matlab计算拉格朗日牛顿及分段线性插值的程序
MATLAB实现:拉格朗日插值法示例代码及应用指南
下面是使用 MATLAB 编写的拉格朗日插值法的示例代码:参数:x 是已知点的 x 坐标数组,y 是已知点的 y 坐标数组,point 是要进行插值的点的 x 坐标。
该函数会返回在给定 x 坐标 point 处的插值结果。
算法的实现思路是根据拉格朗日插值公式计算插值多项式,然后将 point 带入多项式计算得到插值结果。
你可以按照以下步骤使用上述函数:定义已知点的 x 坐标数组 x 和对应的 y 坐标数组 y。
调用lagrange_interpolation函数,并将x、y 和要插值的point 作为参数传递进去。
函数将返回在 point 处的插值结果。
以下是一个使用示例:1.定义已知点的 x 和 y 坐标x = [0, 1, 2, 4];y = [1, 4, 3, 2];2.要进行插值的点的 x 坐标point = 3.5;3.调用 lagrange_interpolation 函数进行插值result = lagrange_interpolation(x, y, point);4.输出插值结果disp(['在x = ', num2str(point), ' 处的插值结果为:', num2str(result)]);在上述示例中,已知点的 x 坐标为 [0, 1, 2, 4],对应的 y 坐标为 [1, 4, 3, 2]。
我们要在point = 3.5 处进行插值,然后通过调用lagrange_interpolation 函数计算插值结果,并输出结果。
请注意,拉格朗日插值法适用于小样本量和较低次数的插值问题。
对于大样本量和更高次数的插值,可能需要考虑使用其他插值方法或数值计算库中提供的更高级的插值函数。
用MATLAB实现拉格朗日插值和分段线性插值
用MATLAB真止推格朗日插值战分段线性插值之阳早格格创做1、真验真质:用MATLAB真止推格朗日插值战分段线性插值.2、真验手段:1)教会使用MATLAB硬件;2)会使用MATLAB硬件举止推格朗日插值算法战分段线性好值算法;3、真验本理:利用推格朗日插值要领举止多项式插值,并将图形隐式出去.4、真验步调及运止截止(1)真止lagrange插值1)定义函数:f = 1/(x^2+1) 将其保存正在f.m 文献中,简直步调如下:function y = f1(x)y = 1./(x.^2+1);2)定义推格朗日插值函数:将其保存正在lagrange.m 文献中,简直真止步调编程如下:function y = lagrange(x0,y0,x)m = length(x); /区间少度/n = length(x0);for i = 1:nl(i) = 1;endfor i = 1:mfor j = 1:nfor k = 1:nif j == kcontinue;endl(j) = ( x(i) -x0(k))/( x0(j) - x0(k) )*l(j);endendendy = 0;for i = 1:ny = y0(i) * l(i) + y;end3)修坐尝试步调,保存正在text.m文献中,真止绘图:x=-5:0.001:5;y=(1+x.^2).^-1;p=polyfit(x,y,n);py=vpa(poly2sym(p),10)plot_x=-5:0.001:5;f1=polyval(p,plot_x);figureplot(x,y,‘r',plot_x,f1)输进n=6,出现底下的图形:通过上图不妨瞅到当n=6是不很佳的模拟.于是沉新运止text.M并采用n=11由此可睹n=11时的图像是不妨很佳的真止模拟(2)分段线性插值:修坐div_linear.m文献.简直编程如下/*分段线性插值函数:div_linear.m 文献*/function y = div_linear(x0,y0,x,n)%for j = 1:length(x)for i = 1:n-1if (x >= x0(i)) && (x <= x0(i+1))y = (x - x0(i+1))/(x0(i) - x0(i+1))*y0(i) + ( x - x0(i))/(x0(i+1) - x0(i))*y0(i+1);elsecontinue;endend%end尝试步调(text2.m):n = input(‘输进n =:’);x0 = linspace( -5,5,n);for x = -5:0.01:5y = div_linear(x0,f(x0),x,n);hold on;plot(x,y,'r');plot(x,f(x),'b');end2)运止尝试步调,那是会出现:输进n=:2)输进n=6,并按Enter键,出现:4)闭掉图形界里后,沉新运止步调,输进n=11,并按enter键后出现:5)再次闭掉图形界里,输进n=100,并按enter键,出现:此时.图形将于本函数图形基础符合,证明分隔区间越多,图像交近真正在的图像.(3)用lagrange插值瞅察y = |si n(k*π*x)|的缺点分解:1)编写函数文献,保存正在f2.m 中x=0:0.01:1;k= input('输进k:')n= input('输进n:');y=abs(sin(k*pi*x));p=polyfit(x,y,n-1);py=vpa(poly2sym(p),8);plot_x=0:0.01:1;f1=polyval(p,plot_x);plot(x,y,plot_x,f1);2)运止该步调:输进k=:1输进n=:2出现如下图形界里:闭掉图形界里后沉新运止f2.m,输进k=:1,n=:3出现如下界里:再次闭掉图形界里,输进k=:1,n=:6 后出现:此时图形基础符合.类推,输进k=2,n=3后出现:k =2, n =11,出现如下图形:k =2,n =15,那时出现:k =2,n =19,出现:当k=2,n=21时,图形如下:此时基础符合.5、真验归纳:通过本次课程安排,尔发端掌握了MATLAB使用,加深了对付于百般线性插值的明白;培植了独力处事本领战创制力;概括使用博业及前提知识,办理本质数教问题的本领;正在本次课程安排中,正在教授的粗心指挥下,支益匪浅.共时对付数教的钻研有了更深进的认识.。
matlab实现拉格朗日插值,多项式插值,邻近插值,线性插值 程序
题 7:一维函数插值算法课题内容:课题 7:一维函数插值算法课题内容:对函数||e-y x=,取[-5,5]之间步长为 1 的值*10作为粗值,以步长0.1 作为细值,编写程序实现插值算法:最邻近插值算法,线性插值算法和三次多项式函数插值算法,并对比插值效果。
课题要求:1、设计良好的人机交互 GUI 界面。
2、自己编写实现插值算法。
3、在同一个图形窗口显示对比最后的插值效果。
附录一、界面设计二、图像结果三、程序设计1、线性插值function pushbutton1_Callback(hObject, eventdata, handles) x=-5:5;y=10*exp(-abs(x));f1=[];for x1=-5:0.1:5a=(x1-floor(x1));%请读者认真逐一带入推导if x1==floor(x1)f1=[f1,y(floor(x1)+6)];elsef1=[f1,y(floor(x1)+6)+a*(y(floor(x1)+7)-y(floor(x1)+6))]; endendm=-5:0.1:5plot(m,f1,'-r',x,y,'+')axis([-5 5 0 10])legend('liner插值','原函数');xlabel('X');ylabel('Y');title('liner插值与原函数的对比');grid2、多项式插值x0=-5:1:-3;y0=10*exp(-abs(x0));x=-5:0.1:-3;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');gridhold onx0=-3:1:-1;y0=10*exp(-abs(x0));x=-3:0.1:-1;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');gridhold onx0=-1:1:1;y0=10*exp(-abs(x0));x=-1:0.1:1;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');gridhold onx0=1:1:3;y0=10*exp(-abs(x0));x=1:0.1:3;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');gridhold onx0=3:1:5;y0=10*exp(-abs(x0));x=3:0.1:5;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');grid3、最邻近插值function pushbutton3_Callback(hObject, eventdata, handles) x=-5:5;y=10*exp(-abs(x));f2=[];for x1=-5:0.1:5if abs(x1-floor(x1))<0.5f2=[f2,y(floor(x1)+6)];elsef2=[f2,y(floor(x1)+7)];endendm=[-5:0.1:5];f4=10*exp(-abs(m));plot(m,f2,'-r',x,y,'+')axis([-5 5 0 10])legend('nearest插值','原函数');xlabel('X');ylabel('Y');title('nearest插值与原函数的对比');grid。
