定积分定义PPT幻灯片

合集下载

《定积分的定义》课件

《定积分的定义》课件

总结词:定积分具有线性性质、可加性、可减性、可 乘性和可除性。
详细描述:定积分具有一系列的性质,其中最重要的是 线性性质,即两个函数的和或差的积分等于它们各自积 分的和或差;其次,定积分具有可加性和可减性,即函 数在一个区间上的积分等于该区间左端点处的函数值与 区间长度乘积的一半减去右端点处的函数值与区间长度 乘积的一半;此外,定积分还具有可乘性和可除性,即 函数与常数的乘积的积分等于该常数乘以函数的积分, 函数除以常数的积分等于函数乘以该常数的倒数。这些 性质在求解定积分时非常有用。
功的计算
定积分可用于计算力在空间上所做的功,通过将力在空间上进行积 分得到总功。
电磁学中的应用
在电磁学中,电场强度和磁场强度是空间的函数,通过定积分可以 计算电场强度和磁场强度在空间上的分布。
THANKS
感谢观看

微积分基本定理的应用
总结词
微积分基本定理的应用非常广泛,它 为解决各种实际问题提供了重要的数 学工具。
详细描述
通过微积分基本定理,我们可以计算 各种函数的定积分,从而解决诸如面 积、体积、长度、平均值、极值等问 题。此外,它也是微分方程求解的重 要基础。
微积分基本定理的证明
总结词
微积分基本定理的证明涉及到了极限理论、实数性质等深奥的数学知识,是数学严谨性的一个典范。
详细描述
证明微积分基本定理需要利用极限的运算性质和实数完备性等数学知识。其证明过程体现了数学的严 谨性和逻辑性,是数学教学中的重要内容。同时,对于理解微积分的本质和深化数学素养具有重要意 义。
03
定积分的计算方法
直接法
总结词
直接计算定积分的基本方法
详细描述
直接法是计算定积分最基本的方法,它基于定积分的定义,通过将被积函数进行微分和 积分,然后进行计算。这种方法适用于一些简单的定积分计算,但对于一些复杂的定积

《定积分的概念》ppt课件

《定积分的概念》ppt课件

f
()(ba)
(ab).
性质7的几何意义:
在[a,b]上至少有 ,一使得 [a,以 b]为底边,以曲
y f (x)为曲边的曲A边a梯 B的 b形 面积等于同一
而高f为 ()的矩形的. 面积
假如函数f〔x〕在闭区间[a,b]上连续,我们
称b1aabf (x)dx
如已知某为地函某数时f自〔0x至〕2在4时[a,天b]上气的温平度均曲值线.为f(t),
曲线 f(x)f((x)0 )、x轴及两条直线x=a,x=b所围 成的曲边梯形面积A等于函数f(x)在区间[a,b]上的定积 分,即
Aabf(x)dx.
质点在变力F(s)作用下作直线运动,由起始位置a 移动到b,变力对质点所做之功等于函数F(s)在[a,b] 上的定积分,即
WabF(s)ds
假如函数f〔x〕在区间[a,b]上的定积分存在, 那么称函数f〔x〕在区间[a,b]上可积.
如果在[a,b]上 f(x)0,此时由曲线y=f(x),直线 x=a,x=b及x轴所围成的曲边梯形位于x轴的下方,则
定积分ab f (x)dx在几何上表示上述曲边梯形的面积A的
相反数.
假如在[a,b]上f〔x〕既可取正值又可取负值,那
么定积ab分f (x)dx 在几何上表示介于曲线y=f〔x〕,
直线x=a,x=b及x轴之间的各部分面积的代数和.
[x0,x1],[x1,x2],,[xi1,xi],,[xn1,xn]
各个小区间的长度为
xi xi xi1
在每一个小[x区 i1,x间 i]上任取一i(点 xi 1ixi),
n
作和 (简式 称积 ) 分 f和 (i)x式 i
i1
记max{xi,x2,...,xn},如果对[a区 ,b]间 任一分法 和小区[x间 i1,xi]上点 i任意取法,只 要0时 当,上

