光纤光学课件第一章

合集下载

光纤光学

光纤光学
光纤坚硬而又弯曲灵活,强度极大;光学性质:取决于结构和 成分,最明显的就是损耗或信号衰减特性等。光纤是绝缘体, 它不能直接传输电信号和能量。
1.4 光纤与通信网络 光纤的带宽和具有吸引力的特征使其成为理想的线缆 传输媒介。对于通信系统,光纤是具有强大运载信息 能力的工具。光纤工业已经进入显著的繁荣期。在过 去的20年里,一根光纤所能承载的最大数据率差不多 平均每年翻一番,比电子行业的摩尔定律(每18个月 翻一番)还要快 1.4 光纤与通信网络(续) (1)全球海底网络(2)陆地网络 (3)卫星系统与光纤网络(4)光纤到户 (5)局域网
光纤传感技术应用: 工业、制造、土木工程、军用科技、环境保护、地质勘
探、石油探测、生物医学等。
光纤传感器种类: 包括湿度、温度、应变、应力、振动、声音和压力传感
器等。 (1)光纤光栅传感器(2)光纤法布里-珀罗传感器(3)光 纤白光干涉传感器 (4)光纤陀螺传感技术(5)其他光纤传感技术 1.6 光纤的发展 种类:多模光纤 单模光纤、保偏光纤、塑料光纤、掺杂 光纤、光子晶体光纤等数十种; 材料:石英光纤 聚合物/塑料光纤、光子晶体光纤、掺 稀土光纤等
z ds
路径 dr
r r+dr
ls
ls=
dr ds
dr=ds
o
y
x
图 光线传播路径示意图
z
a
b
r
r=(s/n)a+b
o
y
x
图 均匀介质中路径方程的解
矢量b 指出了光线的起始位置; 矢量a 则指明了光线的传播方向。
总结
当光纤纤芯的横向尺寸(直径)远大于光 波长时,可以用较成熟的几何光学(射线光 学)分析法进行分析;
在工业发达国家及我国:干线大容量通信线路不再新建 同轴电缆,而全部铺设光缆。

光纤光学课件第一章

光纤光学课件第一章
光纤光学第一章课件 ppt 转 word---陆众 制
幻灯片 1
光纤光学 第一章
光纤传输的基本理论
W-C Chen
幻灯片 2 §1. 前言
Foshan Univ.
低损耗光纤的问世导致了光波技术领域的革命,开创了光纤通信的时代。光纤在工程上的 使用促使人们需要对光纤进行深入研究,形成一门新的学科——光纤光学。
NA ni sinim n12 n22 n1 2
*相对折射率差:
(n12 n22 ) / 2n12
约束光: z zc
*折射光: z zc
幻灯片 14 *渐变折射率分布:
子午光线:渐变折射率分布
n(r) n1 1 2(r / a)2 1/2 n2
0ra ra
*光线轨迹: 限制在子午平面内传播的周期曲线。 轨迹曲线在光纤端面投影线仍 是过圆心的直线,但一般不与纤壁相交。
波动理论的数学基础——麦克斯韦方程:
H D/ t J
E B / t
D
B 0
幻灯片 20 从麦克斯韦方程组出发导出一般波导介质中电场的波动方程
2E
(E
)
E
2E t 2
J t

E
B
E
t
B
( H )
t
t
根据恒等式关系,有
10
光纤光学第一章课件 ppt 转 word---陆众 制
幻灯片 26
模式的基本性质
当采用波动理论来分析光波在光纤中的传输时,须求解波导场方程。其方法是首先求出
纵向场分量 Ez 和 Hz,然后利用纵横关系式求出场的横向分量。求出 Ez 和 Hz,再通过
麦克斯韦方程组求出其他电磁场分量,就得到任意位置的电场和磁场。

