题. 14.某县共有300个村,现采用系统抽样方法,抽取15个村作为样本,调查农民的生活和生产状况,将300个村编上1到300的号码,求得间隔数3002015k ==,即每20个村抽取一个村,在1到20中随机抽取一个数,如果抽到的是7,则从41到60这20个数中应取的号码数是( ) A.45B.46C.47D.48【参考答案】C 【试题解析】根据系统抽样的定义和性质即可得到结论. 【详细解答】解:根据题意,样本间隔数3002015k ==, 在1到20中抽到的是7,则41到60为第3组,此时对应的数为7+2×20=47. 故选:C.本题主要考查系统抽样的应用,样本间距是解决本题的关键,比较基础.15.已知抛物线的方程为24y x =,过其焦点F 的直线交此抛物线于M .N 两点,交y 轴于点E ,若1EM MF λ=,2EN NF λ=,则12λλ+=( )A .2-B.12-C.1D.1-【参考答案】D 【试题解析】设直线MN 的方程为y =k (x ﹣1),与抛物线方程联立,由1EM MF λ=,2EN NF λ=,分别表示出λ1,λ2,利用根与系数关系即可算得答案. 【详细解答】解:根据条件可得F (1,0),则设直线MN 的方程为y =k (x ﹣1),M (x 1,y 1),N (x 2,y 2), 所以E (0,﹣k ),联立2(1)4y k x y x=-⎧⎨=⎩,整理可得k 2x 2﹣(2k 2+4)x +k 2=0, 则x 1+x 2=2224k k +,x 1x 2=1,因为1EM MF λ=,2EN NF λ=, 所以λ1(1﹣x 1)=x 1,λ2(1﹣x 2)=x 2,即有λ1=111x x -,λ2=221x x -,所以()221212122122112221242212411111k x x x x x x k x x x x x x k k λλ+-+-=+===-+---++-++. 故选:D.本题考查直线与抛物线的综合,将条件转化为坐标形式,结合根与系数关系解题是关键,属于中档题. 16.关于x 的实系数方程2450x x -+=和220x mx m ++=有四个不同的根,若这四个根在复平面上对应的点共圆,则m 的取值范围是( ) A.{}5 B.{}1- C.()0,1 D.(){}0,11-【参考答案】D 【试题解析】根据条件分别设四个不同的解所对应的点为ABCD ,讨论根的判别式,根据圆的对称性得到相应判断. 【详细解答】解:由已知x 2﹣4x +5=0的解为2i ±,设对应的两点分别为A ,B , 得A (2,1),B (2,﹣1),设x 2+2mx +m =0的解所对应的两点分别为C ,D ,记为C (x 1,y 1),D (x 2,y 2),(1)当△<0,即0<m <1时,220x mx m ++=的根为共轭复数,必有C 、D 关于x 轴对称,又因为A 、B 关于x 轴对称,且显然四点共圆;(2)当△>0,即m >1或m <0时,此时C (x 1,0),D (x 2,0),且122x x +=﹣m , 故此圆的圆心为(﹣m ,0), 半径122x x r -====又圆心O 1到A 的距离O 1A=, 解得m =﹣1,综上:m ∈(0,1)∪{﹣1}. 故选:D.本题考查方程根的个数与坐标系内点坐标的对应,考查一元二次方程根的判别式,属于难题. 三、解答题(本大题共5题,共14+14+14+16+18=76分)17.在直三棱柱111ABC A B C -中,AB BC ⊥,2ABBC ==,1AA =M 是侧棱1C C 上一点,设MC h =.(1)若3h =求多面体111ABM A B C -的体积;(2)若异面直线BM 与11A C 所成的角为60︒,求h 的值.【参考答案】(1)1033;(2)2 【试题解析】(1)多面体111ABM A B C -的体积为111ABC A B C M ABC V V V --=-,由此能求出结果;(2)以B 为原点,BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系,利用向量法能求出h 的值. 【详细解答】解:(1)∵在直三棱柱ABC ﹣A 1B 1C 1中,AB ⊥BC ,AB =BC =2,123AA =M 是侧棱C 1C 上一点,设MC =3h =∴多面体ABM ﹣A 1B 1C 1的体积为:111ABC A B C M ABC V V V --=-=112AB BC AA ⨯⨯⨯﹣1132AB BC MC ⨯⨯⨯⨯ =1112223223232⨯⨯⨯⨯⨯⨯=1033. (2)以B 为原点,BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系, 则B (0,0,0),M (2,0,h ),A 13C 13BM =(2,0,h ),11AC =(2,﹣2,0), ∵异面直线BM 与A 1C 1所成的角为60°,∴cos60°=1111||||||BM ACBM AC⋅⋅=248h+⋅,由h>0,解得h=2.本题考查多面体的体积、线段长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.18.已知函2()3cos3cos(0)f x x x xωωωω=+>.(1)当()f x的最小正周期为2π时,求ω的值;(2)当1ω=时,设ABC的内角A.B.C对应的边分别为a、b、c,已知()32Af=,且7a=6b=,求ABC的面积.【参考答案】(1)12ω=;(2)3363【试题解析】(1)利用倍角公式、和差公式可得f(x)3ωx+3π)+32,根据f(x)的最小正周期为2π,可得ω.(2)当ω=1时,32Af⎛⎫=⎪⎝⎭,3×23Aπ+)+32=3,解得A,利用余弦定理可得:a2=b2+c2﹣2bc cos A,解得c,即可得出△ABC的面积S.【详细解答】解:(1)函数2()3cos3cos(0)f x x x xωωωω=+>.∴f(x)=3×1cos23sin222xxωω++3ωx+3π)+32,当f(x)的最小正周期为2π时,22πω=2π,解得ω=12;(2)当ω=1时,32A f ⎛⎫= ⎪⎝⎭, ∴3sin(2×23A π+)+32=3,又A 为三角形的内角, 解得A =3π. 且27,6a b ==,由余弦定理可得:a 2=b 2+c 2﹣2bc cos A , ∴c 2﹣6c +8=0, 解得c =2或4. ∴△ABC 的面积S =12bc sin A =33或63. 本题考查了三角函数的性质与三角形的面积、和差公式与倍角公式、余弦定理,考查了推理能力与计算能力,属于中档题.19.如图,A 、B 两地相距100公里,两地政府为提升城市的抗疫能力,决定在A 、B 之间选址P 点建造储备仓库,共享民生物资,当点P 在线段AB 的中点C 时,建造费用为2000万元,若点P 在线段AC 上(不含点A),则建造费用与P 、A 之间的距离成反比,若点P 在线段CB 上(不含点B),则建造费用与P 、B 之间的距离成反比,现假设P 、A 之间的距离为x 千米()0100x <<,A 地所需该物资每年的运输费用为2.5x 万元,B 地所需该物资每年的运输费用为()0.5100x -万元,()f x 表示建造仓库费用,()g x 表示两地物资每年的运输总费用(单位:万元).(1)求函数()f x 的解析式;(2)若规划仓库使用的年限为*()n n ∈N ,()()()H x f x ng x =+,求()H x 的最小值,并解释其实际意义.【参考答案】(1)当050x <≤,100000()f x x =;当50100x <<,100000()100f x x=-;(2)504005n n +,见解析 【试题解析】(1)由题意,设f (x )=12,050,50100100k x xk x x ⎧<≤⎪⎪⎨⎪<<⎪-⎩,由f (50)=2000,求得k 1与k 2的值,则函数解析式可求;(2)求出g (x )=2.5x +0.5(100﹣x )=2x +50,然后分段写出H (x ),求导后再对n 分类求解H (x )的最小值,并解释其实际意义.【详细解答】解:(1)由题意,设f (x )=12,050,50100100k x xk x x⎧<≤⎪⎪⎨⎪<<⎪-⎩,由f (50)=2000,求得k 1=k 2=100000.∴f (x )=100000,050100000,50100100x xx x⎧<≤⎪⎪⎨⎪<<⎪-⎩;(2)g (x )=2.5x +0.5(100﹣x )=2x +50, 若0<x ≤50,则H (x )=f (x )+ng (x )=100000250nx n x++, H ′(x )=222100000nx x -,由H ′(x )=0,得x =若n ∈N *且n ≤20,则H (x )在(0,50]上单调递减,H (x )min =H (50)=2000+150n ; 若n ∈N *且n >20,则H (x )在上单调递减,在单调递增,∴min ()50H x n =+ 若50<x <100,则H (x )=f (x )+ng (x )=100000250100nx n x++-,H ′(x )=21000002(100)n x +->0,H (x )在(50,100)上单调递增, 若n ∈N *且n ≤20,则H (x )>2000+150n ; 若n ∈N *且n >20,则H (x )>50n+综上,若n ∈N *且n ≤20,则H (x )min =2000+150n ; 若n ∈N *且n >20,则min ()50H x n =+实际意义:建造储备仓库并使用n 年,花费在建造仓库和两地物资运输总费用的最小值.本题考查根据实际问题选择函数模型,训练了利用导数求最值,是中档题.20.在平面直角坐标系中,A、B分别为椭圆22:12xyΓ+=的上、下顶点,若动直线l过点()()0,1P b b>,且与椭圆Γ相交于C、D两个不同点(直线l与y轴不重合,且C、D两点在y轴右侧,C在D的上方),直线AD与BC相交于点Q.(1)设Γ的两焦点为1F、2F,求12F AF∠的值;(2)若3b=,且32PD PC=,求点Q的横坐标;(3)是否存在这样的点P,使得点Q的纵坐标恒为13?若存在,求出点P的坐标,若不存在,请说明理由.【参考答案】(1)2π(2)23Qx=;(3)(0,3)P【试题解析】(1)由椭圆方程易知∠OAF2=45°,结合对称性可得∠F1AF2=90°;(2)设C(x1,y1),D(x2,y2),根据已知条件可求得直线BC的方程为y=2x﹣1,直线AD的方程为y=﹣x+1,联立两直线方程即可得到点Q的横坐标;(3)设直线l的方程为y=kx+b(k<0,b>1),与椭圆方程联立,可得()2121212bkx x x xb-=+,直线BC的方程为1111yy xx+=-,直线AD的方程为2211yy xx-=+,进而得到点Q的纵坐标,由此建立方程化简即可得出结论.【详细解答】解:(1)由椭圆Γ的方程知,F1(﹣1,0),F2(1,0),A(0,1),则∠OAF2=45°,∴∠F 1AF 2=90°;(2)若b =3,设C 、D 的两点坐标为C (x 1,y 1),D (x 2,y 2), ∵32PD PC =, ∴()()22113,3,32x y x y -=-,即2121333,222x x y y ==-, 而C (x 1,y 1),D (x 2,y 2)均在2212x y +=上,代入得()2211221122991242x y x y ⎧+=⎪⎨+-=⎪⎩,解得179y =, ∴213y =-,分别代入Γ解得,1284,93x x ==, ∴直线BC 的方程为y =2x ﹣1,直线AD 的方程为y =﹣x +1, 联立211y x y x =-⎧⎨=-+⎩,解得23x =,∴Q 点的横坐标为23; (3)假设存在这样的点P ,设直线l 的方程为y =kx +b (k <0,b >1), 点C ,D 的坐标为C (x 1,y 1),D (x 2,y 2), 联立2222y kx bx y =+⎧⎨+=⎩,得(2k 2+1)x 2+4kbx +2b 2﹣2=0, 由△=16k 2b 2﹣8(2k 2+1)(b 2﹣1)>0,得2212b k ->,由12221224212221kb x x k b x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩,可得()2121212b kx x x x b -=+, 直线BC 的方程为1111y y x x +=-,直线AD 的方程为2211y y x x -=+, 而x 1y 2=kx 1x 2+bx 1,x 2y 1=kx 1x 2+bx 2,联立11221111y y x x y y x x +⎧=-⎪⎪⎨-⎪=+⎪⎩,得()()()()()()()()12212112122121121221122x y x y x x kx x b x x x x y x y x y x x b x x x x ++-+++-==-++-++=()()()()122122112113x x b x x b x x b x x b ++-==-++, 则b =3>1,因此,存在点P (0,3),使得点Q 的纵坐标恒为13. 本题考查椭圆方程及其性质,考查直线与椭圆的位置关系,考查圆锥曲线中的定点定值问题,考查化简运算能力,属于较难题目.21.已知数列{}n x ,若对任意*n ∈N ,都有212n n n x x x +++>成立,则称数列{}n x 为“差增数列”. (1)试判断数列2*()n a n n =∈N 是否为“差增数列”,并说明理由;(2)若数列{}n a 为“差增数列”,且*n a ∈N ,121a a ==,对于给定的正整数m ,当k a m =,项数k 的最大值为20时,求m 的所有可能取值的集合;(3)若数列{}lg n x 为“差增数列”,*2),00(2n n ≤∈N ,且122020lg lg lg 0x x x +++=,证明:10101011 1x x <.【参考答案】(1)是;见解析(2)*,17{2|}190m m m ∈≤≤N ;(3)见解析 【试题解析】(1)数列()2*n a nn =∈N 是“差增数列”.由新定义可知,只要证明22nn aa ++>a n +1即可; (2)由新定义可得对任意的n ∈N*,a n +2﹣a n +1>a n +1﹣a n 恒成立,可令b n =a n +1﹣a n (n ≥1),运用累加法,结合等差数列的求和公式可得a n ,由于1≤n ≤19,结合条件可得m 的取值集合;(3)运用反证法证明,假设x 1010x 1011≥1,由题意可得x 1x 2…x 2020=1,1n n x x +<21n n x x ++,运用不等式的性质推得x 1009x 1012>1,即可得到矛盾,进而得证.【详细解答】解:(1)数列()2*n a nn =∈N 是“差增数列”.因为任意的n ∈N *,都有a n +a n +2=n 2+(n +2)2=2n 2+4n +4=2(n +1)2+2>2(n +1)2=2a n +1, 即22n n a a ++>a n +1成立, 所以数列()2*n a nn =∈N 是“差增数列”;(2)由已知,对任意的n ∈N *,a n +2﹣a n +1>a n +1﹣a n 恒成立. 可令b n =a n +1﹣a n (n ≥1),则b n ∈N ,且b n <b n +1,又a n =m ,要使项数k 达到最大,且最大值为20时,必须b n (1≤n ≤18)最小. 而b 1=0,故b 2=1,b 3=2,…,b n =n ﹣1. 所以a n ﹣a 1=b 1+b 2+…+b n ﹣1=0+1+2+…+(n ﹣2)=12(n ﹣1)(n ﹣2), 即当1≤n ≤19时,a n =1+(1)(2)2n n --,a 19=154,因为k 的最大值为20,所以18≤a 20﹣a 19<18+19,即18≤m ﹣154<18+19, 所以m 的所有可能取值的集合为{m |172≤m <191,m ∈N *}.(3)证明:(反证法)假设x 1010x 1011≥1.由已知可得x n (n =1,2,…,2020)均为正数,且x 1x 2…x 2020=1,1n n x x +<21n n x x ++. 而由1n n x x +<21n n x x ++可得10101009x x <10111010x x <10121011x x ,即x 1010x 1011<x 1009x 1012,所以x 1009x 1012>1. 又10101008x x =10101009x x •10091008x x <10121011x x •10131012x x =10131011x x ,即x 1008x 1013>1, 同理可证x 1007x 1014>1,…,x 1x 2020>1, 因此x 1x 2…x 2020>1,这与已知矛盾, 所以x 1010x 1011<1.本题考查数列的新定义的理解和运用,考查等差数列的通项公式和求和公式的运用,主要考查化简整理的运算求解能力和逻辑推理能力,属于难题.。