MATLAB实现拉格朗日插值
数值分析上机报告题目:插值法学号:201014924姓名:靳会有一、调用MATLAB内带函数插值1、MATLAB内带插值函数列举如下:2、取其中的一维数据内插函数()为例,程序如下:其调用格式为:yi=interp1(x, y, xi)yi=interp1(x, y, xi, method)举例如下:x=0:10:100y=[40 44 46 52 65 76 80 82 88 92 110];xi=0:1:100yi=interp1(x,y,xi,'spline')3、其他内带函数调用格式为:Interpft函数:y=interpft(x,n)y=interpft(x,n,dim)interp2函数:ZI=interp2(X, Y, Z, XI, YI), ZI=imerp2(Z, ntimes)ZI=interp2(Z, XI, YI) ,ZI=interp2(X, Y, Z, XI, YI, method) interp3函数:VI=interp3(X,Y,Z,V,XI,YI,ZI) VI=interp3(V, ntimes)VI=interp3(V,XI,YI,ZI) VI=interp3(…, method)Interpn函数:VI=interpn(X1, X2, X3, …, V, Y1, Y2, Y3, …) VI=interpn(V, ntimes)VI=interpn(V, Yl, Y2, Y3, …) VI=interpn(…, method)Spline函数:yi=spline(x,y,xi)pp=spline(x,y)meshgrid函数:[X,Y]=meshgrid(x,y)[X,Y]=meshgrid(x)[X,Y,Z]=meshgrid(x,y,z)Ndgrid函数:[X1, X2, X3, …]=ndgrid(x1, x2, x3, …)[X1, X2, X3, …]=ndgrid(x)Griddata函数:ZI=griddata(x, y, z, XI, YI)[XI, YI, ZI]=griddata(x, y, z, xi, yi) […]=griddata(… method)二、自编函数插值1、拉格朗日插值法:建立M 文件:function f = Language(x,y,x0)syms t l;if(length(x) == length(y))n = length(x);elsedisp('x和y的维数不相等!');return; %检错endh=sym(0);for (i=1:n)l=sym(y(i));for(j=1:i-1)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/(x(i)-x(j));end;h=h+l;endsimplify(h);if(nargin == 3)f = subs (h,'t',x0); %计算插值点的函数值elsef=collect(h);f = vpa(f,6); %将插值多项式的系数化成6位精度的小数end在MATLAB中输入:x=[18 31 66 68 70 72 70;]y=[23 33 52 51 43 40 46];f=Language(x,y)plot(x,y)结果为:f =Inf + (-t)*Inf - 54329.8*t^2 + 1503.75*t^3 - 22.2065*t^4 + 0.16789*t^5 - 0.000512106*t^6图形如下:MATLAB实现拉格朗日插值建立如下拉格朗日插值函数:function y=lagrange(x0,y0,x);n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;end画图程序如下:x=[-5:1:5];y=1./(1+x.^2);x0=[-5:0.001:5];y0=lagrange(x,y,x0);y1=1./(1+x0.^2);plot(x0,y0,'r')hold onplot(x0,y1,'g')注:画出的图形为n =10的图形得到图形如下:牛顿K 次插值多项式一、实验目的:1、掌握牛顿插值法的基本思路和步骤。
用matlab编写拉格朗日插值算法的程序
用matlab编写拉格朗日插值算法的程序10[ 标签:matlab,插值算法,程序 ]用matlab编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,在整个插值区间上采用拉格朗日插值法计算f(0.6),写出程序源代码,输出计算结果x -2.15 -1.00 0.01 1.02 2.03 3.25y 17.03 7.24 1.05 2.03 17.06 23.05匿名回答:1 人气:6 解决时间:2011-05-24 19:58满意答案好评率:83%做了一个测试,希望有所帮助。
代码:% 用matlab编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,% 在整个插值区间上采用拉格朗日插值法计算f(0.6),写出程序源代码,输出计算结果% x -2.15 -1.00 0.01 1.02 2.03 3.25% y 17.03 7.24 1.05 2.03 17.06 23.05function main()clc;x = [-2.15 -1.00 0.01 1.02 2.03 3.25]; y = [17.03 7.24 1.05 2.03 17.06 23.05 ]; x0 = 0.6;f = Language(x,y,x0)function f = Language(x,y,x0)%求已知数据点的拉格朗日插值多项式%已知数据点的x坐标向量: x%已知数据点的y坐标向量: y%插值点的x坐标: x0%求得的拉格朗日插值多项式或在x0处的插值: f syms t l;if(length(x) == length(y))n = length(x);elsedisp('x和y的维数不相等!');return; %检错endh=sym(0);for (i=1:n)l=sym(y(i));for(j=1:i-1)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/(x(i)-x(j));end;h=h+l;endsimplify(h);if(nargin == 3)f = subs (h,'t',x0); %计算插值点的函数值elsef=collect(h);f = vpa(f,6); %将插值多项式的系数化成6位精度的小数end结果:f =0.0201>>如何用MATLAB编写的拉格朗日插值算法的程序、二阶龙格-库塔方法的程序和SOR迭代法的程序,要能运行的∮初夏戀雨¢回答:2 人气:29 解决时间:2009-12-08 19:04满意答案好评率:100%拉格朗日function y=lagrange(x0,y0,x)n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endSOR迭代法的Matlab程序function [x]=SOR_iterative(A,b)% 用SOR迭代求解线性方程组,矩阵A是方阵x0=zeros(1,length(b)); % 赋初值tol=10^(-2); % 给定误差界N=1000; % 给定最大迭代次数[n,n]=size(A); % 确定矩阵A的阶w=1; % 给定松弛因子k=1;% 迭代过程while k<=Nx(1)=(b(1)-A(1,2:n)*x0(2:n)')/A(1,1);for i=2:nx(i)=(1-w)*x0(i)+w*(b(i)-A(i,1:i-1)*x(1:i-1)'-A(i,i+1:n)*x0(i+1:n)')/A(i,i); endif max(abs(x-x0))<=tolfid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n'); fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'x的值\n\n');fprintf(fid, '%12.8f \n', x);break;endk=k+1;x0=x;endif k==N+1fid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n'); fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'超过最大迭代次数,求解失败!');fclose(fid);endMatlab中龙格-库塔(Runge-Kutta)方法原理及实现龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。
用MATLAB实现拉格朗日插值和分段线性插值.
