厦门大学软件学院08级离散数学期末试卷及答案

合集下载

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。

B. 如果今天是周一,则明天不是周二。

答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。

答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。

这种性质称为函数的______。

答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。

如果一个图的直径为1,则该图被称为______。

答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。

布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。

答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。

答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。

例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。

2. 请解释什么是二元关系,并给出一个二元关系的例子。

答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。

例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。

离散数学期末考试题附答案和含解析1

离散数学期末考试题附答案和含解析1

..一、填空2.A ,B ,C 表示三个会合,文图中暗影部分的会合表达式为 (B⊕C)-AA C4.公式(PR)(SR)P的主合取范式为(PSR) ( PS R)。

5.若解说I 的论域D 仅包括一个元素,则 xP(x) xP(x) 在I 下真值为 1 。

6.设A={1,2,3,4},A 上关系图以下,则 R^2={(1,1),(1,3),(2,2),(2,4)}。

//备注: 0 1 0 01 0 1 0 0 1 0 1R 1 0 1 0 R 20 0 0 1 0 0 0 00 0 0 00 0 0 07.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图以下,则R={(a,b),(a,c),(a,d),(b,d),(c,d)}U{(a,a),(b,b)(c,c)(d,d)}。

备注:偏序知足自反性,反对称性,传达性8.图 的补图为 。

//补图:给定一个图G,又G 中全部结点和全部能使 G 成为完整图的增添边构成的图,成为补图. 自补图:一个图假如同构于它的补图,则是自补图 9.设A={a ,b ,c ,d},A 上二元运算以下:* a b c da abcd b b c d a ccdabd d a b c那么代数系统<A ,*>的幺元是 a ,有逆元的元素为a,b,c,d,它们的逆元分别为a,b,c,d 。

//备注:二元运算为 x*y=max{x,y},x,y A 。

10.以下图所示的偏序集中,是格的为 c。

//(注:什么是格?即随意两个元素有最小上界 和最大 下界的偏序)二、选择题 1、以下是真命题的有( C 、D )A .{a} {{a}};B .{{}} { ,{}};C .{{}, }; D .{} {{ }}。

2、以下会合中相等的有( B 、C )A .{4,3} ;B .{ ,3,4};C .{4, ,3,3};D .{3,4}。

;....3、设A={1,2,3},则A 上的二元关系有( C )个。

离散数学期末试题及答案完整版

离散数学期末试题及答案完整版

离散数学期末试题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】326《离散数学》期末考试题(B )一、填空题(每小题3分,共15分)1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ),)(A P 中的元素个数=|)(|A P ( ).2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数.3.谓词公式))()(())()((y P y Q y x Q x P x ⌝∧∃∧→∀中量词x ∀的辖域为( ), 量词y ∃的辖域为( ).4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元.5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=⨯||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个.2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射.3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧⌝)(; (5)q q p →→)(.4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).三.1.设}}{},,{{c b a A =,}}{},,{},{{c c b a B =,则)(=⋃B A ,)(=⋂B A ,)()(=A P .2.集合},,{c b a A =,其上可定义( )个封闭的1元运算,( )个封闭的2元运算,( )个封闭的3元运算.3.命题公式1)(↑∧q p 的对偶式为( ).4.所有6的因数组成的集合为( ).5.不同构的5阶根树有( )棵.四、(10分)设B A f →:且C B g →:,若g f 是单射,证明f 是单射,并举例说明g 不一定是单射.五、(15分)设},,,{d c b a A =,A 上的关系)},(),,(),,(),,(),,(),,(),,(),,(),,{(c d b d a d c c b c a c c a b a a a R =,1.画出R 的关系图R G .2.判断R 所具有的性质.3.求出R 的关系矩阵R M .六、(10分)利用真值表求命题公式))(())((p q r r q p A →→↔→→=的主析取范式和主合取范式.七、(10分) 边数30<m 的简单平面图G ,必存在节点v 使得4)deg(≤v . 八、(10分) 有六个数字,其中三个1,两个2,一个3,求能组成四位数的个数.《离散数学》期末考试题(B)参考答案一、1. {{a , b }, a , b , ?}, {{a , b }, a , b },16.2.92, 27.3.)()(x Q x P →, )()(y P y Q ⌝∧.4. 2, 4, 6, 12.5.4≤,奇数.二、1.22,2,m mn mn ., g , g . ,2,4.,不存在,不存在. 5.连通,3,10.三、1. }}{},,{},,{},{{c c b b a a B A =⋃,}}{{c B A =⋂,{)(=A P ?, {{a , b }}, {{c }}, {{a , b }, {c }}}.2.27933,3,3. 3.0)(↓∨q p .4.{-1,-2,-3,-6,1,2,3,6}. .四、证 对于任意A y x ∈,,若)()(y f x f =,则))(())((y f g x f g =,即))(())((y g f x g f =. 由于g f 是单射,因此y x =,于是f 是单射.例如取},,{},3,2,1(},,{γβα===C B b a A ,令)}2,(),1,{(b a f =,)},3(),,2(),,1{(ββα=g ,这时)},(),,{(βαb a g f = 是单射,而g 不是单射.五、解 1. R 的关系图R G 如下:2.(1)由于R b b ∉),(,所以R 不是自反的. (2)由于R a a ∈),(,所以R 不是反自反的.(3)因为R b d ∈),(,而R d b ∉),(,因此R 不是对称的. (4)因R a c c a ∈),(),,(,于是R 不是反对称的.(5)经计算知R c d a d c c b c a c c a b a a a R R ⊆=)},(),,(),,(),,(),,(),,(),,(),,{( ,进而R 是传递的.综上所述,所给R 是传递的.3.R 的关系矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=0111011100000111R M .六、解 命题公式))(())((p q r r q p A →→↔→→=的真值表如下:由表可知,))(())((p q r r q p A →→↔→→=的主析取范式为A 的主合取范式为)()(r q p r q p A ⌝∨⌝∨∧∨⌝∨⌝=.七、证 不妨设G 的阶数3≥n ,否则结论是显然的. 根据推论1知,63-≤n m . 若G 的任意节点v 的度数均有5)deg(≥v ,由握手定理知n v m v5)deg(2≥=∑.于是m n 52≤,进而652363-⋅≤-≤m n m . 因此30≥m ,与已知矛盾. 所以必存在节点v 使得4)deg(≤v .八、解 设满足要求的r 位数的个数有a r 种,r = 0,1,2,…,则排列计数生成函数65432121211219619431x x x x x x ++++++=,因而38!412194=⋅=a .。

