2016年海淀区初三二模数学试题及答案(word版)
北京海淀区中考数学二模试题及答案
海淀区九年级第二学期期末练习数学1.6 的绝对值是()A.6B. 61D.1C.662. 以下运算正确的选项是()A. a a 2a 2B. a 2 a 3a 6 C. a 3 a 3 D. ( a) 3 a 33. 如图, RtABC 中, ACB90 ,过点 C 的直线 DF 与BAC 的均分线 AE 平行,若 B 50,则 BCF ()A.100B.80 C. 70 D. 50D CFEAB4. 已知关于 x 的一元二次方程 x 2x1 m 1 0 有实数根,则 m 的取值范围是()4A. m 2B. m 5C. m 2D. m 55. 在 6 张完整同样的卡片上分别画有线段、等边三角形、直角梯形、正方形、正五边形和圆各一个图形。
从这 6 张卡片随机地抽取一张卡片, 则这张卡片上的图形是中心对称图形的概率是()11 C.1 2A.B.D.36 326. 两个半径不等的圆相切,圆心距为 6cm ,且大圆半径是小圆半径的2 倍,则小圆的半径为()A. 3B. 4C.2或4 D. 2 或 67. 农科所连续四年在两块环境同样的实验田里种植甲、 乙两种不一样品种的小麦。
亩产量(单位:公斤)统计以下表。
设甲、乙品种四年亩产量的均匀数挨次为x 甲 , x 乙 ,四年亩产量的方差挨次为 S 2 甲,S 2 乙 ,则以下关系中完整正确的选项是()品种 年份20072008 2009 201022甲454457462459,甲乙S 甲S 乙A. x x乙454459465458B. x甲x乙, S2甲S2乙C. x甲x乙, S2甲S2乙D. x甲x乙, S2甲S2乙8. 一个不透明的小方体的的 6 个面上分别写有数学1, 2, 3, 4,5, 6,任意两对面上所写的两个数字之和为7。
将这样的几个小方体依据相接触的两个面上的数字之和为8 摆放成一个几何体,这个几何体的三视图如右图所示,已知图中所注明的是部分面上所见的数字,则★所代表的数是()A.1B.2C.3D.49.一个正 n 边形的每个内角都是108 ,则n_______.10.将抛物线 y x2向左平移 3 个单位,再向下平移 2 个单位后,所得抛物线的分析式为___________.11.如图,在扇形 OAB 中,AOB 90 ,C 为 OA 的中点,点 D 在AB上,且CD OB ,则ABD ______.ACDO B 12. 某种数字化的信息传输中,先将信息转变为数学0 和1 构成的数字串,并对数字串进行了加密后再传输。
[VIP专享]2016年海淀区初三二模数学试题及答案(word版)
海淀区九年级第二学期期末练习
9.随着“互联网+”时代的到来,一种新型的打车方式受 到
大众欢迎.该打车方式采用阶梯收费标准.打车费用 y(单
位:元)与行驶里程 x(单位:千米)的函数关系如图 所
示. 如果小明某次打车行驶里程为 20 千米,则他的打 车
费用为 A.32 元
九年级数学 第 2 页(共 15 页)
C. (a3 )2 a 6
B. a8 a4 a2
A. a 2 a 3 a 6
3.下列计算正确的是
C.
B.
A.
中抽象出来的,其中是轴对称图形的是
88.8918÷1.2990÷.1=4214÷3922=.0034=1÷15251371=8535.78.208÷023.2173c00÷1*m=29030.3922c=.1÷20m3=2÷120252.=3535=42314c)*523m240341*31.252=31*.1.535.*031342.*9205221.04.455=+213*05*2022.02.854850.3150.*+58c12*5m1*202+.050+0.014*85.20*051000+0+03/8T.+0÷+=55+1*011+010+91÷01454050*0010200+5+0+080+400*+4**1*1510.3910%*C%-*6+÷M(=*M=5÷50)*30*31(÷3110*5+**÷4*1m243.%71e=78%n0)8=8s.5=77.93c.6c0mmc.4*m1*31,0w199o.k2.m4c-cem.5mn2csp26m659*.0.34-50.60c5*pm.3c85m9,c05g.m.05i0rp-l.s.85p6/c50bcm0.om7py.c.6spm5c+mc;0m..7.cmk ; 1+1k+12+1+k2234=1c+m1++4+4+2
2015-2016年北京海淀区中考二模数学试题及答案图片版,一模试题及答案。共两套题
海淀区九年级第二学期期末练习数学试卷参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式31+42=--⨯……………………4分5=.………………………5分18.解:原不等式组为8(1)5171062x x x x ->-⎧⎪⎨--≤⎪⎩,①,② 解不等式①,得 3x >-. ………………………2分 解不等式②,得 2≤x . ………………………3分∴ 原不等式组的解集为32x -≤<.………………………4分 不等式组的解集在数轴上表示如下:………………………5分19. 解:(1)∵ 原方程有两个不相等的实数根,∴ 0Δ>.即 364(7)0k -+>.∴ 2k <..………………………2分 (2)∵2k <且k 为正整数,∴1=k ..………………………3分 ∴0862=+-x x .∴1224x x ==,..………………………5分20.证明:∵ AB DE BC BF ⊥⊥,,90ACB ∠=︒, ∴90DBF BEF ACB ∠=∠=∠=︒.∴ ︒=∠+∠︒=∠+∠9029021F ,. ∴ F ∠=∠1..………………………2分 在中和△△DFB ABC ,1F ACB DBF AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴ ABC △≌DFB △.………………………4分 ∴DF AB =..………………………5分21.解:设小静原来每分钟阅读x 个字.…………1分由题意,得300291003500+=x x . ………………………3分 解得 500=x . ………………………4分 经检验,500=x 是原方程的解,且符合题意. ∴130030050023002=+⨯=+x .答:小静现在每分钟阅读1300个字. ………………………5分22.(1)证明:∵ 90ACB ∠=︒, ∴AC BC ⊥. ∵DE BC ⊥, ∴AC ∥DE . 又∵ CF ∥AD ,∴ 四边形ACFD 为平行四边形. …………1分 ∴CF AD =.∵ CD AB 为边上的中线, ∴BD AD =. ∴CF BD =.∴四边形BDCF 为平行四边形. ∵ BC DE ⊥,∴四边形BDCF 为菱形. ………………………3分 (2)解:在Rt ACE △中,∵ 2tan 3EC EAC AC ∠==, ∴设 2,3CE x AC DF x ===. ∵菱形BDCF 的面积为24, ∴1242DF BC ⋅=.………………………4分 ∴ 24DF EC ⋅=. ∴ 3224x x ⋅=.∴ 12x =,22x =-(舍). ∴4CE =,12EF =3DF =. ∴5CF =. ………………………5分23. 解:(1)∵点)1,(m A 在双曲线xy 6=上, ∴6=m . ………………………1分F∵点)1,6(A 在直线b x y +=21上, ∴2-=b . ………………………2分 (2)当点B 在线段DE 上时,如图1,过点D 作DP ⊥y 轴于P ,过点B 作BQ ⊥y 轴于Q .可得EQB △∽EPD △. ∵BE BD 2=, ∴13BQ BE DP DE ==. ∵1BQ =, ∴3DP =. ∵点D 在直线1l 上,∴)213(-,的坐标为点D .………………4分 当点B 在线段DE 的延长线上时,如图2, 同理,由BE BD 2=,可得点D 的坐标为5(1)2--,.综上所述,点D 的坐标为)213(-,或5(1)2--,.…………… 5分24. (1)证明:连接OD .………………………1分∵⊙O 切BC 于点D , 90C ∠=︒, ∴90ODB C ∠=∠=︒. ∴OD ∥AC . ∴DAC ODA ∠=∠. ∵OD OA =, ∴OAD ODA ∠=∠. ∴DAC OAD ∠=∠.图1图2∴AD 平分BAC ∠.………………………2分(2)解:连接DE . ∵AE 为直径, ∴︒=∠90ADE .∵OAD DAC ∠=∠,sin DAC ∠=,∴sin OAD ∠=. ∵5OA =, ∴10AE =.∴AD =………………………3分 ∴4CD =,8AC =. ∵OD ∥AC ,∴BOD BAC △∽△.………………………4分∴OD BDAC BC =. 即584BD BD =+. ∴203BD =.………………………5分25.(1)m 16.5=;………………………2分(2)14;(估值在合理范围内即可) ………………………3分 (3)14000016.5%0.69.721000⨯⨯- 4.14=.答:2020年我国儿科医生需比2015年增加4.14万人,才能使每千名儿童拥有的儿科医 生数达到0.6. ………………………5分26. 第二步:6BD BC ==;………………………1分 第四步:如图,△ABC 即为所求. ………………3分 第五步: ② ,18.………………5分27. 解:(1)12n n =. ……………… 1 分理由如下:由题意可得抛物线的对称轴为2x =.∵1P (1,1n ),2P (3,2n )在抛物线24y ax ax b =-+上, ∴12n n =.………………3分 (2)当0a >时,抛物线的顶点为(2,1),且过点(4,4), ∴抛物线的解析式为23344y x x =-+.………………5分 当0a <时,抛物线的顶点为(2,4),且过点(4,1),∴抛物线的解析式为23314y x x =-++. 综上所述,抛物线的解析式为23344y x x =-+或23314y x x =-++.…………7 分28. 解:(1)①补全图形,如图1所示.…………1分②连接BE .∵AB BC =,,E C 关于直线BD 对称,∴AB BC BE ==.………………………2分 ∴C BEC ∠=∠, BAE BEA ∠=∠. ∵90ABC ∠=︒,∴270BAE AEC C ∠+∠+∠=︒.∴135AEC ∠=︒..………………………4分 (2)求解思路如下:a .连接AC ,过点A 作AF ⊥CE ,交CE 延长线于点F ,如图2所示;b .由(1)可求︒=∠135AEC ,由AE =可求1AF EF ==;c .由1CE =,可求2AC =,AB BC ==ABE 为等边三角形;d .由C ,E 两点关于直线BD 对称,AB AD =,可求15EBD ∠=︒,75ABD ∠=︒,30α=︒. ……………………7分29.解:(1)函数1y x =-没有不变值; ………………1分函数1y x=有1-和1两个不变值,其不变长度为2;………………2分 函数2y x =有0和1两个不变值,其不变长度为1;………………3分 (2)①∵函数22y x bx =-的不变长度为零, ∴方程22x bx x -=有两个相等的实数根. ∴1b =-. ………………4分②解方程22x bx x -=,得10x =,212b x +=.………………5分 ∵13b ≤≤, ∴212x ≤≤.∴函数22y x bx =-的不变长度q 的取值范围为12q ≤≤. ………………6分(3)m 的取值范围为13m ≤≤或18m <-. ………………8分2016海淀一模一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为A.96.5×107B.9.65×107 C.9.65×108 D.0.965×1092.如图是某个几何体的三视图,该几何体是A.长方体B.正方体C.圆柱D.三棱柱3.一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为A.14B.34C.15D.454.下列图形中,是轴对称图形但不是中心对称图形的是A.B.C.D.5.如图,在 ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为A.5 B.4 C.3 D.2 6.如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,1=35∠︒,则2∠的度数为A.35︒B.15︒C.10︒D.5︒7.初三(8)班体委用划记法统计本班40名同学投掷实心D球的成绩,结果如下表所示:则这40名同学投掷实心球的成绩的众数和中位数分别是A.9,8 B.9,8.5 C.8,8 D.8,8.58.京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口(,)表示图中承德的位置,和石家庄为中心的区域.若“数对”19043︒(,)表示图中保定的位置,则与图中张家口的位置对“数对”160238︒应的“数对”为(,)A.176145︒(,)B.17635︒(,)C.100145︒(,)D.10035︒9.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少..为A.5 000 B.10 000 C.15 000 D.20 000 10.小明在暗室做小孔成像实验.如图1,固定光源(线段MN)发出的光经过小孔(动点K)成像(线段M'N')于足够长的固定挡板(直线l)上,其中MN// l. 已知点K匀速运动,其运动路径由AB,BC,CD,DA,AC,BD组成.记它的运动时间为x,M'N'的长度为y,若y关于x的函数图象大致如图2所示,则点K的运动路径可能为A.A→B→C→D→A B.B→C→D→A→BC.B→C→A→D→B D.D→A→B→C→D图1 图2二、填空题(本题共18分,每小题3分)11. 分解因式:a2b-2ab+b=________________.12. 如图,AB为⊙O的弦,OC⊥AB于点C.若AB=8,OC=3,则⊙O的半径长为________.13.埃及《纸草书》中记载:“一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.”设这个数是x,可列方程为.14.在下列函数①21y x=+;②22y x x=+;③3yx=;④3y x=-中,与众不同的一个是_____(填序号),你的理由是________ .15.北京市2010~2015年高考报名人数统计如图所示.根据统计图中提供的信息,预估2016年北京市高考报名人数约为________万人,你的预估理由是____________.16.阅读下面材料:在数学课上,老师提出如下问题:老师说:“小云的作法正确.”请回答:小云的作图依据是________________________________________.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:)2016tan3012π-⎛⎫--︒++⎪⎝⎭.18.解不等式组41)3(2),14,2x xxx-≤+⎧⎪⎨-<-⎪⎩(并写出它的所有整数解....19.已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.20.如图,在△ABC 中,90BAC ∠=︒,AD BC ⊥于点D ,DE 为AC 边上的中线.求证:BAD EDC ∠=∠.21.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小琼步行12 000步与小博步行9 000步消耗的能量相同.若每消耗1千卡能量小琼行走的步数比小博多10步,求小博每消耗1千卡能量需要行走多少步.22.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点B 作AC 的平行线交DC 的延长线于点E . (1)求证:BD=BE ;(2)若BE =10,CE =6,连接OE ,求tan ∠OED 的值.D ABC23.在平面直角坐标系xOy 中,直线y x =-与双曲线ky x=(0k ≠)的一个交点为)P m . (1)求k 的值;(2)将直线y x =-向上平移b (b>0)个单位长度后,与x 轴,y 轴分别交于点A ,点B ,与双曲线ky x=(0k ≠)的一个交点记为Q .若2BQ AB =,求b 的值.24.如图,AB ,AD 是⊙O 的弦,AO 平分BAD ∠.过点B 作⊙O 的切线交AO 的延长线于点C ,连接CD ,BO .延长BO 交⊙O 于点E ,交AD 于点F ,连接AE ,DE .(1)求证:CD 是⊙O 的切线; (2)若3AE DE ==,求AF 的长.25.阅读下列材料:2015年中国内地电影市场票房总收入400亿元,动画电影成为了新崛起的热点,票房占比为11.25%.2014年,中国内地动画电影市场6部破亿,只有一部《熊出没》为国产动画电影,票房成绩为2.4亿元.而2015年中国内地动画电影市场共8部破亿,国产动画电影占3部,分别是《大圣归来》,《熊出没2》和《十万个冷笑话》.其中,《大圣归来》以9.55亿元票房夺冠,《熊出没2》比2014年第一部的票房又增长了20%,《十万个冷笑话》以1.2亿元票房成绩勉强破亿.另外5部来自海外动画电影,其中美国两部全球热映的动画电影《超能陆战队》和《小黄人大眼萌》在中国内地只拿下5.26亿元和4.36亿元票房,而同样来自美国的《精灵旅社2》收获1.2亿元票房,日本的《哆啦A梦之伴我同行》和法国的《小王子》分别获得5.3亿和1.58亿元票房收入.2015年中国内地动画电影市场中,国产动画电影共上映41部,其中票房在1000万元~5000万元、5000万元~1亿元的国产动画电影分别有12部和5部,票房金字塔结构分化更加明显,标志着中国国产动画电影市场的日趋成熟.根据以上材料解答下列问题:(1)2015(2)右图为2015年国产..动画电影票房金字塔,则B= ;(3)选择统计表或.统计图将2015年中国内地动画电影市场票房收入前5名的票房成绩表示出来.26.有这样一个问题:探究函数(1)(2)(3)=---的图象与性质.y x x x小东对函数(1)(2)(3)=---的图象与性质进行了探究.y x x x下面是小东的探究过程,请补充完成:(1)函数(1)(2)(3)=---的自变量x的取值范围是全体实数;y x x x(2)下表是y与x的几组对应值.①m = ;②若M (7-,720-),N (n ,720)为该函数图象上的 两点,则n = ;(3)在平面直角坐标系xOy 中, A (,A A x y ),B (,B A x y -)为该函数图象上的两点,且A 为23x ≤≤范围内的最低点,A 点的位置如图所示.①标出点B 的位置;②画出函数(1)(2)(3)y x x x =---(04x ≤≤)的图象.27.在平面直角坐标系xOy 中,抛物线224y mx mx m =-+-(0m ≠)的顶点为A ,与 x 轴交于B ,C 两点(点B 在点C 左侧),与y 轴交于点D . (1)求点A 的坐标; (2)若BC =4,①求抛物线的解析式;②将抛物线在C,D之间的部分记为图象G(包含C,D两点).若过点A的直线+(0)=≠与图象G有两个交点,结合函数的图象,求k的y kx b k取值范围.28.在△ABC中,AB=AC,∠BAC=90︒,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与射线CF相交于点G.(1)若点D在线段BC上,如图1.①依题意补全图1;②判断BC与CG的数量关系与位置关系,并加以证明;(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB 则GE的长为_______,并简述求GE长的思路.29.