2017上海高考数学闵行二模--2017.04.12

2017上海高考数学闵行二模--2017.04.12

闵行区2016学年第二学期高三年级质量调研考试数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1. 方程3log (21)2x 的解是________________.2. 已知集合 |1|1,1,0,1M x x N ,则M N =________________.3. 若复数122,2z a i z i (i 是虚数单位),且12z z 为纯虚数,则实数a ________________.4.直线23x y (t 为参数)对应的普通方程是________________. 5. 若1*(2)(,3)n n n x x ax bx c n n N ,且4b c ,则a 的值为________________.6. 某空间几何体的三视图如右图所示,则该几何体的侧面积是________________.7. 若函数()2()1x f x x a 在区间 0,1上有零点,则实数a 的取值范围是________________.8. 在约束条件|1||2|3x y 下,目标函数2z x y 的最大值为________________.9. 某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,则这名学生在上学的路上到第二个路口时第一次遇到红灯的概率是________________. 10. 已知椭圆2221(01)y x b b ,其左、右焦点分别为1F 、2F ,12||2F F c 。

若此椭圆上存在点P ,使P 到直线1x c 的距离是1||PF 与2||PF 的等差中项,则b 的最大值为________________. 11. 已知定点(1,1)A ,动点P 在圆221x y 上,点P 关于直线y x 的对称点为'P ,向量'AQ OP ,O 是坐标原点,则||PQ 的取值范围是________________.12. 已知递增数列{}n a 共有2017项,且各项均不为零,20171a ,如果从{}n a 中任取两项,i j a a ,当i j 时,j i a a 仍是数列{}n a 中的项,则数列{}n a 的各项和2017S =________________.二、选择题(本大题共有4题,满分20分,每题5分) 13. 设a 、b 分别是两条异面直线1l 、2l 的方向向量,向量a 、b 的夹角的取值范围为A ,l 、2l 所成的角的取值范围为B ,则“A ”是“B ”的( )A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件14. 将函数sin 12y x图像上的点,4P t 向左平移(0)s s 个单位,得到点'P ,若'P 位于函数sin 2y x 的图像上,则( )A. 12t ,s 的最小值为6B. t ,s 的最小值为6B. 12t ,s 的最小值为12 D. t,s 的最小值为12 15. 某条公共汽车线路收支差额y 与乘客量x 的函数关系如下图所示(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(I )不改变车票价格,减少支出费用;建议(II )不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则( )A. ①反映了建议(II ),③反映了建议(I )B. ①反映了建议(I ),③反映了建议(II )C. ②反映了建议(I ),④反映了建议(II )D. ④反映了建议(I ),②反映了建议(II )16. 设函数()y f x 的定义域是R ,对于以下四个命题:(1)若()y f x 是奇函数,则 ()y f f x 也是奇函数;(2)若()y f x 是周期函数,则 ()y f f x 也是周期函数;(3)若()y f x 是单调递减函数,则 ()y f f x 也是单调递减函数; (4)若函数()f x 存在反函数1()y f x ,且函数1()()y f x f x 有零点,则函数()y f x x其中正确的命题共有( )A. 1个B. 2个C. 3个D. 4个三、解答题(本大题共有5题,满分76分)17. (本题满分14分,本题共有2个小题,第1小题满分6分,第2小题满分8分) 直三棱柱111ABC A B C 中,底面ABC 为等腰直角三角形,AB AC ,2AB AC ,14AA ,M 是侧棱1CC 上一点,设MC h(1)若1BM A C ,求h 的值; (2)若2h ,求直线1BA 与平面ABM 所成的角18. (本题满分14分,本题共有2个小题,第1小题满分6分,第2小题满分8分) 设函数()2x f x ,函数()g x 的图像与函数()f x 的图像关于y 轴对称。

2017年上海市闵行区中考数学二模试题(解析版)

2017年上海市闵行区中考数学二模试题(解析版)
2017年上海市闵行区中考数学二模试卷
一、选择题
1.下列计算正确的是( )
A.(a2)3=a5B.a2•a3=a6
C.a5÷a3=a2D.(a+2a)2=4a2
【答案】C
【解析】
【分析】
分别根据幂 乘方运算法则、同底数幂的乘法和除法法则、合并同类项法则和积的乘方运算法则进行计算,即可得出答案.
【详解】解:A、(a2)3=a6,所以此选项不正确;
【答案】1425
【解析】
【分析】
首先计算调查的80人中了解的比较全面的所占的百分比.再进一步估算全校1500名学生中了解的比较全面的人数即可.
【详解】解:根据题意知,全校的1500名同学中,对于“创全”了解的比较全面的约有 ×1500=1425(人),
故答案为1425.
【点睛】本题考查样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.
16.如图,已知在⊙O中,半径OC垂直于弦AB,垂足为点D,如果OC=13,AB=24,那么OD=_____.
【答案】5.
【解析】
【分析】
先根据垂径定理求出AD的长,再根据勾股定理即可求出OD的长.
【详解】解:∵OC⊥AB,AB=24,∴ ,
在Rt△AOD中, .
故答案为5.
【点睛】本题考查的是垂径定理和勾股定理,熟练掌握垂径定理是解答此题的关键.
【答案】 .
【解析】
【分析】
方程有两个不相等的实数根就是方程根的判别式△>0,由此可得关于m的不等式,解不等式即可得出m的取值范围.
【详解】解:∵关于x的方程x2﹣2(m+3)x+m2=0有两个不相等的实数根,