最新定积分的概念ppt

最新定积分的概念ppt

和曲线 y f (x) 所
b
a f (x)dx S
围成的的曲边梯形 的面积
合作探究
如何用定积分表示图中蓝色部分的面积?
yf (x) y
Oa
y gx
b
b
a f(x)dxag(x)dx
bx
用定积分表示下列图中阴影部分的面积
y
y 2x
y

y sin x


01
x
0 1 3
x
4

1
0 2 xd x
b f (x)dx =
b
f (t)dt
a
a
如何用定积分表示抛物线 y x 2 、 直线 x 1 和 x 轴所围成的曲边梯形
的面积。

y的几何意义( f (x) 0 )
设阴影部分面积为S
b
a f ( x)dx
表示由直线 x a,
x b (a b), y 0
a a 0 i 1
即 abf(x)dxlni m i n1b naf(i)
积分上限
[ a , b ] 叫做积分区间



b
n
f(x)dxlim
baf()
a
n n i1
i

积分下限
被 积
被 积
积 分





合作探究
(1)定积分的结果是一个 数值
(2)定积分的值只与被积函数和积分区 间有关,而与积分变量用什么字母表 示 无关 , 即
定积分的概念ppt
§1.5 定 积 分 --§1.5.3定积分的概念
滨海中学 李鹏
n
i1

高二数学定积分概念.pptx

高二数学定积分概念.pptx

lim 0
n
ei
i 1
1 n
lim
iY
n n1
1
e lim
ni
en
n i1
n n n i1
1
1
lim
n
1 n
1
(e
n)
1
n
1
en
(1 e) lim n
n
1
1 en
1 en
e 1
第7页/共91页
第二节 定积分的性质
定积分的性质
第8页/共91页
规定:(1)当a b时,b f (x)dx 0; a
1
xdx
1ln(1 x)dx.又在[0,1]上,x ln(1 x) 0,
0
0

1
xdx
1
ln(1 x)dx.
0
0
例2:估计下列积分值
(1)4 (x2 1)dx;(2)0 ex2xdx.
1
2
第12页/共91页
解: (1)2 x2 1 17,
2 (4 1) 4 (x2 1)dx 17 (4 1) 1
b
n
a
f (x)dx I
lim 0
i 1
f (i )xi
这里f(x)叫做被积函数,f(x)dx叫做被积表达式,x叫做积
分变量,a,b叫做积分下限和上限,[a,b]叫做积分区间。
n
Y
注意:(i) 当和 f (i )xi的极限存在时,其极限I仅与被积函数
i 1
f (x)及积分区间[a,b]有关,而与积分变量的记法无关,即
x f (t)dt也是f (x)的a一个原函数,从而
a
F(x) (x) C.令x a有F(a) C.即F(x) (x) F(a)

《定积分课件》课件

《定积分课件》课件

03 定积分的应用
CHAPTER
面积与体积的计算
总结词
定积分在计算平面图形的面积和三维物体的体积方面具有广 泛应用。
详细描述
利用定积分,可以计算出由曲线围成的平面图形的面积,例 如由y=sinx和y=cosx围成的图形面积。此外,定积分还可以 用于计算三维物体的体积,例如球体、圆柱体和旋转体的体 积。
详细描述
在静水压力问题中,压力分布是深度的函数。通过定积分,我们可以计算任意 深度的压力分布,从而了解水下物体的受力情况。
引力场的强度
总结词
通过定积分计算引力场的强度,理解引 力场的分布规律。
VS
详细描述
在引力场中,场强是位置的函数。通过定 积分,我们可以计算任意位置的场强,从 而了解物体在引力场中的运动规律。
符号表示
02
定积分的符号为∫,读作“拉姆达”。
计算方法
03
定积分的计算方法是通过微积分基本定理,将定积分转化为求
原函数在某点的值。
定积分的几何意义
平面区域面积
定积分可以用来计算平面图形的面积,特别是 当面积元素与坐标轴平行时。
体积
定积分还可以用来计算三维物体的体积,例如 旋转体的体积。
曲线下面积
定积分可以用来计算曲线下在某一区间内的面积。
定积分的计算方法
要点一
总结词
定积分的计算方法包括直接法、换元法和分部积分法等。
要点二
详细描述
定积分的计算可以通过多种方法进行。直接法是根据微积 分基本定理,通过求原函数并计算其差值来得到定积分的 结果。换元法是在积分变量进行换元,使得积分简化。分 部积分法则是通过将两个函数的乘积进行积分,将一个积 分转化为另一个积分,从而简化计算。这些方法在计算定 积分时常常需要结合使用。