在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的限距点的定义如下:若P '为直线PC 与⊙C 的一个交点,满足2r PP r '≤≤,则称P '为点P 关于⊙C 的限距点,右图为点P 及其关于⊙C 的限距点P '的示意图.(1) 当⊙O 的半径为1时.① 分别判断点M (3,4),N 5(,0)2,T (1 关于⊙O 的限距点是否存在?若存在,求其坐标;②点D 的坐标为(2,0),DE ,DF 分别切⊙O 于点E ,点F ,点P在△DEF 的边上.若点P 关于⊙O 的限距点P '存在,求点P '的横坐标的取值范围;(2) 保持(1)中D ,E ,F 三点不变,点P 在△DEF 的边上沿E →F →D →E 的方向运动,⊙C 的圆心C 的坐标为(1,0),半径为r .请从下面两个问题中任选一个作答.温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.数学试卷参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 19.解:原式=1-6×……………………4分=4-.………………………5分18.解:原不等式组为解不等式①,得x≤10.………………………2分解不等式②,得x>7.………………………3分∴原不等式组的解集为7<x≤10.………………………4分∴原不等式组的所有整数解为8,9,10. (5)分Array 19.解:原式=x2-2x+1-x2+3x+x2-4………………………3分=x2+x-3.………………………4分∵x2+x-5=0,∴x2+x=5.∴原式=5-3=2..………………………5分20.证明:∵∠BAC=90o,∴∠BAD+∠DAC=90o.∵AD⊥BC,∴∠ADC=90o.∴∠DAC+∠C=90o.∴∠BAD=∠C .………………………2分∵DE为AC边上的中线,∴DE=EC.∴∠EDC=∠C ..………………………4分∴∠BAD=∠EDC.………………………5分21.解:设小博每消耗1千卡能量需要行走x步.………………………1分由题意,得. ………………………3分解得x=30 . ………………………4分经检验,x=30是原方程的解,且符合题意.答:小博每消耗1千卡能量需要步行30步. ………………………5分22.(1) 证明:∵ 四边形ABCD 为矩形,∴ AC=BD ,AB ∥DC. ∵ AC ∥BE ,∴ 四边形ABEC 为平行四边形. ………………………2分 ∴ AC=BE.∴ BD=BE. ………………………3分 (2) 解:过点O 作OF ⊥CD 于点F .∵ 四边形为矩形, ∴ 90BCD ∠=︒. ∵ 10BE BD ==, ∴ 6CD CE ==.同理,可得132CF DF CD ===.∴9EF =. ………………………4分 在Rt △BCE 中,由勾股定理可得8BC =. ∵ OB=OD ,∴ OF 为△BCD 的中位线. ∴ 142OF BC ==. ∴在Rt △OEF 中,4tan 9OF OED EF ∠==. ………………………5分23. 解:(1)∵P()在直线y= -x 上,∴m=-. ………………………1分∵P()在双曲线y=上,∴k=. ………………………2分A图1 图2(2) ∵y= -x 向上平移b (b >0)个单位长度后,与x 轴,y 轴分别交于A ,B ,∴A (b ,0)B (0,b ). ………………………3分作QH ⊥x 轴于H ,可得△HAQ ∽△OAB .如图1,当点Q 在AB 的延长线上时,∵BQ=2AB , ∴3===ABAQ OA HA OB HQ . ∵OA OB b ==,∴,2HO b =.∴Q 的坐标为(-2b,3b).由点Q 在双曲线6y x=-上, 可得1b =. ………………………4分 如图2,当点Q 在AB 的反向延长线上时,同理可得,Q 的坐标为(2b,-b).由点Q 在双曲线6y x =-上,可得b=.综上所述,b=1或b=. ………………………5分24. (1) 证明:如图,连接OD . ………………………1分∵BC 为⊙的切线,∴∠CBO=90o .∵AO 平分BAD ∠,∴∠1=∠2.∵OA OB OD ==,∴1=4=2=5∠∠∠∠.∴∠BOC=∠DOC .∴△BOC ≌△DOC .∴90CBO CDO ∠=∠=︒.∴CD 为⊙O 的切线. ……………2分(2) ∵AE=DE,∴.∴∠3=∠4. ………………………3分∵124∠=∠=∠,∴∠1=∠2=∠3.∵BE 为⊙O 的直径,∴∠BAE=90o .∴∠1=∠2=∠3=∠4=30o .………………………4分∴∠AFE=90o .在Rt △AFE 中,∵AE=3,︒=∠303,∴AF=. ………………………5分25. (1) 45;………………………2分(2) 21;………………………3分(3) 2.4×(1+20%)=2.88 .2015年中国内地动画电影市场票房收入前5名的票房成绩统计表………………………5分或2015年中国内地动画电影市场票房收入前5名的票房成绩统计图………………………5分26. (2) ①m= -60;………………………1分②n=11;………………………2分(3)正确标出点B的位置,画出函数图象. …………………5分27. 解:(1)y=mx2-2mx+m-4=m(x2-2x+1)-4=m(x-1)2-4 .∴ 点A 的坐标为(1,-4). ………………………2分(2)①由(1)得,抛物线的对称轴为x =1.∵ 抛物线与x 轴交于B ,C 两点(点B 在点C 左侧),BC =4,∴ 点B 的坐标为(-1,0) ,点C 的坐标为(3,0) .………………………3分∴ m+2m+m-4=0.∴ m=1.∴ 抛物线的解析式为y=x 2-2x-3.……4分② 由①可得点D 的坐标为(0,-3) .当直线过点A ,D 时,解得k=-1.………5分当直线过点A ,C 时,解得k=2. ………6分结合函数的图象可知,k 的取值范围为10k -≤<或02k <≤. (7)分28. 解:(1) ①补全图形,如图1所示. ………………………1分②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.…………2分证明: 如图1.∵AB=AC ,∠BAC=90o∴∠B=∠ACB=45o , ∠1+∠2=90o ,.∵射线BA 、CF 的延长线相交于点G ,∴∠CAG=∠BAC=90o .∵四边形ADEF 为正方形,∴∠DAF=∠2+∠3=90o ,AD=AF .∴∠1=∠3.∴△ABD ≌△ACF .…………………3分∴∠B=∠ACF=45o .图1∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分(2) GE=.…………………5分思路如下:a . 由G 为CF 中点画出图形,如图2所示.b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =;e . 在Rt △AMD 中,1AM =,3MD =,可得AD =,即GE FE AD == ……7分29.解:(1)①点M ,点T 关于⊙的限距点不存在;点N 关于⊙的限距点存在,坐标为(1,0). (2)分②∵点D 的坐标为(2,0),⊙半径为1,DE ,DF 分别切⊙于点E ,点F ,∴切点坐标为1(2,1(2,.……………3分 如图所示,不妨设点E 的坐标为1(22,,点F 的坐标为1(22,,EO ,FO 的延长线分别交⊙O 于点'E ,'F ,则1'(2E -,,1'(2F -. 设点P 关于⊙O 的限距点的横坐标为x .Ⅰ.当点P 在线段EF 上时,直线PO 与的交点'P 满足2'1≤≤PP ,故点P关于⊙O 的限距点存在,其横坐标x 满足-1≤x≤ -.………5分Ⅱ.当点P 在线段DE ,DF (不包括端点)上时,直线PO 与⊙O 的交点'P 满足1'0<<PP 或2'3PP <<,故点P 关于⊙的限距点不存在.Ⅲ.当点P 与点D 重合时,直线PO 与⊙O 的交点'(1,0)P 满足1'=PP ,故点P关于⊙的限距点存在,其横坐标=1.综上所述,点P 关于⊙O 的限距点的横坐标x 的范围为-1≤x≤ -或=1. ……………………6分(2)问题1: .………………8分 问题2:0 < r < 16.………………7分。
2016-2017学年北京市海淀区九年级二模数学试卷(含答案)
()海 淀 区 九 年 级 第 二 学 期 期 末 练 习数 学2017.6 学校 班级 姓名 准考证号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项填涂在答题卡相应的位置.1.如图,用圆规比较两条线段A B ''和AB 的长短,其中正确的是 A .A B AB ''> B .A B AB ''= C .A B AB ''< D . 不确定2.如图,在正方体的一角截去一个小正方体,所得立体图形的主视图是A B CD 3.下列计算正确的是A .23a a a -=B .()236aa =C =D .632a a a =÷4.如图,Y ABCD 中,AD =5,AB =3,∠BAD 的平分线AE 交BC 于E 点,则EC 的长为 A .4 B .3C .2D .1B E CA D★★★★★765FED5.共享单车提供了便捷、环保的出行方式.小白同学在北京植物园打开某共享单车APP ,如图,“ ”为小白同学的位置,“★”为检索到的共享单车停放点.为了到达距离最近的共享单车停放点,下列四个区域中,小白同学应该前往的是 A .F 6 B .E 6 C .D 5D .F 76.在单词happy 中随机选择一个字母,选到字母为p 的概率是 A .15B .25C .35D .457.如图,OA 为⊙O 的半径,弦BC ⊥OA 于P 点.若OA =5,AP =2,则弦BC 的长为 A .10 B .8 C .6D .48.在下列函数中,其图象与x 轴没有交点的是 A .2y x = B .31y x =-+ C .2y x =D .1y x=9.如图,在等边三角形三个顶点和中心处的每个“○”中各填有一个式子,若图中任意三个“○”中的式子之和均相等,则a 的值为 A .3 B .2 C .1D .010.利用量角器可以制作“锐角正弦值速查卡”.制作方法如下:如图,设OA =1,以O 为圆心,分别以0.05,0.1,0.15,0.2,…,0.9,0.95长为半径作半圆,再以OA 为直径作⊙M .利用“锐角正弦值速查卡”可以读出相应锐角正弦的近似值.例如:sin600.87︒≈,sin 450.71︒=.下列角度中正弦值最接近0.94的是OM A 1020304050607080170160150140130120110100102030405060708017016015014013012011010000901801800.10.20.30.40.50.60.70.80.91A .70°B .50°C .40°D .30°二、填空题(本题共18分,每小题3分)2b2a3a P CB O11.若分式12x -有意义,则x 的取值范围是 .12.如图,在平面直角坐标系xOy 中,A (3,4)为⊙O 上一点,B 为⊙O内一点,请写出一个符合要求的点B 的坐标 . 13.计算:111mm m+--= .14.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y ℃与向上攀登的高度x km 的几组对应值如下表:若每向上攀登 1 km ,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为 2.5 km 时,登山队所在位置的气温约为℃.15.下图是测量玻璃管内径的示意图,点D 正对“10mm ”刻度线,点A 正对“30mm ”刻度线,DE ∥AB .若量得AB 的长为6mm ,则内径DE 的长为 mm .16.在一次飞镖比赛中,甲、乙两位选手各扔10次飞镖,下图记录了他们的比赛结果.你认为两人中技术更好的是 ,你的理由是 .三、解答题(本题共72分,第17~26题每小题5分,第27题7分,第28题7分,第29题8分)1722tan 60--°113-+⎛⎫ ⎪⎝⎭.18.解不等式组:()3221213x x x x +-≥+>-⎧⎪⎨⎪⎩,.甲 乙19.如图,在四边形ABCD 中,AB =AD ,CB =CD .请你添加一条线把它分成两个全等三角形,并给出证明.20.若关于x 的方程412m xx-=的根是2,求()2428m m --+的值.21.如图,在平面直角坐标系xOy 中,过点A (2,0)的直线l :3y mx =-与y 轴交于点B . (1)求直线l 的表达式; (2)若点C 是直线l 与双曲线ny x=的一个公共点,AB =2AC ,直接写出n 的值.22.为了让市民享受到更多的优惠,某市针对乘坐地铁的人群进行了调查.(1)为获得乘坐地铁人群的月均花费信息,下列调查方式中比较合理的是 ; A .对某小区的住户进行问卷调查DCDB E CA FB .对某班的全体同学进行问卷调查C .在市里的不同地铁站,对进出地铁的人进行问卷调查(2)调查小组随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示./元频数/① 根据图中信息,估计平均每人乘坐地铁的月均花费的范围是 元; A .20—60 B .60—120 C .120—180②为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使30%左右的人获得折扣优惠.根据图中信息,乘坐地铁的月均花费达到 元的人可以享受折扣.23.如图,在△ABC 中,∠BAC =90°,线段AC 的垂直平分线交AC 于D 点,交BC 于E点,过点A 作BC 的平行线交直线ED 于F 点,连接AE ,CF .(1)求证:四边形AECF 是菱形;(2)若AB =10,∠ACB =30°,求菱形AECF 的面积.24.阅读下列材料:2016年,北京市坚持创新、协调、绿色、开放、共享的发展理念,围绕首都城市战略定位,加快建设国际一流的和谐宜居之都,在教育、科技等方面保持平稳健康发展,实现了“十三五”良好开局.在教育方面,全市共有58所普通高校和81个科研机构培养研究生,全年研究生招生9.7万人,在校研究生29.2万人.全市91所普通高校全年招收本专科学生15.5万人,在校生58.8万人.全市成人本专科招生6.1万人,在校生17.2万人.在科技方面,2016年全年研究与试验发展(R&D)经费支出1479.8亿元,比2015年增长了6.9%,全市研究与试验发展(R&D)活动人员36.2万人,比上年增长1.1万人.2013年,2014年,2015年全年研究与试验发展(R&D)经费支出分别为1185.0亿元,1268.8亿元,1384.0亿元,分别比前一年度增长11.4%,7.1%,9.1%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)请用统计图或统计表将北京市2016年研究生、普通高校本专科学生、成人本专科学生的招生人数和在校生人数表示出来;(2)2015年北京市研究与试验发展(R&D)活动人员为万人;(3)根据材料中的信息,预估2017年北京市全年研究与试验发展(R&D)经费支出约亿元,你的预估理由是.»AC的中点,AC,BD相交于E点,过点A作25.如图,AB是⊙O的直径,BC为弦,D为⊙O 的切线交BD 的延长线于P 点. (1)求证:∠P AC =2∠CBE ;(2)若PD =m ,∠CBE =α,请写出求线段CE 长的思路.26.已知y 是x 的函数,该函数的图象经过A (1,6),B (3,2)两点. (1)请写出一个符合要求的函数表达式 ;(2)若该函数的图象还经过点C (4,3),自变量x 的取值范围是0x ≥,该函数无最小值.①如图,在给定的坐标系xOy 中,画出一.个.符合条件的函数的图象;②根据①中画出的函数图象,写出6x =对应的函数值y 约为 ; (3)写出(2)中函数的一条性质(题目中已给出的除外).27.抛物线2224y x mx m =-+-与x 轴交于A ,B 两点(A 点在B 点的左侧),与y 轴交于点C ,抛物线的对称轴为x =1.(1)求抛物线的表达式;(2)若CD∥x轴,点D在点C的左侧,12CD AB,求点D的坐标;(3)在(2)的条件下,将抛物线在直线x=t右侧的部分沿直线x=t翻折后的图形记为G,若图形G与线段CD有公共点,请直接写出t的取值范围.28.在锐角△ABC中,AB=AC,AD为BC边上的高,E为AC中点.(1)如图1,过点C作CF⊥AB于F点,连接EF.若∠BAD=20°,求∠AFE的度数;(2)若M为线段BD上的动点(点M与点D不重合),过点C作CN⊥AM于N点,射线EN ,AB 交于P 点. ①依题意将图2补全;②小宇通过观察、实验,提出猜想:在点M 运动的过程中,始终有∠APE =2∠MAD . 小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法: 想法1:连接DE ,要证∠APE =2∠MAD ,只需证∠PED =2∠MAD .想法2:设∠MAD =α,∠DAC =β,只需用α,β表示出∠PEC ,通过角度计算得∠APE =2α.想法3:在NE 上取点Q ,使∠NAQ =2∠MAD ,要证∠APE =2∠MAD ,只需证△NAQ ∽△APQ . ……请你参考上面的想法,帮助小宇证明∠APE =2∠MAD .(一种方法即可)EFB D CA29.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到两坐标轴的距离之和等于点Q 到两坐标轴的距离之和,则称P ,Q 两点为同族点.下图中的P ,Q 两点即为同族点.图1 图2(1)已知点A 的坐标为(3-,1),①在点R (0,4),S (2,2),T (2,3-)中,为点A 的同族点的是 ; ②若点B 在x 轴上,且A ,B 两点为同族点,则点B 的坐标为 ; (2)直线l :3y x =-,与x轴交于点C ,与y 轴交于点D ,①M 为线段CD 上一点,若在直线x n =上存在点N ,使得M ,N 两点为同族点,求n 的取值范围;②M 为直线l 上的一个动点,若以(m ,0)为圆心,N ,使得M ,N 两点为同族点,直接写出m 的取值范围.海淀九年级第二学期期末练习数 学 答 案 2017.6一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分) 11.2x ≠12.答案不唯一,例如(0,0)13.1 14.答案不唯一,在10.89.6t -≤≤-范围内即可15.216.乙;乙的平均成绩更高,成绩更稳定.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.原式 = 23 --------------------------------------------------------------------- 4分 = 5. ---------------------------------------------------- 5分18.解:原不等式组为()3221213x x x x +-≥+>-⎧⎪⎨⎪⎩, ①. ②由不等式①,得362x x +-≥, ------------------------------------------------- 1分解得2x ≥; ----------------------------------------- 2分由不等式①,得1233x x +>-, ------------------------------------------ 3分解得4x <; ----------------------------------------- 4分∴ 原不等式组的解集是24x ≤<. ----------------------------------------- 5分19.