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学期末考试试题及答案一、选择题(每题3分,共30分)1. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A∩B是()A. {1, 2, 3, 4, 5}B. {2, 4}C. {1, 3, 5}D. {2, 4, 6, 8}2. 下列关系中,哪个是等价关系?()A. 小于关系B. 大于等于关系C. 模2同余关系D. 整除关系3. 设P(x)是谓词逻辑公式,下列哪个命题与∀xP(x)等价?()A. ∃x¬P(x)B. ¬∀xP(x)C. ¬∃xP(x)D. ∃x¬P(x)4. 一个图的欧拉回路是指()A. 经过每一条边的路径B. 经过每一个顶点的路径C. 经过每一条边的环D. 经过每一个顶点的环5. 设G是一个无向图,下列哪个说法是正确的?()A. G的每个顶点的度数都相等B. G的每个顶点的度数都不相等C. G的任意两个顶点之间都有一条边D. G的任意两个顶点之间都不一定有边6. 下列哪个图是哈密顿图?()A. K3,3B. K5C. K4,4D. K67. 设G是一个具有n个顶点的连通图,则G的最小生成树至少包含()A. n个顶点B. n-1条边C. n+1条边D. 2n条边8. 下列哪个算法可以用来求解最短路径问题?()A. Dijkstra算法B. Kruskal算法C. Prim算法D. Floyd算法9. 设P和Q是两个命题,下列哪个命题与(P→Q)∧(Q→P)等价?()A. P∧QB. P∨QC. P↔QD. ¬P∨¬Q10. 设A是一个有限集合,A的幂集是指()A. A的所有子集B. A的所有真子集C. A的所有非空子集D. A的所有非空真子集二、填空题(每题3分,共30分)11. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A-B=______。

12. 设P(x)是谓词逻辑公式,∃xP(x)表示“存在一个x使得P(x)成立”,那么∀x¬P(x)表示“______”。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,空集表示为:A. {0}B. {1}C. {}D. Ø答案:D2. 命题逻辑中,下列哪个是合取命题的真值表?A. P | Q | P ∧ QB. P | Q | P ∨ QC. P ∧ Q | P ∨ QD. P ∧ Q | ¬(P ∨ Q)答案:A3. 函数f: A → B是单射的,那么f的逆函数:A. 一定存在B. 一定不存在C. 可能存在D. 以上都不对答案:C4. 关系R是自反的,那么对于所有a∈A,以下哪个命题一定为真?A. (a, a) ∈ RB. (a, a) ∉ RC. (a, a) ∈ R或(a, a) ∉ RD. (a, a) ∈ R且(a, a) ∉ R答案:A5. 在图论中,下列哪个不是图的基本术语?A. 顶点B. 边C. 子集D. 路径答案:C6. 命题p: “如果x是偶数,则x能被4整除”的否定是:A. 如果x是偶数,则x不能被4整除B. 如果x不是偶数,则x不能被4整除C. 如果x不是偶数,则x能被4整除D. 如果x是偶数,则x不能被4整除或x不是偶数答案:A7. 有向图G中,如果存在从顶点u到顶点v的有向路径,则称v是u 的:A. 祖先B. 后代C. 邻居D. 连接点答案:B8. 在命题逻辑中,下列哪个命题是永真命题?A. (P ∧ ¬P) ∨ (P ∨ ¬P)B. (P ∧ ¬P) ∧ (P ∨ ¬P)C. (P ∨ ¬P) ∧ (¬P ∨ P)D. (P ∧ ¬P) ∧ (¬P ∧ P)答案:C9. 以下哪个选项是等价命题?A. P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)B. P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)C. P ∨ ¬P ≡ ¬P ∧ PD. P ∧ ¬P ≡ ¬P ∨ P答案:A10. 树是无环连通图,以下哪个是树的属性?A. 至少有一个环B. 至少有两个顶点C. 至少有一个顶点D. 至少有一个边答案:B二、填空题(每空2分,共20分)11. 集合{1, 2, 3}的幂集含有__个元素。

08计算机《离散数学》期末试卷A答案

08计算机《离散数学》期末试卷A答案

08计算机《离散数学》期末试卷A答案泉州师院2009-2010学年度第一学期2008级计算机《离散数学》期末试卷A答案一、单项选择题:(20%,每空2分)1.设A={1,2,3,4,5},下面( C )集合等于A 。

A、{1,2,3,4,5,6}B、{x | x是整数且x2≤25}C、{x | x是正整数且x2≤25}D、{x | x是有理数且x2≤25}2、下列各命题中,真值为假的是( A )。

A、除非2<1,才有3≥2B、2<1仅当3<2C、只要2<1,就有3<2D、如果2<1,则3≥23、对公式(?x)(?y)(P(x,y)∧Q(y,z)) ∧(?x)P(x,y)的说法正确的是(D)。