光纤光学PPT课件02

光纤光学PPT课件02
按材料分:
石英 纯度高, 通信 塑料 成本低,损耗大 红外光纤 极低理论损耗,用于跨洋通信等
特种光纤:
保偏(单偏振)光纤;有源光纤;晶体光纤 零/非零色散位移光纤;负色散光纤; 特殊涂层光纤;耐辐射光纤;发光光纤
1-2 光纤光学的基本方程
光纤光学的研究方法
适用条件 研究对象 基本方程 研究方法 研究内容
模式的场分量
模式场分布由六个场分量唯一决定: Ex Ey Ez Hx Hy Hz Er Ef Ez Hr Hf Hz
场的横向分量可由纵向分量来表示: 纵横关系式(1.2.25-1.2.28)—直角坐标系 (1.2.29-1.2.32)—直角坐标系
Ez 和 Hz 总是独立满足波导场方程。
模式命名
“芯 / 包”结构 凸形折射率分布,n1>n2 低传输损耗
光纤的分类(1)按用途分
通信光纤 传感光纤 传光光纤 传像光纤
光纤的分类(2)按折射率分布
光纤的分类(3)按光纤传输模式分
模式: 光场在光纤横截面上的分布, 横模 单模光纤: 针对给定的光波长,只允许一个模式传输
光纤的分类(4)按材料分
刘海荣 (Dr. Liu Hairong)
第一章 光纤光学的基本理论
光纤光学所涉及的基本问题
(1)模式的激励 (光的入射) (2) 模式的分布 (光线传播轨迹) (3)传输损耗 (损耗) (4)光信号的畸变 (色散) (5) 模式耦合
光纤技术所涉及的基本问题
(1)参数的测试技术 (2)自聚焦,准直技术 (3)光纤间连接技术,光纤与光源间的耦合技术 (4)光隔离滤波技术 (5)光的放大技术
根据场的纵向分量Ez和Hz的存在与否,可将模式命 名为:
(1)横电磁模(TEM): Ez=Hz=0;

物理光纤光学课件

物理光纤光学课件

理论——耦合模理论
基本思想:相耦合的两波导中的场, 各自保持了该波导独立 存在时的场分布和传输系数, 耦合的影响表现在场的复数振 幅的沿途变化。设两波导中的复数振幅为A1和A2。由于耦合作 用, 它们沿长度方向变化。
dA1 (z) dz
i(1
C11 ) A1
iC12 A2
dA2
(
Z
)
dz
i(2
•Light of the specified wavelength traveling along the fiber is
reflected from the grating back in the direction from which it came.
•Wavelengths which are not selected are passed through with little
制作工艺:熔锥型、磨抛型
熔锥型器件(强耦合模激励理论),使两光纤芯靠近,使 传播场向外扩展,以便在相当短的锥体颈部区域出现有效 的功率耦合。在耦合器中功率耦合最有效区域(颈部区域) 内的模式基本上是包层模,传播场脱离纤芯,这时场是在 包层和外部媒体(空气或其他适合的填料)所形成的新波 导中传播。
磨抛型器件(弱耦合理论),利用光学冷加工(机械抛磨) 除去光纤的部分包层,使光纤波导能相互靠近,以形成瞬 逝场相互渗透。利用微调装置改变两光纤的相对位置可以 改变耦合器的耦合率。
•the most important aspect is that the effect is asymmetric.
•materials : YIG (YttriumIron-Garnet)
2. Polarisation Independent Isolator

光纤光学课件第一章

光纤光学课件第一章

---------------------------------------------------------------最新资料推荐------------------------------------------------------光纤光学课件第一章1幻灯片 1 光纤光学第一章光纤传输的基本理论 W-C Chen Foshan Univ. 幻灯片 2 1. 前言低损耗光纤的问世导致了光波技术领域的革命,开创了光纤通信的时代。