连接AC ,则△ABC ≌ △ADC . ----------------------------1分证明如下:在△ABC 与△ADC 中,AB AD AC AC CB CD ===⎧⎪⎨⎪⎩,,,---------------------------- 4分∴△ABC ≌ △ADC . ---------------------------- 5分20.解:∵关于x 的方程412m xx-=的根是2,∴4124m -=. --------------------------------------------1分DCBA∴ 4m =. ------------------------------------------2分∴()2428m m --+()244248=--⨯+ ---------------------------------------------- 4分0=. ------------------------------------------------------------ 5分21.解:(1)∵ 直线3l y mx =-:过点A (2,0),∴ 023m =-. ------------------------------------------------- 1分 ∴ 32m =. ------------------------------------------------- 2分 ∴ 直线l 的表达式为332y x =-. ----------------- 3分 (2)n =32-或92. -------------------------------------------- 5分22.(1)C ; ------------------------------------------------------------------- 2分 (2)① B ; --------------------------------------------------------------------- 4分 ② 100. ------------------------------------------------------------------ 5分 23.(1)证明:∵ EF 垂直平分AC ,∴ FA =FC ,EA =EC , ---------------------------------------------- 1分 ∵ AF ∥BC , ∴ ∠1=∠2. ∵ AE =CE ,∴ ∠2=∠3. ∴ ∠1=∠3. ∵ EF ⊥AC ,∴ ∠ADF =∠ADE =90°. ∵ ∠1+∠4=90°,∠3+∠5=90°. ∴ ∠4=∠5.∴ AF =AE . ------------------------------------------------ 2分 ∴ AF =FC =CE =EA .∴ 四边形AECF 是菱形. ---------------------------------------- 3分(2)解:∵∠BAC =∠ADF =90°, ∴AB ∥FE . ∵AF ∥BE ,∴四边形ABEF 为平行四边形.54321F E DCB A∵AB =10,∴FE =AB =10. -------------------------------------------------------- 4分 ∵∠ACB =30°,∴tan ABAC ACB==∠∴12AECF S AC FE ⋅==菱形 ------------------------------ 5分24.(1) 北京市2016年研究生、普通高校本专科学生、成人本专科学生招生人数和在校生人数统计表(单位:万人)北京市2016年研究生、普通高校本专科学生、成人本专科学生 招生人数和在校生人数统计图(单位:万人)---------------------------------- 2分(2)35.1 ; ---------------------------------------------------------------------------- 3分(3)答案不唯一,预估理由与预估结果相符即可. --------------------- 5分25.(1)证明:∵D 为»AC的中点,∴∠CBA =2∠CBE . ------------------------------------ 1分 ∵AB 是⊙O 的直径,A∴∠ACB =90°,∴∠1+∠CBA =90°. ∴∠1+2∠CBE =90°. ∵AP 是⊙O 的切线,∴∠PAB =∠1+∠PAC =90°. ----------------------------- 2分∴∠PAC =2∠CBE . --------------------------------------3分(2)思路:①连接AD ,由D 是»AC的中点,∠2=∠CBE , 由∠ACB =∠PAB =90°,得∠P =∠3=∠4,故AP =AE ; ②由AB 是⊙O 的直径,可得∠ADB =90°;由AP =AE ,得PE =2PD =2m ,∠5=12∠PAC =∠CBE =α -------- 4分③在Rt △PAD 中,由PD =m ,∠5=α,可求PA 的长; ④在Rt △PAB 中,由PA 的长和∠2=α,可求BP 的长; 由BE PB PE =-可求BE 的长;⑤在Rt △BCE 中,由BE 的长和CBE α∠=,可求CE 的长. ------------- 5分 26.(1)答案不唯一,例如6y x=,28y x =-+,2611y x x =-+等; ---------------------2分 (2)答案不唯一,符合题意即可; ---------------------------------------------------- 4分 (3)所写的性质与图象相符即可. ---------------------------------------- 5分 27.(1)解:∵抛物线()222244y x mx m x m =-+-=--,其对称轴为1x =,∴1m =.∴该抛物线的表达式为223y x x =--. ----------------------------- 2分 (2)解:当0y =时,2230x x --=,解得11x =-,23x =,∴抛物线与x 轴的交点为A (1-,0),B (3,0). ---------------- 3分 ∴4AB =.当0x =时,3y =-,∴抛物线与y 轴的交点为C (0,3-). -------------------- 4分 ∵12CD AB =, ∴CD =2.∵CD ∥x 轴,点D 在点C 的左侧,∴点D 的坐标为(2-,3-). ----------------------------- 5分(3)11t -≤≤. ------------------------------------------------------------- 7分28.(1)证明:∵AB =AC ,AD 为BC 边上的高,∠BAD =20°,∴∠BAC =2∠BAD =40°. -------------------------------------- 1分 ∵CF ⊥AB , ∴∠AFC =90°. ∵E 为AC 中点,∴EF =EA =12AC .∴∠AFE =∠BAC =40°. ---------------------------------------- 2分(2)①MPN ECDB A画出一种即可. -------------------------------------------------------- 3分 ②证明:想法1:连接DE .∵AB=AC ,AD 为BC 边上的高, ∴D 为BC 中点.∵E 为AC 中点, ∴ED ∥AB ,∴∠1=∠APE . --------------------------------- 4分∵∠ADC =90°,E 为AC 中点, ∴12AE DE CE AC ===.同理可证12AE NE CE AC ===. ∴AE =NE =CE =DE .∴A ,N ,D ,C 在以点E 为圆心,AC 为直径的圆上. ----- 5分 ∴∠1=2∠MAD . ------------------------------------------ 6分FEB D CAM PN ECDB A∴∠APE =2∠MAD . ------------------------------------------- 7分想法2:设∠MAD =α,∠DAC =β,∵CN ⊥AM , ∴∠ANC =90°. ∵E 为AC 中点,∴12AE NE AC ==.∴∠ANE =∠NAC =∠MAD +∠DAC =α+β. --------------------- 4分 ∴∠NEC =∠ANE +∠NAC =2α+2β. ------------------------ 5分 ∵AB =AC ,AD ⊥BC , ∴∠BAC =2∠DAC =2β.∴∠APE =∠PEC -∠BAC =2α. --------------------------------- 6分 ∴∠APE =2∠MAD . --------------------------------------------- 7分想法3:在NE 上取点Q ,使∠NAQ =2∠MAD ,连接AQ ,∴∠1=∠2. ∵AB =AC ,AD ⊥BC , ∴∠BAD =∠CAD .∴∠BAD -∠1=∠CAD -∠2,即∠3=∠4. ----------------------------------------- 4分 ∴∠3+∠NAQ =∠4+∠NAQ , 即∠PAQ =∠EAN . ∵CN ⊥AM , ∴∠ANC =90°. ∵E 为AC 中点, ∴12AE NE AC ==. ∴∠ANE =∠EAN . ------------------------------------ 5分 ∴∠PAQ =∠ANE . ∵∠AQP =∠AQP ,∴△PAQ ∽ △ANQ . -------------------------------------- 6分 ∴∠APE =∠NAQ =2∠MAD . ------------------------------------ 7分29.(1)①R ,S ; --------------------------------------------------------------------- 2分 ②(4-,0)或(4,0); --------------------------------------------- 4分 (2)①由题意,直线3y x =-与x 轴交于C (3,0),与y 轴交于D (0,3-).EDCBAP MN 4321QN MPAB CDE点M 在线段CD 上,设其坐标为(x ,y ),则有: 0x ≥,0y ≤,且3y x =-.点M 到x 轴的距离为y ,点M 到y 轴的距离为x , 则3x y x y +=-=.∴点M 的同族点N 满足横纵坐标的绝对值之和为3. 即点N 在右图中所示的正方形CDEF 上.∵点E 的坐标为(3-,0),点N 在直线x n =上,∴33n -≤≤. ---------------------------------------------------------------------------------- 6分 ②m ≤1-或m ≥1. ------------------------------------------------------- 8分更多初中数学资料,初中数学试题精解请微信扫一扫,关注周老师工作室公众号y x–1–2–3–41234–1–2–3–41234EF D C OM。
北京海淀区中考数学二模试卷(含答案)
北京市海淀区初三年级综合练习(二)数学试卷(答题时间:100分钟)一、认真选一选:1. -13的相反数是( )A. -3B. 13C. -13D. 32. 下列计算中计算正确的有( )个 (1)()()310610210284⨯÷⨯=⨯- (2)34233223a b a b a b -=- (3)-=-326236m m m ·(4)若,则||a a a -=-≥222 A. 1个B. 2个C. 3个D. 4个3. 已知关于x 的方程x mx 210+-=的根的判别式的值为5,则m 的值为( ) A. ±3B. 3C. ±1D. 14. 已知方程组21321x y mx y m+=++=-⎧⎨⎩满足x y +<0,则( )A. m >-1B. m >1C. m <-1D. m <15. 中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会,(翻过的牌不能再翻),某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( ) A. 14B. 15C. 16D. 320二、精心填一填6. 在两个同心圆中,大圆的弦AB 切小圆于点C ,若AB=8cm ,OC=3cm ,则大圆的半径为_________m 。
7. 若二次三项式kx mx 29++是一个完全平方式,则k 与m 的关系是_____________。
8. 关于实数a,b ,有a b a b a b ab =+⊕=-21,,则(())[5()]--+⊕2479 187的值是___________。
9. 初三(1)班甲、乙两组各选10名同学进行数学抢答赛,共有10道选择题,答对8题(含8题)以上为优秀,各组选手成绩统计如下:10. 将矩形纸片如图示沿EF 折叠,若∠=︒∠EFB AED 55,则'=____________o 。
2016年北京市海淀区普通中学中考数学模拟试卷(二)(1月份)(解析版)
2016年北京市海淀区普通中学中考数学模拟试卷(二)(1月份)一.选择题1.(3分)如果a与﹣2互为倒数,那么a是()A.﹣2 B.﹣ C.D.22.(3分)长城总长约为6700010米,用科学记数法表示为(保留两位有效数字)()A.6.7×105米B.6.7×106米C.6.7×107米D.6.7×108米3.(3分)在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为()A.60米B.40米C.30米D.25米4.(3分)如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF5.(3分)图中∠BOD的度数是()A.75°B.80°C.135° D.150°6.(3分)甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个 B.3个 C.4个 D.5个7.(3分)如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B.C.D.8.(3分)如图,用不同颜色的马赛克覆盖一个圆形的台面,估计15°的圆心角的扇形部分大约需要34片马赛克片.已知每箱装有125片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面()A.5﹣6箱B.6﹣7箱C.7﹣8箱D.8﹣9箱二.填空题9.(3分)如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式.10.(3分)汽车刹车距离S(m)与速度v(km/h)之间的函数关系是S=v2,在一辆车速为100km/h的汽车前方80m处,发现停放一辆故障车,此时刹车有危险.11.(3分)如下图,直线a∥b,则∠A=度.12.(3分)如图所示,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为.三.解答题13.计算:.14.化简求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=2.15.解方程:.16.一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2.求x的取值范围.17.如图,梯形ABMN是直角梯形.(1)请在图中拼上一个直角梯形,使它与梯形ABMN构成一个等腰梯形;(2)将(1)中补上的直角梯形以点M为旋转中心,逆时针方向旋转180°,画出这个梯形.18.如图所示,△ABO中,OA=OB,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点E、F.求证:AB是⊙O的切线.19.已知二次函数的图象经过(0,0)、(1,﹣1)、(﹣2,14)三点,(1)求这个二次函数的解析式及顶点坐标;(2)设这个二次函数的图象与直线y=x+t(t≤1),相交于(x1,y1),(x2,y2)两点(x1≠x2),求:t的取值范围.20.某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌的电脑中各选购一种型号的电脑.XX电脑公司电脑单价单位(元)A型:6000B型:4000C型:2500D型:5000E型:2000(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌的电脑共36台(价格如表所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有多少台?2016年北京市海淀区普通中学中考数学模拟试卷(二)(1月份)参考答案与试题解析一.选择题1.(3分)如果a与﹣2互为倒数,那么a是()A.﹣2 B.﹣ C.D.2【解答】解:∵a与﹣2互为倒数,∴a是﹣.故选:B.2.(3分)长城总长约为6700010米,用科学记数法表示为(保留两位有效数字)()A.6.7×105米B.6.7×106米C.6.7×107米D.6.7×108米【解答】解:6700 010=6.70001×106≈6.7×106,故选B.3.(3分)在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为()A.60米B.40米C.30米D.25米【解答】解:据相同时刻的物高与影长成比例,设旗杆的高度为xm,则可列比例式,,解得x=30.故选C.4.(3分)如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF【解答】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.5.(3分)图中∠BOD的度数是()A.75°B.80°C.135° D.150°【解答】解:连接OC,由圆周角定理知,∠BOD=2(∠A+∠E)=2×(35°+40°)=150°,故选D.6.(3分)甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个 B.3个 C.4个 D.5个【解答】解:根据题意和图象可知:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了1﹣0.5=0.5小时.④相遇后甲的速度<乙的速度.⑤乙先到达目的地.故只有⑤不正确.故选C.7.(3分)如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B.C.D.【解答】解:从正面可看到,左边2个正方形,中间1个正方形,右边1个正方形.故选D.8.(3分)如图,用不同颜色的马赛克覆盖一个圆形的台面,估计15°的圆心角的扇形部分大约需要34片马赛克片.已知每箱装有125片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面()A.5﹣6箱B.6﹣7箱C.7﹣8箱D.8﹣9箱【解答】解:设需要x箱马赛克片.