A、x是约束出现,y是约束出现,z是自由出现B、x是约束出现,y是约束出现,z是约束出现C、x是约束出现,y既是约束出现又是自由出现,z是约束出现D、x是约束出现,y既是约束出现又是自由出现,z是自由出现4.设,p:你已满16周岁。

q:你身高不足4英尺。

r:你能乘公园滑行铁道。

现有命题“除非你已满16周岁,否则只要你身高不足4英尺就不能乘公园滑行铁道。

”,下列( B )命题公式是错误的。

A.?(q→?r)→p B.?p∧?q→?rC.?p∧q→?r D.r→p∧?q5.下列含有命题p,q,r的公式中,是标准析取范式的是(D)。

6、下列推理步骤错在( B )。

⑤xGFx⑤④②cGcF⑤③cG④xxG ③①c②xxF①规则:,规则:规则:规则规则:规则EG )) () ( (T) () (ES) (P) (ES)(FP) (∧A、②B、④C、⑤D、⑥7、若s={1,2,3,4},S上关系R的关系图为:则R具有( A )性质。

A、自反性、对称性、传递性B、反自反性、反对称性C、反自反性、反对称性、传递性D、自反性8.设X={a,b,c,d},Y={1,2,3},f={,,,}则f是( C )。

2008级离散数学试题答案

2008级离散数学试题答案

2008级离散数学A 卷试题参考答案一、填空题(每小题2分,共20分) 1.(p∧┐q)∨(┐p∧q) 2.┐∀x ∀y (F(x )∧G(y )→H(x ,y )) 3.(F(a, a )∨F(a, b))∧( F(b, a)∨F(b, a)) 4.245 5.e6.a, a 5, a 7, a 11 7.交换律、结合律和吸收律 8.19.r=s10.G 是连通图二、判断题(每小题2分,共20分,正确的划v ,错误的划×) 1.v 2.× 3.× 4.v 5.× 6.×7.v8.×9.v10.v三、计算题(每小题5分,共15分) 1.m1∨m3∨m5∨m72.令f : N×N→N,f (<x,y>) = x 3.6四、证明题(共45分)1.必要性:假设An B?∅,必有x 属于An B ,则x 属于A 同时属于B ,即x 属于A 但是x 不属于A B −,与A B A −=矛盾。

充分性:显然A B A −⊆,下面证明A A B ⊆−。

任取x ,有 x ∈A ⇒ x ∈An E ⇒ x ∈An(B ∪~B) ⇒ x ∈(An B)∪(An ~B) ⇒ x ∈An B ∨ x ∈An ~B ⇒ x ∈An B ∨ x ∈A-B⇒ x ∈A-B (因为An B=∅) 综上上述命题得证。

2.①()F a前提引入 ②(()())x F x G x ∀→ 前提引入 ③()()F a G a → ②UI ④()G a ①③假言推理 ⑤()H a前提引入 ⑥(()()())x G x H x I x ∀∧→ 前提引入 ⑦()()()G a H a I a ∧→⑥UI ⑧()()G a H a ∧ ④⑤合取 ⑨()I a⑦⑧假言推理 3. (1)因为p→p为永真式,所以 pRp,R满足自反性。

 (2)若pRq和qRp,则pRq∧qRp ⇔ (p→q)∧(q→p)⇔ p↔q,由于p→q和q→p为永真式,故p↔q为真,即 p与q等价,R满足反对称性。

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学期末考试试题及答案离散数学是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。

下面是小编整理的离散数学期末考试试题及答案,欢迎阅读参考!一、【单项选择题】(本大题共15小题,每小题3分,共45分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。

1、在由3个元素组成的集合上,可以有 ( ) 种不同的关系。

[A] 3 [B] 8 [C]9 [D]272、设A1,2,3,5,8,B1,2,5,7,则AB( )。

[A] 3,8 [B]3 [C]8 [D]3,83、若X是Y的子集,则一定有( )。

[A]X不属于Y [B]X∈Y[C]X真包含于Y [D]X∩Y=X4、下列关系中是等价关系的'是( )。

[A]不等关系 [B]空关系[C]全关系 [D]偏序关系5、对于一个从集合A到集合B的映射,下列表述中错误的是( )。

[A]对A的每个元素都要有象 [B] 对A的每个元素都只有一个象[C]对B的每个元素都有原象 [D] 对B的元素可以有不止一个原象6、设p:小李努力学习,q:小李取得好成绩,命题“除非小李努力学习,否则他不能取得好成绩”的符号化形式为( )。

[A]p→q [B]q→p [C]┐q→┐p [D]┐p→q7、设A={a,b,c},则A到A的双射共有( )。

[A]3个 [B]6个 [C]8个 [D]9个8、一个连通G具有以下何种条件时,能一笔画出:即从某结点出发,经过中每边仅一次回到该结点( )。

[A] G没有奇数度结点 [B] G有1个奇数度结点[C] G有2个奇数度结点 [D] G没有或有2个奇数度结点9、设〈G,*〉是群,且|G|>1,则下列命题不成立的是( )。

[A] G中有幺元 [B] G中么元是唯一的[C] G中任一元素有逆元 [D] G中除了幺元外无其他幂等元10、令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( )[A] p→┐q [B] p∨┐q[C] p∧q [D] p∧┐q11、设G=的结点集为V={v1,v2,v3},边集为E={,}.则G的割(点)集是( )。