-定积分的概念-43页PPT资料

-定积分的概念-43页PPT资料

定积分符号:
b
n
af(x)dx| |lx|i | 0 m i1f(i)xi.
b —定积分号;a—积分下限;b—积分上限; a
f (x)dx—被积表达式; f (x)—被积函数;
dx中的x—积分变量;[a,b]—积分区. 间 ( 积分变量的取值范围)
关于定积分定义的几点说明
(1) 定积b分 f(x)dx是一个极 (具限 体值 的 ), 数 a 它与分 T及 法点 i的选择, 无 只关 与 f(x)及 区间 [a, b]有关 .
该过程告诉了 杂我 平们 面求 图复 形面 ,积 同时,也告知了 形平 面面 积图 的.定义
解决曲边梯形面想 积方 的法 思是: 分— 划 代— 替 求— 和 取极 . 限
通常人们把这 处类 理方 的法 问所 题的结 这种极限值, f(x)在 称区 为 [a,间 b函 ]上数 的定 . 积
二. 定积分的定义
得到曲边梯形的近似值,然后,引入极限过程, 求出曲边梯形的精确值.
y yf(x)
设 f(x)0, f(x ) C (a [ ,b ].)
O ax1
xi1 x i
b
x
第一步:分划 任意引入分点 称为区间的一个分法 T
a x 0 x 1 x i 1 x i x n 1 x n b , 将 [ a ,b ] 分 成 n 个[ x 小 i 1 ,x i]( i 1 区 ,2 , ,n )间 .
第七章 一元函数的积分
本章学习要求: ▪ 熟悉不定积分和定积分的概念、性质、基本运算公式. ▪ 熟悉不定积分基本运算公式.熟练掌握不定积分和定积分的换
元法和分部积分法.掌握简单的有理函数积分的部分分式法. 了解利用建立递推关系式求积分的方法. ▪ 理解积分上限函数的概念、求导定理及其与原函数的关系. ▪ 熟悉牛顿—莱布尼兹公式. ▪ 理解广义积分的概念.掌握判别广义积分收敛的比较判别法. 能熟练运用牛顿—莱布尼兹公式计算广义积分。

第五章定积分的概念45页PPT

第五章定积分的概念45页PPT

b
b
b
a f (x)dxa f(t)dt a f(u)du
( 2 ) 定 义 中 区 间 的 分 法 和 i的 取 法 是 任 意 的 .
( 3 ) 当 函 数 f ( x ) 在 区 间 [ a , b ] 上 的 定 积 分 存 在 时 称 f(x )在 区 间 [ 期课程安排 作业问题 答疑时间 本期期中考试
定积分的概念
前一章我们从导数的逆运算引出了不定积 分,系统地介绍了积分法,这是积分学的第一类 基本问题。本章先从实例出发,引出积分学的第 二类基本问题——定积分,它是微分(求局部量 )的逆运算(微分的无限求和——求总量),然 后着重介绍定积分的计算方法,它在科学技术领 域中有着极其广泛的应用。
y
yf(x)(f(x)0)、
yf(x)
x轴 与 两 条 直 线 xa、
A?
xb所 围 成 .
oa
bx
用矩形面积近似取代曲边梯形面积
y
y
oa
b xo a
bx
(四个小矩形)
(九个小矩形)
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
重点 定积分的概念和性质,微积分基本公
式,定积分的换元法和分部积分法
难点 定义及换元法和分部法的运用
基本要求
①正确理解定积分的概念及其实际背景 ②记住定积分的性质并能正确地运用 ③掌握变上限定积分概念,微积分基本定理,
并会用N-L公式计算定积分, ④能正确熟练地运用换元法和分部积分法
计 算定积分 ⑤正确理解两类广义积分概念,
量(总面积或总路程)
解决方法:
通过局部取近似(求微分),求和取极限 (微分的无限求和)的方法,把总量归结为 求一种特定和式的极限