由题意:×34=125x,∴x≈6.5.∴需要马赛克片6﹣7箱.故选B.二.填空题9.(3分)如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣b2=(a+b)(a﹣b).10.(3分)汽车刹车距离S(m)与速度v(km/h)之间的函数关系是S=v2,在一辆车速为100km/h的汽车前方80m处,发现停放一辆故障车,此时刹车会有危险.【解答】解:把v=100代入S=v2得:汽车刹车距离s=100>80,因此会有危险.故答案为:会.11.(3分)如下图,直线a∥b,则∠A=25度.【解答】解:∵直线a∥b,∴∠1=∠ECD=55°,∵∠1是△ABD的外角,∴∠1=∠ABD+∠A,即55°=30°+∠A,∠A=55°﹣30°=25°.故∠A=25°.12.(3分)如图所示,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为7.【解答】解:设DF=x,FC=y,∵▱ABCD,∴AD=BC,CD=AB,∵BE为折痕,∴AE=EF,AB=BF,∵△FDE的周长为8,△FCB的周长为22,∴BC=AD=8﹣x,AB=CD=x+y,∴y+x+y+8﹣x=22,解得y=7.故答案为7.三.解答题13.计算:.【解答】解:=﹣8×+2÷(﹣)=﹣4+2÷=﹣4﹣2(2)=﹣4﹣12﹣6=﹣16﹣614.化简求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=2.【解答】解:(a+b)2﹣2a(b+1)﹣a2b÷b,=a2+2ab+b2﹣2ab﹣2a﹣a2b÷b,=b2﹣2a,当a=,b=2时,原式=22﹣2×=3.15.解方程:.【解答】解:去分母得:3(x﹣1)=5(x+1),(2分)3x﹣3=5x+5,(3分)3x﹣5x=5+3,(4分)﹣2x=8,(5分)x=﹣4.(6分)经检验:x=﹣4是原方程的解.故原方程的解是:x=﹣4.16.一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2.求x的取值范围.【解答】解:矩形的周长是2(x+10)cm,面积是10xcm2,(2分)根据题意,得,(4分)解这个不等式组得.(2分)所以x的取值范围是10<x<30.(2分)17.如图,梯形ABMN是直角梯形.(1)请在图中拼上一个直角梯形,使它与梯形ABMN构成一个等腰梯形;(2)将(1)中补上的直角梯形以点M为旋转中心,逆时针方向旋转180°,画出这个梯形.【解答】解:如图:18.如图所示,△ABO中,OA=OB,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点E、F.求证:AB是⊙O的切线.【解答】证明:连接OC,∵OA=OB,C为AB中点,∴OC⊥AB,∵OC为半径,∴AB是⊙O的切线.19.已知二次函数的图象经过(0,0)、(1,﹣1)、(﹣2,14)三点,(1)求这个二次函数的解析式及顶点坐标;(2)设这个二次函数的图象与直线y=x+t(t≤1),相交于(x1,y1),(x2,y2)两点(x1≠x2),求:t的取值范围.【解答】解:(1)设抛物线y=ax2+bx+c∵二次函数y=ax2+bx+c的图象经过(0,0)、(1,﹣1)、(﹣2,14)三点,∴,解得:.则这个二次函数的表达式为y=2x2﹣3x;(2)①当t=1时,直线y=x+t(t≤1)可化为y=x+1,代入二次函数解析式y=2x2﹣3x得,2x2﹣4x﹣1=0,△=(﹣4)2﹣4×2×(﹣1)=24>0,故直线与抛物线有两个不同的交点.②当直线与抛物线相切时t取得最小值,把y=x+t代入抛物线y=2x2﹣3x得,2x2﹣4x﹣t=0.△=(﹣4)2﹣4×2×(﹣t)=0,即t=﹣2,故t的取值范围是﹣2<t≤1.20.某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌的电脑中各选购一种型号的电脑.XX电脑公司电脑单价单位(元)A型:6000B型:4000C型:2500D型:5000E型:2000(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌的电脑共36台(价格如表所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有多少台?【解答】解:(1)列表如图:A B C甲乙D(D,A)(D,B)(D ,C)E(E,A)(E,B)(E,C)有6种可能结果:(A,D),(A,E),(B,D),(B,E),(C,D),(C,E);(2)因为选中A型号电脑有2种方案,即(A,D)(A,E),所以A型号电脑被选中的概率是;(3)由(2)可知,当选用方案(A,D)时,设购买A型号、D型号电脑分别为x,y台,根据题意,得解得,经检验不符合实际,舍去;当选用方案(A,E)时,设购买A型号、E型号电脑分别为a,b台,根据题意,得解得.所以希望中学购买了7台A型号电脑.。
2016-2017学年北京市海淀区初三二模数学试卷(含答案)
2017年北京市海淀区九年级中考二模数学试卷一、选择题(本题共30分,每小题3分)1.如图,用圆规比较两条线段A B ''和AB 的长短,其中正确的是()A .AB AB ''> B .A B AB ''=C .A B AB ''<D . 不确定2.如图,在正方体的一角截去一个小正方体,所得立体图形的主视图是()3.下列计算正确的是() A .23a a a -=B .()236aa =C= D .632a a a =÷4.如图,□ABCD 中,AD =5,AB =3,∠BAD 的平分线AE 交BC 于E 点,则EC 的长为()A .4B .3C .2D .15.共享单车提供了便捷、环保的出行方式.小白同学在北京植物园打开某共享单车APP ,如图,― ‖为小白同学的位置,―★‖为检索到的共享单车停放点.为了到达距离最近的共享单车停放点,下列四个区域中,小白同学应该前往的是()A .F 6B .E 6C .D 5D .F 76.在单词happy 中随机选择一个字母,选到字母为p 的概率是()A .15B .25C .35D .45()B E CA D★★★★★765FED7.如图,OA 为⊙O 的半径,弦BC ⊥OA 于P 点.若OA =5,AP =2,则弦BC 的长为()A .10B .8C .6D .4 8.在下列函数中,其图象与x 轴没有交点的是()A .2y x =B .31y x =-+C .2y x =D .1y x=9.如图,在等边三角形三个顶点和中心处的每个―○‖中各填有一个式子,若图中任意三个―○‖中的式子之和均相等,则a 的值为()A .3B .2C .1D .0 10.利用量角器可以制作―锐角正弦值速查卡‖.制作方法如下:如图,设OA =1,以O 为圆心,分别以0.05,0.1,0.15,0.2,…,0.9,0.95长为半径作半圆,再以OA 为直径作⊙M .利用―锐角正弦值速查卡‖可以读出相应锐角正弦的近似值.例如:sin 600.87︒≈,sin 450.71︒=.下列角度中正弦值最接近0.94的是()A .70°B .50°C .40°D .30°二、填空题(本题共18分,每小题3分)11.若分式12x -有意义,则x 的取值范围是.12.如图,在平面直角坐标系xOy 中,A (3,4)为⊙O 上一点,B 为⊙O 内一点,请写出一个符合要求的点B 的坐标.13.计算:111mm m+--=.14.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y℃与向上攀登的高度x km的几组对应值如下表:若每向上攀登1 km,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为2.5km时,登山队所在位置的气温约为℃.15.下图是测量玻璃管内径的示意图,点D正对―10mm‖刻度线,点A正对―30mm‖刻度线,DE∥AB.若量得AB的长为6mm,则内径DE的长为mm.16.在一次飞镖比赛中,甲、乙两位选手各扔10次飞镖,下图记录了他们的比赛结果.你认为两人中技术更好的是,你的理由是.三、解答题(本题共72分,第17~26题每小题5分,第27题7分,第28题7分,第29题8分)1722tan60-°113-+⎛⎫⎪⎝⎭.18.解不等式组:()3221213x xxx+-≥+>-⎧⎪⎨⎪⎩,.19.如图,在四边形ABCD 中,AB =AD ,CB =CD .请你添加一条线把它分成两个全等三角形,并给出证明.20.若关于x 的方程412m xx-=的根是2,求()2428m m --+的值.21.如图,在平面直角坐标系xOy 中,过点A (2,0)的直线l :3y mx =-与y 轴交于点B . (1)求直线l 的表达式; (2)若点C 是直线l 与双曲线ny x=的一个公共点,AB =2AC ,直接写出n 的值.DC22.为了让市民享受到更多的优惠,某市针对乘坐地铁的人群进行了调查. (1)为获得乘坐地铁人群的月均花费信息,下列调查方式中比较合理的是; A .对某小区的住户进行问卷调查 B .对某班的全体同学进行问卷调查C .在市里的不同地铁站,对进出地铁的人进行问卷调查 (2)调查小组随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.① 根据图中信息,估计平均每人乘坐地铁的月均花费的范围是元; A .20—60 B .60—120 C .120—180②为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使30%左右的人获得折扣优惠.根据图中信息,乘坐地铁的月均花费达到元的人可以享受折扣.23.如图,在△ABC 中,∠BAC =90°,线段AC 的垂直平分线交AC 于D 点,交BC 于E 点,过点A 作BC 的平行线交直线ED 于F 点,连接AE ,CF .(1)求证:四边形AECF 是菱形; (2)若AB =10,∠ACB =30°,求菱形AECF 的面积./元频数/DB E CA F24.阅读下列材料:2016年,北京市坚持创新、协调、绿色、开放、共享的发展理念,围绕首都城市战略定位,加快建设国际一流的和谐宜居之都,在教育、科技等方面保持平稳健康发展,实现了―十三五‖良好开局.在教育方面,全市共有58所普通高校和81个科研机构培养研究生,全年研究生招生9.7万人,在校研究生29.2万人.全市91所普通高校全年招收本专科学生15.5万人,在校生58.8万人.全市成人本专科招生6.1万人,在校生17.2万人.在科技方面,2016年全年研究与试验发展(R&D)经费支出1479.8亿元,比2015年增长了6.9%,全市研究与试验发展(R&D)活动人员36.2万人,比上年增长1.1万人.2013年,2014年,2015年全年研究与试验发展(R&D)经费支出分别为1185.0亿元,1268.8亿元,1384.0亿元,分别比前一年度增长11.4%,7.1%,9.1%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)请用统计图或统计表将北京市2016年研究生、普通高校本专科学生、成人本专科学生的招生人数和在校生人数表示出来;(2)2015年北京市研究与试验发展(R&D)活动人员为万人;(3)根据材料中的信息,预估2017年北京市全年研究与试验发展(R&D)经费支出约亿元,你的预估理由是.25.如图,AB是⊙O的直径,BC为弦,D为弧AC的中点,AC,BD相交于E点,过点A作⊙O的切线交BD的延长线于P点.(1)求证:∠P AC=2∠CBE;(2)若PD=m,∠CBE=α,请写出求线段CE长的思路.A26.已知y 是x 的函数,该函数的图象经过A (1,6),B (3,2)两点. (1)请写出一个符合要求的函数表达式; (2)若该函数的图象还经过点C (4,3),自变量x 的取值范围是0x ≥,该函数无最小值.①如图,在给定的坐标系xOy 中,画出一个..符合条件的函数的图象;②根据①中画出的函数图象,写出6x =对应的函数值y 约为; (3)写出(2)中函数的一条性质(题目中已给出的除外).27.抛物线2224y x mx m =-+-与x 轴交于A ,B 两点(A 点在B 点的左侧),与y 轴交于点C ,抛物线的对称轴为x =1.(1)求抛物线的表达式;(2)若CD ∥x 轴,点D 在点C 的左侧,12CD AB =,求点D 的坐标; (3)在(2)的条件下,将抛物线在直线x =t 右侧的部分沿直线x =t 翻折后的图形记为G ,若图形G与线段CD 有公共点,请直接写出t 的取值范围.28.在锐角△ABC中,AB=AC,AD为BC边上的高,E为AC中点.(1)如图1,过点C作CF⊥AB于F点,连接EF.若∠BAD=20°,求∠AFE的度数;(2)若M为线段BD上的动点(点M与点D不重合),过点C作CN⊥AM于N点,射线EN,AB交于P点.①依题意将图2补全;②小宇通过观察、实验,提出猜想:在点M运动的过程中,始终有∠APE=2∠MAD.小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法:想法1:连接DE,要证∠APE=2∠MAD,只需证∠PED=2∠MAD.想法2:设∠MAD=α,∠DAC=β,只需用α,β表示出∠PEC,通过角度计算得∠APE=2α.想法3:在NE上取点Q,使∠NAQ=2∠MAD,要证∠APE=2∠MAD,只需证△NAQ∽△APQ.……请你参考上面的想法,帮助小宇证明∠APE =2∠MAD.(一种方法即可)29.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P ,Q 两点为同族点.下图中的P ,Q 两点即为同族点.(1)已知点A 的坐标为(3-,1),①在点R (0,4),S (2,2),T (2,3-)中,为点A 的同族点的是; ②若点B 在x 轴上,且A ,B 两点为同族点,则点B 的坐标为; (2)直线l :3y x =-,与x 轴交于点C ,与y 轴交于点D ,①M 为线段CD 上一点,若在直线x n =上存在点N ,使得M ,N 两点为同族点,求n 的取值范围;②M 为直线l 上的一个动点,若以(m ,0N ,使得M ,N 两点为同族点,直接写出m 的取值范围.海淀九年级第二学期期末练习数 学 答 案2017.6一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分) 11.2x ≠ 12.答案不唯一,例如(0,0) 13.1 14.答案不唯一,在10.89.6t -≤≤-范围内即可15.216.乙;乙的平均成绩更高,成绩更稳定.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.原式 =23-----------------------------------------------4分 =5 ---------------------------------------------- 5分18.解:原不等式组为()3221213x x x x +-≥+>-⎧⎪⎨⎪⎩, ①. ②由不等式①,得362x x +-≥, ----------------------------------- 1分解得2x ≥; ----------------------------------------- 2分由不等式①,得1233x x +>-,-------------------------------------- 3分解得4x <;---------------------------------- 4分∴ 原不等式组的解集是24x ≤<. ------------------------- 5分 19.连接AC ,则△ABC ≌ △ADC .----------------------------1分证明如下:在△ABC 与△ADC 中,AB AD AC AC CB CD ===⎧⎪⎨⎪⎩,,,------------4分 ∴△ABC ≌ △ADC .--------------5分20.解:∵关于x 的方程412m xx-=的根是2,∴4124m -=.-------------------------------------1分∴ 4m =.-------------------------------------2分∴()2428m m --+DCBA()244248=--⨯+ ------------------------------------ 4分 0=.-------------------------------------- 5分21.解:(1)∵ 直线3l y mx =-:过点A (2,0), ∴ 023m =-. ----------------------------------- 1分∴ 32m =. ---------------------------------- 2分∴ 直线l 的表达式为332y x =-. --------------- 3分 (2)n =32-或92. ------------------------------------- 5分22.(1)C ; --------------------------------------------- 2分 (2)① B ; ---------------------------------------------- 4分 ② 100. ----------------------------------------------- 5分23.(1)证明:∵EF 垂直平分AC ,∴F A =FC ,EA =EC , ---------------------------- 1分 ∵ AF ∥BC , ∴∠1=∠2. ∵AE =CE , ∴∠2=∠3. ∴ ∠1=∠3. ∵ EF ⊥AC , ∴ ∠ADF =∠ADE =90°. ∵ ∠1+∠4=90°,∠3+∠5=90°. ∴∠4=∠5.∴ AF =AE .-------------------------- 2分 ∴ AF =FC =CE =EA .∴ 四边形AECF 是菱形.---------------------- 3分 (2)解:∵∠BAC =∠ADF =90°, ∴AB ∥FE . ∵AF ∥BE , ∴四边形ABEF 为平行四边形. ∵AB =10, ∴FE =AB =10.---------------------------------------- 4分 ∵∠ACB =30°,∴tan ABAC ACB==∠∴12AECF S AC FE ⋅==菱形-------------------- 5分54321FE DCB A24.(1) 北京市2016年研究生、普通高校本专科学生、成人本专科学生北京市2016年研究生、普通高校本专科学生、成人本专科学生---------------------------------- 2分 (2)35.1;----------------------------------------------------- 3分(3)答案不唯一,预估理由与预估结果相符即可.--------------------- 5分25.(1)证明:∵D 为 AC的中点, ∴∠CBA =2∠CBE .----------------- 1分∵AB 是⊙O 的直径,∴∠ACB =90°, ∴∠1+∠CBA =90°.∴∠1+2∠CBE =90°.∵AP 是⊙O 的切线,∴∠P AB =∠1+∠P AC =90°.----------------------------- 2分 ∴∠P AC =2∠CBE .