用MATLAB实现拉格朗日插值和分段线性插值1、实验内容:用MATLAB实现拉格朗日插值和分段线性插值。
2、实验目的:1学会使用MATLAB软件;2会使用MATLAB软件进行拉格朗日插值算法和分段线性差值算法;3、实验原理:利用拉格朗日插值方法进行多项式插值,并将图形显式出来。
4、实验步骤及运行结果(1实现lagrange插值1定义函数:f = 1/(x^2+1 将其保存在 f.m 文件中,具体程序如下:function y = f1(xy = 1./(x.^2+1;2定义拉格朗日插值函数:将其保存在lagrange.m 文件中,具体实现程序编程如下:function y = lagrange(x0,y0,xm = length(x; /区间长度/n = length(x0;for i = 1:nl(i = 1;endfor i = 1:mfor j = 1:nfor k = 1:nif j == kcontinue;endl(j = ( x(i -x0(k/( x0(j - x0(k *l(j;endendendy = 0;for i = 1:ny = y0(i * l(i + y;end3建立测试程序,保存在text.m文件中,实现画图:x=-5:0.001:5;y=(1+x.^2.^-1;p=polyfit(x,y,n;py=vpa(poly2sym(p,10plot_x=-5:0.001:5;f1=polyval(p,plot_x;figureplo t(x,y,‘r',plot_x,f1输入n=6,出现下面的图形:通过上图可以看到当n=6是没有很好的模拟。
于是重新运行text.M并选择n=11由此可见n=11时的图像是可以很好的实现模拟(2分段线性插值:建立div_linear.m文件。
具体编程如下/*分段线性插值函数:div_linear.m 文件*/ function y = div_linear(x0,y0,x,n%for j = 1:length(xfor i = 1:n-1if (x >= x0(i && (x <= x0(i+1y = (x - x0(i+1/(x0(i - x0(i+1*y0(i + ( x - x0(i/(x0(i+1 - x0(i*y0(i+1;elsecontinue;endend%end测试程序(text2.m:输入n =:’;n = input(‘x0 = linspace( -5,5,n;for x = -5:0.01:5y = div_linear(x0,f(x0,x,n;hold on;plot(x,y,'r';plot(x,f(x,'b';end2运行测试程序,这是会出现:输入n=:2输入n=6,并按Enter键,出现:4关掉图形界面后,重新运行程序,输入n=11,并按enter键后出现:5再次关掉图形界面,输入n=100,并按enter键,出现:此时。
拉格朗日插值、牛顿插值的matlab代码
实验五多项式插值逼近信息与计算科学金融崔振威201002034031一、实验目的:拉格朗日插值和牛顿插值的数值实现二、实验内容:p171.1、p178.1、龙格现象数值实现三、实验要求:1、根据所给题目构造相应的插值多项式,2、编程实现两类插值多项式的计算3、试分析多项式插值造成龙格现象的原因主程序1、拉格朗日function [c,l]=lagran(x,y)%c为多项式函数输出的系数%l为矩阵的系数多项式%x为横坐标上的坐标向量%y为纵坐标上的坐标向量w=length(x);n=w-1;l=zeros(w,w);for k=1:n+1v=1;for j=1:n+1if k~=jv=conv(v,poly(x(j)))/(x(k)-x(j)) %对多项式做卷积运算endendl(k,:)=v;endc=y*l;牛顿插值多项式主程序function [p2,z]=newTon(x,y,t)%输入参数中x,y为元素个数相等的向量%t为插入的定点%p2为所求得的牛顿插值多项式%z为利用多项式所得的t的函数值。
n=length(x);chaS(1)=y(1);for i=2:nx1=x;y1=y;x1(i+1:n)=[];y1(i+1:n)=[];n1=length(x1);s1=0;for j=1:n1t1=1;for k=1:n1if k==j %如果相等则跳出循环continue;elset1=t1*(x1(j)-x1(k));endends1=s1+y1(j)/t1;endchaS(i)=s1;endb(1,:)=[zeros(1,n-1) chaS(1)];cl=cell(1,n-1); %cell定义了一个矩阵for i=2:nu1=1;for j=1:i-1u1=conv(u1,[1 -x(j)]); %conv()用于多项式乘法、矩阵乘法cl{i-1}=u1;endcl{i-1}=chaS(i)*cl{i-1};b(i,:)=[zeros(1,n-i),cl{i-1}];endp2=b(1,:);for j=2:np2=p2+b(j,:);endif length(t)==1rm=0;for i=1:nrm=rm+p2(i)*t^(n-i);endz=rm;elsek1=length(t);rm=zeros(1,k1);for j=1:k1for i=1:nrm(j)=rm(j)+p2(i)*t(j)^(n-i);endz=rm;endendplot(t,z,'y',x,y,'*r') %输出牛顿插值多项式的函数图p171.1(a)、f(x)=e x解:在matlab窗口中输入:>> x=[0 0.2 0.4 0.6 0.8 1];>> y=[exp(0) exp(0.2) exp(0.4) exp(0.6) exp(0.8) exp(1)]y =1.0000 1.2214 1.4918 1.82212.2255 2.7183>> [c,l]=lagran(x,y)可以得出输出结果为:c =0.0139 0.0349 0.1704 0.4991 1.0001 1.0000l =-26.0417 78.1250 -88.5417 46.8750 -11.4167 1.0000130.2083 -364.5833 369.7917 -160.4167 25.0000 0-260.4167 677.0833 -614.5833 222.9167 -25.0000 0260.4167 -625.0000 510.4167 -162.5000 16.6667 0-130.2083 286.4583 -213.5417 63.5417 -6.2500 026.0417 -52.0833 36.4583 -10.4167 1.0000 0由输出结果可以的出:P(x)的系数分别为:a0=0.0139 a1=0.0349 a2=0.1704 a3=0.4991 a4=1.0001 a5=1.0000(b)、f(x)=sin(x)解:在matlab窗口中输入:>> x=[0 0.2 0.4 0.6 0.8 1];>> y=[sin(0) sin(0.2) sin(0.4) sin(0.6) sin(0.8) sin(1)];>> [c,l]=lagran(x,y)可以得出输出结果为:c =0.0073 0.0016 -0.1676 0.0002 1.0000 0l =-26.0417 78.1250 -88.5417 46.8750 -11.4167 1.0000130.2083 -364.5833 369.7917 -160.4167 25.0000 0-260.4167 677.0833 -614.5833 222.9167 -25.0000 0260.4167 -625.0000 510.4167 -162.5000 16.6667 0-130.2083 286.4583 -213.5417 63.5417 -6.2500 026.0417 -52.0833 36.4583 -10.4167 1.0000 0由输出结果可以的出:P(x)的系数分别为:a0=0.0073 a1=0.0016 a2=-0.1676 a3=0.0002 a4=1.0000 a5=0(c)、f(x)=(x+1)x+1解:在matlab窗口中输入:>> x=[0 0.2 0.4 0.6 0.8 1];>> y=[1 1.2^1.2 1.4^1.4 