定积分的性质PPT课件(2024版)

定积分的性质PPT课件(2024版)

例 2
估计积分
0
3
1 sin 3
dx x
的值.

f
(
x)
3
1 sin3
x
,
x [0, ],
0 sin3 x 1,
1 4
3
1 sin3
x
1 3
,
1dx
04
0
3
1 sin3
dx x
1dx, 03
4
0
3
1 s in3
dx x
. 3
第11页/共24页
例 3
估计积分
2
4
使
x2 t sin3
x
t
f
(t )dt
sin 3
f
()( x
2
x),
x2
3
lim t sin
x x
t
f
(t)dt
2 lim
sin 3
f
(
)
2 lim 3 f ( ) 6.
第14页/共24页
1
*例5 设 f ( x) 在[0, 1] 上可微,且满足 f (1) 2 2 xf ( x)dx , 0
第20页/共24页
5、下列两积分的大小关系是:
(1) 1 x 2dx _____ 1 x 3dx
0
0
(2) 2 ln xdx _______ 2 (ln x)2 dx
1
1
(3)
1 e x dx _______
1
( x 1)dx
0
0
二、证明:
b
kf ( x)dx k
b f ( x)dx( k 是常数 ).
补充:不论 a,b,c 的相对位置如何, 上式总成立.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
及直线xa、xb之间的各部分面积的代数和.
上页 下页 返回 退出
•利用定义计算定积分
例1
利用定积分定义计算
1
0
e
xdx
.
解: 取分点为 D x i
1 n
(i1, 2, , n1), 则 x i
i n
(i1, 2, , n).
在第i
个小区间上取右端点x i
xi
i n
(i1,
2,
,
n).
•观察与思考 在曲边梯形内摆满小的矩形, 当小矩形的宽度减少时,
小矩形面积之和与曲边梯形面积之间的误差将如何变化? 怎样求曲边梯形的面积?
上页 下页 返回 退出
•求曲边梯形的面积 (1)分割: ax0< x1< x2< < xn1< xn b, Dxixixi1;
(2)近似代替: 小曲边梯形的面积近似为f(xi)Dxi (xi1<xi<xi);
a ————积分下限,
b ————积分上限,
[a, b]———积分区间,
上页 下页 返回 退出
x 二、定积分定义
❖定积分的定义
a b f ( x ) d l 0 i n 1 f ( i ) D i x i . x m 根 据 定 积 分 的 定 义 ,曲 边 梯 形 的 面 积 为 A a b f ( x ) d . x 变 速 直 线 运 动 的 路 程 为 S T T 1 2 v ( t ) d . t
(3)求和: 物体在时间段[T1, T2]内所经过的路程近似为
n
S v ( i ) D t i ; i 1
(4)取极限: 记max{Dt1, Dt2,, Dtn}, 物体所经过的路程为
n
S l 0 i 1 v ( i ) D t i i . m
上页 下页 返回 退出
二、定积分定义
•定积分的几何意义 当f(x)0时, f(x)在[a, b]上的定积分表示由曲线yf(x)、直
线xa、xb与x轴所围成的曲边梯形的面积. 当f(x)0时, f(x)在[a, b]上的定积分表示曲边梯形面积的
负值. 这是因为
x x a b f ( x ) d l 0 i n 1 i x f ( i ) m D x i l 0 i n 1 i [ f ( m i ) D x i ] a b [ f ( x ) d . ]
n
x (3)求和: 曲边梯形的面积近A 似l 为 0 i 1 f ( i ) D x i i ;. m