光纤在工程上的使用促使人们需要对光纤进行深入研究,形成一门新的学科光纤光学。

幻灯片 3 光纤的分类幻灯片 4 2实用光纤主要的三种基本类型 (a) 突变型多模光纤; (b) 渐变型多模光纤;(c )单模光纤横截面2a2brn折射率分布纤芯包Ait(a)输入脉冲光线传播路径~多模光纤幻灯片 5 阶跃折射率光纤剖面测量图(华工光通信研究所)3 单模光纤多模光纤幻灯片 6 光纤结构光纤(Optical Fiber)是由中心的纤芯(Core)和外围的包层(Cladding)同轴组成的圆柱形细丝。

纤芯的折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输。

包层为光的传输提供反射面和光隔离,并起一定的机械保护作用。

设纤芯和包层的折射率分别为 n1 和 n2,光能量在光纤中传输的必要条件是n1n2。

幻灯片 7 主要用途:1 / 15突变型多模光纤只能用于小容量短距离系统。

渐变型多模光纤适用于中等容量中等距离系统。

单模光纤用在大容量长距离的系统。

特种单模光纤大幅度提高光纤通信系统的水平 1.55 m 色散移位光纤实现了 10 Gb/s 容量的 100 km 的超大容量超长距离系统。

色散平坦光纤适用于波分复用系统,这种系统可以把传输容量提高几倍到几十倍。

偏振保持光纤用在外差接收方式的相干光系统,这种系统最大优点是提高接收灵敏度,增加传输距离。

4幻灯片 8 2.光纤的研究方法光线理论几何光学方法波动光学方法适用条件研究对象光线模式基本方程射线方程波导场方程研究方法折射/反射定理边值问题主要特点约束光线模式幻灯片 9 光线理论光线分类子午光线倾斜光线射线方程几何光学法分析问题的两个出发点数值孔径时间延迟幻灯片 10 设纤芯和包层折射率分别为 n1 和 n2,空气的折射率 n0=1,纤芯中心轴线与 z 轴一致。

chapter光纤光学ppt课件

chapter光纤光学ppt课件
Pin(dBm)=10log10[Pin(mW)/1mW] =10log10[200×10-3mW/1mW]=-7dBm
在z=30km时的输出功率(用dBm表示) Pout(dBm)=Pin(dBm)-αz
=-7dBm-0.8dB/km×30km =-31dBm
Pout=10-31/10(mW)=0.79×10-3mW=0.79uW
整理ppt
35
2.群延时
延时差:
d( 1 )
g
Vg d
色散系数
整理ppt
36
3.色散系数
引进色散系数D,指的是光信号在单位轴向距离上、单位波长间隔
产生的时延差:Dd dgd d V 1 g 2 2c2 cd d2n 2
群速率色散参数β2
()n()c01012202...
mdd mm0
(dB /km )1 z0log10[P P ((0 z))]4.343 p
整理ppt
5
dB=10log10(PA/PB)是功率增益的单位,是一个相对值。 例如:PA的功率比PB的功率大一倍,那么
10log10(PA/PB)=10log10(2)=3dB
为了方便计算光纤链路中的光功率,通常将dBm作为光功率 的运算单位,这个单位的含义是相对于1mW的功率。
=10log10[PA(mW)/PB(mW)] 例1:如果PA的功率为46dBm,PB的功率为40dBm,则PA比PB大 6dB。
46dBm-40dBm=6dB
10log10[PA/PB]=6 PA/PB=100.6=3.98≈4
整理ppt
7
例2:设想一根30km长的光纤,在波长1300nm处的衰减为 0.8dB/km,如果我们从一端注入功率为200uW的光信号,求 其输出功率Pout。 解:首先将输入功率的单位转换成dBm。