--------------------------------------3分(2)思路:①连接AD ,由D 是 AC 的中点,∠2=∠CBE , 由∠ACB =∠P AB =90°,得∠P =∠3=∠4,故AP =AE ; ②由AB 是⊙O 的直径,可得∠ADB =90°;由AP =AE ,得PE =2PD =2m ,∠5=12∠P AC =∠CBE =α -------- 4分 ③在Rt △P AD 中,由PD =m ,∠5=α,可求P A 的长;④在Rt △P AB 中,由P A 的长和∠2=α,可求BP 的长; 由BE PB PE =-可求BE 的长;⑤在Rt △BCE 中,由BE 的长和CBE α∠=,可求CE 的长. ------- 5分26.(1)答案不唯一,例如6y x=,28y x =-+,2611y x x =-+等; -------------------2分(2)答案不唯一,符合题意即可; -------------------------------------4分 (3)所写的性质与图象相符即可.------------------------- 5分A A27.(1)解:∵抛物线()222244y x mx m x m =-+-=--,其对称轴为1x =,∴1m =.∴该抛物线的表达式为223y x x =--.----------------------------- 2分 (2)解:当0y =时,2230x x --=,解得11x =-,23x =,∴抛物线与x 轴的交点为A (1-,0),B (3,0). ----------- 3分 ∴4AB =.当0x =时,3y =-,∴抛物线与y 轴的交点为C (0,3-). -------------------- 4分 ∵12CD AB =,∴CD =2. ∵CD ∥x 轴,点D 在点C 的左侧,∴点D 的坐标为(2-,3-). ----------------------5分(3)11t -≤≤.-------------------------------------------- 7分28.(1)证明:∵AB =AC ,AD 为BC 边上的高,∠BAD =20°, ∴∠BAC =2∠BAD =40°. ----------------1分 ∵CF ⊥AB , ∴∠AFC =90°. ∵E 为AC 中点,∴EF =EA =12AC .∴∠AFE =∠BAC =40°. ----------------2分(2)①画出一种即可. ------------------------------------------3分 ②证明:想法1:连接DE .∵AB=AC ,AD 为BC 边上的高, ∴D 为BC 中点.∵E 为AC 中点, ∴ED ∥AB ,∴∠1=∠APE .--------- 4分∵∠ADC =90°,E 为AC 中点,MN ECDB AFEAM PN ECDBA∴12AE DE CE AC ===. 同理可证12AE NE CE AC ===. ∴AE =NE =CE =DE .∴A ,N ,D ,C 在以点E 为圆心,AC 为直径的圆上. ----- 5分 ∴∠1=2∠MAD .---------------- 6分∴∠APE =2∠MAD .----------- 7分想法2:设∠MAD =α,∠DAC =β,∵CN ⊥AM ,∴∠ANC =90°. ∵E 为AC 中点, ∴12AE NE AC ==. ∴∠ANE =∠NAC =∠MAD +∠DAC =α+β.--------------------- 4分 ∴∠NEC =∠ANE +∠NAC =2α+2β.------------------------ 5分 ∵AB =AC ,AD ⊥BC , ∴∠BAC =2∠DAC =2β.∴∠APE =∠PEC -∠BAC =2α. --------------------------------- 6分 ∴∠APE =2∠MAD .--------------------------------------------- 7分想法3:在NE 上取点Q ,使∠NAQ =2∠MAD ,连接AQ ,∴∠1=∠2.∵AB =AC ,AD ⊥BC , ∴∠BAD =∠CAD .∴∠BAD -∠1=∠CAD -∠2, 即∠3=∠4. -------------- 4分 ∴∠3+∠NAQ =∠4+∠NAQ , 即∠P AQ =∠EAN .∵CN ⊥AM ,∴∠ANC =90°. ∵E 为AC 中点, ∴12AE NE AC ==. ∴∠ANE =∠EAN .--------------------------------------------- 5分 ∴∠P AQ =∠ANE . ∵∠AQP =∠AQP ,∴△P AQ ∽△ANQ .----------------------------------- 6分∴∠APE =∠NAQ =2∠MAD .---------------------------------- 7分E D CB A PM N4321QN MPAB CD E29.(1)①R ,S ;----------------------------------------------------------------------- 2分 ②(4-,0)或(4,0); --------------------------------------------------- 4分 (2)①由题意,直线3y x =-与x 轴交于C (3,0),与y 轴交于D (0,3-). 点M 在线段CD 上,设其坐标为(x ,y ),则有: 0x ≥,0y ≤,且3y x =-.点M 到x 轴的距离为y ,点M 到y 轴的距离为x , 则3x y x y +=-=.∴点M 的同族点N 满足横纵坐标的绝对值之和为3. 即点N 在右图中所示的正方形CDEF 上. ∵点E 的坐标为(3-,0),点N 在直线x n =上,∴33n -≤≤. ----------------------------- 6分 ②m ≤1-或m ≥1.----------------------------- 8分x。
2015-2016学年北京市海淀区初三二模数学试卷(含答案)
2016年北京市海淀区九年级中考二模数学试卷一、选择题(本题共30分,每小题3分)1.2022年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为196 000米.196 000用科学记数法表示应为 ( )A .1.96×105B .19.6×104C .1.96×106D .0.196×1062.中华文化底蕴深厚,地方文化活动丰富多彩.下面的四幅简笔画是从我国地方文化活动中抽象出来的,其中是轴对称图形的是( )3.下列计算正确的是( )A .B .C .623)(a a =D . 4.如图,边长相等的正方形、正六边形的一边重合, 则1∠的度数为( )A .20°B .25°C .30°D .35°5.如图,数轴上有M ,N ,P ,Q 四个点,其中点P 所表示的数为a ,则数3a -所对应的点可能是( )A .MB .NC .PD .Q6这10名学生所得分数的平均数是( )A .86B .88C .90D .927.如图,A ,B ,C ,D 为⊙O上的点, AB OC ⊥于点E ,若=30CDB ∠︒,2OA =,则AB 的长为( )A B.C .2 D .4632a a a =⋅842a a a ÷=a a a632=+NMQP8小明每月大约使用国内数据流量200MB,国内主叫200分钟,若想使每月付费最少,则他应预定的套餐是()A.套餐1 B.套餐2 C.套餐3D.套餐49.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.该打车方式采用阶梯收费标准.打车费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为20千米,则他的打车费用为()A.32元B.34元C.36元D.40元10.如图1,抛物线2y x bx c=-++的顶点为P,与x轴交于A,B两点.若A,B两点间的距离为m,n 是m的函数,且表示n与m的函数关系的图象大致如图2所示,则n可能为()A.PA AB+B.PA AB-C.ABPAD.PAAB二、填空题(本题共18分,每小题3分)11.当分式221x x -+的值为0时,x 的值为. 12.分解因式:2312x -=_______________.13.据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度. 如图所示,木杆EF 的长为2m ,它的影长FD 为3m ,测得OA 为201m ,则金字塔的高度BO 为_______ m .14.请写出一个图象过(2,3)和(3,2)两点的函数解析式______ ____.15.在某次试验数据整理过程中,某个事件发生的频率情况如下表所示.估计这个事件发生的概率是_________________(精确到0.01),试举出一个随机事件的例子,使它发生的概率与上述事件发生的概率大致相同:___________________________________________________________________________________. 16.阅读下面材料:实际生活中,有时会遇到一些“不能接近的角”,如图中的P ∠,我们可以采用下面的方 法作一条直线平分P ∠. 如图,(1)作直线l 与P ∠的两边分别交于点A ,B ,分别作PAB ∠和PBA ∠的角平分线,两条角平分线相交于点M ;(2)作直线k 与P ∠的两边分别交于点C ,D ,分别作PCD ∠和PDC ∠的角平分 线,两条角平分线相交于点N ; (3)作直线 MN . 所以,直线MN 平分P ∠. 请回答:上面作图方法的依据是 ____________________.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.计算:101()2)14cos 453---++︒.18.解不等式组8(1)517,106,2x x x x ->-⎧⎪⎨--≤⎪⎩并将解集在数轴上表示出来.19.已知关于x 的方程2670x x k -++=有两个不相等的实数根. (1)求k 的取值范围;(2)当k 为正整数时,求方程的根.20.已知:如图,在△ABC 中,∠ACB =90︒,点D 在BC 上,且BD =AC ,过点D 作DE ⊥AB 于点E ,过点B 作CB 的垂线,交DE 的延长线于点F .求证:AB =DF .21.为了提升阅读速度,某中学开设了“高效阅读”课.小静经过2个月的训练,发现自己现在每分钟阅读的字数比原来的2倍还多300字,现在读9100字的文章与原来读3500字的文章所用的时间相同.求小静现在每分钟阅读的字数.22.如图,在△ABC 中,∠ACB =90︒,CD 为AB 边上的中线,过点D 作DE BC ⊥于E ,过点C 作AB 的平行线与DE 的延长线交于点F ,连接BF ,AE . (1)求证:四边形BDCF 为菱形;(2)若四边形BDCF 的面积为24,tan ∠EAC =23,求CF 的长.23.在平面直角坐标系xOy 中,直线1l :12y x b =+与双曲线6y x =的一个交点为(,1)A m .(1)求m 和b 的值;(2)过(1,3)B 的直线交1l 于点D ,交y 轴于点E . 若2BD BE =,求点D 的坐标.24.如图,在△ABC中,∠C=90°,点E在AB上,以AE为直径的⊙O切BC于点D,连接AD.(1)求证:AD平分∠BAC;(2)若⊙O的半径为5,sin∠DAC=5,求BD的长.25.据报道,2015年我国每千名儿童所拥有的儿科医生数为0.43(将0~14岁的人群定义为儿童),远低于世界主要发达国家,儿科医生存在较大缺口.根据2000-2015年报道的相关数据,绘制统计图表如下:根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)根据统计表估计2020年我国人口数约为亿人;(3)若2020年我国儿童占总人口的百分比与2015年相同,请你估算到2020年我国儿科医生需比2015年增加多少万人,才能使每千名儿童拥有的儿科医生数达到0.6.26. 小明在做数学练习时,遇到下面的题目:小明的计算结果与参考答案不同,因此他对参考答案产生了质疑.下面是他的分析、探究过程,请你补充完整.第一步,读题,并标记题目条件如下:∠=∠;③BD=BC;④CD=2;在△ABC中,D为AC边上一点,①AB=AC;②DBA A⑤△BDC的周长为14.==__________;第二步,依据条件③、④、⑤,可以求得BD BC第三步,作出△BCD,如图2所示;第四步,依据条件①,在图2中作出△ABC;(尺规作图,保留作图痕迹)第五步,对所作图形进行观察、测量,发现与标记的条件_____不符(填序号),去掉这个条件,题目中其他部分保持不变,求得AB的长为__________.27.已知:点(,)P m n 为抛物线24y ax ax b =-+(0a ≠)上一动点.(1) 1P (1,1n ),2P (3,2n )为P 点运动所经过的两个位置,判断1n ,2n 的大小,并说明理由; (2) 当14m ≤≤时,n 的取值范围是14n ≤≤,求抛物线的解析式.28. 已知:AB BC =,90ABC ∠=︒.将线段AB 绕点A 逆时针旋转α(090α︒<<︒)得到线段AD .点C 关于直线BD 的对称点为E ,连接AE ,CE . (1)如图, ①补全图形;②求AEC ∠的度数;(2)若AE 1CE =,请写出求α度数的思路.(可以不写出计算结果.........)29. 对于某一函数给出如下定义:若存在实数p ,当其自变量的值为p 时,其函数值等于p ,则称p 为这个函数的不变值. 在函数存在不变值时,该函数的最大不变值与最小不变值之差q 称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q 为零.例如,下图中的函数有0,1两个不变值,其不变长度q 等于1.(1)分别判断函数1y x =-,1y x=,2y x =有没有不变值?如果有,直接写出其不变长度; (2)函数22y x bx =-.①若其不变长度为零,求b 的值;②若13b ≤≤,求其不变长度q 的取值范围;(3) 记函数22()y x x x m =-≥的图象为1G ,将1G 沿x=m 翻折后得到的函数图象记为2G .函数G 的图象由1G 和2G 两部分组成,若其不变长度q 满足03q ≤≤,则m 的取值范围为.海淀区九年级第二学期期末练习数学试卷参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式 ……………………4分 .………………………5分18.解:原不等式组为 解不等式①,得 . ………………………2分 解不等式②,得 . ………………………3分∴ 原不等式组的解集为.………………………4分 不等式组的解集在数轴上表示如下:………………………5分19. 解:(1)∵ 原方程有两个不相等的实数根,∴ .31+42=--⨯5=8(1)5171062x x x x ->-⎧⎪⎨--≤⎪⎩,①,②3x >-2≤x 32x -≤<0Δ>即 364(7)0k -+>.∴ ..………………………2分 (2)∵且为正整数,∴..………………………3分 ∴.∴..………………………5分20.证明:∵ ,, ∴.∴ . ∴ ..………………………2分 在,∴ ≌.………………………4分 ∴..………………………5分21.解:设小静原来每分钟阅读个字.…………1分由题意,得. ………………………3分 解得 . ………………………4分 经检验,是原方程的解,且符合题意. ∴.答:小静现在每分钟阅读1300个字. ………………………5分22.(1)证明:∵ , ∴. ∵,2k <2k <k 1=k 0862=+-x x 1224x x ==,AB DE BC BF ⊥⊥,90ACB ∠=︒90DBF BEF ACB ∠=∠=∠=︒︒=∠+∠︒=∠+∠9029021F ,F ∠=∠1中和△△DFB ABC 1F ACB DBF AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,ABC △DFB △DF AB =x 300291003500+=x x 500=x 500=x 130030050023002=+⨯=+x 90ACB ∠=︒AC BC ⊥DE BC ⊥∴∥. 又∵ ∥,∴ 四边形为平行四边形. …………1分 ∴.∵ 边上的中线, ∴. ∴.∴四边形为平行四边形. ∵ ,∴四边形为菱形. ………………………3分 (2)解:在Rt 中,∵ , ∴设 . ∵菱形的面积为24, ∴.………………………4分 ∴ . ∴ .∴ ,(舍). ∴,. ∴. ………………………5分23. 解:(1)∵点在双曲线上, ∴.………………………1分 ∵点在直线上, ∴.………………………2分AC DE CF AD ACFD CF AD =CD AB 为BD AD =CF BD =BDCF BC DE ⊥BDCF ACE △2tan 3EC EAC AC ∠==2,3CE x AC DF x ===BDCF 1242DF BC ⋅=24DF EC ⋅=3224x x ⋅=12x =22x =-4CE =12EF =3DF =5CF =)1,(m A xy 6=6=m )1,6(A b x y +=212-=b(2)当点在线段上时,如图1,过点作⊥轴于,过点作⊥轴于.可得∽. ∵, ∴. ∵, ∴. ∵点在直线上,∴.………………4分 当点在线段的延长线上时,如图2, .同理,由,可得点的坐标为综上所述,点的坐标为或.…………… 5分24. (1)证明:连接.………………………1分∵⊙O 切BC 于点D ,, ∴. ∴∥. ∴. ∵, ∴. ∴.∴平分.………………………2分B DE D DP y P B BQ y Q EQB △EPD △BE BD 2=13BQ BE DP DE ==1BQ =3DP =D 1l )213(-,的坐标为点D B DE BE BD 2=D5(1)2--,D )213(-,5(1)2--,OD 90C ∠=︒90ODB C ∠=∠=︒OD AC DAC ODA ∠=∠OD OA =OAD ODA ∠=∠DAC OAD ∠=∠AD BAC ∠图1图2(2)解:连接. ∵AE 为直径, ∴.∵,sin , ∴sin . ∵, ∴.∴………………………3分 ∴,. ∵∥,∴.………………………4分 ∴. 即. ∴.………………………5分25.(1);………………………2分(2)14;(估值在合理范围内即可) ………………………3分 (3).答:2020年我国儿科医生需比2015年增加4.14万人,才能使每千名儿童拥有的儿科医 生数达到0.6. ………………………5分DE ︒=∠90ADE OAD DAC ∠=∠5DAC ∠=OAD ∠=5OA =10AE =AD =4CD =8AC =OD AC BOD BAC △∽△OD BDAC BC =584BD BD =+203BD =m 16.5=14000016.5%0.69.721000⨯⨯- 4.14=26. 第二步:;………………………1分 第四步:如图,△ABC 即为所求. ………………3分 第五步: ② ,.………………5分27. 解:(1). ……………… 1 分理由如下:由题意可得抛物线的对称轴为.∵(1,),(3,)在抛物线上, ∴.………………3分 (2)当时,抛物线的顶点为(2,1),且过点(4,4), ∴抛物线的解析式为.………………5分 当时,抛物线的顶点为(2,4),且过点(4,1), ∴抛物线的解析式为. 综上所述,抛物线的解析式为或.…………7 分6BD BC ==1812n n =2x =1P 1n 2P 2n 24y ax ax b =-+12n n =0a >23344y x x =-+0a <23314y x x =-++23344y x x =-+23314y x x =-++28. 解:(1)①补全图形,如图1所示.…………1分②连接.∵,关于直线对称, ∴.………………………2分 ∴, . ∵,∴270BAE AEC C ∠+∠+∠=︒.∴135AEC ∠=︒..………………………4分 (2)求解思路如下:a .连接,过点A 作⊥,交延长线于点,如图2所示;b .由(1)可求︒=∠135AEC ,由可求; c.由1CE =,可求,△为等边三角形;d .由,两点关于直线对称,A B A D =,可求,75ABD ∠=︒,. ……………………7分29.解:(1)函数没有不变值; ………………1分函数有和两个不变值,其不变长度为2;………………2分 函数有0和1两个不变值,其不变长度为1;………………3分 (2)①∵函数的不变长度为零, ∴方程有两个相等的实数根. ∴.………………4分②解方程,得,.………………5分 ∵, ∴.BE AB BC =,E C BD AB BC BE ==C BEC ∠=∠BAE BEA ∠=∠90ABC ∠=︒AC AF CE CE F AE 1AF EF ==2AC =AB BC ==ABE C E BD 15EBD ∠=︒30α=︒1y x =-1y x=1-12y x =22y x bx =-22x bx x -=1b =-22x bx x -=10x =212b x +=13b ≤≤212x ≤≤∴函数的不变长度q 的取值范围为. ………………6分 (3)m 的取值范围为或. ………………8分22y x bx =-12q ≤≤13m ≤≤18m <-。