离散期末考试题及答案

离散期末考试题及答案

离散期末考试题及答案离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 有限集合A和B的并集,其元素个数最多是A和B元素个数之和,这个性质称为:A. 德摩根定律B. 幂集C. 并集原理D. 子集原理答案:C3. 命题逻辑中,以下哪个命题是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p ∨ q) ∧ ¬pD. (p ∧ q) ∨ ¬p答案:B4. 在图论中,一个无向图的边数至少是顶点数的多少倍才能保证图中至少存在一个环?A. 1B. 2C. 3D. 4答案:B5. 以下哪个算法用于生成一个集合的所有子集?A. 欧拉回路B. 哈密顿回路C. 深度优先搜索D. 子集生成算法答案:D6. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D7. 以下哪个是有限自动机的状态?A. 初始状态B. 终止状态C. 转移状态D. 所有选项答案:D8. 以下哪个是图论中的一个基本定理?A. 欧拉定理B. 哈密顿定理C. 狄拉克定理D. 所有选项答案:D9. 在命题逻辑中,以下哪个是德摩根定律的逆命题?A. ¬(p ∨ q) ≡ ¬p ∧ ¬qB. ¬(p ∧ q) ≡ ¬p ∨ ¬qC. ¬(p ∨ q) ≡ ¬p ∨ ¬qD. ¬(p ∧ q) ≡ ¬p ∧ ¬q答案:B10. 在集合论中,以下哪个操作表示集合的差集?A. ∩B. ∪C. -D. ×答案:C二、填空题(每空3分,共30分)11. 集合{1, 2, 3}的幂集包含________个元素。

离散数学(B卷)参考答案

离散数学(B卷)参考答案

2007-2008学年第2学期期末考试试卷(B卷)参考答案及评分标准一、填空题(4小题,每空2分,共20分)1、2n2、T3、225,220,52,55,5!4、ℵ,ℵ0二、判断题(4小题,每小题2分,共8分。

正确的划√,错误的划×。

)1、√2、×3、√4、√三、计算或简答题(5小题,共36分)1、在命题逻辑中把下列命题符号化(3小题,每题3分,共9分)(1)设P:别人有困难,Q:老王帮助别人,R:困难解决了。

符号化为(P∧⌝R)→Q或⌝R→(P→Q)(2)设P:我今天上街,Q:我有时间。

符号化为Q→P(3)设P:n是整数,Q:n是偶数,R:n能被2整除。

符号化为(P∧Q)⇄R2、在谓词逻辑中把下列命题符号化(3小题,每题3分,共9分)(1)设P(x):x是无理数,Q(x):x能表示成分数。

符号化为⌝∃x (P(x)∧Q(x)) 或∀x(P(x)→⌝Q(x))(2)设P(x,y):x=y,Q(x):x是实数,符号化为∀x(Q(x)∧⌝P(x,0)→∃y(Q(y)∧P(xy,1)))或者∀x∃y (Q(x)∧⌝P(x,0)→(Q(y)∧P(xy,1)))(3)设P(x):x是人,Q(x):x努力,R(x):x成功。

符号化为∀x(P(x)∧R(x)→Q(x))3、用等价演算法求下面公式的主析取范式.主合取范式:P→(Q→R)⇔⌝P∨(⌝Q∨R) ⇔⌝P∨⌝Q∨R...............[斟酌给0~2分]公式的所有极小项有⌝P∧⌝Q∧⌝R,⌝P∧⌝Q∧R,⌝P∧Q∧⌝R,⌝P∧Q∧R,P∧⌝Q∧⌝R,P∧⌝Q∧R,P∧Q∧⌝R,故主析取范式为...........................[斟酌给0~2分] (⌝P∧⌝Q∧⌝R)∨(⌝P∧⌝Q∧R)∨(⌝P∧Q∧⌝R)∨(⌝P∧Q∧R)∨(P∧⌝Q∧⌝R)∨(P∧⌝Q∧R)∨(P∧Q∧⌝R)........................................................[斟酌给0~1分] 4、求下面公式的前束范式(5分)∀x(∃yF(x,y)→⌝∀y(G(x,y)∧∃zH(x,y,z)))⇔∀x(∃yF(x,y)→∃y(⌝G(x,y)∨∀z⌝H(x,y,z)))........................[斟酌给0~1分]⇔∀x(∃uF(x,u)→∃y(⌝G(x,y)∨∀z⌝H(x,y,z))) ........................[斟酌给0~2分]⇔∀x∀u∃y∀z (F(x,u)→(⌝G(x,y)∨⌝H(x,y,z))) .....................[斟酌给0~2分] 5、解:不满足自反性、反自反性、反对称性和传递性。