光纤光学-1-6课件

光纤光学-1-6课件

Ur cos(m -1)
J m+1 (
a
)
sin(m +1)
-
Jm-1(
a
)
sin(m -1)
EyI
A Jm (U )
Ur cos m
Jm(
a
)
sin m
HxI
-n
0 0
A Ur cos m
Jm (U )
Jm(
a
)
sin m
ExI 0
H
I y
0
2022/10/18
4
线偏振模LPml 的构成(r>a)
EyII
A Km
Wr cos m
Km (
a
)
sin m
H
II x
-n
0 0
A Km
Wr cos m
Km (
a
)
sin m
ExII 0
H
II y
0
2022/10/18
5
LPml模的偏振态:
• LPml模的简并态是以光纤的弱导近似为前提的。实 际上,n1和n2不可能相等,因此HEm+1,l模与EHm-1,l模的 传播常数β不可能绝对相等,即两者的相速并不完全 相同。随着电磁波的向前传播,场将沿z轴作线偏振 波-椭圆偏振波-园偏振波-椭园偏振波-线偏振 波的周期性变化。场形变化一周期所行经的z向距离, 即差拍距离为:
Jm(U)
Km(W)
2022/10/18
8
LPml模式本征值
• 模式的截止与远离截止:
– 远离截止: W→∞, 场在包层中不存在 – 临近截止: W=0 , 场在包层中不衰减
• 截止与远离截止条件:

光纤基础知识PPT演示课件

光纤基础知识PPT演示课件

62.5/50m
8~10m
1.0m
125m2m
2%
245m10m
15m
2m
•16
光纤:参数
光纤的光学及传输特性参数
• 模场直径 • 衰减系数 • 色散系数 • 截止波长 • 弯曲损耗 • 偏振模色散
•17
光纤:参数
光纤的光学及传输特性参数
模场直径:
高斯分布的单模光纤, 模场直径是光场幅度 分布1/e处各点所围成 圆的直径,也等于光 功率分布1/e2处各点 所围成圆的直径。
一部分入射光将被反射
一部分入射光将进入第二种媒质,并产生折射
1 2
媒质1 折射率n1
媒质2 折射率n2
1=2
媒质1
1
折射率n1
2
媒质2
折射率n2
n1·Sin1=n2·Sin2
•3
折射率 n=光在真空中的传播速度/光在该媒质中的传播速度
媒质 真空 空气 水 多模光纤 单模光纤 玻璃 钻石
折射率 1.0 1.0003 1.33 1.457 1.471 1.5~1.9 2.42
1
4
4
3
1 非色散位移光纤 2 色散位移光纤 3 色散平坦光纤 4 非零色散位移光纤
2
0 1200
1400 1500 1600 1700 1800 nm
-4
-8
波长(nm)
•22
光纤:参数
光纤的光学及传输特性参数
截止波长:
光纤作为单模光纤工作的最短波长。工作 波长超过此波长时,只能传输基模,此时光纤 为单模光纤;工作波长低于此波长时,除基模 外,高次模也可传输,此时光纤为多模光纤。
如:Corning的Submarine Leaf光纤 Lucent的TrueWave XL光纤

光纤光学基础

光纤光学基础

光线在光纤内单位长度传输的路程仅取决于纤端入射角以及
相对折射率n0/n1,与光纤的直径无关。
tg 1 2a 2atg
2a
1
n02
n12 sin
2
1
光线在光纤内单位长度内全反射的次数不仅取决于纤端入射
角以及相对折射率n0/n1,且与光纤的成直径反比。
12
2.斜光线的传播
斜光线:不在子午面内的光线,它与光纤的轴线
既不平行也不相交,其空间轨迹为空间螺旋折线
。它可以是左旋,也可以是右旋,但它与光纤的
中心轴是等距的。
斜光线在光纤内传输的条件:
o
0
P K
由折射定律有:
sin
0
n2 n1
Q
o
T
13
MH
由:sin cos sin
可得:
cos sin 0
1
n2 n1
2
同样在纤端由折射定律有: n0 sin n1 sin
之下降。实验表明,当R/a<50, 透光量开始下降;
R/a20,明显下降。
18
4.光纤端面的倾斜效应
19
光纤光学特性
光纤色散 光纤偏振与双折射 光纤损耗
光纤损耗
10 lg( Pi ) dB / km
L Po
21
由于:sin 1;
a 1 R
故有:S0 S子
光纤弯曲时,光线在光纤内单位长度的传输的路程小于 子午线时的情形。
17
单位光纤长度的反射点数:
0
1
1 a