2016北京中考数学各区二模28题汇编(含答案)
1.(海淀二模) 已知:AB BC =,90ABC ∠=︒.将线段AB 绕点A 逆时针旋转α(090α︒<<︒)得到线段AD .点C 关于直线BD 的对称点为E ,连接AE ,CE 。
(1)如图, ①补全图形;②求AEC ∠的度数;(2)若AE =1CE =,请写出求α度数的思路.(可以不写出计算结果.........)2.(石景山二模)如图,正方形ABCD ,G 为BC 延长线上一点,E 为射线BC 上一点,连接AE . (1)若E 为BC 的中点,将线段EA 绕着点E 顺时针旋转90°,得到线段EF ,连接CF . ①请补全图形; ②求证:∠DCF =∠FCG ;(2)若点E 在BC 的延长线上,过点E 作AE 的垂线交∠DCG 的平分线于点M ,判断AE 与EM 的数量关系并证明你的结论.EGD CBAMABCDGE3.(顺义二模)已知:如图,90ACD ∠=︒,MN 是过点A 的直线,AC DC =,DB MN ⊥于点B .图2图3图1ABCDNMABCDNMNMABCD(1)在图1中,过点C 作CE CB ⊥,与直线MN 于点E ,①依题意补全图形;②求证:BCE ∆是等腰直角三角形;③图1中,线段BD 、AB 、CB 满足的数量关系是 ; (2)当MN 绕A 旋转到如图(2)和图(3)两个位置时,其它条件不变. 在图2中,线段BD 、AB 、CB 满足的数量关系是 ; 在图3中,线段BD 、AB 、CB 满足的数量关系是 ; (3)MN 在绕点A 旋转过程中,当30BCD ∠=︒,BD =则CB = .4.(通州二模) 已知,在菱形ABCD 中,∠ADC=60°,点F 为CD 上任意一点(不与C 、D 重合),过点F 作CD 的垂线,交BD 于点E ,连接AE 。
(1)①依愿意补全图1;②线段EF 、CF 、AE 之间的等量关系是 . (2)在图1中将ΔDEF 绕点D 逆时针旋转,当点F 、E 、C 在一条直线上(如图2). 线段EF 、CE 、AE 之间的等量关系是 。
2016年海淀区初三二模数学试题及答案(word版)
海 淀 区 九 年 级 第 二 学 期 期 末 练 习数 学2016.6 学校 班级___________ 姓名 成绩一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2022年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为196 000米.196 000用科学记数法表示应为A .1.96×105B .19.6×104C .1.96×106D .0.196×1062.中华文化底蕴深厚,地方文化活动丰富多彩.下面的四幅简笔画是从我国地方文化活动中抽象出来的,其中是轴对称图形的是A .B .C .D .3.下列计算正确的是A .B .C .623)(a a = D . 4.如图,边长相等的正方形、正六边形的一边重合, 则1∠的度数为A .20°B .25°C .30°D .35°5.如图,数轴上有M ,N ,P ,Q 四个点,其中点 P 所表示的数为a ,则数3a -所对应的点可能是A .MB .NC .PD .Q632a a a =⋅842a a a ÷=a a a 632=+NMQP6分数 80 85 90 95 人数1432这10名学生所得分数的平均数是A .86B .88C .90D .927.如图,A ,B ,C ,D 为⊙O 上的点, AB OC ⊥于点E ,若=30CDB ∠︒,2OA =,则AB 的长为A .3B .23C .2D .48套餐 类型 月费(元/月) 套餐内包含内容套餐外资费国内数据流量(MB ) 国内主叫(分钟) 国内流量 国内主叫套餐1 18 100 0 0.29 元/MB0.19 元/分钟套餐2 28 100 50 套餐3 38 300 50 套餐44850050小明每月大约使用国内数据流量200MB ,国内主叫200分钟,若想使每月付费最少,则 他应预定的套餐是A .套餐1B .套餐2C .套餐3D .套餐49.随着“互联网+”时代的到来,一种新型的打车方式受到 大众欢迎.该打车方式采用阶梯收费标准.打车费用y (单 位:元)与行驶里程x (单位:千米)的函数关系如图所 示. 如果小明某次打车行驶里程为20千米,则他的打车 费用为A .32元B .34元C .36元D .40元E BCOAD九年级数学 第3页(共15页)10.如图1,抛物线2y x bx c =-++的顶点为P ,与x 轴交于A ,B 两点.若A ,B 两点间的距离为m , n 是m 的函数,且表示n 与m 的函数关系的图象大致如图2所示,则n 可能为A .PA AB +B .PA AB - C.AB PA D .PAAB二、填空题(本题共18分,每小题3分) 11.当分式221x x -+的值为0时,x 的值为 . 12.分解因式:2312x -=______ _________. 13.据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度. 如图所示,木杆EF 的长为2m ,它的影长FD 为3m ,测得OA 为201m ,则金字塔的高度BO 为______ _ m .14.请写出一个图象过(2,3)和(3,2)两点的函数解析式______ ____. 15.在某次试验数据整理过程中,某个事件发生的频率情况如下表所示.试验次数 10 50 100 200 500 1000 2000 事件发生的频率0.2450.2480.2510.2530.2490.2520.251估计这个事件发生的概率是_________________(精确到0.01),试举出一个随机事件的例子,使它发生的概率与上述事件发生的概率大致相同: ______ _____________________________________________________________________________.16.阅读下面材料:实际生活中,有时会遇到一些“不能接近的角”,如图中的P∠,我们可以采用下面的方法作一条直线平分P∠.如图,(1)作直线l与P∠的两边分别交于点A,B,分别作PAB∠和PBA∠的角平分线,两条角平分线相交于点M;(2)作直线k与P∠的两边分别交于点C,D,分别作PCD∠和PDC∠的角平分线,两条角平分线相交于点N;(3)作直线MN.所以,直线MN平分P∠.请回答:上面作图方法的依据是_________________ ___.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:101()(32)124cos453----+-+︒.18.解不等式组8(1)517,106,2x xxx->-⎧⎪⎨--≤⎪⎩并将解集在数轴上表示出来.19.已知关于x的方程2670x x k-++=有两个不相等的实数根.(1)求k的取值范围;(2)当k为正整数时,求方程的根.九年级数学 第5页(共15页)20.已知:如图,在△ABC 中,∠ACB =90︒,点D 在BC 上,且BD =AC ,过点D 作DE ⊥AB 于点E ,过点B 作CB 的垂线,交DE 的延长线于点F .求证:AB =DF .21.为了提升阅读速度,某中学开设了“高效阅读”课.小静经过2个月的训练,发现自己现在每分钟阅读的字数比原来的2倍还多300字,现在读9100字的文章与原来读3500字的文章所用的时间相同.求小静现在每分钟阅读的字数.22.如图,在△ABC 中,∠ACB =90︒,CD 为AB 边上的中线,过点D 作DE BC ⊥于E ,过点C 作AB 的平行线与DE 的延长线交于点F ,连接BF ,AE . (1)求证:四边形BDCF 为菱形; (2)若四边形BDCF 的面积为24,tan ∠EAC =23,求CF 的长.23.在平面直角坐标系xOy 中,直线1l :12y x b =+与双曲线6y x =的一个交点为(,1)A m .(1)求m 和b 的值;(2)过(1,3)B 的直线交1l 于点D ,交y 轴于点E . 若2BD BE =,求点D 的坐标.24.如图,在△ABC 中,∠C =90°,点E 在AB 上,以AE为直径的⊙O 切BC 于点D ,连接AD . (1)求证:AD 平分∠BAC ; (2)若⊙O 的半径为5,sin ∠DAC =5,求BD 的长.E OBAC2015年全国人口年龄构成统计图根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)根据统计表估计2020年我国人口数约为亿人;(3)若2020年我国儿童占总人口的百分比与2015年相同,请你估算到2020年我国儿科医生需比2015年增加多少万人,才能使每千名儿童拥有的儿科医生数达到0.6.九年级数学 第7页(共15页)26. 小明在做数学练习时,遇到下面的题目:小明的计算结果与参考答案不同,因此他对参考答案产生了质疑.下面是他的分析、 探究过程,请你补充完整.第一步,读题,并标记题目条件如下:在△ABC 中,D 为AC 边上一点,①AB=AC ;②DBA A ∠=∠;③BD=BC ;④CD =2; ⑤△BDC 的周长为14.第二步,依据条件③、④、⑤,可以求得BD BC ==__________; 第三步,作出△BCD ,如图2所示;第四步,依据条件①,在图2中作出△ABC ;(尺规作图,保留作图痕迹)图2第五步,对所作图形进行观察、测量,发现与标记的条件_____不符(填序号),去 掉这个条件,题目中其他部分保持不变,求得AB 的长为__________.27.已知:点(,)P m n 为抛物线24y ax ax b =-+(0a ≠)上一动点.(1) 1P (1,1n ),2P (3,2n )为P 点运动所经过的两个位置,判断1n ,2n 的大小,并说明理由;(2) 当14m ≤≤时,n 的取值范围是14n ≤≤,求抛物线的解析式.BDC题目:如图1,在△ABC 中,D 为AC 边上一点,AB=AC , DBA A ∠=∠,BD=BC .若CD =2,△BDC 的周长为14, 求AB 的长. 参考答案:AB =8.老师:“质疑是开启创新之门 的钥匙!”小明:“该题目的已知条件存在自相矛盾的地方.若去掉矛盾的条件后,便可求出AB 的长.”28. 已知:AB BC =,90ABC ∠=︒.将线段AB 绕点A 逆时针旋转α(090α︒<<︒)得 到线段AD .点C 关于直线BD 的对称点为E ,连接AE ,CE . (1)如图, ①补全图形;②求AEC ∠的度数;(2)若AE =1CE =-,请写出求α度数的思路.(可以不写出计算结果.........)29. 对于某一函数给出如下定义:若存在实数p ,当其自变量的值为p 时,其函数值等于p ,则称p 为这个函数的不变值. 在函数存在不变值时,该函数的最大不变值与最小不变值 之差q 称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q 为 零.例如,下图中的函数有0,1两个不变值,其不变长度q 等于1.(1)分别判断函数1y x =-,1y x=,2y x =有没有不变值?如果有,直接写出其不变长度;(2)函数22y x bx =-.①若其不变长度为零,求b 的值;②若13b ≤≤,求其不变长度q 的取值范围;(3)记函数22()y x x x m =-≥的图象为1G ,将1G 沿x=m 翻折后得到的函数图象记为2G .函数G 的图象由 1G 和2G 两部分组成,若其不变长度q 满足03q ≤≤,则m 的取值范围为 .九年级数学 第9页(共15页)海淀区九年级第二学期期末练习数学试卷参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式31+42=--⨯……………………4分5=.………………………5分18.解:原不等式组为8(1)5171062x x x x ->-⎧⎪⎨--≤⎪⎩,①,② 解不等式①,得 3x >-. ………………………2分 解不等式②,得 2≤x . ………………………3分∴ 原不等式组的解集为32x -≤<.………………………4分 不等式组的解集在数轴上表示如下:………………………5分19. 解:(1)∵ 原方程有两个不相等的实数根,∴ 0Δ>.即 364(7)0k -+>.∴ 2k <..………………………2分 (2)∵2k <且k 为正整数,∴1=k ..………………………3分 ∴0862=+-x x .∴1224x x ==,..………………………5分20.证明:∵ AB DE BC BF ⊥⊥,,90ACB ∠=︒, ∴90DBF BEF ACB ∠=∠=∠=︒.∴ ︒=∠+∠︒=∠+∠9029021F ,. ∴ F ∠=∠1..………………………2分 在中和△△DFB ABC ,1F ACB DBF AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴ ABC △≌DFB △.………………………4分 ∴DF AB =..………………………5分21.解:设小静原来每分钟阅读x 个字.…………1分由题意,得300291003500+=x x . ………………………3分 解得 500=x . ………………………4分 经检验,500=x 是原方程的解,且符合题意. ∴130030050023002=+⨯=+x .答:小静现在每分钟阅读1300个字. ………………………5分22.(1)证明:∵ 90ACB ∠=︒,九年级数学 第11页(共15页)∴AC BC ⊥. ∵DE BC ⊥, ∴AC ∥DE . 又∵ CF ∥AD ,∴ 四边形ACFD 为平行四边形. …………1分 ∴CF AD =.∵ CD AB 为边上的中线, ∴BD AD =. ∴CF BD =.∴四边形BDCF 为平行四边形. ∵ BC DE ⊥,∴四边形BDCF 为菱形. ………………………3分 (2)解:在Rt ACE △中,∵ 2tan 3EC EAC AC ∠==, ∴设 2,3CE x AC DF x ===. ∵菱形BDCF 的面积为24, ∴1242DF BC ⋅=.………………………4分 ∴ 24DF EC ⋅=. ∴ 3224x x ⋅=.∴ 12x =,22x =-(舍). ∴4CE =,12EF =3DF =. ∴5CF =. ………………………5分23. 解:(1)∵点)1,(m A 在双曲线xy 6=上, ∴6=m . ………………………1分 ∵点)1,6(A 在直线b x y +=21上, ∴2-=b . ………………………2分A(2)当点B 在线段DE 上时,如图1,过点D 作DP ⊥y 轴于P ,过点B 作BQ ⊥y 轴于Q .可得EQB △∽EPD △. ∵BE BD 2=, ∴13BQ BE DP DE ==. ∵1BQ =, ∴3DP =. ∵点D 在直线1l 上,∴)213(-,的坐标为点D .………………4分 当点B 在线段DE 的延长线上时,如图2, 同理,由BE BD 2=,可得点D 的坐标为5(1)2--,.综上所述,点D 的坐标为)213(-,或5(1)2--,.…………… 5分24. (1)证明:连接OD .………………………1分∵⊙O 切BC 于点D , 90C ∠=︒, ∴90ODB C ∠=∠=︒. ∴OD ∥AC . ∴DAC ODA ∠=∠. ∵OD OA =, ∴OAD ODA ∠=∠. ∴DAC OAD ∠=∠.∴AD 平分BAC ∠.………………………2分EOD BAC图1图2九年级数学 第13页(共15页)(2)解:连接DE . ∵AE 为直径, ∴︒=∠90ADE .∵OAD DAC ∠=∠,sin 5DAC ∠=, ∴sinOAD ∠=. ∵5OA =, ∴10AE =.∴AD =.………………………3分 ∴4CD =,8AC =. ∵OD ∥AC ,∴BOD BAC △∽△.………………………4分∴OD BDAC BC =. 即584BD BD =+. ∴203BD =.………………………5分25.(1)m 16.5=;………………………2分(2)14;(估值在合理范围内即可) ………………………3分 (3)14000016.5%0.69.721000⨯⨯- 4.14=.答:2020年我国儿科医生需比2015年增加4.14万人,才能使每千名儿童拥有的儿科医 生数达到0.6. ………………………5分26. 第二步:6BD BC ==;………………………1分 第四步:如图,△ABC 即为所求. ………………3分 第五步: ② ,18.………………5分27. 解:(1)12n n =. ……………… 1 分理由如下:由题意可得抛物线的对称轴为2x =.∵1P (1,1n ),2P (3,2n )在抛物线24y ax ax b =-+上, ∴12n n =.………………3分 (2)当0a >时,抛物线的顶点为(2,1),且过点(4,4), ∴抛物线的解析式为23344y x x =-+.………………5分 当0a <时,抛物线的顶点为(2,4),且过点(4,1),∴抛物线的解析式为23314y x x =-++. 综上所述,抛物线的解析式为23344y x x =-+或23314y x x =-++.…………7 分28. 解:(1)①补全图形,如图1所示.…………1分②连接BE .∵AB BC =,,E C 关于直线BD 对称, ∴AB BC BE ==.………………………2分 ∴C BEC ∠=∠, BAE BEA ∠=∠.九年级数学 第15页(共15页)∵90ABC ∠=︒,∴270BAE AEC C ∠+∠+∠=︒.∴135AEC ∠=︒..………………………4分 (2)求解思路如下:a .连接AC ,过点A 作AF ⊥CE ,交CE 延长线于点F ,如图2所示;b .由(1)可求︒=∠135AEC ,由2AE =可求1AF EF ==;c .由31CE =-,可求2AC =,2AB BC ==,可证△ABE 为等边三角形;d .由C ,E 两点关于直线BD 对称,AB AD =,可求15EBD ∠=︒,75ABD ∠=︒,30α=︒. ……………………7分29.解:(1)函数1y x =-没有不变值; ………………1分函数1y x=有1-和1两个不变值,其不变长度为2;………………2分 函数2y x =有0和1两个不变值,其不变长度为1;………………3分 (2)①∵函数22y x bx =-的不变长度为零, ∴方程22x bx x -=有两个相等的实数根. ∴1b =-. ………………4分 ②解方程22x bx x -=,得10x =,212b x +=.………………5分 ∵13b ≤≤, ∴212x ≤≤.∴函数22y x bx =-的不变长度q 的取值范围为12q ≤≤. ………………6分 (3)m 的取值范围为13m ≤≤或18m <-. ………………8分。