(4)取极限: 设max{Dx1, Dx2,, Dxn}, 曲边梯形的面积为
n
x A l 0 i 1 f ( i ) D x i i . m
上页 下页 返回 退出
2.变速直线运动的路程
•如果当0时, 上述和式的极限存在, 且极限值与i 1 区间[a, b]
x 的分法和xi的取法无关, 则称此极限为函数f(x)在区间[a, b]上
的定积分, 记为 a b f ( x ) d , 即 x a b f ( x ) d l 0 i n 1 f ( i ) D i x i . x m
上页 下页 返回 退出
•定积分的几何意义 当f(x)0时, f(x)在[a, b]上的定积分表示由曲线yf(x)、直
线xa、xb与x轴所围成的曲边梯形的面积. 当f(x)0时, f(x)在[a, b]上的定积分表示曲边梯形面积的
负值. 一般地, f(x)在[a, b]上的定积分表示介于x轴、曲线yf(x)
定积分概念与性质
一、定积分问题举例 二、定积分定义 三、定积分的性质
上页 下页 返回 退出
一、定积分问题举例
1.曲边梯形的面积
•曲边梯形 设函数yf(x)在区间[a, b]上非负、连续. 由直线xa、xb、
y0及曲线yf (x)所围成的图形称为曲边梯形, 其中曲线弧称 为曲边.
上页 下页 返回 退出
说明: 定积分的值只与被积函数及积分区间有关, 而与积分变
量的记法无关, 即
a b f ( x ) d a b f ( t ) d x a b f ( u ) d t . u
上页 下页 返回 退出
x 二、定积分定义
❖定积分的定义 ❖函数的可积性
a b f ( x ) d l 0 i n 1 f ( i ) D i x i . x m
x ❖定积分的定义
设函数f(x)在区间[a, b]上有界.
•在区间[a, b]内插入分点: ax0<x1<x2< <xn1<xnb;
记Dxixixi1 (i1, 2,, n), max{Dx1, Dx2,,Dxn};
•在小区间[xi1,
xi]上任取一点xi (i1,
2,,
n),
作和
n
f ( i ) D x i ;
如果函数f(x)在区间[a, b]上的定积分存在, 则称f(x)在区
间[a, b]上可积. •定理1
如果函数f(x)在区间[a, b]上连续, 则函数f(x)在区间[a, b]
上可积.
•定理2
如果函数f(x)在区间[a, b]上有界, 且只有有限个间断点,
则函数f(x)在区间[a, b]上可积.
上页 下页 返回 退出
上页 下页 返回 退出
x 二、定积分定义
❖定积分的定义
a b f ( x ) d l 0 i n 1 f ( i ) D i x i . x m
•定积分各部分的名称
————积分符号,
n
f
(xi )Dxi
———积分和.
f(x) ———被积函数, i1
f(x)dx ——被积表达式,
x ————积分变量,
已知物体直线运动的速度vv(t)是时间 t 的连续函数, 且 v(t)0, 计算物体在时间段[T1, T2]内所经过的路程S. (1)分割: T1t0<t1<t2< <tn1<tnT2, Dtititi1; (2)近似代替: 物体在时间段[ti1, ti]内所经过的路程近似为
DSiv(i)Dti ( ti1< i<ti );
于是
1exd x lim nen i 1li1 m (e1 n en 2 en n)
0
n i 1 nn n
1
ห้องสมุดไป่ตู้
1
1
lim 1en[1(en)n]lim en[1e]e1
n n
1
1en
n
1
n(1en)
上页 下页 返回 退出
•利用几何意义求定积分
例 例2 2 用 定 积 分 的 几 何 意 义 求 0 1 ( 1 x ) d . x
相关文档
最新文档