光纤弯曲时,光线在光纤内单位长度的反射点数小 于子午线时的情形。
结论:光线弯曲时,比起不弯曲时其数值孔径、

光纤光学-1-3公开课获奖课件

光纤光学-1-3公开课获奖课件
• GIOF带宽敞于SIOF!
2024/10/1
14
角向运动
分析φ分量方程: n dr d d nr d 0
dS dS dS dS
有:
I =n r2dφ/dz
=r0n(r0)sinθz(r0)cosθφ(r0)
I ---- 第二射线不变量
2024/10/1
15
角向运动特点
• 光线旳角动量:
10
园柱坐标系与光线入射条件
(dr/dS) |r0 =sinθz(r0)sinθφ(r0)
z
ez
e
(r dφ/dS)|r0 =sinθz(r0)cosθφ(r0)
(dz/dS)|r0 = cosθz(r0)
r
rrˆ
zzˆ
x
r
z
er
r0
r0d
z dz
ds
r0
dr
y
e
er
2024/10/1
2
nr
0 rr1 rl1 rg1
a rg 2 rl 2
rl 3
2024/10/1
r
20
约束光线
条件:
n2<n(r0) cosθz(r0)<n1
光线存在区域: rg1 < r < rg2
内散焦面半径:rg1 外散焦面半径:rg2
2024/10/1
21
隧道光线
条件:
n2> n(r0) cosθz(r0)>√n22-(r02/a2)n2(r0)sin2θz(r0)cos2θφ(r0)
r2ω=r2dφ/dt=
Ic/
2n 恒为常数
• 这表白,光线角向运动速度将取决于光线
轨迹到纤轴距离r:在最大旳r处光线转动最

非线性光纤光学第一章-绪论PPT课件

非线性光纤光学第一章-绪论PPT课件
✓ 塑料光纤
纤芯和包层都用塑料(聚合物)做成,纤芯直径为1000μm,比单模石 英光纤大100倍,接续简单,易于弯曲,施工容易。
✓ 多组分玻璃光纤
多组分玻璃的成分是以重量占百分之几十的SiO2为主,还包含有碱金属、 碱土金属、铝、硼的氧化物的总称。其特点是:折射率一般比石英玻璃 高,n=1.49~1.54,可以用来制作大数值孔径(NA=0.2~0.6)的光 纤。熔融温度比石英系玻璃低一些,在1400摄氏度以下;抗压抗拉强 度低于石英玻璃。
chromaticchromaticpmdpmdmodalmodal76对于多模光纤而言偏振模色散没有什么意义这种情况下的脉冲展宽变为dispersionmodalchromatic单模光纤中不存在模式色散而不是偏振模色散这时方程变为dispersionchromaticpolarizationmodeoutputinputdispersion单模光纤的色散单模光纤的色散零色散零色散波长波长零色散零色散波长波长17psnmk17psnmkm1550nmm1550nm17psnmk17psnmkm1550nmm1550nm78dispersionstandarddispersionstandardsinglesinglemodefibermodefiberdd正常色散区正常色散区光脉冲的较高的频率分量光脉冲的较高的频率分量兰移比较低的频率分兰移比较低的频率分量红移传输得慢量红移传输得慢dd反常色散区反常色散区光脉冲的较高的频率分量光脉冲的较高的频率分量兰移比较低的频率分兰移比较低的频率分量红移传输得快量红移传输得快零色散零色散波长波长dd走离效应走离效应色散的一个重要特性是由于群速度失配不同波长下的脉冲在光纤色散的一个重要特性是由于群速度失配不同波长下的脉冲在光纤内以不同的速度传输这一特性导致了内以不同的速度传输这一特性导致了走离效应走离效应它在涉及到两个或它在涉及到两个或更多个交迭脉冲的非线性现象的描述中起了重要的作用更多个交迭脉冲的非线性现象的描述中起了重要的作用xpmxpm作用