2017年闵行区中考数学二模试卷(解析版)

2017年闵行区中考数学二模试卷(解析版)

闵行区2017年中考二模数学试卷 2017.4.12一、选择题:(本大题共6题,每题4分,共24分) 1、下列计算正确的是( )(A )235()a a = (B )236()a a = (C )532a a a ÷= (D )22(2)4a a a += 2、下列二次根式中,与2是同类二次根式的是( )(A )12(B )4 (C )12 (D )243、已知a b >,且c 是非零实数,那么下列结论一定正确的是( ) (A )ac bc < (B )22ac bc < (C )ac bc > (D )22ac bc >4、某居民小区开展节约用水活动,3月份各户用水量比2月份有所下降,不同节水量的户数统计如下表所示:节水量(立方米)1 2 3 户数2012060那么3月份平均每户节水量是( )(A )1.9立方米 (B )2.2立方米 (C )33.33立方米 (D )66.67立方米 5、如图,已知向量a ,b ,c ,那么下列结论正确的是( )(A )a b c += (B )b c a += (C )a c b += (D )a c b +=- 6、下列关于圆的切线的说法正确的是( ) (A )垂直于圆的半径的直线是圆的切线 (B )与圆只有一个公共点的射线是圆的切线 (C )经过半径一端且垂直于半径的直线是圆的切线(D )如果圆心到一条直线的距离等于半径长,那么这条直线是圆的切线二、填空题(本大题共12题,每题4分,满分48分)7、计算:32-= .8、在实数范围内分解因式:=-23a a . 9、 函数2-=x xy 的定义域是 .10、方程134=-x 的解是 .11、如果关于x 的方程()03222=++-m x m x 有两个不相等的实数根,那么取值m 范围是 . 12、将抛物线132++=x x y 向下平移两个单位,那么所得抛物线的表达式为 .13、将分别写有“创建”、“文明”、“城市”的三张大小、质地相同的卡片随机排列,那么恰好排列成“创建文明城市”的概率为 .14、某校随机抽取80名同学进行关于“创全”的调查问卷,通过调查发现其中76人对“创全”了解的比较全面,由此可以估计全校的1500名学生中,对于“创全”了解的比较全面的学生约有 人. 15、在梯形ABCD 中,BC AD //,F 、E 分别是变边CD AB 、的中点,如果6=AD ,10=EF ,那么=BC .16、如图,已知在圆O 中,半径OC 垂直于弦AB ,垂足为点D ,如果13=OC ,24=AB ,那么=OD .17、如图,在三角形ABC 中,点D 在边AC 上,∠=ABD ∠ACB ,如果,5,5,4===∆∆CD S ABD S BCD 那么=AB 米.18、如图,在︒=∠∆90C ABC Rt 中,,,6,8==BC AC 点上,、分别在边、AC AB E D 将翻折,沿直线DE ADE ∆点A 的对应点在边AB 上,联结C A ',如果==BD AA C A 那么,''.三、解答题(本大题共7题,满分78分) 19.(本题满分10分) 计算:122111894821--+-+20.(本题满分10分)解方程:2226444y x x xy y -⎧⎨++=⎩=21.(本题共2小题,其中第(1)小题4分,第(2)小题6分,满分10分)在直角坐标系xOy 中,函数()120y x x=>的图像上点A 的纵坐标是横坐标的3倍。

【上海闵行区】2017届高三4月质量调研考试(二模)数学年试题

【上海闵行区】2017届高三4月质量调研考试(二模)数学年试题

=
1 2
(2π × 2) × √36 + 4 = 4√10π.
7.本题考查函数与方程.因为函数������(������)在区间[0,1]上有零点,则������(0)������(1)=(������ − 1)(2������ + 1) ≤
0,解得−
1 2

������

1.即实数������的取值范围是[−
2)!

1 2!(n
3)!

1 3!(n
3)!

(n
1 1)!0!
Tn

(n
1 [1 1)!
(n 1)! 1!(n 2)!
(n 1)! … 2!(n 3)!
(n 1)! 1] (n 2)!1!
Tn

1[ (n 1)!
0 n1

1
n1
2
9.本题考查互斥事件的概率.由题意得所求的概率������
=
(1

1 3

×
1=2.
39
10.本题考查椭圆的标准方程与几何性质,等差数列.由题意得:该椭圆为焦点在������轴的椭圆,且|������������1| +
|������������1|
=
2;而������到直线������
=
1������的距离是|������������1|与|������������2|的等差中项,所以������到准线������

