2020年河南省中考数学模拟试卷(三) 解析版
2020年河南省九年级中招数学最后模拟试卷三含答案
2020年河南初中中招数学最后三卷(三)注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1、在下列各数中,比大的数是( )A .B .πC .0D .2、全国31个省(市、自治区)的年度经济数据已全部公布,某省以37010亿元的经济总量仍在全国排名中位居第五,同比增长8.3%,高于全国1.4个百分点.把数据37010亿元用科学记数法表示为( )A .0.37010×1013元B .3.7010×1012元C .3.7010×1011元D .3.7010×104元3、如图是由五个相同的小立方块搭成的几何体,则它的俯视图是( )4、下列计算正确的是【 】A . ;B .C . ;D .5、如图,在△ABC 中,∠C=90°,若BD ∥AE ,∠DBC=20°,则∠CAE 的度数是( ) A .40° B .60° C .80° D .70°5;8;9;6、一元二次方程(x ﹣1)(x+5)=3x+2的根的情况是( )A .方程没有实数根B .方程有两个相等的实数根C .方程有两个不相等的实数根D .方程的根是1、﹣5和 7、某校师生植树节积极参加以组为单位的植树活动,七个小组植树情况如下:则本组数据的众数与中位数分别为( )A .5,4B .6,5C .7,6D .5,58、一次函数(是常数,)的图象如图所示,则不等式的解集是( )A .B .C .D . 9、如图,AB 是半圆O 的直径,半径OC ⊥AB 于点O ,点D 是的中点,连接CD 、OD .下列四个结论:①AC ∥OD ;②CE=OE ;③△ODE ∽△ADO ;④∠ADC=∠BOD .其中正确结论的序号是( )A.①④B.①②④C.②③D.①②③④ 10、如图,已知平行四边形ABCD 中,AB =BC ,点M 从点D 出发,沿D→C→A 以1cm/s 的速度匀速运动到点A ,图2是点M 运动时,△MAB 的面积y (cm 2)随时间x (s )变化的关系图象,则边AB 的长为( )cm .21a a -=33a a a ⋅=2224()ab a b =222()2a b ab ab ÷=y kx b =+k b ,0k ≠0kx b +>2x >-0x >2x <-0x <A .B .C .D .二、填空题(每小题3分,共15分)11、)计算:= . 12、如图,在△ABC 中,DE ∥BC ,AD=6,DB=3,AE=4,则AC 的长为 .12;13; 13、如图,在△ABC 中,AB=AC,∠BAC=90°,点A 在x 轴上,点B 的坐标是(0,3),若点C 恰好在反比例函数xy 10=第一象限内的图象上,那么点C 的坐标为 . 14、如图,O 是圆心,半圆O 的直径AB =2,点C 在上,=3,连接BC ,则图中阴影部分的面积是 . 14;15;15、如图,在矩形ABCD 中,AD =6,AB =4,以AD 为直径在矩形内作半圆,点E 为半圆上的一动点(不与A 、D 重合),连接DE 、CE ,当△DEC 为等腰三角形时,DE 的长为 .三、解答题(8+9+9+9+9+10+10+11=75分)16、(8分)先化简,再求值:122)121(22++-÷+---x x x x x x x x ,其中x 满足012=--x x . 17、(9分)为了深入贯彻党的十八大精神,我省某中学为了深入学习社会主义核心价值观,特对本校部分学生(随机抽样)进行了一次相关知识的测试(成绩分为A ,B ,C ,D ,E 五个组,x 表示测试成绩),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题.A 组:90≤x≤100;B 组:80≤x <90;C 组:70≤x <80;D 组:60≤x <70;E 组:x <60(1)参加调查测试的学生共有 人;请将两幅统计图补充完整.(2)本次调查测试成绩的中位数落在 组内.(3)本次调查测试成绩在80分以上(含80分)为优秀,该中学共有3000人,请估计全校测试成绩为优秀的学生有多少人?18、(9分)如图,滑翔运动员在空中测量某寺院标志性高塔“云端塔”的高度,空中的点P 距水平地面BE 的距离为200米,从点P 观测塔顶A 的俯角为33°,以相同高度继续向前飞行120米到达点C ,在C 处观测点A 的俯角是60°,求这座塔AB 的高度(结果精确到1米).(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)19、(9分)如图,AB 为⊙O 的直径,点D 、E 位于AB 两侧的半圆上,射线DC 切⊙O 于点D ,已知点E 是半圆弧AB 上的动点,点F 是射线DC 上的动点,连接DE 、AE ,DE 与AB 交于点P ,再连接FP 、FB ,且∠AED =45°.(1)求证:CD ∥AB ;(2)填空:①当∠DAE = 时,四边形ADFP 是菱形;②当∠DAE = 时,四边形BFDP 是正方形.20、(9分)如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 分别在x 轴和y 轴上,点B 的坐标为(6,4).双曲线)0(>=x x k y 经过AB 的中点D ,且与BC 交于点E ,连接DE.