光纤光学第一章

光纤光学第一章

全球海底光缆网络
我国陆地光缆网络
二、光纤到户
1)“最后一公里”成为现代电信网络的瓶颈。 2)光纤到户较比电缆接入具有优势;
光纤到户为无源网络,可靠稳定,维护运营成本低
光接入带宽大、距离长,网络规模大
光纤承载业务种类多(语音、数据、图像、多媒体)
光纤传输支持的协议灵活,数据格式透明
1、了解光纤的发展和新型光纤特性。 2、了解光纤通信技术的发展趋势。
3、了解光纤传感技术的发展趋势。
1、 光纤的发展 多模光纤 单模光纤 保偏光纤 掺杂光纤 塑料光纤 光子晶体光纤
一、聚合物/塑料光纤 POF
塑料光纤与石英光纤:纤芯较粗、柔性好、易安装、 易弯曲、易连接、耦合效率高、价格便宜。 塑料光纤与同缆电缆:抗干扰能力强,无电磁辐射, 保密性好,通信容量大,使用寿命长;
10)1966年,高锟博士(“光纤之父”)发表著名论文
“用于光频率的绝缘纤维表面波导管”。首次明确提出,
通过改进制备工艺,减少原材料杂质,可使石英光纤的
从而使光纤可用于通信之中。 11)1970年,美国的 Coring Glass
损耗大大下降,并有可能拉制出损耗低于20dB/km的光纤,
Corporation 采用化
光纤到户实现方式多样(APON、EPON、GPON)
3)2004年4月,武汉电信与烽火公司开通“光纤到 户·数字家庭”应用试点项目,标志我国FTTH网络建设 的起步。
1.4 光纤与传感技术
传感器技术是一种能按一定规律将各种被检测的物理 量转换为便于处理的量(如电、磁等)的器件。
光纤传感器所具有的独特优势:
1)抗电磁干扰、电绝缘、耐腐蚀、本质安全。 广泛应用石油化工、矿井、等易燃易爆场合。 2)灵敏度高。 广泛应用光纤化学传感器和光纤生物传感器。 3)重量轻、体积小、可绕曲。 应用于航空航天、雷达等狭小空间场合。 4)便于复用、便于成网。 与光纤通信网构成遥测网和光纤传感网络。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