大学离散数学期末考试题库和答案

大学离散数学期末考试题库和答案

大学离散数学期末考试题库和答案一、单项选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示“属于”?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 如果A和B是两个集合,那么A∪B表示什么?A. A和B的交集B. A和B的并集C. A和B的差集D. A和B的补集答案:B3. 以下哪个命题是真命题?A. ∀x∈N, x^2 > xB. ∃x∈N, x^2 = x + 1C. ∀x∈N, x^2 ≥ xD. ∃x∈N, x^2 < x答案:C4. 在图论中,一个无向图的边数为E,顶点数为V,那么这个图的生成树的边数是多少?A. EB. V-1C. VD. E-1答案:B5. 以下哪个算法是用于解决旅行商问题(TSP)的?A. 动态规划B. 贪心算法C. 分支限界法D. 回溯法答案:D6. 在逻辑中,以下哪个符号表示“蕴含”?A. ∧B. ∨C. →D. ↔答案:C7. 以下哪个是二进制数?A. 1010B. 2A3C. 12BD. ZYX答案:A8. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D9. 以下哪个是布尔代数的基本运算?A. 并集B. 交集C. 差集D. 所有以上答案:D10. 在离散数学中,以下哪个概念用于描述两个集合之间的关系?A. 函数B. 映射C. 序列D. 所有以上答案:D二、多项选择题(每题3分,共15分)11. 以下哪些是集合的基本运算?A. 并集B. 交集C. 差集D. 补集答案:ABCD12. 在图论中,以下哪些是图的基本类型?A. 无向图B. 有向图C. 完全图D. 二分图答案:ABCD13. 在逻辑中,以下哪些是命题逻辑的基本连接词?A. 与(∧)B. 或(∨)C. 非(¬)D. 蕴含(→)答案:ABCD14. 在关系数据库中,以下哪些是SQL的基本操作?A. SELECTB. INSERTC. UPDATED. DELETE答案:ABCD15. 在离散数学中,以下哪些是组合数学的基本概念?A. 排列B. 组合C. 二项式系数D. 图论答案:ABC三、填空题(每题3分,共30分)16. 如果集合A={1, 2, 3},集合B={2, 3, 4},那么A∩B=______。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、单项选择题(每题2分,共20分)1. 集合{1, 2, 3}的子集个数是:A. 3B. 4C. 8D. 2^3答案:C2. 命题逻辑中,命题p∧(q∨¬p)的真值表中,真值个数为:A. 1B. 2C. 3D. 4答案:B3. 函数f: A→B中,若A={1, 2},B={a, b},则f是单射的必要条件是:A. |A| ≤ |B|B. |A| < |B|C. |A| = |B|D. |A| > |B|答案:B4. 以下哪个图是无向图?A. 有向图B. 无向图C. 完全图D. 树答案:B5. 在图论中,一个图的生成树是:A. 包含图中所有顶点的最小连通子图B. 包含图中所有边的最小连通子图C. 包含图中所有顶点和边的连通子图D. 包含图中所有顶点和边的无环子图答案:A6. 以下哪个命题是真命题?A. 所有偶数都是整数B. 所有整数都是偶数C. 所有奇数都是整数D. 所有整数都是奇数答案:A7. 在布尔代数中,以下哪个运算符表示逻辑与?A. ∨B. ∧C. ¬D. →答案:B8. 有限状态机中,状态的转移是由以下哪个决定的?A. 当前状态B. 输入符号C. 当前状态和输入符号D. 输出符号答案:C9. 以下哪个是图的遍历算法?A. 深度优先搜索B. 广度优先搜索C. 动态规划D. 分治算法答案:A10. 在集合论中,以下哪个符号表示集合的交集?A. ∪B. ∩C. ×D. ÷答案:B二、填空题(每题2分,共20分)1. 集合{1, 2, 3}的幂集是{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}},其中包含元素个数最多的子集是_。

答案:{1, 2, 3}2. 在命题逻辑中,如果p和q都为真,则p∨q的真值为_。

答案:真3. 函数f: A→B中,若A={1, 2},B={a, b, c},则f是满射的必要条件是_。

《离散数学》期末练习题考试卷和答案

《离散数学》期末练习题考试卷和答案

a , b, c , d , e, f , g,那么 所对应的 19. 设集合 A a , b , c , d , e , f , g , A 上有一个划分
等价关系 R 应有( )个序偶。 )。
20. 在有理数集合 Q 上定义二元运算*: a * b a b ab ,则 Q , * 的幺元是(
等价关系 R 应有( )个序偶。 )。
25. 在有理数集合 Q 上定义二元运算*: a * b a b ab ,则 Q , * 的幺元是(
26. 一个(
)称为布尔代数。
27.P Q P Q 的主析取范式是
。(写出一般
5
表示形式即可) 28.设集合 A a , b , c , d , R 是 A 上的二元关系,且 R a , b , b , a , b , c , c , d , a , c , 则 R 的传递闭包 t R 。
C. x x是正整数, x 5


D. x x是有理数, x 5

6.下面有关集合之间的包含和属于关系的说法,正确的是 Ⅰ. Ⅲ.
Ⅱ. , ,
Ⅳ.
a, b a, b, a, b
B.Ⅰ和Ⅲ
a, b a, b, a, b, c
二、填空题 1.设 A 为非空集合,且 A n ,则 A 上不同的二元关系的个数为 为 。 时, P Q 的真值为 1。 , A 上不同的映射的个数
2.设 P 、 Q 为两个命题,当且仅当
3. 在运算表中的空白处填入适当符号,使 a , b , c, * 成为群。 *
a a
a b c
4. 当 n 为 数时, K n n 3 必为欧拉图。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},B={2,3,4},则A∩B=()。

A. {1,2,3}B. {2,3}C. {2,4}D. {1,4}答案:B2. 命题“若x>0,则x>1”的逆否命题是()。

A. 若x≤0,则x≤1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤1,则x≤0答案:B3. 函数f: A→B的定义域是集合A,值域是集合B,则()。

A. A⊆BB. A⊂BC. A⊇BD. A⊃B答案:A4. 集合{1,2,3}与集合{3,2,1}是否相等?()。

A. 是B. 否C. 无法确定D. 以上都不对答案:A5. 命题p:“x>0”,则¬p为()。

A. x≤0B. x<0C. x=0D. x<0或x=0答案:A6. 命题“若x>0,则x>1”的逆命题是()。

A. 若x>0,则x>1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:C7. 函数f: A→B的定义域是集合A,值域是集合B,则()。

A. A⊆BB. A⊂BC. A⊇BD. A⊃B答案:A8. 集合{1,2,3}与集合{3,2,1}是否相等?()。

A. 是B. 否C. 无法确定D. 以上都不对答案:A9. 命题p:“x>0”,则¬p为()。

A. x≤0B. x<0C. x=0D. x<0或x=0答案:A10. 命题“若x>0,则x>1”的逆命题是()。

A. 若x>0,则x>1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:C二、填空题(每题2分,共20分)1. 集合A={1,2,3},B={2,3,4},则A∪B=______。

答案:{1,2,3,4}2. 命题“若x>0,则x>1”的逆否命题是:若x≤1,则x≤0。

(完整word版)离散数学期末考试试题及答案

(完整word版)离散数学期末考试试题及答案

离散数学试题(B卷答案1)一、证明题(10分)1)(⌝P∧(⌝Q∧R))∨(Q∧R)∨(P∧R)⇔R证明: 左端⇔(⌝P∧⌝Q∧R)∨((Q∨P)∧R)⇔((⌝P∧⌝Q)∧R))∨((Q∨P)∧R)⇔(⌝(P∨Q)∧R)∨((Q∨P)∧R)⇔(⌝(P∨Q)∨(Q∨P))∧R⇔(⌝(P∨Q)∨(P∨Q))∧R⇔T∧R(置换)⇔R2) ∃x (A(x)→B(x))⇔∀xA(x)→∃xB(x)证明:∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x)二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。