√3.
2
即������的最大值为√3.
2
【备注】椭圆������2
������2
+
������2 ������2

2017年上海市闵行区高考数学二模试卷含详解

2017年上海市闵行区高考数学二模试卷含详解

2017年上海市闵行区高考数学二模试卷一、填空题(本题共12小题,满分54分)1.(4分)方程log3(2x+1)=2的解是.2.(4分)已知集合M={x||x+1|≤1},N={﹣1,0,1},那么M∩N=.3.(4分)若复数z1=a+2i,a2=2+i(i是虚数单位),且z1z2为纯虚数,则实数a=.4.(4分)直线(t为参数)对应的普通方程是.5.(4分)若(x+2)n=x n+ax n﹣1+…+bx+c(n∈N*,n≥3),且b=4c,则a的值为.6.(4分)某空间几何体的三视图如图所示,则该几何体的侧面积是7.(5分)若函数f(x)=2x(x+a)﹣1在区间[0,1]上有零点,则实数a的取值范围是.8.(5分)在约束条件|x+1|+|y﹣2|≤3下,目标函数z=x+2y的最大值为.9.(5分)某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这么学生在上学的路上到第二个路口时第一次遇到红灯的概率是.10.(5分)已知椭圆x2+=1(0<b<1),其左、右焦点分别为F1、F2,|F1F2|=2c.若此椭圆上存在点P,使P到直线x=的距离是|PF1|与|PF2|的等差中项,则b 的最大值为.11.(5分)已知定点A(1,1)、动点P在圆x2+y2=1上,点P关于直线y=x的对称点为P′,向量=,O是坐标原点,则||的取值范围是.12.(5分)已知递增数列{a n}共有2017项,且各项均不为零,a2017=1,如果从{a n}中任取两项a i,a j,当i<j时,a j﹣a i仍是数列{a n}中的项,则数列{a n}的各项和S2017=.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)设、分别是两条异面直线l1、l2的方向向量,向量、的夹角的取值范围为A.l1、l2所成的角的取值范围为B,则“a∈A”是“a∈B”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件14.(5分)将函数y=sin(x﹣)图象上的点P(,t)向左平移s(s>0)个单位,得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为15.(5分)某条公共汽车线路收支差额y与乘客量x的函数关系如图所示(收支差额=车票收入﹣支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变车票价格,减少支出费用;建议(Ⅱ)不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则()A.①反映了建议(Ⅱ),③反映了建议(Ⅰ)B.①反映了建议(Ⅰ),③反映了建议(Ⅱ)C.②反映了建议(Ⅰ),④反映了建议(Ⅱ)D.④反映了建议(Ⅰ),②反映了建议(Ⅱ)16.(5分)设函数y=f(x)的定义域是R,对于以下四个命题:(1)若y=f(x)是奇函数,则y=f(f(x))也是奇函数;(2)若y=f(x)是周期函数,则y=f(f(x))也是周期函数;(3)若y=f(x)是单调递减函数,则y=f(f(x))也是单调递减函数;(4)若函数y=f(x)存在反函数y=f﹣1(x),且函数y=f(x)﹣f﹣1(x)有零点,则函数y=f(x)﹣x也有零点.其中正确的命题共有()A.1个B.2个C.3个D.4个三、解答题(本大题共5小题,共76分)17.(14分)直三棱柱ABC﹣A1B1C1中,底面ABC为等腰三角形,AB⊥AC,AB=AC=2,AA1=4,M是侧棱CC1上一点,设MC=h.(1)若BM⊥A1C,求h的值;(2)若h=2,求直线BA1与平面ABM所成的角.18.(14分)设函数f(x)=2x,函数g(x)的图象与函数f(x)的图象关于y 轴对称.(1)若f(x)=4g(x)+3,求x的值;(2)若存在x∈[0,4],使不等式f(a+x)﹣g(﹣2x)≥3成立,求实数a的取值范围.19.(14分)如图所示,∠PAQ是某海湾旅游区的一角,其中∠PAQ=120°,为了营造更加优美的旅游环境,旅游区管委员会决定在直线海岸AP和AQ上分别修建观光长廊AB和AC,其中AB是宽长廊,造价是800元/米;AC是窄长廊,造价是400元/米;两段长廊的总造价为120万元,同时在线段BC上靠近点B 的三等分点D处建一个观光平台,并建水上直线通道AD(平台大小忽略不计),水上通道的造价是1000元/米.(1)若规划在三角形ABC区域内开发水上游乐项目,要求△ABC的面积最大,那么AB和AC的长度分别为多少米?(2)在(1)的条件下,建直线通道AD还需要多少钱?20.(16分)设直线l与抛物线y2=4x相交于不同两点A、B,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点.(1)若△AOB是正三角形(O为坐标原点),求此三角形的边长;(2)若r=4,求直线l的方程;(3)试对r∈(0,+∞)进行讨论,请你写出符合条件的直线l的条数(只需直接写出结果)21.(18分)已知y=f(x)是R上的奇函数,f(﹣1)=﹣1,且对任意x∈(﹣∞,0),f(x)=f()都成立.(1)求f(﹣)、f(﹣)的值;(2)设a n=f()(n∈N*),求数列{a n}的递推公式和通项公式;(3)记T n=a1a n+a2a n﹣1+a3a n﹣2+…+a n a1,求的值.2017年上海市闵行区高考数学二模试卷参考答案与试题解析一、填空题(本题共12小题,满分54分)1.(4分)方程log3(2x+1)=2的解是x=4.【考点】4H:对数的运算性质.【专题】34:方程思想;35:转化思想;51:函数的性质及应用.【分析】把对数方程化为指数方程,进而解出.【解答】解:方程log3(2x+1)=2化为:2x+1=32,解得x=4.经过验证满足条件.∴原方程的解为:x=4.故答案为:x=4.【点评】本题考查了对数方程化为指数方程,考查了推理能力与计算能力,属于基础题.2.(4分)已知集合M={x||x+1|≤1},N={﹣1,0,1},那么M∩N={﹣1,0} .【考点】1E:交集及其运算.【专题】11:计算题.【分析】根据绝对值不等式的解法求出集合M,进而根据交集的定义求出其交集可得答案.【解答】解:分析可得,M为不等式|x+1|≤1的解集,则M={x|﹣2≤x≤0},N={﹣1,0,1},故集合M∩N={﹣1,0},故答案为:{﹣1,0}.【点评】本题考查集合的交集运算,首先分析集合的元素,再求集合的交集,属于基础题.3.(4分)若复数z1=a+2i,a2=2+i(i是虚数单位),且z1z2为纯虚数,则实数a= 1.【考点】A5:复数的运算.【专题】34:方程思想;35:转化思想;5N:数系的扩充和复数.【分析】利用复数的运算法则、纯虚数的定义即可得出.【解答】解:复数z1=a+2i,a2=2+i(i是虚数单位),且z1z2=(a+2i)(2+i)=2a﹣2+(4+a)i为纯虚数,∴2a﹣2=0,4+a≠0,解得实数a=1.故答案为:1.【点评】本题考查了复数的运算法则、纯虚数的定义,考查了推理能力与计算能力,属于基础题.4.(4分)直线(t为参数)对应的普通方程是x+y﹣1=0.【考点】QJ:直线的参数方程.【专题】17:选作题;34:方程思想;4G:演绎法;5S:坐标系和参数方程.【分析】利用加减消元法消去参数t,即可得到直线的普通方程.【解答】解:两个方程相加得x+y﹣1=0,故答案为:x+y﹣1=0.【点评】本题考查了参数方程与普通方程的转化,属于基础题.5.(4分)若(x+2)n=x n+ax n﹣1+…+bx+c(n∈N*,n≥3),且b=4c,则a的值为16.【考点】DA:二项式定理.【专题】34:方程思想;35:转化思想;5P:二项式定理.【分析】利用(x+2)n=x n+ax n﹣1+…+bx+c(n∈N*,n≥3),可得:c=2n,b=2n ﹣1=n•2n﹣1,又b=4c,解得n.即可得出a.【解答】解:由(x+2)n=x n+ax n﹣1+…+bx+c(n∈N*,n≥3),可得:c=2n,b=2n ﹣1=n•2n﹣1,又b=4c,∴n•2n﹣1=4×2n,解得n=8.∴a==16.故答案为:16.【点评】本题考查了二项式定理的展开式及其应用,考查了推理能力与计算能力,属于基础题.6.(4分)某空间几何体的三视图如图所示,则该几何体的侧面积是4π【考点】L!:由三视图求面积、体积.【专题】15:综合题;34:方程思想;4G:演绎法;5F:空间位置关系与距离.【分析】观察三视图.得到这个几何体为圆锥,圆锥的高为6,底面圆的直径为4,再利用勾股定理计算出母线长,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式求解.【解答】解:这个几何体为圆锥,圆锥的高为6,底面圆的直径为4,所以圆锥的母线长==2,所以该几何体的侧面积=•4π•2=4π.故答案为:4π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.7.(5分)若函数f(x)=2x(x+a)﹣1在区间[0,1]上有零点,则实数a的取值范围是[﹣,1] .【考点】52:函数零点的判定定理.【专题】33:函数思想;44:数形结合法;51:函数的性质及应用.【分析】函数f(x)=2x(x+a)﹣1在区间[0,1]上有零点⇔方程x+a=在区间[0,1]上有解.⇔函数y=x+a,y=的图象在区间[0,1]上有交点.如图在同一坐标系内画出函数y=x+a,y=的图象,结合图象可得【解答】解:函数f(x)=2x(x+a)﹣1在区间[0,1]上有零点⇔方程x+a=在区间[0,1]上有解.⇔函数y=x+a,y=的图象在区间[0,1]上有交点.如图在同一坐标系内画出函数y=x+a,y=的图象,结合图象可得:0+a≤()0,且1+a≥()1⇒﹣≤a≤1实数a的取值范围是[﹣,1]故答案为:[﹣,1],【点评】本题考查了函数的零点,函数与方程思想、数形结合思想,属于中档题.8.(5分)在约束条件|x+1|+|y﹣2|≤3下,目标函数z=x+2y的最大值为9.【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;44:数形结合法;59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可【解答】解:由z=x+2y得y=x+z,作出不等式组对应的平面区域如图(阴影部分):平移直线y=x由图象可知当直线经过点A(﹣1,5)时,直线在y轴的截距最大,此时z也最大,代入目标函数z=﹣1+2×5=9,即目标函数的最大值为9;故答案为:9.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法.9.(5分)某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这么学生在上学的路上到第二个路口时第一次遇到红灯的概率是.【考点】CF:几何概型.【专题】11:计算题;35:转化思想;4A:数学模型法;5I:概率与统计.【分析】这名学生在上学路上,在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这么学生在上学的路上到第二个路口时第一次遇到红灯是指事件“这名学生在第一个路口没有遇到红灯,且在乙路口遇到红灯”,从而可求概率.【解答】解:在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这么学生在上学的路上到第二个路口时第一次遇到红灯,即第一个路口遇到绿灯,第二个路口遇到红灯,由相互独立事件的同时发生得到所以概率为;故答案为:.【点评】本题以实际问题为载体,考查相互独立事件的概率,考查学生分析解决问题的能力.10.(5分)已知椭圆x2+=1(0<b<1),其左、右焦点分别为F1、F2,|F1F2|=2c.若此椭圆上存在点P,使P到直线x=的距离是|PF1|与|PF2|的等差中项,则b 的最大值为.【考点】K4:椭圆的性质.【专题】15:综合题;34:方程思想;4G:演绎法;5D:圆锥曲线的定义、性质与方程.【分析】利用椭圆上存在点P,使P到直线x=的距离是|PF1|与|PF2|的等差中项,求出P的横坐标,进而可得c的范围,即可得出结论.【解答】解:设P(x,y),则∵椭圆上存在点P,使P到直线x=的距离是|PF1|与|PF2|的等差中项,∴|PF1|+|PF2|=2|﹣x|=2a,∴x=﹣a,∴﹣a≤﹣a≤a,∴≤2a=2,∴c,∴1﹣b2≥,∵0<b<1,∴0<b≤.∴b的最大值为.故答案为.【点评】本题考查椭圆的定义,等差中项的应用,考查学生的计算能力,属于中档题.11.(5分)已知定点A(1,1)、动点P在圆x2+y2=1上,点P关于直线y=x的对称点为P′,向量=,O是坐标原点,则||的取值范围是[,] .【考点】J9:直线与圆的位置关系.【专题】15:综合题;35:转化思想;4G:演绎法;5B:直线与圆.【分析】用坐标表示出||,利用直线与圆的位置关系,即可求出||的取值范围.【解答】解:设P(x,y),则P′(y,x),∵=,∴Q(y+1,x+1),∴=(y﹣x+1,x﹣y+1),∴||=,设t=x﹣y,则∵x2+y2=1,∴≤1,∴|t|,∴||=∈[,].