2016年北京市海淀区普通中学中考数学模拟试卷(二)(1月份)-含详细解析
2016年北京市海淀区普通中学中考数学模拟试卷(二)(1月份)副标题一、选择题(本大题共8小题,共24.0分)1.如果a与-2互为倒数,那么a是()A. B. C. D. 22.长城总长约为6700010米,用科学记数法表示为(保留两位有效数字)()A. 米B. 米C. 米D. 米3.在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为()A. 60米B. 40米C. 30米D. 25米4.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A. CD、EF、GHB. AB、EF、GHC. AB、CD、GHD. AB、CD、EF5.图中∠BOD的度数是()A.B.C.D.6.甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A. 2个B. 3个C. 4个D. 5个7.如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A. B. C. D.8.如图,用不同颜色的马赛克覆盖一个圆形的台面,估计15°的圆心角的扇形部分大约需要34片马赛克片.已知每箱装有125片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面()A. 箱B. 箱C. 箱D. 箱二、填空题(本大题共5小题,共15.0分)9.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式______.10.汽车刹车距离S(m)与速度v(km/h)之间的函数关系是S=v2,在一辆车速为100km/h的汽车前方80m处,发现停放一辆故障车,此时刹车______ 有危险.11.如下图,直线a∥b,则∠A= ______ 度.12.如图所示,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为______ .13.一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2.则x的取值范围是__________.三、计算题(本大题共1小题,共6.0分)14.计算:.四、解答题(本大题共6小题,共48.0分)15.化简求值:(a+b)2-2a(b+1)-a2b÷b,其中a=,b=2.16.解方程:.17.如图,梯形ABMN是直角梯形.(1)请在图中拼上一个直角梯形,使它与梯形ABMN构成一个等腰梯形;(2)将(1)中补上的直角梯形以点M为旋转中心,逆时针方向旋转180°,画出这个梯形.18.如图所示,△ABO中,OA=OB,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点E、F.求证:AB是⊙O的切线.19.已知二次函数的图象经过(0,0)、(1,-1)、(-2,14)三点,(1)求这个二次函数的解析式及顶点坐标;(2)设这个二次函数的图象与直线y=x+t(t≤1),相交于(x1,y1),(x2,y2)两点(x1≠x2),求:t的取值范围.20.某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌的电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌的电脑共36台(价格如表所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有多少台?答案和解析1.【答案】B【解析】解:∵a与-2互为倒数,∴a是-.故选:B.根据乘积是1的两个数叫做互为倒数解答.本题考查了倒数的定义,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.是基础题,熟记概念是解题的关键.2.【答案】B【解析】解:6700010=6.70001×106≈6.7×106,故选B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定a×10n (1≤|a|<10,n为整数)中n的值是易错点;有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.本题考查了对科学记数法的掌握和有效数字的运用.用科学记数法表示数,一定要注意a的形式,以及指数n的确定方法.3.【答案】C【解析】解:据相同时刻的物高与影长成比例,设旗杆的高度为xm,则可列比例式,,解得x=30.故选C.在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似本题考查同学们利用所学知识解决实际问题的能力,属于基础题.4.【答案】B【解析】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.设出正方形的边长,利用勾股定理,解出AB、CD、EF、GH各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.考查了勾股定理逆定理的应用.5.【答案】D【解析】解:连接OC,由圆周角定理知,∠BOD=2(∠A+∠E)=2×(35°+40°)=150°,故选D.连接OC,根据圆周角定理求解即可.本题利用了圆周角定理求解.6.【答案】C【解析】解:根据题意和图象可知:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了1-0.5=0.5小时.④相遇后甲的速度<乙的速度.⑤乙先到达目的地.故只有⑤不正确.故选C.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.主要考查了函数图象的读图能力.7.【答案】D【解析】解:从正面可看到,左边2个正方形,中间1个正方形,右边1个正方形.故选D.找到从正面看所得到的图形即可.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.8.【答案】B【解析】解:设需要x箱马赛克片.由题意:×34=125x,∴x≈6.5.∴需要马赛克片6-7箱.故选B.设需要x箱马赛克片,由题意:×34=125x,解方程即可.本题考查圆心角、弧弦之间的关系,一元一次方程等知识,解题的关键是学会设未知数列方程解决问题,属于中考常考题型.9.【答案】a2-b2=(a+b)(a-b)【解析】解:a2-b2=(a+b)(a-b).左图中阴影部分的面积是a2-b2,右图中梯形的面积是(2a+2b)(a-b)=(a+b)(a-b),根据面积相等即可解答.此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.10.【答案】会【解析】解:把v=100代入S=v2得:汽车刹车距离s=100>80,因此会有危险.故答案为:会.把v值代入解析式求出S,即刹车距离,和80进行比较即可.本题利用求二次函数的值,判断实际问题.11.【答案】25【解析】解:∵直线a∥b,∴∠1=∠ECD=55°,∵∠1是△ABD的外角,∴∠1=∠ABD+∠A,即55°=30°+∠A,∠A=55°-30°=25°.故∠A=25°.本题主要利用平行线的性质以及三角形内角与外角之间的关系解题.本题应用的知识点为:两直线平行,内错角相等及三角形的外角等于与它不相邻的两个内角的和.12.【答案】7【解析】解:设DF=x,FC=y,∵▱ABCD,∴AD=BC,CD=AB,∵BE为折痕,∴AE=EF,AB=BF,∵△FDE的周长为8,△FCB的周长为22,∴BC=AD=8-x,AB=CD=x+y,∴y+x+y+8-x=22,解得y=7.故答案为7.由平行四边形可得对边相等,由折叠,可得AE=EF,AB=BF,结合两个三角形的周长,通过列方程可求得FC的长,本题可解.本题考查了平行四边形的性质及图形的翻折问题;解决翻折问题的关键是找着相等的边,利用等量关系列出方程求得答案.13.【答案】10<x<30解:矩形的周长是2(x+10)cm,面积是10xcm2,根据题意,得<>,解这个不等式组得<>.所以x的取值范围是10<x<30.【解析】已知矩形的周长为2(x+10)cm,面积为10xcm2,列出不等式方程组即可解.解决问题的关键是读懂题意,找到关键描述语,根据矩形的周长<80cm,面积>100cm2列不等式组解答.14.【答案】解:=-8×+2÷(-)=-4+2÷=-4-2(2)=-4-12-6=-16-6【解析】根据实数的运算顺序,首先计算乘方、开方,然后计算乘法、除法,最后计算加法,求出算式的值是多少即可.(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a-p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.15.【答案】解:(a+b)2-2a(b+1)-a2b÷b,=a2+2ab+b2-2ab-2a-a2b÷b,=b2-2a,当a=,b=2时,原式=22-2×=3.【解析】本题应将代数式去括号,合并同类项,从而将整式化为最简形式,然后把a、b 的值代入即可.本题主要利用完全平方公式,单项式乘多项式的法则,单项式除单项式的法则,熟练掌握运算法则是化简的关键.16.【答案】解:去分母得:3(x-1)=5(x+1),(2分)3x-3=5x+5,(3分)3x-5x=5+3,(4分)-2x=8,(5分)x=-4.(6分)经检验:x=-4是原方程的解.故原方程的解是:x=-4.【解析】观察可得最简公分母是(x-1)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.本题主要考查了分式方程的解法,解方程时要主要:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.17.【答案】解:如图:【解析】(1)画出梯形关于MN的轴对称图形即可;(2)再将梯形各点与点M的连线,并逆时针方向旋转180°,找到对应点,顺次连接画出这个梯形.本题综合考查了轴对称图形,及旋转变换图形,注意在做这类题时,找对应点是关键.18.【答案】证明:连接OC,∵OA=OB,C为AB中点,∴OC⊥AB,∵OC为半径,∴AB是⊙O的切线.【解析】连接OC,根据等腰三角形性质推出OC⊥AB,根据切线判定推出即可.本题考查了等腰三角形性质和切线的判定的应用,关键是推出OC⊥AB.19.【答案】解:(1)设抛物线y=ax2+bx+c∵二次函数y=ax2+bx+c的图象经过(0,0)、(1,-1)、(-2,14)三点,∴ ,解得:.则这个二次函数的表达式为y=2x2-3x;(2)①当t=1时,直线y=x+t(t≤1)可化为y=x+1,代入二次函数解析式y=2x2-3x得,2x2-4x-1=0,△=(-4)2-4×2×(-1)=24>0,故直线与抛物线有两个不同的交点.②当直线与抛物线相切时t取得最小值,把y=x+t代入抛物线y=2x2-3x得,2x2-4x-t=0.△=(-4)2-4×2×(-t)=0,即t=-2,故t的取值范围是-2<t≤1.【解析】(1)设抛物线y=ax2+bx+c,把三点坐标代入二次函数解析式求出a,b,c的值,即可确定出二次函数解析式;(2)因为二次函数与直线有两个交点,根据函数图象的交点个数与它们组成的方程组的解的个数的关系,可以利用根的判别式解答.此题将用待定系数法求函数解析式、函数图象的交点个数与它们组成的方程组的解的个数的关系以及根的判别式结合起来,综合性较强,有一定的难度.有种可能结果:(,),(,),(B,D),(B,E),(C,D),(C,E);(2)因为选中A型号电脑有2种方案,即(A,D)(A,E),所以A型号电脑被选中的概率是;(3)由(2)可知,当选用方案(A,D)时,设购买A型号、D型号电脑分别为x,y台,根据题意,得解得,经检验不符合实际,舍去;当选用方案(A,E)时,设购买A型号、E型号电脑分别为a,b台,根据题意,得解得.所以希望中学购买了7台A型号电脑.【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得A型号电脑被选中的情况,然后利用概率公式求解即可求得答案;(3)分别从选用方案AD时,与选用方案AE时,去分析求解即可求得答案.本题考查的是用列表法或画树状图法求概率,同时考查了二元一次方程组的应用,综合性比较强.用到的知识点为:概率=所求情况数与总情况数之比.。
中考试题北京市海淀区二模试卷.docx
2016年北京市海淀区中考二模数学试卷一、单选题(共10小题)1.2022年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为196 000米.196 000用科学记数法表示应为()A.1.96×105B.19.6×104C.1.96×106D.0.196×106考点:科学记数法和近似数、有效数字答案:A试题解析:科学记数法是把一个数表示成 a×的形式,其中1≤|a|<10,n为整数.所以196000=1.96 .故本题选A.2.中华文化底蕴深厚,地方文化活动丰富多彩.下面的四幅简笔画是从我国地方文化活动中抽象出来的,其中是轴对称图形的是()A.B.C.D.考点:轴对称与轴对称图形答案:C试题解析:轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形。
所以是轴对称图形的是C图形。
故本题选C.3.下列计算正确的是()A.B.C.D.考点:幂的运算答案:C试题解析:故A错误;故B错误;故D错误。
故本题选C. 4.如图,边长相等的正方形、正六边形的一边重合,则的度数为()A.20°B.25°C.30°D.35°考点:多边形及其性质答案:C试题解析:正六边形的内角为,正方形内角为,所以。
故本题选C. 5.如图,数轴上有M,N,P,Q四个点,其中点P所表示的数为a,则数所对应的点可能是()A.M B.N C.P D.Q考点:实数的相关概念答案:A试题解析:因为点P所表示的数为a,在原点的右侧,则,数所对应的点应在原点左侧,且与原点距离是点P与原点距离的3倍,所以数所对应的点可能是点M。
故本题选A.6.在一次中学生趣味数学竞赛中,参加比赛的10名学生的成绩如下表所示:这10名学生所得分数的平均数是()A.86B.88C.90D.92考点:平均数、众数、中位数答案:B试题解析:这10名学生所得分数的平均数= .故本题选B7.如图,,,,为⊙上的点,于点,若,,则的长为()A.B.C.2D.4考点:垂径定理及推论答案:B试题解析:因为,所以,则,在中,OA=2,,则AE= ,AB=2.故本题选B.8.某通信公司自2016年2月1日起实行新的4G飞享套餐,部分套餐资费标准如下:小明每月大约使用国内数据流量200MB,国内主叫200分钟,若想使每月付费最少,则他应预定的套餐是()A.套餐1B.套餐2C.套餐3D.套餐4考点:统计图的分析答案:C试题解析:若选套餐1则每月付费=18+0.29 =85(元).若选套餐2则每月付费=28+0.29 =85.5(元).若选套餐3则每月付费=38+=66.5(元).若选套餐4则每月付费=48+ =76.5(元).故选套餐3,本题选C.9.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.该打车方式采用阶梯收费标准.打车费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为20千米,则他的打车费用为()A.32元B.34元C.36元D.40元考点:一次函数的图像及其性质答案:B试题解析:当时,设,过点(12,18),(15,24),所以,解得,所以,当求得y=34。
2016北京海淀区中考二模数学试题(word答案)
海淀区九年级第二学期期末练习数学试卷参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式31+4=-- ……………………4分5=.………………………5分18.解:原不等式组为8(1)5171062x x x x ->-⎧⎪⎨--≤⎪⎩,①,② 解不等式①,得 3x >-. ………………………2分 解不等式②,得 2≤x . ………………………3分∴ 原不等式组的解集为32x -≤<.………………………4分 不等式组的解集在数轴上表示如下:………………………5分19. 解:(1)∵ 原方程有两个不相等的实数根,∴ 0Δ>.即 364(7)0k -+>.∴ 2k <..………………………2分 (2)∵2k <且k 为正整数,∴1=k ..………………………3分 ∴0862=+-x x .∴1224x x ==,..………………………5分20.证明:∵ AB DE BC BF ⊥⊥,,90ACB ∠=︒, ∴90DBF BEF ACB ∠=∠=∠=︒.∴ ︒=∠+∠︒=∠+∠9029021F ,. ∴ F ∠=∠1..………………………2分 在中和△△DFB ABC ,1F ACB DBF AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴ ABC △≌DFB △.………………………4分 ∴DF AB =..………………………5分21.解:设小静原来每分钟阅读x 个字.…………1分由题意,得300291003500+=x x . ………………………3分 解得 500=x . ………………………4分 经检验,500=x 是原方程的解,且符合题意. ∴130030050023002=+⨯=+x .答:小静现在每分钟阅读1300个字. ………………………5分22.(1)证明:∵ 90ACB ∠=︒, ∴AC BC ⊥.∵DE BC ⊥,∴AC ∥DE .又∵ CF ∥AD ,∴ 四边形ACFD 为平行四边形. …………1分∴CF AD =.∵ CD AB 为边上的中线,∴BD AD =.∴CF BD =.∴四边形BDCF 为平行四边形.∵ BC DE ⊥,∴四边形BDCF 为菱形. ………………………3分(2)解:在Rt ACE △中,∵ 2tan 3EC EAC AC ∠==, ∴设 2,3CE x AC DF x ===.∵菱形BDCF 的面积为24,∴ 1242DF BC ⋅=.………………………4分 ∴ 24DF EC ⋅=.∴ 3224x x ⋅=.∴ 12x =,22x =-(舍).∴4CE =,12EF =3DF =. ∴5CF =. ………………………5分23. 解:(1)∵点)1,(m A 在双曲线xy 6=上, ∴6=m . ………………………1分∵点)1,6(A 在直线b x y +=21上, ∴2-=b . ………………………2分(2)当点B 在线段DE 上时,如图1,F过点D 作DP ⊥y 轴于P ,过点B 作BQ ⊥y 轴于Q . 可得EQB △∽EPD △.∵BE BD 2=, ∴13BQBEDP DE ==.∵1BQ =,∴3DP =.∵点D 在直线1l 上, ∴)213(-,的坐标为点D .………………4分当点B 在线段DE 的延长线上时,如图2,5(1)2--,.同理,由BE BD 2=,可得点D 的坐标为综上所述,点D 的坐标为)213(-,或5(1)2--,.…………… 5分24. (1)证明:连接OD .………………………1分 ∵⊙O 切BC 于点D , 90C ∠=︒,∴90ODB C ∠=∠=︒.