(1)求k 的值和直线DE 的解析式;(2)若点P 是y 轴上一点,且△OPE 的面积与四边形ODBE 的面积相等,求点P 的坐标.21、(10分)某校九年级组织有奖知识竞赛,派小明去购买A 、B 两种品牌的钢笔作为奖品.已知一支A 品牌钢笔的价格比一支B 品牌钢笔的价格的多5元, 且买100元A 品牌钢笔与买50元B 品牌钢笔数量相同;(1)求A 、B 两种品牌钢笔的单价分别为多少元?(2)根据活动的设奖情况,决定购买A 、B 两种品牌的钢笔共100支,如果设购买A 品牌钢笔的数量为n 支,购买这两种品牌的钢笔共花费y 元.①直接写出y (元)关于n (支)的函数关系式;②如果所购买A 品牌钢笔的数量不少于B 品牌钢笔数量的31,请你帮小明计算如何购买,才能使所花费的钱最少?此时的花费是多少?22、(10分)(1)问题发现如图①,△ABC 和△AED 都是等腰直角三角形,∠BAC=∠EAD=90°,点B 在线段AE 上,点C 在线段AD 上,请直接写出线段BE 与线段CD 的数量关系: ;(2)操作探究如图②,将图①中的△ABC 绕点A 顺时针旋转,旋转角为α(0°<α<360°),请判断并证明线段BE 与线段CD 的数量关系;(3)解决问题将图①中的△ABC 绕点A 顺时针旋转,旋转角为α(0°<α<360°),若DE=2AC ,在旋转的过程中,当以A 、B 、C 、D 四点为顶点的四边形是平行四边形时,请直接写出旋转角α的度数 .23、(11分)顶点为D 的抛物线y =﹣x 2+bx+c 交x 轴于A 、B (3,0),交y 轴于点C ,直线y =﹣x+m 经过点C ,交x 轴于E (4,0).(1)求出抛物线的解析式;(2)如图1,点M 为线段BD 上不与B 、D 重合的一个动点,过点M 作x 轴的垂线,垂足为N ,设点M 的横坐标为x ,四边形OCMN 的面积为S ,求S 与x 之间的函数关系式,并求S 的最大值;(3)点P 为x 轴的正半轴上一个动点,过P 作x 轴的垂线,交直线y =﹣x+m 于G ,交抛物线于H ,连接CH ,将△CGH 沿CH 翻折,若点G 的对应点F 恰好落在y 轴上时,请直接写出点P 的坐标. 南召县2017年中招模拟考试(一)数学试题参考答案一、选择题:(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
河南省中考模拟数学考试试卷(三)
河南省中考模拟数学考试试卷(三)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)设a是有理数,则下列各式的值一定为正数的是()A . a2B . |a|C . a+1D . a2+12. (2分)(2017·河北) 把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A . 1B . ﹣2C . 0.813D . 8.133. (2分) (2016七上·仙游期末) 从不同方向观察如图所示的几何体,不可能看到的是()A .B .C .D .4. (2分) (2019八下·孝南月考) 下列计算:①()2=2;② =2;③(–2 )2=12;④( + )(–)=–1.其中正确的有()A . 1个B . 2个C . 3个D . 4个5. (2分)(2017·宜兴模拟) 函数y= 中,自变量x的取值范围是()A . x≥﹣5B . x≤﹣5C . x≥5D . x≤56. (2分) (2016九下·吉安期中) 如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG 的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A . a2B . a2C . a2D . a27. (2分) (2020八下·武城期末) 如果P(2,m),A(1,1),B(4,0)三点在同一直线上,则m的值为()A . 2B .C .D . 18. (2分)在盒子里放有三张分别写有整式a﹣3、a+1、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A .B .C .D .9. (2分) (2021七上·肇源期末) 如图,在边长为a的正方形中挖掉一个边长为b的小正方形,把余下的部分拼成一个长方形(无重叠部分),通过计算两个图形中阴影部分的面积,可以验证的一个等式是()A . a2﹣b2=(a+b)(a﹣b)B . a(a﹣b)=a2﹣abC . (a﹣b)2=a2﹣2ab+b2D . a(a+b)=a2+ab10. (2分)如图,在△ABC中,AC=BC,CD是AB边上的高线,且有2CD=3AB,又E,F为CD的三等分点,则∠ACB和∠AEB之和为()A . 45°B . 90°C . 60°D . 75°11. (2分) (2018九上·秦淮月考) 如图,AC⊥BC,AC=BC=4,以AC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB.过点O作BC的平行线交两弧于点D、E,则阴影部分的面积是()A .B .C .D .12. (2分) (2016九上·端州期末) 关于抛物线y=(x-1)2-2,下列说法中错误的是()A . 顶点坐标为(1,-2)B . 对称轴是直线x=1C . 当x>1时,y随x的增大而减小D . 