1.6^1.6 1.8^1.8 2^2];>> [c,l]=lagran(x,y)可以得出输出结果为:c =0.3945 -0.0717 0.7304 0.9415 1.0052 1.0000l =-26.0417 78.1250 -88.5417 46.8750 -11.4167 1.0000130.2083 -364.5833 369.7917 -160.4167 25.0000 0-260.4167 677.0833 -614.5833 222.9167 -25.0000 0260.4167 -625.0000 510.4167 -162.5000 16.6667 0-130.2083 286.4583 -213.5417 63.5417 -6.2500 026.0417 -52.0833 36.4583 -10.4167 1.0000 0由输出结果可以的出:P(x)的系数分别为:a0=0.3945 a1=-0.0717 a2=0.7304 a3=0.9415 a4=1.0052 a5=1.0000P178.12、a0=5 a1=-2 a2=0.5 a3=-0.1 a4=0.003x0=0 x1=1 x2=2 x3=3 c=2.5解:在matlab窗口中输入:>> x=[5 -2 0.5 -0.1];>> y=[0 1 2 3];>> t=0:0.1:2.5;>> [u,v]=newTon(x,y,t)可得出输出结果:u =0.1896 -0.7843 -1.3928 2.8688v =2.8688 2.7218 2.5603 2.3855 2.1983 2.0000 1.7917 1.5745 1.3497 1.1182 0.8813 0.6401 0.3957 0.1493 -0.0980 -0.3451 -0.5908 -0.8340 -1.0735 -1.3082 -1.5370 -1.7588 -1.9723 -2.1765 -2.3702 -2.5523由此可以求出牛顿多项式为:f(x)=0.1896x^3--0.7843^x2--1.3928x+2.8688输出的图为:结果分析:利用牛顿插值多项式的函数,通过调用函数可以求得牛顿多项式与给定的点的值,并通过matlab做出函数图像。
matlab实现lagrange插值和分段线性插值
数值分析作业姓名:虞驰程题目函数:在[-5,5]上,取n=10,对其进行分段线性插值和拉格朗日插值,在Matlab中实现且绘图。
Matlab 实现:首先定义函数f,在Matlab中用fun ctio n.m 文件编写,具体代码如图1所示:图1 f(x) 函数定义分段线性插值的基本函数,用function.m 文件编写,具体代码如图2所示:图2分段线性插值基本函数定义拉格朗日插值的基本函数,用function.m 文件编写,具体代码如图3所示:图3拉格朗日插值的基本函数进行分段线性插值并绘图和原函数进行对比的Matlab实现代码如图4所示:图4分段线性插值函数绘制其结果如图5所示,其中红色代表分段线性插值结果,蓝色代表原函数:图5分段线性插值和原函数对比同理可以进行拉格朗日插值并绘图,其Matlab实现代码如图6所示,其结果如图Ffe Edit Tesrt Go C«ll TooU D«bug Oesktop Wind Help *1 D 已■ | $ ■•勺◊Qi 勺-it • * F;iL ・昌电T・• ■ ■ ■ | MadgJBmr ■血*S肓匸1必」•* _U■「鬲迢[0 _L 1- IWEU I1『inpirt ftji')2 - ■Elinus:""卜氐£11*1〕3 - \-\t^£ 15* —yslftErflnfeiwQpiftrtl,!!) ■5 —told An:ft - plfft <45- r* * E X).7 - jlflrt(i p fCx)/lb J kE — d.isp(-x):9 - -end2 u"含m al=n' taufwi图6拉格朗日插值函数绘制图7拉格朗日插值和原函数对比7所示:最后我们可以将分段线性插值、拉格朗日插值和原函数进行对比,其实现代码如图8所示,最终结果如图9所示(黑色代表原函数,蓝色是分段线性插值,红色是拉格朗日插值)图8两种插值方法和原函数对比实现图9两种插值方法和原函数对比。
matlab 拉格朗日插值法和牛顿插值法
matlab 拉格朗日插值法和牛顿插值法题目:MATLAB中的拉格朗日插值法和牛顿插值法引言在实际问题中,我们常常需要通过一系列已知数据点来估计未知数据点的值。
这种问题很常见,例如用温度测量数据来预测未来某一天的温度。
为了解决这种插值问题,拉格朗日插值法和牛顿插值法是常用的方法之一。
在本文中,我们将介绍这两种插值方法并详细解释如何在MATLAB中使用它们。
一、拉格朗日插值法拉格朗日插值法是基于拉格朗日多项式的一种插值方法。
该方法使用已知数据点的值和位置来构造一个多项式,进而估计未知数据点的值。
其基本思想是通过多项式与每个数据点相等,并利用拉格朗日插值公式来得到插值多项式。
1. 拉格朗日插值公式拉格朗日插值公式可以表示为:P(x) = Σ(yi * li(x))其中P(x)是插值多项式,yi是第i个数据点的值,li(x)是拉格朗日基函数。
拉格朗日基函数li(x)定义为:li(x) = Π((x-xj)/(xi-xj)) (j ≠i)2. MATLAB实现要在MATLAB中实现拉格朗日插值法,我们可以按照以下步骤进行:(1)首先定义数据点的横坐标x和纵坐标y;(2)使用for循环遍历每个数据点,并计算插值多项式的每一项;(3)将每个数据点的插值多项式项相加,得到最终的插值多项式;(4)通过给定的x值,计算插值多项式的值。
该过程可以通过以下MATLAB代码实现:matlab定义已知数据点的横坐标和纵坐标x = [1, 2, 3, 4];y = [2, 4, 1, 6];计算插值多项式的每一项n = length(x); 数据点数量P = 0; 初始化插值多项式for i = 1:n计算每一项的拉格朗日基函数li = ones(size(x));for j = 1:nif j ~= ili = li .* (xs - x(j)) / (x(i) - x(j));endend计算每一项的插值多项式项Pi = yi * li;将每一项相加得到最终的插值多项式P = P + Pi;end给定x值,计算插值多项式的值x_val = 2.5;y_val = polyval(P, x_val);二、牛顿插值法牛顿插值法是一种使用差商的插值方法。
MATLAB实现拉格朗日插值
数值分析上机报告题目:插值法学号:4姓名:靳会有一、调用MATLAB内带函数插值1、MATLAB内带插值函数列举如下:2、取其中的一维数据内插函数(interp1)为例,程序如下:其调用格式为:yi=interp1(x, y, xi)yi=interp1(x, y, xi, method)举例如下:x=0:10:100y=[40 44 46 52 65 76 80 82 88 92 110];xi=0:1:100yi=interp1(x,y,xi,'spline')3、其他内带函数调用格式为:Interpft函数:y=interpft(x,n)y=interpft(x,n,dim)interp2函数:ZI=interp2(X, Y, Z, XI, YI), ZI=imerp2(Z, ntimes)ZI=interp2(Z, XI, YI) ,ZI=interp2(X, Y, Z, XI, YI, method) interp3函数:VI=interp3(X,Y,Z,V,XI,YI,ZI) VI=interp3(V, ntimes)VI=interp3(V,XI,YI,ZI) VI=interp3(…, method)Interpn函数:VI=interpn(X1, X2, X3, …, V, Y1, Y2, Y3, …)VI=interpn(V, ntimes)VI=interpn(V, Yl, Y2, Y3, …) VI=interpn(…, method)Spline函数:yi=spline(x,y,xi)pp=spline(x,y)meshgrid函数:[X,Y]=meshgrid(x,y)[X,Y]=meshgrid(x)[X,Y,Z]=meshgrid(x,y,z)Ndgrid函数:[X1, X2, X3, …]=ndgrid(x1, x2, x3, …)[X1, X2, X3, …]=ndgrid(x)Griddata函数:ZI=griddata(x, y, z, XI, YI)[XI, YI, ZI]=griddata(x, y, z, xi, yi)[…]=griddata(… method)二、自编函数插值1、拉格朗日插值法:建立M 