证明:(P∨(Q∧R))→(P∧Q∧R)⇔⌝(P∨(Q∧R))∨(P∧Q∧R))⇔(⌝P∧(⌝Q∨⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q)∨(⌝P∧⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q∧R)∨(⌝P∧⌝Q∧⌝R)∨(⌝P∧Q∧⌝R))∨(⌝P∧⌝Q∧⌝R))∨(P∧Q∧R)⇔m0∨m1∨m2∨m7⇔M3∨M4∨M5∨M6三、推理证明题(10分)1)C∨D, (C∨D)→⌝E,⌝E→(A∧⌝B), (A∧⌝B)→(R∨S)⇒R∨S 证明:(1) (C∨D)→⌝E P(2) ⌝E→(A∧⌝B) P(3) (C∨D)→(A∧⌝B) T(1)(2),I(4) (A∧⌝B)→(R∨S) P(5) (C∨D)→(R∨S) T(3)(4), I(6) C∨D P(7) R∨S T(5),I2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x) P(2)P(a) T(1),ES(3)∀x(P(x)→Q(y)∧R(x)) P(4)P(a)→Q(y)∧R(a) T(3),US(5)Q(y)∧R(a) T(2)(4),I(6)Q(y) T(5),I(7)R(a) T(5),I(8)P(a)∧R(a) T(2)(7),I(9)∃x(P(x)∧R(x)) T(8),EG(10)Q(y)∧∃x(P(x)∧R(x)) T(6)(9),I四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案1. 题目描述:以下是离散数学期末考试的题目。

请仔细阅读每个问题,并在题后给出相应的答案。

请注意,答案应尽量详细和准确,以确保得分。

1.1 命题与谓词逻辑(20分)1.1.1 什么是命题逻辑?它可以用于解决哪些问题?1.1.2 简要解释谓词逻辑的概念和其在离散数学中的应用。

1.2 集合和图论(30分)1.2.1 定义两个集合的并、交和差的概念。

1.2.2 解释有向图和无向图的区别,并给出一个实际应用中的例子。

1.3 关系和函数(40分)1.3.1 什么是关系?请给出一个实际应用中关系的例子。

1.3.2 定义函数的概念,并解释函数与关系的区别。

1.4 计数原理(20分)1.4.1 简要阐述乘法原理和加法原理的概念,并给出一个应用实例。

1.4.2 什么是排列和组合?请说明它们的应用场景,并给出一个例子。

2. 答案解析:2.1 命题与谓词逻辑1.1.1 命题逻辑是一种数学分支,用于研究命题之间的关系和推理规则。

其应用范围广泛,包括数学、计算机科学、哲学等领域。

1.1.2 谓词逻辑是一种扩展了命题逻辑的逻辑体系,它考虑了命题中的变量、谓词和量词等元素。

在离散数学中,谓词逻辑常用于描述集合、函数和关系等概念。

2.2 集合和图论1.2.1 集合的并(∪)是指将两个或多个集合中的所有元素取出形成一个新的集合;交(∩)指仅包含两个或多个集合中共有的元素;差(-)是指从一个集合中去除另一个集合中的元素。

1.2.2 有向图中,边是具有方向性的;而在无向图中,边是没有方向性的。

例如,在社交网络中,有向图可以表示人与人之间的关注关系,而无向图可以表示人与人之间的好友关系。

2.3 关系和函数1.3.1 关系是集合之间的一种特殊的子集,它描述了元素之间的某种联系。

例如,家族中的血亲关系可以看作是一个关系。

关系可以用图、矩阵等方式表示。

1.3.2 函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学期末考试试题及答案一、选择题(每题4分,共40分)1.下列哪一个不是集合操作? A. 并 B. 交 C. 补 D. 叉积正确答案:D2.下列哪一个不是真命题? A. 1 + 1 = 2 B. 所有的猫都会飞 C. 所有的数都是整数 D. 狗是哺乳动物正确答案:B3.设A = {1, 2, 3},B = {3, 4, 5},则A ∩ B的结果是:A. {1, 2}B. {3}C. {1, 3}D. {4, 5}正确答案:B4.设A = {1, 2, 3},B = {3, 4, 5},则A × B的结果是:A. {(1, 3), (2, 4), (3, 5)}B. {(1, 1), (2, 2), (3, 3)}C. {(3, 3), (3,4), (3, 5)} D. {(3, 1), (3, 2), (3, 3)}正确答案:A5.若n为正整数,则n是偶数的充要条件是: A. n可以被2整除 B. n除以2的余数为1 C. n大于2 D. n的绝对值是偶数正确答案:A6.若A = {1, 2, 3, 4},B = {3, 4, 5},则A - B的结果是:A. {1, 2}B. {3}C. {1, 3, 4}D. {4, 5}正确答案:A7.已知命题P和命题Q,下列哪个是它们的逻辑等价式?A. P ∧ (P ∨ Q) = P B. P ∧ (P ∨ Q) = Q C. P ∨ (P ∨ Q) = P D. P ∨ (P ∨ Q) = Q正确答案:A8.设n为奇数,则n + n的结果是: A. 2n B. n^2 C.n(n+1) D. n(n-1)正确答案:C9.已知集合A = {1, 2, 3, 4},B = {4, 5, 6},C = {6, 7, 8},则(A ∩ B)∩ C的结果是: A. {1, 2, 3} B. {4} C. {6} D. 空集正确答案:D10.若命题P为真,则下列哪个推理是正确的? A. 如果P为真,则Q为真(反证法) B. P与Q都为真(析取引理)C. P蕴含Q(推理法则) D. P等价于Q(假设法)正确答案:A二、解答题(每题10分,共60分)1.证明:任取集合A和B,有(A ∪ B) - B = A - B解答:运用集合的基本运算性质:对任意元素x,x∈ (A ∪ B) - B,即x ∈ (A ∪ B)且x ∉ B。