∴OD ∥AC .∴DAC ODA ∠=∠.∵OD OA =, ∴OAD ODA ∠=∠.∴DAC OAD ∠=∠. ∴AD 平分BAC ∠.………………………2分 (2)解:连接DE .∵AE 为直径,∴︒=∠90ADE .图1图2∵OAD DAC ∠=∠,sin 5DAC ∠=,∴sin 5OAD ∠=. ∵5OA =,∴10AE =.∴AD =………………………3分∴4CD =,8AC =.∵OD ∥AC ,∴BOD BAC △∽△.………………………4分 ∴OD BD AC BC=. 即584BD BD =+. ∴203BD =.………………………5分25.(1)m 16.5=;………………………2分(2)14;(估值在合理范围内即可) ………………………3分(3)14000016.5%0.69.721000⨯⨯- 4.14=. 答:2020年我国儿科医生需比2015年增加4.14万人,才能使每千名儿童拥有的儿科医 生数达到0.6. ………………………5分26. 第二步:6BD BC ==;………………………1分第四步:如图,△ABC 即为所求. ………………3分第五步: ② ,18.………………5分27. 解:(1)12n n =. ……………… 1 分理由如下:由题意可得抛物线的对称轴为2x =.∵1P (1,1n ),2P (3,2n )在抛物线24y ax ax b =-+上,∴12n n =.………………3分(2)当0a >时,抛物线的顶点为(2,1),且过点(4,4), ∴抛物线的解析式为23344y x x =-+.………………5分 当0a <时,抛物线的顶点为(2,4),且过点(4,1), ∴抛物线的解析式为23314y x x =-++. 综上所述,抛物线的解析式为23344y x x =-+或23314y x x =-++.…………7 分28. 解:(1)①补全图形,如图1所示.…………1分②连接BE .∵AB BC =,,E C 关于直线BD 对称,∴AB BC BE ==.………………………2分∴C BEC ∠=∠, BAE BEA ∠=∠.∵90ABC ∠=︒,∴270BAE AEC C ∠+∠+∠=︒.∴135AEC ∠=︒..………………………4分(2)求解思路如下:a .连接AC ,过点A 作AF ⊥CE ,交CE 延长线于点F ,如图2所示;b .由(1)可求︒=∠135AEC ,由AE =可求1AF EF ==;c .由1CE =,可求2AC =, AB BC ==ABE 为等边三角形;d .由C ,E 两点关于直线BD 对称,A B A D =,可求15EBD ∠=︒,75ABD ∠=︒,30α=︒. ……………………7分29.解:(1)函数1y x =-没有不变值; ………………1分 函数1y x=有1-和1两个不变值,其不变长度为2;………………2分 函数2y x =有0和1两个不变值,其不变长度为1;………………3分(2)①∵函数22y x bx =-的不变长度为零,∴方程22x bx x -=有两个相等的实数根.∴1b =-. ………………4分②解方程22x bx x -=,得10x =,212b x +=.………………5分 ∵13b ≤≤,∴212x ≤≤.∴函数22y x bx =-的不变长度q 的取值范围为12q ≤≤. ………………6分(3)m 的取值范围为13m ≤≤或18m <-. ………………8分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海 淀 区 九 年 级 第 二 学 期 期 末 练 习数 学2016.6 学校 班级___________ 姓名 成绩一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2022年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为196 000米.196 000用科学记数法表示应为A .1.96×105B .19.6×104C .1.96×106D .0.196×1062.中华文化底蕴深厚,地方文化活动丰富多彩.下面的四幅简笔画是从我国地方文化活动中抽象出来的,其中是轴对称图形的是A .B .C .D .3.下列计算正确的是A .B .C .623)(a a = D . 4.如图,边长相等的正方形、正六边形的一边重合, 则1∠的度数为A .20°B .25°C .30°D .35°5.如图,数轴上有M ,N ,P ,Q 四个点,其中点 P 所表示的数为a ,则数3a -所对应的点可能是A .MB .NC .PD .Q632a a a =⋅842a a a ÷=a a a 632=+NMQP6分数 80 85 90 95 人数1432这10名学生所得分数的平均数是A .86B .88C .90D .927.如图,A ,B ,C ,D 为⊙O 上的点, AB OC ⊥于点E ,若=30CDB ∠︒,2OA =,则AB 的长为A .3B .23C .2D .48套餐 类型 月费(元/月) 套餐内包含内容套餐外资费国内数据流量(MB ) 国内主叫(分钟) 国内流量 国内主叫套餐1 18 100 0 0.29 元/MB0.19 元/分钟套餐2 28 100 50 套餐3 38 300 50 套餐44850050小明每月大约使用国内数据流量200MB ,国内主叫200分钟,若想使每月付费最少,则 他应预定的套餐是A .套餐1B .套餐2C .套餐3D .套餐49.随着“互联网+”时代的到来,一种新型的打车方式受到 大众欢迎.该打车方式采用阶梯收费标准.打车费用y (单 位:元)与行驶里程x (单位:千米)的函数关系如图所 示. 如果小明某次打车行驶里程为20千米,则他的打车 费用为A .32元B .34元C .36元D .40元E BCOAD10.如图1,抛物线2y x bx c =-++的顶点为P ,与x 轴交于A ,B 两点.若A ,B 两点间的距离为m , n 是m 的函数,且表示n 与m 的函数关系的图象大致如图2所示,则n 可能为A .PA AB +B .PA AB -C .AB PA D .PAAB二、填空题(本题共18分,每小题3分) 11.当分式221x x -+的值为0时,x 的值为 . 12.分解因式:2312x -=______ _________. 13.据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度. 如图所示,木杆EF 的长为2m ,它的影长FD 为3m ,测得OA 为201m ,则金字塔的高度BO 为______ _ m .14.请写出一个图象过(2,3)和(3,2)两点的函数解析式______ ____. 15.在某次试验数据整理过程中,某个事件发生的频率情况如下表所示.试验次数 10 50 100 200 500 1000 2000 事件发生的频率0.2450.2480.2510.2530.2490.2520.251估计这个事件发生的概率是_________________(精确到0.01),试举出一个随机事件的例子,使它发生的概率与上述事件发生的概率大致相同: ______ _____________________________________________________________________________.16.阅读下面材料:实际生活中,有时会遇到一些“不能接近的角”,如图中的P∠,我们可以采用下面的方法作一条直线平分P∠.如图,(1)作直线l与P∠的两边分别交于点A,B,分别作PAB∠和PBA∠的角平分线,两条角平分线相交于点M;(2)作直线k与P∠的两边分别交于点C,D,分别作PCD∠和PDC∠的角平分线,两条角平分线相交于点N;(3)作直线MN.所以,直线MN平分P∠.请回答:上面作图方法的依据是_________________ ___.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:101()(32)124cos453----+-+︒.18.解不等式组8(1)517,106,2x xxx->-⎧⎪⎨--≤⎪⎩并将解集在数轴上表示出来.19.已知关于x的方程2670x x k-++=有两个不相等的实数根.(1)求k的取值范围;(2)当k为正整数时,求方程的根.20.已知:如图,在△ABC 中,∠ACB =90︒,点D 在BC 上,且BD =AC ,过点D 作DE ⊥AB 于点E ,过点B 作CB 的垂线,交DE 的延长线于点F .求证:AB =DF .21.为了提升阅读速度,某中学开设了“高效阅读”课.小静经过2个月的训练,发现自己现在每分钟阅读的字数比原来的2倍还多300字,现在读9100字的文章与原来读3500字的文章所用的时间相同.求小静现在每分钟阅读的字数.22.如图,在△ABC 中,∠ACB =90︒,CD 为AB 边上的中线,过点D 作DE BC ⊥于E ,过点C 作AB 的平行线与DE 的延长线交于点F ,连接BF ,AE . (1)求证:四边形BDCF 为菱形; (2)若四边形BDCF 的面积为24,tan ∠EAC =23,求CF 的长.23.在平面直角坐标系xOy 中,直线1l :12y x b =+与双曲线6y x =的一个交点为(,1)A m .(1)求m 和b 的值;(2)过(1,3)B 的直线交1l 于点D ,交y 轴于点E . 若2BD BE =,求点D 的坐标.24.如图,在△ABC 中,∠C =90°,点E 在AB 上,以AE为直径的⊙O 切BC 于点D ,连接AD . (1)求证:AD 平分∠BAC ; (2)若⊙O 的半径为5,sin ∠DAC =5,求BD 的长.E OBAC2015年全国人口年龄构成统计图根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)根据统计表估计2020年我国人口数约为亿人;(3)若2020年我国儿童占总人口的百分比与2015年相同,请你估算到2020年我国儿科医生需比2015年增加多少万人,才能使每千名儿童拥有的儿科医生数达到0.6.26. 小明在做数学练习时,遇到下面的题目:小明的计算结果与参考答案不同,因此他对参考答案产生了质疑.下面是他的分析、 探究过程,请你补充完整.第一步,读题,并标记题目条件如下:在△ABC 中,D 为AC 边上一点,①AB=AC ;②DBA A ∠=∠;③BD=BC ;④CD =2; ⑤△BDC 的周长为14.第二步,依据条件③、④、⑤,可以求得BD BC ==__________; 第三步,作出△BCD ,如图2所示;第四步,依据条件①,在图2中作出△ABC ;(尺规作图,保留作图痕迹)图2第五步,对所作图形进行观察、测量,发现与标记的条件_____不符(填序号),去 掉这个条件,题目中其他部分保持不变,求得AB 的长为__________.27.已知:点(,)P m n 为抛物线24y ax ax b =-+(0a ≠)上一动点.(1) 1P (1,1n ),2P (3,2n )为P 点运动所经过的两个位置,判断1n ,2n 的大小,并说明理由;(2) 当14m ≤≤时,n 的取值范围是14n ≤≤,求抛物线的解析式.BDC题目:如图1,在△ABC 中,D 为AC 边上一点,AB=AC , DBA A ∠=∠,BD=BC .若CD =2,△BDC 的周长为14, 求AB 的长. 参考答案:AB =8.老师:“质疑是开启创新之门 的钥匙!”小明:“该题目的已知条件存在自相矛盾的地方.若去掉矛盾的条件后,便可求出AB 的长.”28. 已知:AB BC =,90ABC ∠=︒.将线段AB 绕点A 逆时针旋转α(090α︒<<︒)得 到线段AD .点C 关于直线BD 的对称点为E ,连接AE ,CE . (1)如图, ①补全图形;②求AEC ∠的度数;(2)若AE =1CE =-,请写出求α度数的思路.(可以不写出计算结果.........)29. 对于某一函数给出如下定义:若存在实数p ,当其自变量的值为p 时,其函数值等于p ,则称p 为这个函数的不变值. 在函数存在不变值时,该函数的最大不变值与最小不变值 之差q 称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q 为 零.例如,下图中的函数有0,1两个不变值,其不变长度q 等于1.(1)分别判断函数1y x =-,1y x=,2y x =有没有不变值?如果有,直接写出其不变长度;(2)函数22y x bx =-.①若其不变长度为零,求b 的值;②若13b ≤≤,求其不变长度q 的取值范围;(3)记函数22()y x x x m =-≥的图象为1G ,将1G 沿x=m 翻折后得到的函数图象记为2G .函数G 的图象由 1G 和2G 两部分组成,若其不变长度q 满足03q ≤≤,则m 的取值范围为 .海淀区九年级第二学期期末练习数学试卷参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式31+42=--⨯……………………4分5=.………………………5分18.解:原不等式组为8(1)5171062x x x x ->-⎧⎪⎨--≤⎪⎩,①,② 解不等式①,得 3x >-. ………………………2分 解不等式②,得 2≤x . ………………………3分∴ 原不等式组的解集为32x -≤<.………………………4分 不等式组的解集在数轴上表示如下:………………………5分19. 解:(1)∵ 原方程有两个不相等的实数根,∴ 0Δ>.即 364(7)0k -+>.∴ 2k <..………………………2分 (2)∵2k <且k 为正整数,∴1=k ..………………………3分 ∴0862=+-x x .∴1224x x ==,..………………………5分20.证明:∵ AB DE BC BF ⊥⊥,,90ACB ∠=︒, ∴90DBF BEF ACB ∠=∠=∠=︒.∴ ︒=∠+∠︒=∠+∠9029021F ,. ∴ F ∠=∠1..………………………2分 在中和△△DFB ABC ,1F ACB DBF AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴ ABC △≌DFB △.………………………4分 ∴DF AB =..………………………5分21.解:设小静原来每分钟阅读x 个字.…………1分由题意,得300291003500+=x x . ………………………3分 解得 500=x . ………………………4分 经检验,500=x 是原方程的解,且符合题意. ∴130030050023002=+⨯=+x .答:小静现在每分钟阅读1300个字. ………………………5分22.(1)证明:∵ 90ACB ∠=︒,∴AC BC ⊥. ∵DE BC ⊥, ∴AC ∥DE . 又∵ CF ∥AD ,∴ 四边形ACFD 为平行四边形. …………1分 ∴CF AD =.∵ CD AB 为边上的中线, ∴BD AD =. ∴CF BD =.∴四边形BDCF 为平行四边形. ∵ BC DE ⊥,∴四边形BDCF 为菱形. ………………………3分 (2)解:在Rt ACE △中,∵ 2tan 3EC EAC AC ∠==, ∴设 2,3CE x AC DF x ===. ∵菱形BDCF 的面积为24, ∴1242DF BC ⋅=.………………………4分 ∴ 24DF EC ⋅=. ∴ 3224x x ⋅=.∴ 12x =,22x =-(舍). ∴4CE =,12EF =3DF =. ∴5CF =. ………………………5分23. 解:(1)∵点)1,(m A 在双曲线xy 6=上, ∴6=m . ………………………1分 ∵点)1,6(A 在直线b x y +=21上, ∴2-=b . ………………………2分A(2)当点B 在线段DE 上时,如图1,过点D 作DP ⊥y 轴于P ,过点B 作BQ ⊥y 轴于Q .可得EQB △∽EPD △. ∵BE BD 2=, ∴13BQ BE DP DE ==. ∵1BQ =, ∴3DP =. ∵点D 在直线1l 上,∴)213(-,的坐标为点D .………………4分 当点B 在线段DE 的延长线上时,如图2, 同理,由BE BD 2=,可得点D 的坐标为5(1)2--,.综上所述,点D 的坐标为)213(-,或5(1)2--,.…………… 5分24. (1)证明:连接OD .………………………1分∵⊙O 切BC 于点D , 90C ∠=︒, ∴90ODB C ∠=∠=︒. ∴OD ∥AC . ∴DAC ODA ∠=∠. ∵OD OA =, ∴OAD ODA ∠=∠. ∴DAC OAD ∠=∠.∴AD 平分BAC ∠.………………………2分图1图2EOAC(2)解:连接DE . ∵AE 为直径, ∴︒=∠90ADE .∵OAD DAC ∠=∠,sin 5DAC ∠=,∴sin OAD ∠=. ∵5OA =, ∴10AE =.∴AD =.………………………3分 ∴4CD =,8AC =. ∵OD ∥AC ,∴BOD BAC △∽△.………………………4分∴OD BDAC BC =. 即584BD BD =+. ∴203BD =.………………………5分25.(1)m 16.5=;………………………2分(2)14;(估值在合理范围内即可) ………………………3分 (3)14000016.5%0.69.721000⨯⨯- 4.14=.答:2020年我国儿科医生需比2015年增加4.14万人,才能使每千名儿童拥有的儿科医 生数达到0.6. ………………………5分26. 第二步:6BD BC ==;………………………1分 第四步:如图,△ABC 即为所求. ………………3分 第五步: ② ,18.………………5分27. 解:(1)12n n =. ……………… 1 分理由如下:由题意可得抛物线的对称轴为2x =.∵1P (1,1n ),2P (3,2n )在抛物线24y ax ax b =-+上, ∴12n n =.………………3分 (2)当0a >时,抛物线的顶点为(2,1),且过点(4,4), ∴抛物线的解析式为23344y x x =-+.………………5分 当0a <时,抛物线的顶点为(2,4),且过点(4,1),∴抛物线的解析式为23314y x x =-++. 综上所述,抛物线的解析式为23344y x x =-+或23314y x x =-++.…………7 分28. 解:(1)①补全图形,如图1所示.…………1分②连接BE .∵AB BC =,,E C 关于直线BD 对称, ∴AB BC BE ==.………………………2分 ∴C BEC ∠=∠, BAE BEA ∠=∠.∵90ABC ∠=︒,∴270BAE AEC C ∠+∠+∠=︒.∴135AEC ∠=︒..………………………4分 (2)求解思路如下:a .连接AC ,过点A 作AF ⊥CE ,交CE 延长线于点F ,如图2所示;b .由(1)可求︒=∠135AEC ,由2AE =可求1AF EF ==;c .由31CE =-,可求2AC =,2AB BC ==,可证△ABE 为等边三角形;d .由C ,E 两点关于直线BD 对称,AB AD =,可求15EBD ∠=︒,75ABD ∠=︒,30α=︒. ……………………7分29.解:(1)函数1y x =-没有不变值; ………………1分函数1y x=有1-和1两个不变值,其不变长度为2;………………2分 函数2y x =有0和1两个不变值,其不变长度为1;………………3分 (2)①∵函数22y x bx =-的不变长度为零, ∴方程22x bx x -=有两个相等的实数根. ∴1b =-. ………………4分 ②解方程22x bx x -=,得10x =,212b x +=.………………5分 ∵13b ≤≤, ∴212x ≤≤.∴函数22y x bx =-的不变长度q 的取值范围为12q ≤≤. ………………6分 (3)m 的取值范围为13m ≤≤或18m <-. ………………8分。