文件:function f = Language(x,y,x0)syms t l;if(length(x) == length(y))n = length(x);elsedisp('x和y的维数不相等!');return; %检错endh=sym(0);for (i=1:n)l=sym(y(i));for(j=1:i-1)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/(x(i)-x(j));end;h=h+l;endsimplify(h);if(nargin == 3)f = subs (h,'t',x0); %计算插值点的函数值elsef=collect(h);f = vpa(f,6); %将插值多项式的系数化成6位精度的小数end在MATLAB中输入:x=[18 31 66 68 70 72 70;]y=[23 33 52 51 43 40 46];f=Language(x,y)plot(x,y)结果为:f =Inf + (-t)*Inf - *t^2 + *t^3 - *t^4 + *t^5 - *t^6图形如下:MATLAB实现拉格朗日插值建立如下拉格朗日插值函数:function y=lagrange(x0,y0,x);n=length(x0);m=length(x);for i=1:mz=x(i);s=;for k=1:np=;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;end画图程序如下:x=[-5:1:5];y=1./(1+x.^2);x0=[-5::5];y0=lagrange(x,y,x0); y1=1./(1+x0.^2); plot(x0,y0,'r') hold onplot(x0,y1,'g')注:画出的图形为n =10的图形得到图形如下:牛顿K 次插值多项式一、实验目的:1、掌握牛顿插值法的基本思路和步骤。
拉格朗日插值法matlab程序代码
拉格朗日插值法matlab程序代码文章开始:拉格朗日插值法是一种常用的数值计算方法,用于在已知的数据点上构造一个多项式,以逼近未知的函数值。
其主要思想是通过构造一个经过已知数据点的多项式,从而在未知点上近似函数的值。
在本文中,我将通过MATLAB编程来实现拉格朗日插值法,并给出相应的程序代码和解释。
在开始编写程序之前,让我们首先了解一下拉格朗日插值法的基本原理。
给定一组已知数据点(x0, y0), (x1, y1), ..., (xn, yn),其中xi为自变量,yi为因变量。
我们的目标是构造一个多项式P(x),使得对于任意的x,P(x)可以近似地表示未知函数f(x)的值。
首先,我们需要定义Lagrange基函数Li(x)。
每个基函数都满足以下两个性质:Li(xi) = 1Li(xj) = 0,其中i ≠ j基于这些性质,Li(x)可以通过以下公式计算:Li(x) = Π(j=0 to n, j ≠ i) ((x - xj) / (xi - xj))接下来,我们将利用这些基函数和已知数据点的因变量yi来构造拉格朗日插值多项式P(x):P(x) = Σ(i=0 to n) (yi * Li(x))有了这个多项式,我们可以使用它来近似未知函数f(x)在任意点x的值。
现在,让我们来实现这个算法,并给出MATLAB代码。
``` MATLABfunction P = lagrange_interpolation(x, y, x_val)% x: 已知数据点的自变量% y: 已知数据点的因变量% x_val: 需要插值的自变量n = length(x) - 1; % 数据点的数量P = zeros(size(x_val)); % 初始化插值多项式的值for i = 1:n+1% 计算基函数L = ones(size(x_val));for j = 1:n+1if j ~= iL = L .* (x_val - x(j)) / (x(i) - x(j));endend% 更新插值多项式的值P = P + y(i) * L;endend```上面的代码实现了拉格朗日插值法的核心算法。
matlab 拉格朗日插值法和牛顿插值法 -回复
matlab 拉格朗日插值法和牛顿插值法-回复问题:matlab中的拉格朗日插值法和牛顿插值法是什么?如何实现?引言:插值法是一种数值分析技术,用于找出一系列已知数据点之间的未知数据点的近似值。
在实际应用中,我们常常需要根据有限个离散数据点来推断出连续函数的性质,这就是插值的问题。
拉格朗日插值法和牛顿插值法是常用的插值方法之一,本文将一步一步地介绍这两种方法的原理及其在Matlab中的实现过程。
一、拉格朗日插值法拉格朗日插值法是通过一个多项式来逼近一组已知数据点,然后利用该多项式求解未知位置的近似值。
拉格朗日插值法的主要思想是利用Lagrange插值多项式来拟合给定的数据,具体步骤如下:1. 根据已知数据点的个数n,构造n次拉格朗日插值多项式。
多项式的一般形式如下:![拉格朗日插值多项式公式](其中,x为自变量,y为因变量,x[i]表示已知点的横坐标,y[i]表示已知点的纵坐标,L[i]表示Lagrange插值基函数。
具体计算Lagrange插值基函数的公式如下:![Lagrange插值基函数公式](2. 根据求出的拉格朗日插值多项式,代入未知位置的横坐标,计算出对应的纵坐标值。
这样就得到了近似值。
二、牛顿插值法牛顿插值法是通过一个低次的插值多项式来逼近一组已知数据点,并通过不断迭代来逐步提高插值多项式的次数。
牛顿插值法的主要思想是利用差商(divided difference)来拟合给定的数据,具体步骤如下:1. 根据已知数据点的个数n,构造n次牛顿插值多项式。
多项式的一般形式如下:![牛顿插值多项式公式](其中,x为自变量,y为因变量,x[i]表示已知点的横坐标,y[i]表示已知点的纵坐标,f[x0, x1]表示差商。
具体计算差商的公式如下:![差商公式](其中,Δy表示差商的分子部分,Δx表示差商的分母部分,Δx[j]表示x[j+1]和x[j]之间的差值,Δy[j]表示y[j+1]和y[j]之间的差值。
数值分析分段线性插值样条插值Runge函数Newton-Lagrange-Chebyshev插值多项式Runge现象matlab源程序代码
题目1:对Runge 函数R(x ) =1在区间[-1,1]作下列插值逼近,并和1 + 25x 2R(x)的图像进行比较,并对结果进行分析。
= -1 + ih,h= 0.1,0 ≤ i≤ 20 绘出它的20 次Newton 插值(1)用等距节点xi多项式的图像。
分别画出在[-1,1]区间,[-0.7,0.7]区间和[-0.5,0.5]区间上的 Newton 插值多项式和Runge 函数的图像从图中可以看出: 1)在[-0.5,0.5]区间 Newton 插值多项式和 Runge 函数的图像偏差较小,这说 明 Newton 插值多项式在此区间上可以较好的逼近 Runge 函数; 2)在边界(自变量 x=-1 和 x=1)附近,Newton 插值多项式和 Runge 函数的图像 偏差很大,Newton 插值多项式出现了剧烈的震荡。
(Runge 现象) (2)用节点 x = cos(2i + 1π)(, i = 0,1,2,⋅ ⋅ ⋅ ,20),绘出它的 20 次 Lagrangei 42 插值多项式的图像。
画出在[-1,1]区间上的 Lagrange 插值多项式和 Runge 函数的图像从图中可以看出:使用 Chebyshev 多项式零点构造的 Lagrange 插值多项式和 Runge 函数的图 像偏差较小,没有出现 Runge 现象。
(3)用等距节点 x i 的图像。