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学期末考试试题及答案一、选择题(每题5分,共25分)1. 设A={1,2,3,4,5},B={2,3,5,7,11},则A∩B等于()A. {1,2,3,4,5}B. {2,3,5}C. {1,4}D. {2,3,5,7,11}2. 下面哪一个图是连通图?()A. 无向图B. 有向图C. 平面图D. 连通图3. 若一个图G有n个顶点,e条边,则以下哪个条件是图G 为连通图的必要条件?()A. n ≥ eB. n ≤ eC. n = eD. n + e = 24. 在一个简单图中,若每个顶点的度数都等于n-1,则该图是()A. 无向图B. 有向图C. 完全图D. 平面图5. 以下哪一个命题是正确的?()A. 每个图都有欧拉回路B. 每个连通图都有哈密顿回路C. 每个图都有哈密顿路径D. 每个连通图都有欧拉路径二、填空题(每题5分,共25分)6. 设A={a,b,c},B={1,2,3},则A×B的结果是______。

7. 一个连通图的生成树包含______条边。

8. 在一个n阶完全图中,任意两个不同顶点之间的距离是______。

9. 一个图G的顶点集为V,边集为E,则图G的邻接矩阵表示为______。

10. 在一个简单图中,若每个顶点的度数都等于n-1,则该图的边数是______。

三、判断题(每题5分,共25分)11. 一个图的子图包含原图的所有顶点和边。

()12. 一个连通图的所有顶点都连通。

()13. 在一个简单图中,每个顶点的度数都小于等于n-1。

()14. 每个图都有哈密顿路径。

()15. 一个图G的生成树是原图G的子图。

()四、解答题(共50分)16. (10分)设A={1,2,3,4,5},B={2,3,5,7,11},求A∪B 和A-B。

17. (10分)证明:一个连通图的每个顶点的度数都大于等于2。

18. (10分)给定一个图G,顶点集V={a,b,c,d,e},边集E={ab,bc,cd,de,ac,ad},求图G的所有连通分支。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

厦门大学软件学院2008级离散数学期末试卷(A )
一、选择题(共10题,每题3分,共30分)
1. 下列语句为命题的是( )
A. 勿踏草地;
B. 你去图书馆吗?;
C. 月球上有水。


D. 本命题为假。

2. 下列推理中,( )是错误的
A. 如果x 是有理数,则它为整数。

1/2是有理数。

所以,1/2是整数。

B. 若周末气温超过30度,小红就去游泳。

小红周末没去游泳。

所以,周末气温没有超过30度。

C. 下午小明或者去看电影,或者去打篮球。

下午小明没去打篮球。

因此,下午小明去看电影了。

D. 若a 能被4整除,则a 能被2整除。

a 能被2整除。

因此,a 能被4整除。

3. 谓词公式())()()()()(x Q y R y x P x →∀∨∃中的x ( )
A. 只是约束变元;
B. 只是自由变元;
C. 既非约束变元又非自由变元;
D. 既是约束变元又是自由变元
4. 下列关系中,( )不是等价关系
A. 非空集合的幂集的元素间的包含关系;
B. 集合之间的等势关系;
C. 公式之间的等价关系;
D. 图之间的同构关系。

5. 下面等价公式中,( )是不正确的
A. ())()()()()()()(x B x x A x x B x A x ∀∧∀⇔∧∀
B. ())()()()()()()(x B x x A x x B x A x ∃∨∃⇔∨∃
C. ()B x A x B x A x →∃⇔→∃)()()()(
D. ())()()()(x B x A x B A x ∀→⇔→∀
6. 下列关于集合的势的叙述中,( )是错误的
A. 实数集势小于或等于自然数集;
B. 任一无限集合都存在与自己等势的真子集;
C. 集合之间的势小于或等于关系是偏序关系;
D. 有理数集势小于整数集。

7. 设A ,B ,C 是集合,F 是关系,B A G →:,A D ⊆,则下列式子中不正确的是(
) A. B B A B A =⇔φ=- ; B. D D G G ⊇-))((1;
C. ][][][B F A F B A F =; C. )()(C B A C B A ⊕⊕=⊕⊕ 8. 以下序列中,( )是简单可图的
A. (4,4,3,3,2,2);
B. (3,3,3,1);
C. (5,4,3,2,2);
D. (6,6,3,2,2,2,1) 9. 下列叙述中错误的是( )
A. )2(≥n n 阶竞赛图都具有哈密顿通路;
B. 非平凡树不是偶拉图,也不是哈密顿图;
C. 3(≥n n 且为奇数)阶的二部图一定不是哈密顿图;
D. 欧拉图回路包含图的所有顶点,哈密顿回路包含图的所有边。

10. 下列关于图的连通性的叙述中正确的是( )
A. 有向图是连通的是指它是强连通的;
B. 任一无向图的点连通度都不超过它的连通度;
C. 在一n 阶圈)4(≥n C n 上任意去掉两个顶点得到的图都有2个连通分图;
D. n 阶无向完全图的点连通度为n 。