输入脉冲 Ai 纤芯
光线传播路径 包层
输出脉冲 Ao
(a)
2b
2a n t r Ai Ao t
(b)
1 25 m
5 0 m
n t r Ai Ao t
(c)
1 25 m
~1 0 m
n t t
实用光纤主要的三种基本类型
(a) 突变型多模光纤; (b) 渐变型多模光纤; (c) 单模光纤
多模光纤
Chapter1 4
其轨迹函数表明光线在各向同性介质中传输时轨 迹是直线。
Chapter1 16
例题2. 导出近轴条件下折射率平方律分布(
n0 n a a为芯半径,r为径向方向, na
r 2 n n0 [1 ( ) ] a
, n0 为光 纤中心轴折射率)的渐变型光纤射线方程,再 根据其射线方程求光线轨迹函数。
2 NA n12 n2 n1 2
式中Δ=(n1-n2)/n1为纤芯与包层相对折射率差。 NA表示光纤接收和传输光的能力, NA( 或 θc) 越大,光纤接 收光的能力越强,从光源到光纤的耦合效率越高。 对于无损耗光纤,在θc内的入射光都能在光纤中传输。 NA越大, 纤芯对光能量的束缚越强,光纤抗弯曲性能越好; 但 NA越大,经光纤传输后产生的信号畸变越大,因而限制了信 息传输容量。 所以要根据实际使用场合,选择适当的NA。
阶跃折射率光纤剖面测量图(华工光通信研究所)
单 模 光 纤
多 模 光 纤
Chapter1 5
光纤结构
光纤(Optical Fiber)是由中心的纤芯 (Core)和外围的包层(Cladding)同轴组 成的圆柱形细丝。 • 纤芯的折射率比包层稍高,损耗比 包层更低,光能量主要在纤芯内传输。 • 包层为光的传输提供反射面和光隔 离,并起一定的机械保护作用。 • 设纤芯和包层的折射率分别为n1和 n2,光能量在光纤中传输的必要条件是 n1>n2。
' 设 z 0 时, r r0 , dr / dz r0 a ' 1/ 2 z 1/ 2 z ] r0 Sin[(2) ] 光线轨迹函数:r r0Cos[(2) 1/ 2 a ( 2 ) a
Chapter1
18
§3. 光纤的研究方法---波动理论
• 波动理论是一种比几何光学方法更为严格的分 析方法,其严格性在于: (1)从光波的本质特性──电磁波出发,通过求 解电磁波所遵从的麦克斯韦方程,导出电磁场 的场分布,具有理论上的严谨性; (2) 未作任何前提近似,因此适用于各种折射率 分布的单模光和多模光波导。 H D / t J E B / t 波动理论的数学基础: D ——麦克斯韦方程 B 0
• 光线分类 子午光线 倾斜光线 • 射线方程
几何光学法分析问题的两个出发点 • 数值孔径 • 时间延迟
Chapter1
9
• 设纤芯和包层折射率分别为n1和n2,空气的折 射率n0=1, 纤芯中心轴线与z轴一致。 • 光线在光纤端面以小角度θ从空气入射到 纤芯(n0<n1),折射角为θ1,折射后的光线在纤 芯直线传播,并在纤芯与包层交界面以角度ψ1 入射到包层(n1>n2)。
i
2 NA ni sin im n12 n2 n1 2
2 (n12 n2 ) / 2n12 *相对折射率差: z zc *约束光: z zc *折射光:
Chapter1
13
子午光线:渐变折射率分布
n1 1 2(r / a) 2 *渐变折射率分布: n(r ) n2
Chapter1 6
主要用途:
突变型多模光纤只能用于小容量短距离系统。 渐变型多模光纤适用于中等容量中等距离系统。
单模光纤用在大容量长距离的系统。
特种单模光纤大幅度提高光纤通信系统的水平 1.55μm色散移位光纤实现了10 Gb/s容量的100 km的超大 容量超长距离系统。 色散平坦光纤适用于波分复用系统,这种系统可以把传输 容量提高几倍到几十倍。 偏振保持光纤用在外差接收方式的相干光系统, 这种系 统最大优点是提高接收灵敏度,增加传输距离。
Chapter1 23
模式的基本特征
——每一个模式对应于沿光波导轴向传播的 一种电磁波; ——每一个模式对应于某一本征值并满足全 部边界条件; ——模式具有确定的相速群速和横场分布。 ——模式是波导结构的固有电磁共振属性的 表征。给定的波导中能够存在的模式及其性 质是已确定了的,外界激励源只能激励起光 波导中允许存在的模式而不会改变模式的固 有性质。
2 NA(r ) n0 (r ) sin i max (r ) n 2 (r ) n2
*外散焦面: 光线转折点(rip)的集合 n2 n1 *导光条件:
Chapter1 14
射线方程
d dr (n ) n(r ) dz dz
物理意义: • 将光线轨迹(由r描述)和空间折射率分布(n)联系起来; • 由光线方程可以直接求出光线轨迹表达式; • dr/dz是光线切向斜率, 对于均匀波导,n 为常数,光 线以直线形式传播;对于渐变波导,n 是r的函数,则dr/dz 为一变量, 这表明光线将发生弯曲。而且可以证明,光线 总是向折射率高的区域弯曲。
1/ 2
0r a ra
*光线轨迹: 限制在子午平面内传播的周期曲线。 轨 迹曲线在光纤端面投影线仍是过圆心的直线,但一般 不与纤壁相交。 *广义折射定律: n(r ) cos z (r ) (常数) *局部数值孔径: 定义局部数值孔径NA(r)为入射点媒 质折射率与该点最大入射角的正弦值之积,即
Chapter1 12
子午光线:均匀折射率分布
*折射率分布:
n1 n( r ) n2 0r a ra
*光线轨迹: 限制在子午平面内传播的锯齿形折线。 光 纤端面投影线是过圆心交于纤壁的直线。 n2 2 2 ni sin i n1 n2 *导光条件: n1 *临界角: zc arccos(n2 / n1 ) *数值孔径: 定义光纤数值孔径NA为入射媒质折射率与 最大入射角的正弦值之积,即
由于光纤折射率仅以径向变化,沿圆周方向和z轴方向不变, n 与z无关,与径向r有关,所以
d dr ( n ) n ( r ) 由射线方程: dz dz
dn ˆ n r dr
Chapter1
17
2 d r 1 dn d r dn ˆ r ˆ n 2 r 2 n dr dz dr dz 由折射率平方律分布型函数:
Chapter1
15
例题1. 利用射线方程求解各向同性均匀介质中 的光线轨迹。
d dr (n ) n(r ) 由射线方程: dz dz 对于各向同性介质,n是一个常数,即 n 0 d dr dr (n ) 0 n C dz dz dz C r z b n
Chapter1
20
2 D E J ( H ) ( H ) ( J ) 2 t t t t t t
H B B ( H ) ( ) E t t t t
Chapter1 19
从麦克斯韦方程组出发导出一般波导介质中电 场的波动方程
2 E J 2 E ( E ) E 2 t t
B 由 E t