开口方向向上二、填空题 (共4题;共4分)13. (1分)分解因式:2a2-8b2=________.14. (1分) (2019八上·垣曲期中) 若a,b为两个连续的正整数,且,则 ________.15. (1分)观察下列各等式:1=12 , 1+3=22 , 1+3+5=32 , 1+3+5+7=42 ,则1+3+5+7+…+2017=________.16. (1分) (2016九上·南岗期中) 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1200N和0.5m,当撬动石头的动力F至少需要400N时,则动力臂l的最大值为________ m.三、解答题 (共6题;共60分)17. (5分)(2020·陕西模拟) 计算: .18. (5分)不等式组的解集是2<x<m+7,求m的最大负整数解.19. (10分) (2017八上·金堂期末) 2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度. 小军为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.小军发现每月每户的用水量在5m3-35m3之间,有7户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变. 根据小军绘制的图表和发现的信息,完成下列问题:(1) n =________,小明调查了________户居民,并补全图1________;(2)每月每户用水量的中位数落在________之间,众数落在________之间;(3)如果小明所在的小区有1200户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?20. (10分) (2019九上·偃师期中) 如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角为45°,沿斜坡走3 米到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为1:2.(1)求小明从点A到点D的过程中,他上升的高度;(2)大树BC的高度约为多少米?(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)21. (10分) (2020八上·红桥期末) 某茶店用4000元购进了A种茶叶若干盒,用8400元购进了B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1) A,B两种茶叶每盒进价分别为多少元?(2)若第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元,两种茶叶各售出一半后,为庆祝元旦,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?22. (20分)(2020·松滋模拟) 如图(1)已知矩形AOCD在平面直角坐标系xOy中,∠CAO=60°,OA=2,B点的坐标为(2,0),动点M以每秒2个单位长度的速度沿A→C→B运动(M点不与点A、点B重合),设运动时间为t秒.(1)求经过B、C、D三点的抛物线解析式;(2)点P在(1)中的抛物线上,当M为AC中点时,若△PAM≌△PDM,求点P的坐标;(3)当点M在CB上运动时,如图(2)过点M作ME⊥AD,MF⊥x轴,垂足分别为E、F,设矩形AEMF与△ABC 重叠部分面积为S,求S与t的函数关系式,并求出S的最大值;(4)如图(3)点P在(1)中的抛物线上,Q是CA延长线上的一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,求点P的坐标.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共6题;共60分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、答案:22-4、考点:解析:。
2020河南中考数学模拟练习试卷(三) PDF版
(满分 120 分,考试时间 100 分钟)
一、选择题(每小题 3 分,共 30 分)
1. 在 1,-1,3,-2 这四个数中,互为相反数的是( )
A.1 与-1
B.1 与-2
C.3 与-2
D.-1 与-2
2. 某图书馆有图书约 985 000 册,数据 985 000 用科学记数法可表示为( )
E D
F
A
O
C
18. (9 分)为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活 动.为了解七、八年级学生(七、八年级各有 600 名学生)的阅读效果, 该校举行了经典文化知识竞赛.现从两个年级各随机抽取 20 名学生的竞 赛成绩(百分制)进行分析,过程如下: 收集数据: 七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71, 75,80,86,59,83,77. 八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81, 72,77,82,80,70,41. 整理数据:
(2)估计该校七、八两个年级学生在本次竞赛中成绩在 90 分以上的共有
多少人?