= -1 + ih ,h = 0.1,0 ≤ i ≤ 20 绘出它的分段线性插值函数画出在[-1,1]区间上分段线性插值函数和 Runge 函数的图像从图中可以看出:使用分段线性插值函数和 Runge 函数的图像偏差较小,也没有出现 Runge 现象,只在自变量 x=0 处有稍许偏差。
(4)用等距节点 x i 函数的图像。
= -1 + ih ,h = 0.1,0 ≤ i ≤ 20 绘出它的三次自然样条插值画出在[-1,1]区间上三次自然样条插值函数和 Runge 函数的图像从图中可以看出:使用三次自然样条插值函数和 Runge 函数的图像偏差较小,也没有出现 Runge 现象。
MATLAB实现拉格朗日插值
数值分析上机报告题目:插值法学号:201014924姓名:靳会有一、调用MATLAB内带函数插值1、MATLAB内带插值函数列举如下:2、取其中的一维数据内插函数()为例,程序如下:其调用格式为:yi=interp1(x, y, xi)yi=interp1(x, y, xi, method)举例如下:x=0:10:100y=[40 44 46 52 65 76 80 82 88 92 110];xi=0:1:100yi=interp1(x,y,xi,'spline')3、其他内带函数调用格式为:Interpft函数:y=interpft(x,n)y=interpft(x,n,dim)interp2函数:ZI=interp2(X, Y, Z, XI, YI), ZI=imerp2(Z, ntimes)ZI=interp2(Z, XI, YI) ,ZI=interp2(X, Y, Z, XI, YI, method) interp3函数:VI=interp3(X,Y,Z,V,XI,YI,ZI) VI=interp3(V, ntimes)VI=interp3(V,XI,YI,ZI) VI=interp3(…, method)Interpn函数:VI=interpn(X1, X2, X3, …, V, Y1, Y2, Y3, …) VI=interpn(V, ntimes)VI=interpn(V, Yl, Y2, Y3, …) VI=interpn(…, method)Spline函数:yi=spline(x,y,xi)pp=spline(x,y)meshgrid函数:[X,Y]=meshgrid(x,y)[X,Y]=meshgrid(x)[X,Y,Z]=meshgrid(x,y,z)Ndgrid函数:[X1, X2, X3, …]=ndgrid(x1, x2, x3, …)[X1, X2, X3, …]=ndgrid(x)Griddata函数:ZI=griddata(x, y, z, XI, YI)[XI, YI, ZI]=griddata(x, y, z, xi, yi) […]=griddata(… method)二、自编函数插值1、拉格朗日插值法:建立M 文件:function f = Language(x,y,x0)syms t l;if(length(x) == length(y))n = length(x);elsedisp('x和y的维数不相等!');return; %检错endh=sym(0);for (i=1:n)l=sym(y(i));for(j=1:i-1)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/(x(i)-x(j));end;h=h+l;endsimplify(h);if(nargin == 3)f = subs (h,'t',x0); %计算插值点的函数值elsef=collect(h);f = vpa(f,6); %将插值多项式的系数化成6位精度的小数end在MATLAB中输入:x=[18 31 66 68 70 72 70;]y=[23 33 52 51 43 40 46];f=Language(x,y)plot(x,y)结果为:f =Inf + (-t)*Inf - 54329.8*t^2 + 1503.75*t^3 - 22.2065*t^4 + 0.16789*t^5 - 0.000512106*t^6图形如下:MATLAB实现拉格朗日插值建立如下拉格朗日插值函数:function y=lagrange(x0,y0,x);n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;end画图程序如下:x=[-5:1:5];y=1./(1+x.^2);x0=[-5:0.001:5];y0=lagrange(x,y,x0);y1=1./(1+x0.^2);plot(x0,y0,'r')hold onplot(x0,y1,'g')注:画出的图形为n =10的图形得到图形如下:牛顿K 次插值多项式一、实验目的:1、掌握牛顿插值法的基本思路和步骤。
数值分析各算法流程图
01,,n1,,n1,,)n x及数值分析各算法流程图一、插值1、 拉格朗日插值流程图:( 相应程序:lagrintp(x,y,xx))2,,n ,,j n 1,2,,n 1,,)n 2、 牛顿插值流程图(1)产生差商表的算法流程图(相应程序:divdiff(x,y))注:1、另一程序divdiff1(x,y),输出的矩阵包含了节点向量。
而divdiff(x,y)不含节点向量。
2、另一程序tableofdd(x,y,m),输出的是表格形式,添加了表头。
1,,),,n m 及1,,m (2)非等距节点的牛顿插值流程图(相应程序:newtint11(x,y,xx,m)) 、注:1、虽然程序newtint11(x,y,xx,m)考虑了多种情形,看上去很复杂,但基本流程结构还是如上图所示。
2、程序中调用的子程序是divdiff 。
若调用的子程序是divdiff1的话,流程图中的第三,第四,第五步要相应的改一下数字。
2,3,,1m +1,,j1,2,,n=1,2,,)n m 及(3)求差分表的流程图(相应程序:difference(y,m))注:1、difference 输出的是矩阵D 。
而另一程序tableofd(y,m),输出的是带有表头的差分表。
n x m1,,),,1,,m注:1、程序newtforward1(x,y,xx,m))的结构与上述流程图一致,xx可以是数组。
2、另一程序newtforward(x,y,xx,m))先求出插值多项式,再求插值多项式在插值点的函数值。
基本结构还是和上面的流程图一样。
n x m1,,),,-x x1,,m注:1、程序newtbackward1(x,y,xx,m))的结构与上述流程图一致,xx可以是数组。
2、另一程序newtbackward(x,y,xx,m))先求出插值多项式,再求插值多项式在插值点的函数值。
基本结构还是和上面的流程图一样。
1,2,,n1,2,,n ,2,,)n x及3、Hermite 插值流程图(1) 已知条件中一阶导数的个数与插值节点的个数相等时的Hermite 插值流程图。
实验报告-插值法
验 目 的 和 要 求2、掌握用MATAB 作线性最小二乘的方法。
实 验 内 容 和 步 骤计算机上机实验报告1掌握用MATLA 计算拉格朗日、分段线性、三次样条三种插值的方法,改变节点的数目,对三种插值结果进行初步分析。
3、通过实例学习如何用插值方法与拟合方法解决实际问题,注意二者的联系和区别。
实验的主要内容1编制拉格朗日、牛顿插值程序,并运行一个简单的实例。
(1)拉格朗日插值程序:fun cti on v=pol yin terp(x,y,u) n=len gth(x); v=zeros(size(u)); for k=1: n w=on es(size(u));for j=[1:k-1 k+1:n] w=(u-x(j))./(x(k)-x(j)).*w; end v=v+w*y(k); end实例:当x=144,169,225时,y=12,13,15,用拉格朗日差值法 求根号175。
如下:''Fl ^.kiEO- 1(2)牛顿插值程序:fun ctio n y=n ewi nterp(X,Y,x)% 牛顿插值函数m=le ngth(X);for k=2:mfor j=1:k-1Y(k)= (Y(k)- Y(j))/(X(k)-X(j));endendy=Y(m);for j=m-1:-1:1y=y.*(x-X(j))+Y(j);2、给定函数f(x)x,已知:f(2.0) .1.414214 f(2.1) .1.449138f (2.2) .1.483240 f (2.3) .1.516575 f (2.4) .1.549193 用牛顿插值法求4次Newton插值多项式在2.15处的值,以此作为函3.选择函数y=exp(-x 2) (-2 <x<2),在n个节点上(n不要太大,如5~11)用拉格朗日、分段线性、三次样条三种插值方法,计算m 个插值点的函数值(m要适中,如50~100)。