故答案为[,].【点评】本题考查向量知识的运用,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.12.(5分)已知递增数列{a n}共有2017项,且各项均不为零,a2017=1,如果从{a n}中任取两项a i,a j,当i<j时,a j﹣a i仍是数列{a n}中的项,则数列{a n}的各项和S2017=1009.【考点】8E:数列的求和.【专题】35:转化思想;54:等差数列与等比数列;59:不等式的解法及应用.【分析】递增数列{a n}共有2017项,且各项均不为零,a2017=1,可得0<a1<a2<…<a2016<a2017=1,又a1<0,可得1﹣a1>1,因此0<a2017﹣a2016<a2017﹣a2015<…<a2017﹣a1<1,根据上述每项均在数列{a n}中,可得a2017﹣a2016=a1,a2017﹣a2015=a2,…,a2017﹣a1=a2016.进而得出答案.【解答】解:∵递增数列{a n}共有2017项,且各项均不为零,a2017=1,∴0<a1<a2<…<a2016<a2017=1,若a1<0,则1﹣a1>1,∴0<a2017﹣a2016<a2017﹣a2015<…<a2017﹣a1<1,且上述每项均在数列{a n}中,∴a2017﹣a2016=a1,a2017﹣a2015=a2,…,a2017﹣a1=a2016.即a2016+a1=a2015+a2=…=a1+a2016=a2017=1.数列{a n}的各项和2S2017=2017+1.S2017=1009.故答案为:1009.【点评】本题考查了数列递推关系、数列的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)设、分别是两条异面直线l1、l2的方向向量,向量、的夹角的取值范围为A.l1、l2所成的角的取值范围为B,则“a∈A”是“a∈B”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件.【专题】38:对应思想;4R:转化法;5L:简易逻辑.【分析】分别求出A、B的范围根据集合的包含关系判断即可.【解答】解:向量、的夹角的取值范围为A,故A∈[0,π],l1、l2所成的角的取值范围为B,则B=[0,],故“a∈A”是“a∈B”必要不充分条件,故选:C.【点评】本题考查了角的范围,考查集合的包含关系,是一道基础题.14.(5分)将函数y=sin(x﹣)图象上的点P(,t)向左平移s(s>0)个单位,得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】35:转化思想;49:综合法;57:三角函数的图像与性质.【分析】将x=代入得:t=,进而求出平移后P′的坐标,进而得到s的最小值.【解答】解:将x=代入得:t=sin=,进而求出平移后P′的坐标,将函数y=sin(x﹣)图象上的点P(,t)向左平移s(s>0)个单位,得到点P′,若P′位于函数y=sin2x的图象上,则sin(+2s)=cos2s=,则2s=±+2kπ,k∈Z,则s=±+kπ,k∈Z,由s>0得:当k=0时,s的最小值为,故选:A.【点评】本题考查的知识点是函数y=Asin(ωx+φ)(A>0,ω>0)的图象和性质,难度中档.15.(5分)某条公共汽车线路收支差额y与乘客量x的函数关系如图所示(收支差额=车票收入﹣支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变车票价格,减少支出费用;建议(Ⅱ)不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则()A.①反映了建议(Ⅱ),③反映了建议(Ⅰ)B.①反映了建议(Ⅰ),③反映了建议(Ⅱ)C.②反映了建议(Ⅰ),④反映了建议(Ⅱ)D.④反映了建议(Ⅰ),②反映了建议(Ⅱ)【考点】3A:函数的图象与图象的变换.【专题】31:数形结合;49:综合法;51:函数的性质及应用.【分析】设目前函数为y=kx﹣b,得出建议后的函数,比较建议前后的斜率与截距即可得出答案.【解答】解:设目前车票价格为k,支出费用为b,则y=kx﹣b(k>0),若按建议(I)减少支出费用,设减少后的支出费用为b1(b1<b),则y=kx﹣b1,∴图①反映了建议(I);若提高车票价格,设提高后的车票价格为k1(k1>k),则y=k1x﹣b,∴图③反映了建议(II).故选:B.【点评】本题考查了函数图象的变换,属于中档题.16.(5分)设函数y=f(x)的定义域是R,对于以下四个命题:(1)若y=f(x)是奇函数,则y=f(f(x))也是奇函数;(2)若y=f(x)是周期函数,则y=f(f(x))也是周期函数;(3)若y=f(x)是单调递减函数,则y=f(f(x))也是单调递减函数;(4)若函数y=f(x)存在反函数y=f﹣1(x),且函数y=f(x)﹣f﹣1(x)有零点,则函数y=f(x)﹣x也有零点.其中正确的命题共有()A.1个B.2个C.3个D.4个【考点】3K:函数奇偶性的性质与判断.【专题】15:综合题;35:转化思想;4G:演绎法;51:函数的性质及应用.【分析】对4个选项分别进行判断,即可得出结论.【解答】解:(1)若y=f(x)是奇函数,则f(﹣x)=﹣f(x),∴f(f(﹣x))=f(﹣f(x))=﹣f(f(x)),也是奇函数,正确;(2)若y=f(x)是周期函数,则f(x+T)=f(x),f(f(x+T))=f(f(x))也是周期函数,正确;(3)若y=f(x)是单调递减函数,则y=f(f(x))是单调递增函数,不正确;(4)若函数y=f(x)存在反函数y=f﹣1(x),且函数y=f(x)﹣f﹣1(x)有零点,即y=f(x)与y=f﹣1(x)有交点,则函数y=f(x)﹣x不一定有零点,错误.故选:B.【点评】本题考查函数的性质,考查反函数,考查学生分析解决问题的能力,属于中档题.三、解答题(本大题共5小题,共76分)17.(14分)直三棱柱ABC﹣A1B1C1中,底面ABC为等腰三角形,AB⊥AC,AB=AC=2,AA1=4,M是侧棱CC1上一点,设MC=h.(1)若BM⊥A1C,求h的值;(2)若h=2,求直线BA1与平面ABM所成的角.【考点】LO:空间中直线与直线之间的位置关系;MI:直线与平面所成的角.【专题】15:综合题;35:转化思想;4G:演绎法;5F:空间位置关系与距离;5G:空间角.【分析】(1)以A为坐标原点,以射线AB、AC、AA1分别为x、y、z轴建立空间直角坐标系,利用=0,求h的值;(2)求出平面ABM的一个法向量,利用夹角公式,求直线BA1与平面ABM所成的角.【解答】解:(1)以A为坐标原点,以射线AB、AC、AA1分别为x、y、z轴建立空间直角坐标系,如图所示,则B(2,0,0),M(0,2,h),A1(0,0,4),C(0,2,0)=(﹣2,2,h),=(0,2,﹣4)由BM⊥A1C得,=0,即2×2﹣4h=0解得h=1;(2)M(0,2,2),=(2,0,0),=(0,2,2),=(﹣2,0,4),设平面ABM的一个法向量为=(x,y,z),则,取=(0,1,﹣1),设直线BA1与平面ABM所成的角为θ,则sinθ=||=,∴直线BA1与平面ABM所成的角为arcsin.【点评】本题考查棱柱的结构特征,直线与平面所成的角,考查转化思想,计算能力,是中档题.18.(14分)设函数f(x)=2x,函数g(x)的图象与函数f(x)的图象关于y 轴对称.(1)若f(x)=4g(x)+3,求x的值;(2)若存在x∈[0,4],使不等式f(a+x)﹣g(﹣2x)≥3成立,求实数a的取值范围.【考点】3R:函数恒成立问题;3T:函数的值.【专题】33:函数思想;34:方程思想;4R:转化法;51:函数的性质及应用.【分析】(1)依题意知2x=4•2﹣x+3,整理得:22x﹣3•2x﹣4=0,解之即可求得x 的值;(2)由f(a+x)﹣g(﹣2x)≥3得2a+x﹣22x≥3,移项可得2a+x≥22x+3⇒2a≥2x+3•2﹣x,利用基本不等式可得2x+3•2﹣x≥2,当且仅当2x=3•2﹣x,即x=log43时取等号,继而可求得实数a的取值范围.【解答】解:(1)由f(x)=4g(x)+3得2x=4•2﹣x+3.…2分整理得:22x﹣3•2x﹣4=0,所以2x=4或2x=﹣1(舍).…4分所以x=2.…6分(2)由f(a+x)﹣g(﹣2x)≥3得2a+x﹣22x≥3…8分即2a+x≥22x+3⇒2a≥2x+3•2﹣x…10分而2x+3•2﹣x≥2,当且仅当2x=3•2﹣x,即x=log43∈[0,4]时取等号,…12分所以2a≥2,所以a≥1+log23.…14分【点评】本题考查函数恒成立问题,考查等价转化思想与函数与方程思想,考查基本不等式的应用,属于中档题.19.(14分)如图所示,∠PAQ是某海湾旅游区的一角,其中∠PAQ=120°,为了营造更加优美的旅游环境,旅游区管委员会决定在直线海岸AP和AQ上分别修建观光长廊AB和AC,其中AB是宽长廊,造价是800元/米;AC是窄长廊,造价是400元/米;两段长廊的总造价为120万元,同时在线段BC上靠近点B 的三等分点D处建一个观光平台,并建水上直线通道AD(平台大小忽略不计),水上通道的造价是1000元/米.(1)若规划在三角形ABC区域内开发水上游乐项目,要求△ABC的面积最大,那么AB和AC的长度分别为多少米?(2)在(1)的条件下,建直线通道AD还需要多少钱?【考点】HU:解三角形.【专题】15:综合题;35:转化思想;4G:演绎法;5M:推理和证明.【分析】(1)设AB=xm,AC=ym,则800x+400y=1200000,即2x+y=3000,表示面积,利用基本不等式,可得结论;(2)利用向量方法,求出AD,即可得出结论.【解答】解:(1)设AB=xm,AC=ym,则800x+400y=1200000,即2x+y=3000,S△ABC====281250m3,当且仅当2x=y,即x=750m,y=1500m时等号成立,∴△ABC的面积最大,那么AB和AC的长度分别为750米和1500米;(2)在(1)的条件下,=+,∴==250000,∴||=500,∴1000×500=500000元,即建直线通道AD还需要50万元.【点评】本题考查三角形中面积的求法,考查向量知识的运用,考查化简整理的运算能力,属于中档题.20.(16分)设直线l与抛物线y2=4x相交于不同两点A、B,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点.(1)若△AOB是正三角形(O为坐标原点),求此三角形的边长;(2)若r=4,求直线l的方程;(3)试对r∈(0,+∞)进行讨论,请你写出符合条件的直线l的条数(只需直接写出结果)【考点】K8:抛物线的性质.【专题】15:综合题;35:转化思想;4G:演绎法;5D:圆锥曲线的定义、性质与方程.【分析】(1)若△AOB是正三角形(O为坐标原点),求出A的坐标,即可求此三角形的边长;(2)若r=4,设直线l:x=ky+b,分类讨论,即可求直线l的方程;(3)根据直线与圆的位置关系,可得结论.【解答】解:(1)设△AOB的边长为a,则A(a,),∴,∴;(2)设直线l:x=ky+b,k=0时,x=1,x=9符合题意;k≠0时,方程联立可得y2﹣4ky﹣4b=0,设A(x1,y1),B(x2,y2),则y1+y2=4k,x1+x2=4k2+2b,∴M(2k2+b,2k),∵k AB•k OM=﹣1,∴k OM==﹣k,∴b=3﹣2k2,∴△=16(k2+b)>0,∴0<k2<3,∵4=r==2,∴k2=3∉(0,3),舍去,综上所述,直线l的方程为x=1,x=9;(3)2<r<4时,直线l有4条;r∈(0,2]∪[4,5)时,2条;r∈[5,+∞),1条.【点评】本题考查直线与抛物线、圆的位置关系的运用,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.21.(18分)已知y=f(x)是R上的奇函数,f(﹣1)=﹣1,且对任意x∈(﹣∞,0),f(x)=f()都成立.(1)求f(﹣)、f(﹣)的值;(2)设a n=f()(n∈N*),求数列{a n}的递推公式和通项公式;(3)记T n=a1a n+a2a n﹣1+a3a n﹣2+…+a n a1,求的值.【考点】8E:数列的求和;8H:数列递推式.【专题】34:方程思想;51:函数的性质及应用;54:等差数列与等比数列;5O:排列组合;5P:二项式定理.【分析】(1)对等式f(x)=f(),令x=﹣1,则f(﹣1)=﹣,可得,f(﹣)=﹣.令x=﹣,可得f(﹣)=﹣2=2,解得.(2)令x=﹣,则=﹣n,=,可得a n=a n,利+1用a n=••…••a1,即可得出a n.(3)T n=a1a n+a2a n﹣1+a3a n﹣2+…+a n a1=++…+==.进而得出.【解答】解:(1)对等式f(x)=f(),令x=﹣1,则f(﹣1)=﹣=﹣1,可得=1,∴f(﹣)=﹣=﹣1.令x=﹣,可得f(﹣)=﹣2=2=﹣1,解得=﹣.=a n,(2)令x=﹣,则=﹣n,∴=,∴a n+1又a1=f(1)=﹣f(1)=1.∴a n=••…••a1=•…•1×1=.∴a n=.(3)T n=a1a n+a2a n﹣1+a3a n﹣2+…+a n a1=++…+==.∴T n=.+1∴==0.【点评】本题考查了函数关系式、数列递推关系、“累乘求积“方法、排列与组合计算公式、二项式定理,考查了推理能力与计算能力,属于难题.。