(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说
明理由.
4/8
19. (9 分)如图,某数学兴趣小组为测量一棵古树 BH 和教学楼 CG 的高,先 在 A 处用高 1.5 米的测角仪 AF 测得古树顶端 H 的仰角∠HFE 为 45°,此时 教学楼顶端 G 恰好在视线 FH 上,再向前走 10 米到达 B 处,又测得教学楼 顶端 G 的仰角∠GED 为 60°,点 A,B,C 三点在同一水平线上. (1)求古树 BH 的高; (2)求教学楼 CG 的高.(参考数据: 2 1.4, 3 1.7 )
河南省洛阳市2020年中考数学三模试卷解析版
题号 得分
一
二
三
四
总分
一、选择题(本大题共 10 小题,共 30.0 分) 1. 2020 的相反数是( )
A. 2020
B. -2020
C.
D.
2. 据统计截至目前我国外汇储备规模为 30988 亿美元.将 30988 亿用科学记数法表示
为( )
A. 30988×108
B. 3.0988×1011
A.
B.
C.
D.
9. 如图,在▱ABCD 中,将△ADC 沿 AC 折叠后,点 D 恰好落在 DC 的延长线上的点 E 处.若∠B=60°,
AB=3,则△ADE 的周长为( )
A. 12 B. 15 C. 18 D. 21
10. 如图,顶角为 36°的等腰三角形,其底边与腰之比等于 k, 这样的三角形称为黄金三角形,已知腰 AB=1,△ABC 为第 一个黄金三角形,△BCD 为第二个黄金三角形,△CDE 为第 三个黄金三角形以此类推,第 2020 个黄金三角形的周长( )
18. 已知关于 x 的方程(x-3)(x-2)-p2=0. (1)求证:方程总有两个不相等的实数根; (2)当 p=2 时,求该方程的根.
第 3 页,共 18 页
19. 如图是某种品牌的篮球架实物图与示意图,已知底座 BC=0.6 米,底座 BC 与支架 AC 所成的角∠ACB=75°,支架 AF 的长为 2.5 米,篮板顶端 F 点到篮框 D 的距离 FD=1.4 米,篮板底部支架 HE 与支架 AF 所成的角∠FHE=60°,求篮框 D 到地面的 距离.(精确到 0.1 米.参考数据:cos75°≈0.3,sin75°≈0.9,.tan75°≈3.7, ≈1.7 , ≈1.4)
2020年河南省洛阳市洛宁县中考数学三模试卷 (Word 解析版)
2020年中考数学三模试卷一、选择题1.在实数0,(﹣2020)0,﹣1,0.98中,最大的数是()A.0B.(﹣2020)0C.﹣1D.0.982.2019新型冠状病毒(2019﹣nCoV)是目前已知的第7种可以感染人的冠状病毒,病毒颗粒的平均直径约为100纳米.已知1纳米=10﹣9米,则100纳米用科学记数法表示为()米.A.1×102B.0.1×103C.1×10﹣7D.0.1×10﹣83.下列运算正确的是()A.2a+3a=5a2B.(a+2b)2=a2+4b2C.a2•a3=a6D.(﹣ab2)3=﹣a3b64.如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图5.在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法错误的是()A.众数是90分B.中位数是90分C.平均数是91分D.方差是16.如图所示,AB∥CD,EF⊥BD于E,∠CFE=130°,则∠ABG的度数为()A.35°B.40°C.45°D.50°7.若二次函数y=ax2﹣2ax+c(a≠0)的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为()A.x1=﹣3,x2=﹣1B.x1=﹣1,x2=3C.x1=1,x2=3D.x1=﹣3,x2=18.反比例函数y=﹣的图象经过点A(﹣3,y1),B(﹣4,y2),C(5,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y1>y2C.y2>y1>y3D.y3>y2>y19.如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为()A.24+9B.48+9C.24+18D.48+1810.正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…,按如图所示的方式放置,点A1A2A3,…和点B1B2B3,…分别在直线y=x+1和x轴上,则点C2020的纵坐标是()A.22020B.22019C.22020﹣1D.22019﹣1二、填空题(每小题3分,共15分)11.计算:|1﹣2sin60°|﹣=.12.某口袋中有10个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.