matlab计算拉格朗日牛顿及分段线性插值的程序
end %检错 for k=1:n-1 if (x(k)<=x0&x0<=x(k+1)) temp=x(k)-x(k+1); f=(x0-x(k+1))/temp*y(k)+(x0x(k))/(-temp)*y(k+1); end; end
return;
四.程序运行结果 1.拉格朗日插值法 >> x=[0 3 5 7 9 11 12 13 14 15]; >> y=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6]; >> xi=0.5:0.5:14.5; >> yi=lang(x,y,xi) yi = Columns 1 through 8 -15.4117 -15.9238 -10.9898 -5.4272 -1.2253 1.2000 2.1765 2.2666 Columns 9 through 16 1.9894 1.7000 1.5703 1.6249 1.7995 2.0000 2.1477 2.2040 Columns 17 through 24 2.1752 2.1000 2.0269 1.9904 1.9928 2.0000 1.9537 1.8000 Columns 25 through 29 1.5272 1.2000 0.9656 1.0000 1.3480 >> plot(x,y,'b:',xi,yi) 2.牛顿插值法 >> yi=newdun(x,y,xi) yi = Columns 1 through 8 -15.4117 -15.9238 -10.9898 -1.2253 1.2000 2.1765 Columns 9 through 16 1.9894 1.7000 1.5703 1.7995 2.0000 2.1477 Columns 17 through 24 2.1752 2.1000 2.0269 1.9928 2.0000 1.9537 Columns 25 through 29 1.5272 1.2000 0.9656 1.3480 >> plot(x,y,xi,yi,'g+')
拉格朗日差值、牛顿插值以及三次样条插值的matlab实现
拉格朗日差值、牛顿插值以及三次样条插值的matlab实现% Lagrange插值clearclc%-----------------------------n=10; %结点个数lb=-1; %下界ub=1; %上界step=0.01; %作图点步长%-----------------------------% 原始函数图形x0=lb:step:ub;y0=1./(1+25*x0.^2);plot(x0,y0,'r-');hold on%-----------------------------% 插值函数for i=1:n+1xi(i)=lb+(ub-lb)*(i-1)/n;yi(i)=1/(1+25*xi(i)^2);end%------------------------------count=1;for x=lb:step:ubfl=0;%--------------------------%求出pn(xk)for k=1:n+1up=1;dn=1;%----------------------%求出f(xk)for i=1:n+1if k~=iup=up*(x-xi(i));dn=dn*(xi(k)-xi(i));endend%----------------------fl=fl+yi(k)*up/dn;endpn(count)=fl;%--------------------------fi(count)=1/(1+25*x^2);%求原函数的值count=count+1;end%------------------------------% L插值函数图x=lb:step:ub;plot(x,pn,'g--')%------------------------------num=(ub-lb)/step+1;for i=1:nump_f(i)=pn(i)-fi(i);endcenter=fix(num/2);scale=fix(num/10);a=center-scale;b=center+scale;disp ' pn(i)-fi(i) 的值为:'p_f(a:b) %%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% %%clear allclc%Newton迭代法求解极小值点%===================================== disp '几点说明:'disp '1.程序中的函数采用课本P102例3.3.2。
matlab 拉格朗日插值法和牛顿插值法 -回复
matlab 拉格朗日插值法和牛顿插值法-回复Matlab 拉格朗日插值法和牛顿插值法引言:在数值分析中,插值法是一种通过已知数据点来估计介于这些数据点之间的未知数值的方法。
拉格朗日插值法和牛顿插值法是两种常用的插值方法,都有各自的优点和适用场景。
本文将详细介绍这两种方法的原理和实现方式,以及在Matlab 中如何使用它们来进行插值计算。
一、拉格朗日插值法1. 原理:拉格朗日插值法是使用一个N次的多项式来逼近未知函数。
给定一组数据点(x0, y0), (x1, y1), …, (xi, yi), …, (xn, yn),通过拉格朗日插值法可以得到一个多项式P(x),使得P(xi) = yi。
该多项式表示了数据点间的曲线关系,从而可以通过插值估算未知点的值。
2. 实现步骤:(1)创建一个N次多项式的拉格朗日插值函数;(2)计算每个插值点的权重系数,即拉格朗日插值函数的系数;(3)根据给定的数据点和权重系数,构建多项式;(4)通过多项式计算未知点的值。
3. Matlab 中的使用:在Matlab 中,可以使用"polyfit" 函数来实现拉格朗日插值法。
该函数可以拟合出一个多项式曲线,将给定的数据点映射到曲线上。
二、牛顿插值法1. 原理:牛顿插值法是通过构造一个差商表来逼近未知函数。
给定一组数据点(x0, y0), (x1, y1), …, (xi, yi), …, (xn, yn),通过牛顿插值法可以得到一个N次多项式P(x),满足P(xi) = yi。
该多项式的系数由差商构成,利用递归的方式逐层求解。
2. 实现步骤:(1)创建一个N次多项式的牛顿插值函数;(2)计算差商表,其中第一列为给定的数据点y值;(3)递归计算差商表中的其他列,直到得到最后的差商值;(4)根据差商表构建多项式;(5)通过多项式计算未知点的值。
3. Matlab 中的使用:在Matlab 中,可以使用"interp1" 函数结合牛顿插值法来进行插值计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《工程常用算法》综合实践作业二
班级 学号 姓名 主要工作说明 自评成绩
0718 2010071826 崔洪亮 算式与程序的编写 18 0718 2010071815 侯闰上 流程图的编辑,程序的审查
0718
2010071809
赵化川
报告的整理汇总
一.作业题目:三次样条插值与分段插值
x
3
5
7
9
11 12 13 14 15 y 0 1.2 1.7 2.0 2.1 2.0
1.8
1.2
1.0
1.6
飞机下轮廓线形状大致如下图所示:
要求分别用拉格朗日插值法、Newton 插值法、分段线性插值法和三次样条插值法计算x 每改变0.5时y 的值,即x 取 0.5, 1, 1.5, … , 14.5 时对应的y 值。
比较采用不同方法的计算工作量、计算结果和优缺点。
二.程序流程图及图形
1.拉格朗日插值法
开始
x,y,x0
Length (x)==l Ength (y)?