B E ( H ) t t
• 当 θ>θc 时,相应的光线将在交界面折射进入包层并逐渐 消失,如光线3。
由此可见,只有在半锥角为 θ≤θc 的圆锥内入射的光束才 能在光纤中传播。 Chapter1 11
根据这个传播条件,定义临界角 θc 的正弦为数值孔径 (Numerical Aperture, NA)。根据定义和斯奈尔定律 NA=n0sinθc=n1cosψc , n1sinψc =n2sin90 ° n0=1, 由式(2.2)经简单计算得到
Chapter1 22
波导场方程
2 E ( x, y ) 2 E ( x, y ) t c 0 H ( x, y ) H ( x, y )
c2=w2-2=n2 k02-2 n(r)k0cosz • 波导场方程:是波动光学方法的最基本方 程。它是一个典型的本征方程,其本征值 为c或β。当给定波导的边界条件时,求解 波导场方程可得本征解及相应的本征值。 通常将本征解定义为“模式”。
3 2 y
c
c
1
l L x 纤芯n 1 包层n 2
1 z
2 3
o
1
突变型多模光纤的光线传播原理
Chapter1 10
改变角度θ,不同θ相应的光线将在纤芯与包层交界面发 生反射或折射。 根据全反射原理, 存在一个临界角θc。 • 当 θ<θc 时,相应的光线将在交界面发生全反射而返回纤 芯, 并以折线的形状向前传播,如光线1。根据斯奈尔(Snell) 定律得到 n0sinθ=n1sinθ1=n1cosψ1 • 当 θ=θc 时,相应的光线将以 ψc 入射到交界面,并沿交界 面向前传播(折射角为90°), 如光线2,
根据恒等式关系,有
D
2 ( E ) E ( H ) ( H H ) t t
由于
(E) E E E E
将(2)(3)(4)式代入(1)式
(

E

E J 2 ) E 2 E t t
2
上式最后可以整理成:
2 E J 2 E ( E ) E 2 t t
相关文档
最新文档