要使游戏对甲、乙双方公平,则x应该是.13.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.14.如图,在△ABC中,∠C=90°,∠BAC=60°,AC=2,将△ABC绕点A顺时针旋转45°,得到△AB'C',B'C'与AB相交于点D,则图中阴影部分的面积为.15.如图,在菱形ABCD中,∠A=60°,AB=4,点E是射线AB上一动点,把△ADE 沿直线DE折叠,其中点A的对应点为点A',连接A'C,若△A'CD为直角三角形,则AE=.三、解答题(共75分)16.先化简,再求值:()÷,其中x的值从不等式组的整数解中选取.17.某学校为了丰富学生课余生活,提高学生综合素质,开展了“综合实践活动课”,具体课程如下:A.数学史话;B.诗歌赏析;C.英语口语演讲;D.生物与生活.学校规定:每个学生都必须报名且只能选择其中的一个课程.学校随机抽查了部分学生,对他们选择的课程情况进行了统计,并绘制了如图两幅不完整的统计图,请结合统计图中的信息,解决下列问题:(1)这次学校抽查的学生人数是;课程B对应的扇形的圆心角是度;(2)将条形统计图补充完整;(3)如果该校共有1200名学生,请你估计该校报D的学生约有多少人?18.如图,在△ABC中,∠ACB=90°,点D为AC边的中点.(1)尺规作图:作出以BC为直径的圆O交AB于点E,连接OD,DE.(保留作图痕迹,不写作法)(2)求证:DE是圆O的切线.(3)当∠ABC=时,四边形BODE是平行四边形,此时,四边形OCDE的形状为.19.如图,AB是垂直于水平面的建筑物,为测量AB的高度,小红从建筑物底端B出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D在同一平面内),斜坡CD的坡度(或坡比)i=1:2.4,求建筑物AB的高度.(精确到个位)(参考数据:sin=27°≈0.45,cos27°≈0.89,tan27°≈0.5l)20.如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(﹣3,),AB =1,AD=2.(1)直接写出B、C、D三点的坐标;(2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数y=(x >0)的图象上,得矩形A′B′C′D′.求矩形ABCD的平移距离m和反比例函数的解析式.21.“禹州钧瓷”名扬天下、某网店专门销售某种品牌的钧瓷花瓶,成本为40元/件、每天销量y(件)与销售单价x(元)之间存在一次数关系,如图所示,(1)求y与x之间的函数关系式.(2)如果规定每天钧瓷花瓶的销售量不低于120件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少元?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出100元给希望工程,为了保证捐款后每天剩余利润不低于2000元、试确定该钧瓷花瓶销售单价的范围.22.如图1,在△ABC中,∠ACB=90°,点D为AB边上的动点、DE∥BC交AC于点E.问题发现:(1)如图2,当∠BAC=45°时,=;EC与BD所在直线相交所成的锐角等于.类比探究:(2)当∠BAC=30°时,把△ADE绕点A逆时针旋转到如图3的位置时,请求出的值以及EC与BD所在直线相交所成的锐角.拓展应用:(3)若AC=4,BC=2,点D为AB边的中点,△ADE绕点A逆时针旋转的过程中,当点B、D、E三点在同一直线上时,请直接写出线段EC的长度.23.如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣2,0)和B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)当点P为直线BC下方抛物线上一动点(不与点B、C重合),PM⊥BC于点M,PD⊥AB于点D,交直线BC于点N,当P点的坐标为何值时,PM+PN的值最大?(3)点P在第四象限的抛物线上移动,以PC为边作正方形CPEF、当抛物线的对称轴经过点E时,求出此时点P的坐标.参考答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1.在实数0,(﹣2020)0,﹣1,0.98中,最大的数是()A.0B.(﹣2020)0C.﹣1D.0.98【分析】根据实数比较大小的法则可得答案.解:(﹣2020)0=1>0.98>0>﹣1,故选:B.【点评】此题主要考查了实数大小比较,关键是掌握正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2.2019新型冠状病毒(2019﹣nCoV)是目前已知的第7种可以感染人的冠状病毒,病毒颗粒的平均直径约为100纳米.