2017.04 上海市闵行区2016学年第二学期高三年级质量调研考试数学试卷(二模)

2017.04 上海市闵行区2016学年第二学期高三年级质量调研考试数学试卷(二模)

(1)若 y = f (x) 是奇函数,则 y = f (f (x)) 也是奇函数;
(2)若 y = f (x) 是周期函数,则 y = f (f (x)) 也是周期函数;
(3)若 y = f (x) 是单调递减函数,则 y = f (f (x)) 也是单调递减函数; (4)若函数 y = f (x) 存在反函数 y = f −1(x),且函数 y = f (x) − f −1(x) 有零点,则函数 y = f (x) − x
(1)若 f (x) = 4g(x) + 3,求 x 的值; (2)若存在 x ∈ [0, 4],使不等式 f (a + x) − g(−2x) ≥ 3 成立,求实数 a 的取值范围.
3
19.(本题满分 14 分,本题共有 2 个小题,第 1 小题满分 6 分,第 2 小题满分 8 分)
如图所示,∠P AQ 是某海湾旅游区的一角,其中 ∠P AQ = 120°,为了营造更加优美的旅游环境,旅游
P,
1
使 P 到直线 x = c 的距离是 |P F1| 与 |P F2| 的等差中项,则 b 的最大值为

11. 己知定点 A(1, 1),动点 P 在圆 x2 + y2 = 1 上,点 P 关于直线 y = x 的对称点为 P ′,向量 A# Q– = O# P–′,
O 是坐标原点,则 P# Q– 的取值范围是
也有零点.
其中正确的命题共有
()
(A)1 个
(B)2 个
(C)3 个
(D)4 个
三、解答题(本大题共有 5 题,满分 76 分)解答下列各题必须在答题纸的相应位置写出必要的步骤.
17.(本题满分 14 分,本题共有 2 个小题,第 1 小题满分 6 分,第 2 小题

2017闵行数学二模分析

2017闵行数学二模分析

c a
(第 5 题图)
b
【分析】 (八年级下学期)向量运算 【答案】D ( b a c a c b ) )
6、下列关于圆的切线的说法正确的是( (A)垂直于圆的半径的直线是圆的切线;
(B)与圆只有一个公共点的射线是圆的切线; (C)经过半径一端且垂直于半径的直线是圆的切线; (D)如果圆心到一条直线的距离等于半径长,那么这条直线是圆的切线. 【分析】 (九年级下学期)圆的切线 【答案】D (若直线只与圆交与一点,则这条直线被称为圆的切线)
18、如图,在 Rt△ABC 中, C 90 , AC 8 , BC 6 ,点 D 、 E 分别在边 AB 、 AC 上. 将 △ADE 沿直 线 DE 翻折,点 A 的对应点在边 AB 上,联结 A ' C .如果 A ' C A ' A ,那么 BD 【分析】 (八年级) ▲ .
作 图
B B B
A'
A' D
A
A' D
A C
C
C
E
E
A
①A'C=A'A A' 在线段AC的中垂线
②作AA'的中垂线
③作AA'的中垂线
【答案】∵ A ' C A ' A ∴ A ' 是 AB 的中点 ∴ △A ' CA 是等腰三角形 又∵ △EAA' 是等腰三角形,且 △A ' CA ∽ △EA' A (底角相等的等腰三角形相似) 且比例为 5, 5, 8 ,设 AA ' 8k , 那么 AB 16k 10 k
A
▲ 米.
② △ABC ∽ △ADB

2017上海所有区高三数学二模集锦(含答案)

2017上海所有区高三数学二模集锦(含答案)

2017上海所有区高三数学二模集锦(含答案)宝山xx年第二学期高三数学教学质量检测试卷一、填空题考生应在答题纸的相应位置直接填写结果.1.若集合A??x|x?0?,B??x|x?1?,则A?B?____________2.已知复数z满足2i?z?1?i,则z?____________3.函数f?x??sinxcosx的最小正周期是____________cosxsinxx2y2?1?a?0?的一条渐近线方程y?3x,则a?____________ 4.已知双曲线2?a815.若圆柱的侧面展开图是边长为4的正方形,则圆柱的体积为____________xy06.已知x,y满足?x?y?2,则z?2x?y的最大值是____________x20xt1x3cos7.直线?与曲线?的交点个数是____________y2ty2sin2xx018.已知函数f?x的反函数是f?x?,则f?1____________2log2x0x19.设多项式1?x??1?x1?x??1?x?为Tn,则lim23n?x?0,n?N?的展开式中x项的系数*Tn?____________n??n210.生产零件需要经过两道工序,在第一、第二道工序中产生的概率分别为和p,每道工序产生废品相互独立,若经过两道工序得到的零件不是废品的概率是,则p?____________11.设向量m??x,y?,n??x,?y?,P为曲线m?n?1?x?0?上的一个动点,若点P到直线x?y?1?0的距离大于?恒成立,则实数?的最大值为____________12.设x1,x2,?,x10为1,2,?,10的一个排列,则满足对任意正整数m,n,且1?m?n?10,都有xm?m?xn?n成立的不同排列的个数为____________二、选择题每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设a,b?R,则“a?b?4”是“a?1且b?3”的 A. 充分而不必要条件 C. 充要条件B. 必要而不充分条件D. 既不充分又不必要条件PAC在该正方体各个14.如图,P为正方体ABCD?A1BC11D1中AC1与BD1的交点,则面上的射影可能是A. ①②③④15.如图,在同一平面内,点P位于两平行直线l1,l2同侧,且P到l1,l2的距离分别为1,3.B.①③C. ①④D.②④点M,N分别在l1,l2上,PM?PN?8,则PM?PN的最大值为A. 15B. 12C. 10D. 916.若存在t?R与正数m,使F?t?m??F?t?m?成立,则称“函数F?x?在x?t处存x2??在距离为2m的对称点”,设f?xx?0?,若对于任意t?x?2,6,总存在正数m,使得“函数f?x?在x?t处存在距离为2m的对称点”,则实数?的取值范围是A. ?0,2B. 1,2C. 1,2D. 1,4三、解答题解答下列各题必须在答题纸的相应位置写出必要的步骤.17.E、F分别是线段BC、CD1的中点. 如图,在正方体ABCD?A1BC11D1中,求异面直线EF与AA1所成角的大小;求直线EF与平面AA1B1B所成角的大小.18.已知抛物线y?2px?p?0?,其准线方程为x?1?0,直线l 过点T?t,0??t?0?且与2抛物线交于A、B两点,O为坐标原点.求抛物线方程,并证明:OA?OB的值与直线l 倾斜角的大小无关;若P为抛物线上的动点,记PT的最小值为函数d?t?,求d?t?的解析式.19.对于定义域为D的函数y?f?x?,如果存在区间?m,n??D?m?n?,同时满足:①f?x?在?m,n?内是单调函数;②当定义域是?m,n?时,f?x?的值域也是?m,n?则称函数f?x?是区间?m,n?上的“保值函数”.求证:函数g?x??x?2x不是定义域0,1上的“保值函数”; 2?? 已知f?x??2?值范围.11?2?a?R,a?0?是区间?m,n?上的“保值函数”,求a的取aax20. 数列?an?中,已知a1?1,a2?a,an?1?k?an?an?2?对任意n?N都成立,数列?an?的*前n项和为Sn. 若?an?是等差数列,求k;若a?1,k??1,求Sn; 2是否存在实数k,使数列?an?是公比不为1的等比数列,且任意相邻三项am,am?1,am?2按某顺序排列后成等差数列?若存在,求出所有k的值;若不存在,请说明理.21. 设TüR,若存在常数M?0,使得对任意t?T,均有t?M,则称T为有界集合,同时称M为集合T的上界.2x?11设A1??y|y?x,x?R?、A2??x|sinx??,试判断A1、A2是否为有界集2?2?1合,并说明理;已知f?x??x?u,记f1?x??f?x?,fn?x??ffn?1?x??n?2,3,??.若m?R,21?u??,,且B??fn?m?|n?N*?为有界集合,求u 的值及m的取值范围;4设a、b、c均为正数,将?a?b?、?b?c?、?c?a?中的最小数记为d,是否存在正数0,1?,使得?为有界集合C?{y|y?222d,a、b、c均为正数}的上界,222a?b?c若存在,试求?的最小值;若不存在,请说明理.参考答案1.(0,1)3. ?5. 6. 3 7. 2 8. -19.1 210.14. C11.213. B17. arctan2 ?4x,证明略 d(t)??22 2?2t?1,(t?2)? t,(0?t?2)19. 证明略13或a 22120. k?2a>2n(n2k1,kN)Sn n,(n2k,kN)k2 为有界集合,上界为1;A2不是有界集合 u1?11?,m,? 4?22?1 5解析:设a0?m,a1?f?m?,an?f?an?1?,n?1,2,3,...,则an?fn?m?11?1?22∵a1?f?m??m?u?,则a2?a1?a1?a1?u??a1u??042?4?21?1?且an?an?1??an?1u??0?an?an?12?4?*若B?fn?m?|n?N为有界集合,则设其上界为M0,既有an?M0,n?N2??*∴an?an?an?1?an?1?an?2?...?a2?a1?a1??an?an?1an?1?a n?2??...??a2?a1??a12221?1?1?11?1an?1???u???an?2???u??...??a1???u??m2?u2?4?2?42?4??2221??1?1?1?1?2an?1?an?2 ...??a1m??n?uu?n?uu2??2?2?4?4若an?M0恒成立,则n?u111?u??u??0 恒成立,又?u?M0?444?112,∴f?x??x? 441设m2∴u?1?1?1?10,则a1?a0?f?m??m2?a1?a0?2?2?4?2?∴an?an?1?...?a1?m?21 211??记g?x??f?x??x??x??,则当x1?x2?时,g?x1??g?x2?22??∴g?an?1??f?an?1??an?1?an?an?1?g?m??a1?a0?? 22∴an?a1??2?n?1?,若an?M0恒成立,则??0,矛盾。