二、填空题(共8分,每题3分,共24分)
1. 令)(x F :x 是汽车;)(x G :x 是火车;),(y x H :x 比y 快。

则命题“不存在比所有火车都快的汽车”符号化形式为
2. 公式r q p ∧→)(的主析取范式为
3. 集合},,,{d c b a A =上的等价关系共有 个。

4. 自对偶的顶点数n 和边数m 之间满足关系式为=m
5. 设T 是有t 片树叶的2叉正则树,则T 应该有 个顶点
6. ()=ΦΦ}}{,{P
7. 在1到100之间(包含1和100)既不能被2也不能被3还不能被5整除的自然数有 个
8. “p 当且仅当q ”, “只有p 才有q ”, “除非q 才有p ”这三个命题符号化分别为 , , (请按顺序填写)
三、应用、计算和证明题(共6题,46分)
1.(6分)在命题逻辑的自然推理体系中构造下面推理的证明:
前提:)(Q P ⌝∧⌝,R Q ∨⌝,R ⌝
结论:P ⌝
2.(8分)设集合},,,{d c b a A =,A 上的关系},,,,,,,,,,{><><><><><=c b d c a b b a a a R 。

(1)画出R 的关系图;(2分)
(2)画出R 的自反闭包、对称闭包和传递闭包的关系图(2分,2分和2分)。

3.(8分)设><R A ,为一偏序集,其中}12,,2,1{ =A ,R 是A 上的整除关系。

(1)画出><R A ,的哈斯图(4分);
(2)求A 的所有极大元和极小元(2分);
(3)求}6,3,2{B 的最小元和最大元(2分)。

4.(8分)(1)判断左图是否为欧拉图,若是,请给出一欧拉回路(用阿拉伯数字在边上标明顺序
即可),若不是,请说明原因;(4分)
(2)判断右图是否为哈密顿图,若是请给出一哈密顿回路(用阿拉伯数字在顶点上标明
顺序即可),若不是请说明原因。

(4分)
5.(8分)设G 是无向简单图且2)(≥≥δk G ,试证明G 中存在长度大于等于1+k 的初级回路(圈)。

6.(8分)
在一棵有3个2度顶点,2个4度顶点,其余顶点都是树叶的无向树中,应该有几片树叶?(2分) 请画出所有这样的非同构的无向树(6分)
答案及评分标准
一、选择题
CDDAC DCADD
二、1. ))),()()(()()((y x H y G y x F x →∀∧∃⌝或者))),()()(()()((y x H y G y x F x ⌝∧∃→∀
2. 731m m m ∨∨
3. 15
4. 22-=n m
5. 12-t
6. }}}{,{}},{{},{,{ΦΦΦΦΦ
7. 26
8. q p →,q p →,q p →(该小题每空1分)
三、1. 析取三段论置换)(前提引入)(析取三段论)(前提引入前提引入)5)(3()
6(5)(4)2)(1(Q
3)
2()
1(P Q
P Q P R R Q ⌝∨⌝⌝∧⌝⌝⌝∨⌝ (若为注明推理规则或标注有错,扣1分)
2. (1)图略
(2) ==A I R R r )((略),1)(-=R R R S =(略),
},,,,,,,,,,,,,,,,,{)(2><><><><><><><><><==c b d c a b d b b b d a c a b a a a R R R t (该题要求画出三个闭包的关系图,每个关系图2分,共6分,边少画或多画一律判错)
3.(1)图略
(2)A 的极大元为:7,8,9,10,11,12,A 的极小元为:1
(3)B 的最小元无,最大元为6
(哈斯图如果出现水平边扣1分)
4.左图:因为该图是连通图且图中没有奇数度顶点,所以该图是欧拉图(只要判断正确给2分)欧拉回路标序如下:
右图:该图不是哈密顿图(2分)。

取}8,6,4{=V ,从中删除V ,得到5个连通分支,所以该图不是哈密顿图(2分)
另证(反证)
2 4 9 8 3
由于5,7,9顶点都是2度点,因此该哈密顿图必包含边(4,5),(6,7),(7,8),(8,9),(9,4),而这6条边构成一个圈。

矛盾
5.证明:不妨设G 是连通图。

若G 不连通,因为G 的各连通分支的最小度也都大等于k ,因而可以对它的某个连通分支进行讨论。

设v u ,为G 中任意两个顶点,由G 是连通图,因而v u ,之间存在路径。

用扩大路径法扩大这条路径。

设最后得到的极大路径为t t v v v 10=Γ,则k t ≥。

事实上,若存在极大路径s s v v v 10=Γ,且k s ≤,则0v 只能与s Γ中的顶点相邻,因为G 是简单图,所以与0v 相邻的顶点最多有s 个,而k s ≤,这与k G ≥δ)(矛盾,所以“极大路径”长度大等于k 。

在t Γ上构造圈。

由于2)()(0≥≥δ≥δk G v ,因而0v 除与t Γ上的1v 相邻外,还存在t Γ上的1-k 个顶点121,,-k i i i v v v ,)1(121t i i i k ≤<<<<- 与0v 相邻,则00121v v v v v k i i i - 为一个圈且长度大等于1+k 。

(注意,也可以直接设Γ是G 的最长路径)
6.设树叶有x 片,则边数x x m +=-++=4123,由握手定理,
∑++==+=x v d x m i 4*22*3)()4(*22,得6=x
所以应该有6片树叶,共10个非同构无向树:
(1) 两个4度相邻的情况(5)
(2) 两个4度点间有一个2度点的情况(3)
(3)
(4)两个4度点间有三个2度点的情况(1)
(请酌情扣分)。

相关文档
最新文档