n=length (x)
i=1:n,l=1。
j=1:i-1&j=i+1:n l=l.*(x0-x(j)/x(i)-x(j)
f=f+l*y(i)
结束
否
是
机翼
2.牛顿插值法
开始
x,y,xi
Length(x)==l ength(y)?
n=length(x)Y=zeros (n),Y (:1)=y,f=0
a=1:n-1,b=1:n-a,Y(b,a+1)=(Y (b+1,a)-Y(b,a))/(x (b+a)-x(b))
i=1:n,z=1
结束
j=1:i-1,z=z.*(xi-x(j))
f=f+Y(1,i)*z
否
是
3.分段线性插值法
开始
x ,y ,x0
length (x )==length(y)?
k=1:n-1
x(k)<=x0&x0《=x(k+1)
temp=x(k)-x(k+1)
f=(x0-x(k+1))/temp*y(k)+(x0-x(k))/(-temp)*y(k+1)
结束
否否
是
是
三.matlab 程序及简要的注释(m 文件)
1.拉格朗日插值法
2.牛顿插值法
function f=newdun(x,y,xi) %x 为已知数据点的x 坐标向量 %y 为已知数据点的y 坐标向量 function f=lang(x,y,x0) %x 为已知数据点的x 坐标向量 %y 为已知数据点的y 坐标向量
for a=1:n-1
3.分段线性插值法
%xi 为插值点的x 坐标
%f 为求得的均差牛顿插值多项式 if (length(x)==length(y)) n=length(x); else
disp('The lengths of X ang Y must be not equal!'); return ; end %检错 Y=zeros(n); Y(:,1)=y; for a=1:n-1 for b=1:n-a Y(b,a+1)=(Y(b+1,a)-Y(b,a))/ (x(b+a)-x(b)); %计算均差函数(差商) end end f=0;
for i=1:n z=1;
for j=1:i-1
z=z.*(xi-x(j)); %计算多项式函数 end
f=f+Y(1,i)*z; %计算牛顿插值函数 end
%x0为插值点的x 坐标 %f 为求得的拉格朗日插值多项式 if (length(x)==length(y)) n=length(x);
else
disp('The lengths of X ang Y must be not equal!') return ; end %检错
f=0;
for i=1:n
l=1;
for j=1:i-1
l=l.*(x0-x(j))/(x(i)-x(j)); end ;
for
j=i+1:n l=l.*(x0-x(j))/(x(i)-x(j)); %计算拉格朗日基函数
end ; f=f+l*y(i);
%计算拉格朗日插值函数 end
Return
function f=fd2(x,y,x0) %x 为已知数据点的x 坐标向量 %y 为已知数据点的y 坐标向量 %x0为插值点的x 坐标 %f 为求得的分段线性插值多项式 if (length(x)==length(y)) n=length(x); else disp('The lengths of X and Y must be not equal!') return ; end %检错 for k=1:n-1 if (x(k)<=x0&x0<=x(k+1)) temp=x(k)-x(k+1); f=(x0-x(k+1))/temp*y(k)+(x0- x(k))/(-temp)*y(k+1); end ; end
四.程序运行结果
1.拉格朗日插值法
2.牛顿插值法
3.分段线性插值法 五、对不同实现方法的运行结果进行比较 及总结
>> x=[0 3 5 7 9 11 12 13 14 15]; >> y=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6]; >> xi=0.5:0.5:14.5; >> yi=lang(x,y,xi) yi = Columns 1 through 8 -15.4117 -15.9238 -10.9898 -5.4272 -1.2253 1.2000 2.1765 2.2666 Columns 9 through 16 1.9894 1.7000 1.5703 1.6249 1.7995 2.0000 2.1477 2.2040 Columns 17 through 24 2.1752 2.1000 2.0269 1.9904 1.9928 2.0000 1.9537 1.8000 Columns 25 through 29 1.5272 1.2000 0.9656 1.0000 1.3480
>> plot(x,y,'b:',xi,yi)
>> yi=newdun(x,y,xi) yi =
Columns 1 through 8 -15.4117 -15.9238 -10.9898 -5.4272 -1.2253 1.2000 2.1765 2.2666 Columns 9 through 16 1.9894 1.7000 1.5703 1.6249 1.7995 2.0000 2.1477 2.2040 Columns 17 through 24 2.1752 2.1000 2.0269 1.9904 1.9928 2.0000 1.9537 1.8000 Columns 25 through 29 1.5272 1.2000 0.9656 1.0000 1.3480 >> plot(x,y,xi,yi,'g+') >> yi=fd2(x,y,xi) yi = Columns 1 through 8 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 1.3250 1.4500 Columns 9 through 16 1.5750 1.7000 1.7750 1.8500 1.9250 2.0000 2.0250 2.0500 Columns 17 through 24 2.0750 2.1000 2.0750 2.0500 2.0250 2.0000 1.9000 1.8000 Columns 25 through 29 1.5000 1.2000 1.1000 1.0000 1.3000 >> plot(x,y,'b:',xi,yi,'g+') 拉格朗日插值法的优点是表达式简单明确,形式对称,它的缺点是如果要想增加插值节点,整个公式必须都发生改变,且容易发生龙格现象。
牛顿插值法却很好的改善了这一点,从而变得更加灵活方便。
此外两者的拟合程度也很相似。
分段插值的缺点是不能保证曲线在连接点处的光滑性。
分段插值可以步进地插值计算,同时也带来了内在的高度稳定性和较好的收敛性。
与前两种相比还具有良好的拟合性。
总结:我们组只编写了前三种插值方法,对于三次样条插值参数太多,故没能编写出其程序,但通过matlab 中的interp1函数可以实现。
在此次作业我们也学到了很多知识,感到很充实。
补充三次样条插值图形如下:
4.三次样条插值法六.计算公式及计算方法(手写)
>> yi=interp1(x,y,xi,'spline')
yi =
Columns 1 through 8
0.2421 0.4665 0.6739 0.8649
1.0401 1.2000 1.3454 1.4767
Columns 9 through 16
1.5947 1.7000 1.7930 1.8740
1.9430
2.0000 2.0450 2.0773
Columns 17 through 24
2.0959 2.1000 2.0893 2.0668
2.0358 2.0000 1.9469 1.8000
Columns 25 through 29
1.5099 1.2000 1.0134 1.0000
1.1866
>> plot(x,y,xi,yi)。