2017届上海各区高三数学二模试卷汇总

2017届上海各区高三数学二模试卷汇总

第 33 页 共 57 页
第 34 页 共 57 页
第 35 页 共 57 页
第 36 页 共 57 页
第 37 页 共 57 页
第 38 页 共 57 页
第 39 页 共 57 页
第 40 页 共 57 页
第 41 页 共 57 页
第 42 页 共 57 页
第 43 页 共 57 页
第 44 页 共 57 页
第 45 页 共 57 页
第 46 页 共 57 页
第 47 页 共 57 页
第 48 页 共 57 页
第 49 页 共 57 页
第 50 页 共 57 页
第 51 页 共 57 页
第 52 页 共 57 页
第 53 页 共 57 页Fra bibliotek第 54 页 共 57 页
2017 届上海各区高三数学二模试卷汇总
第 1 页 共 57 页
第 2 页 共 57 页
第 3 页 共 57 页
第 4 页 共 57 页
第 5 页 共 57 页
第 6 页 共 57 页
第 7 页 共 57 页
第 8 页 共 57 页
第 9 页 共 57 页
第 10 页 共 57 页
第 55 页 共 57 页
第 56 页 共 57 页
第 57 页 共 57 页
第 11 页 共 57 页
第 12 页 共 57 页
第 13 页 共 57 页
第 14 页 共 57 页
第 15 页 共 57 页
第 16 页 共 57 页
第 17 页 共 57 页
第 18 页 共 57 页
第 19 页 共 57 页
第 20 页 共 57 页

闵行区高考数学一模试卷含答案

闵行区高考数学一模试卷含答案

高三年级质量调研考试数学试卷 第1页共9页C 1D 1B 1A 1CA B DE2017年闵行区高考数学一模试卷含答案(满分150分,时间120分钟) 考生注意:1.答卷前,考生务必在答题纸上将学校、班级、考生号、姓名等填写清楚.2.请按照题号在答题纸各题答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效. 3.本试卷共有21道试题.一、填空题(本大题共有12题,满分54分)考生应在答题纸上相应编号的空格内直接填写结果,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分,否则一律得零分. 1. 方程()lg 341x +=的解=x _____________. 2. 若关于x 的不等式0x ax b->-(),a b ∈R 的解集为()(),14,-∞+∞U ,则a b +=____. 3. 已知数列{}n a 的前n 项和为21nn S =-,则此数列的通项公式为___________. 4. 函数()1f x x 的反函数是_____________.5.()612x +的展开式中3x 项的系数为___________.(用数字作答) 6. 如右图,已知正方体1111ABCD A B C D -,12AA =,E 为棱1CC 的中点,则三棱锥1D ADE -的体积为________________.7. 从单词“shadow ”中任意选取4个不同的字母排成一排,则其中含 有“a ”的共有_____________种排法.(用数字作答)8. 集合[]{}cos(cos )0,0,x x x ππ=∈= _____.(用列举法表示)9. 如右图,已知半径为1的扇形AOB ,60AOB ∠=︒,P 为弧»AB 上的一个动点,则OP AB ⋅u u u r u u u r的取值范围是__________.10. 已知,x y 满足曲线方程2212x y +=,则22x y +的取值范围是____________.11. 已知两个不相等的非零向量a u r 和b u r ,向量组()1234,,,x x x x u r u u r u u r u u r 和()1234,,,y y y y u u r u u r u u r u u r均由2个a u r 和2个b u r 排列而成.记11223344S x y x y x y x y =⋅+⋅+⋅+⋅u r u u r u u r u u r u u r u u r u u r u u r,那么S 的所有高三年级质量调研考试数学试卷 第2页共9页ABODC可能取值中的最小值是________________.(用向量,a b u r u r表示)12. 已知无穷数列{}n a ,121,2a a ==,对任意*n ∈N ,有2n n a a +=,数列{}n b 满足1n n n b b a +-=(*n ∈N ),若数列2n b n ⎧⎫⎨⎬⎩⎭中的任意一项都在该数列中重复出现无数次,则满足要求的1b 的值为_______________.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 13. 若,a b 为实数,则“1a <”是“11a>”的 ( ) (A) 充要条件 (B) 充分不必要条件 (C) 必要不充分条件 (D) 既不充分也不必要条件14. 若a 为实数,(2)(2)4ai a i i +-=-(i 是虚数单位),则a = ( )(A) 1- (B) 0 (C) 1 (D) 215. 函数()2f x x a =-在区间[]1,1-上的最大值是a ,那么实数a 的取值范围是 ( )(A) [)0,+∞ (B) 1,12⎡⎤⎢⎥⎣⎦(C) 1,2⎡⎫+∞⎪⎢⎣⎭ (D) [)1,+∞16. 曲线1C :sin y x =,曲线2C :()222102x y r r r ⎛⎫++-=> ⎪⎝⎭,它们交点的个数 ( )(A) 恒为偶数 (B) 恒为奇数 (C) 不超过2017 (D) 可超过2017三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,在AOB Rt △中,π6OAB ∠=,斜边4AB =,D 是AB 的中点.现将AOB Rt △以直角边AO 为轴旋转一周得到一个圆锥,点C 为圆锥底面圆周上的一点,且90BOC ∠=︒, 求:(1)圆锥的侧面积;(2)直线CD 与平面BOC 所成的角的大小.(用反三角函数表示) 18. (本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.已知()m =u u r ,2cos,sin 2A n A ⎛⎫= ⎪⎝⎭u r ,A B C 、、是ABC △的内角.高三年级质量调研考试数学试卷 第3页共9页河流AB20km河流A B 污水处理厂★x(1)当2A π=时,求n u r的值;(2)若23C π=,3AB =,当m n ⋅u u r u r 取最大值时,求A 的大小及边BC 的长.19. (本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分. 如图所示,沿河有A 、B 两城镇,它们相距20千米.以前,两城镇的污水直接排入河里,现为保护环境,污水需经处理才能排放.两城镇可以单独建污水处理厂,或者联合建污水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送).依据经验公式,建厂的费用为0.7()25f m m=⋅(万元),m 表示污水流量;铺设管道的费用(包括管道费)() 3.2g x x =,x 表示输送污水管道的长度(千米).已知城镇A 和城镇B 的污水流量分别为13m =、25m =,A 、B 两城镇连接污水处理厂的管道总长为20千米.假定:经管道输送的污水流量不发生改变,污水经处理后直接排入河中.请解答下列问题(结果精确到0.1):(1)若在城镇A 和城镇B 单独建厂,共需多少总费用? (2)考虑联合建厂可能节约总投资,设城镇A 到拟建厂的距离为x 千米,求联合建厂的总费用y 与x 的函数关系式,并求y的取值范围.20. (本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.高三年级质量调研考试数学试卷 第4页共9页如图,椭圆2214yx +=的左、右顶点分别为A 、B ,双曲线Γ以A 、B为顶点,焦距为P 是Γ上在第一象限内的动点,直线AP 与椭圆相交于另一点Q ,线段AQ 的中点为M ,记直线AP 的斜率为k ,O 为坐标原点.(1)求双曲线Γ的方程;(2)求点M 的纵坐标M y 的取值范围;(3)是否存在定直线l ,使得直线BP 与直线OM 关于直线l 对称?若存在,求直线l 的方程;若不存在,请说明理由.21. (本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.在平面直角坐标系上,有一点列01231n n P P P P P P -L ,,,,,,,设点k P 的坐标(),k k x y (,k k n ∈≤N ),其中k k x y ∈Z 、. 记1k k k x x x -∆=-,1k k k y y y -∆=-,且满足2k k x y ∆⋅∆=(*,k k n ∈≤N ).(1)已知点()00,1P ,点1P 满足110y x ∆>∆>,求1P 的坐标; (2)已知点()00,1P ,1k x ∆=(*,k k n ∈≤N ),且{}k y (,k k n ∈≤N )是递增数列,点n P 在直线l :38y x =-上,求n ;(3)若点0P 的坐标为()0,0,2016100y =,求0122016x x x x ++++L 的最大值.高三年级质量调研考试数学试卷 第5页共9页闵行区2016学年第一学期高三年级质量调研考试数学试卷参考答案与评分标准一. 填空题 1.2; 2.5; 3.12n n a -=; 4.()()211(1)f x x x -=-≥; 5.160;6.43; 7.240;8.2,33ππ⎧⎫⎨⎬⎩⎭;9.11,22⎡⎤-⎢⎥⎣⎦; 10.1,2⎡⎫+∞⎪⎢⎣⎭; 11.4a b ⋅u r u r ;12.2;二. 选择题 13.C ; 14.B ; 15.C ; 16.D . 三. 解答题17.[解] (1)=S rl π侧 …………………………2分248ππ=⨯⨯= …………………………6分(2)取OB 的中点E ,连接DE 、CE , ………………8分 则//DE AO ,所以DE BOC ⊥平面,所以DCE ∠是直线CD 与平面BOC 所成的角, …………10分 在DEC Rt △中,CE DE ==tan 5DCE ∠== …………12分所以DCE ∠= 所以直线CD 与平面BOC所成的角的大小为arctan 5(arcsin 4) (14)分18.[解] (1)当2A π=时,1,12n ⎛⎫= ⎪⎝⎭ur n ∴==u r …………4分(2))2sin 1cos sin 2Am n A A A ⋅=+=++u u r u r …………6分2sin 3A π⎛⎫=++ ⎪⎝⎭ …………………………8分m n ⋅u u r u r 取到最大值时 , 6A π= …………………………10分由正弦定理sin sin AB BCC A=, …………………………12分 ABODCE高三年级质量调研考试数学试卷 第6页共9页32sin sin 36BCππ⇒=解得BC = …………………………14分 19.[解] (1)分别单独建厂,共需总费用0.70.71253255131.1y =⨯+⨯≈万元 …………………………4分(2)联合建厂,共需总费用()0.72535 3.2y =⨯++020x ≤≤)所以y 与x的函数关系式为0.7258 3.2y =⨯+(020x ≤≤)……8分令()h x =+(020x ≤≤)()[]2202020,40h x =+=+ (10)分0.70.7121.5258 3.2258 3.2127.4y ≈⨯+≤≤⨯+≈y 的取值范围为[]121.5,127.4. …………………………14分20.[解](1)设双曲线Γ的方程为22221(0,0)x y a b a b-=>>,双曲线的焦距为2c ;………2分依题意可得()1,0A -,()1,0B,1,a c ==222514b c a ∴=-=-=∴双曲线Γ的方程为2214y x -= …………………………4分(2) 由题意可知,直线,,AP BP OM 的斜率皆存在,且不为零. 设点()11,P x y 、()22,Q x y ,直线AP 的方程为()1y k x =+ (02k <<)联立方程组()22114y k x y x ⎧=+⎪⎨+=⎪⎩ 整理,得()22224240k x k x k +++-=, ………6分高三年级质量调研考试数学试卷 第7页共9页解得,1x =-或2244k x k -=+,22244k x k -∴=+,得22248,44k k Q k k ⎛⎫- ⎪++⎝⎭,2224,44k k M k k ⎛⎫- ⎪++⎝⎭, ………8分 因为02k <<, 24444M k y k k k==++在()0,2上是增函数,所以()0,1M y ∈ (10)分(或者244144M k y k k k ==≤=++,当且仅当2k =时取等号,所以()0,1M y ∈)(3)方法一:由题(2)知直线OM 的方程为:4y x k=- ………………12分同理,解方程组()22114y k x y x ⎧=+⎪⎨-=⎪⎩,可得21244k x k +=-, 得点P 的坐标为22248,44k k k k ⎛⎫+ ⎪--⎝⎭直线BP 的斜率1141BP y k x k==- 直线BP 的方程为:()41y x k=-, …………………………14分 联立直线BP 与直线OM 的方程,解得12x =, 因为直线BP 与OM 的斜率互为相反数,所以直线BP 与OM 关于直线12x =对称. …………………………16分 方法二:由()11,P x y 在双曲线上可得:111411y yx x ⋅=+- 所以4AP BP k k ⋅= …………………………12分 同理4AQ BQ k k ⋅=-,即4AP OM k k ⋅=-, …………………………14分高三年级质量调研考试数学试卷 第8页共9页因此0OM BP k k +=设直线OM :y k x '=,则直线BP :()1y k x '=--,解得12x =因为直线BP 与OM 的斜率互为相反数,所以直线BP 与OM 关于直线12x =对称. …………………………16分21.[解] (1)因为k x ∈Z 、k y ∈Z ,所以,k k x y ∆∆∈Z 又因为112x y ∆⋅∆=,110x y <∆<∆, 所以1112x y ∆=⎧⎨∆=⎩ ………………2分所以101011x x x =+∆=+=,10112y y y =+∆=+所以点1P 的坐标为 ()1,3 …………………………4分(2)因为00x =,1k x ∆=(*,k k n ∈≤N ),得0123n n x x x x x x n =+∆+∆+∆++∆=L ………………………6分又2k k x y ∆⋅∆=,1k x ∆=,得2k y ∆=±(*,k k n ∈≤N ),因为0123k k y y y y x y =+∆+∆+∆++∆L ,而{}k y (,k k n ∈≤N )是递增数列,故2k y ∆=(*,k k n ∈≤N )012312n n y y y y x y n =+∆+∆+∆++∆=+L , ……………………8分所以(),12n P n n +将(),12n P n n +代入38y x =-,得1238n n +=-,得9n = ……………10分 (3)0123n ny y y y y y =+∆+∆+∆++∆L20161232016100y y y y y ⇒=∆+∆+∆++∆=L …………………………12分记012n n T x x x x =++++L高三年级质量调研考试数学试卷 第9页共9页()()()0010120123n x x x x x x x x x x x =++∆++∆+∆+++∆+∆+∆++∆L L()12112n n n x n x x x -=∆+-∆++∆+∆L …………………………14分因为2016n =是偶数,100n >,()()2121122121n n n T n x n x x x n n n n -=∆+-∆++∆+∆≤+-+++=+⎡⎤⎣⎦L L L …16分 当12310010110211,1,1,,1,1n n y y y y y y y y -∆=∆=∆==∆=∆=∆=-∆=∆=-L L ,1232n x x x x ∆=∆=∆==∆=L 时(取法不唯一),()2max n T n n =+所以()22016max 201620164066272T =+= (18)分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在中,
所以……………………12分
所以
所以直线与平面所成的角为………………14分
18.[解](1)由得……………………2分
所以(舍)或,……………………4分
所以……………………6分
(2)由得……………………8分
……………………10分
而,当且仅当时取等号…12分
所以,所以.………………………………14分
(1)若规划在三角形区域内开发水上游乐项目,要求的面积最大,那么和AC的长度分别为多少米?
(2)在(1)的条件下,建直线通道还需要多少钱?
20.(本题满分16分,本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分)
设直线与抛物线相交于不同两点,与圆相切于点,且为线段的中点.
(1)若是正三角形(为坐标原点),求此三角形的边长;
13.设分别是两条异面直线的方向向量,向量的夹角的取值范围为,所成的角的取值范围为,则“”是“”的( )
(A)充要条件(B)充分不必要条件
(C)必要不充分条件(D)既不充分也不必要条件
14.将函数图像上的点向左平移个单位,得到点,若位于函数的图像上,则( )
(A),的最小值为(B),的最小值为
(C),的最小值为(D),的最小值为
则,,,……………………2分
,……………………4分
由得,即
解得.……………………6分
(2)解法一:此时
……………8分
设平面的一个法向量为
由得
所以……………………10分
设直线与平面所成的角为
则……………12分
所以
所以直线与平面所成的角为………………14分
解法二:联结,则,
,平面…………………8分
平面
所以是直线与平面所成的角;……………………10分
(B)①反映了建议(Ⅰ),③反映了建议(Ⅱ)
(C)②反映了建议(Ⅰ),④反映了建议(Ⅱ)
(D)④反映了建议(Ⅰ),②反映了建议(Ⅱ)
16.设函数的定义域是,对于以下数,则也是周期函数;
(3)若是单调递减函数,则也是单调递减函数;
(4)若函数存在反函数,且函数有零点,
(1)若,求的值;
(2)若,求直线与平面所成的角.
18.(本题满分14分,本题共有2个小题,第1小题满分6分,第2小题满分8分)
设函数,函数的图像与函数的图像关于轴对称.
(1)若,求的值;
(2)若存在,使不等式成立,求实数的取值范围.
19.(本题满分14分,本题共有2个小题,第1小题满分6分,第2小题满分8分)
15. 某条公共汽车线路收支差额与乘客量的函数关系如下图所示(收支差额车票收入支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变车票价格,减少支出费用;建议(Ⅱ)不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则( )
(A)①反映了建议(Ⅱ),③反映了建议(Ⅰ)
19.[解](1)设长为米,长为米,依题意得,
即,………………………………2分
…………………………4分
=
当且仅当,即时等号成立,
所以当的面积最大时,和AC的长度分别为750米和1500米……6分
(2)在(1)的条件下,因为.
由…………………………8分
则函数也有零点.
其中正确的命题共有( )
(A)1个(B)2个(C)3个(D)4个
三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.
17. (本题满分14分,本题共有2个小题,第1小题满分6分,第2小题满分8分)
直三棱柱中,底面为等腰直角三角形,,,,是侧棱上一点,设.
闵行区2016-2017学年第二学期高三年级质量调研考试数学试卷参考答案与评分标准
一.填空题1.;2.;3.;4.;5.16;6.;7.;8.;9.;10.;11.;12.;
二.选择题13.C;14.A;15.B;16.B.
三.解答题
17.[解](1)以为坐标原点,以射线、、分别为、、轴建立空间直角坐标系,如图所示,
10.已知椭圆,其左、右焦点分别为,.若此椭圆上存在点,使到直线的距离是与的等差中项,则的最大值为.
11.已知定点,动点在圆上,点关于直线的对称点为,向量,是坐标原点,则的取值范围是.
12.已知递增数列共有项,且各项均不为零,,如果从中任取两项,当时,仍是数列中的项,则数列的各项和___.
二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.
(2)若,求直线的方程;
(3)试对进行讨论,请你写出符合条件的直线的条数(只需直接写出结果).
21.(本题满分18分,本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分)
已知是上的奇函数,,且对任意,都成立.
(1)求、的值;
(2)设,求数列的递推公式和通项公式;
(3)记,求的值.
1.方程的解是.
2.已知集合则.
3.若复数(是虚数单位),且为纯虚数,则实数=.
4. 直线(为参数)对应的普通方程是.
5.若,且,则的值为.
6.某空间几何体的三视图如右图所示,则该几何体的侧面积是.
7.若函数在区间上有零点,则实数的取值范围是.
8.在约束条件下,目标函数的最大值为.
9.某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这名学生在上学的路上到第二个路口时第一次遇到红灯的概率是.
2017年闵行区高考数学二模考试含答案
———————————————————————————————— 作者:
———————————————————————————————— 日期:
2017年闵行区高考数学二模试卷含答案2017.04
一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸上相应编号的空格内直接填写结果.
如图所示,是某海湾旅游区的一角,其中,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸和上分别修建观光长廊和AC,其中是宽长廊,造价是元/米,是窄长廊,造价是元/米,两段长廊的总造价为120万元,同时在线段上靠近点的三等分点处建一个观光平台,并建水上直线通道(平台大小忽略不计),水上通道的造价是元/米.
相关文档
最新文档