已知1纳米=10﹣9米,则100纳米用科学记数法表示为()米.A.1×102B.0.1×103C.1×10﹣7D.0.1×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:100纳米=1×10﹣7米.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列运算正确的是()A.2a+3a=5a2B.(a+2b)2=a2+4b2C.a2•a3=a6D.(﹣ab2)3=﹣a3b6【分析】直接利用合并同类项法则以及完全平方公式、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.解:A、2a+3a=5a,故此选项错误;B、(a+2b)2=a2+4ab+4b2,故此选项错误;C、a2•a3=a5,故此选项错误;D、(﹣ab2)3=﹣a3b6,正确.故选:D.【点评】此题主要考查了合并同类项以及完全平方公式、积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.4.如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图【分析】根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,从左边看得到的图形是左视图,可得答案.解:将正方体①移走后,主视图不变,俯视图变化,左视图不变,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上面看得到的图形是俯视图,从左边看得到的图形是左视图.5.在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法错误的是()A.众数是90分B.中位数是90分C.平均数是91分D.方差是1【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.解:∵90出现了5次,出现的次数最多,∴众数是90;故A正确;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故B正确;∵平均数是(85×2+100×1+90×5+95×2)÷10=91;故C正确;方差是:=19≠1;故D错误.综上所述,D选项符合题意,故选:D.【点评】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、方差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、方差.6.如图所示,AB∥CD,EF⊥BD于E,∠CFE=130°,则∠ABG的度数为()A.35°B.40°C.45°D.50°【分析】由EF⊥BD,∠1=180°﹣∠CFE=50°,结合三角形内角和为180°即可求出∠D的度数,再由两直线平行,同位角相等即可得出结论.解:在△DEF中,∠1=180°﹣∠CFE=50°,∠DEF=90°,∴∠D=180°﹣∠DEF﹣∠1=40°.∵AB∥CD,∴∠ABG=∠D=40°.故选:B.【点评】本题考查了平行线的性质以及三角形内角和定理,解题的关键是求出∠D=40°.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质,找出相等或互补的角是关键.7.若二次函数y=ax2﹣2ax+c(a≠0)的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为()A.x1=﹣3,x2=﹣1B.x1=﹣1,x2=3C.x1=1,x2=3D.x1=﹣3,x2=1【分析】先确定抛物线的对称轴为直线x=1,再根据抛物线的对称性得到抛物线与x轴的另一个交点坐标为(3,0),从而根据抛物线与x轴的交点问题得到方程ax2﹣2ax+c =0的解.解:抛物线的对称轴为直线x=﹣=1,而抛物线与x轴的一个交点坐标为(﹣1,0),所以抛物线与x轴的另一个交点坐标为(3,0),所以方程ax2﹣2ax+c=0的解为x1=﹣1,x2=3.故选:B.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.8.反比例函数y=﹣的图象经过点A(﹣3,y1),B(﹣4,y2),C(5,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y1>y2C.y2>y1>y3D.y3>y2>y1【分析】根据反比例函数图象的性质,比例系数k=﹣2019<0时,函数图象位于第二、四象限,在每个象限内y随x的增大而增大判断出y1、y2、y3的大小关系,然后即可选取答案.解:∵k=﹣2019<0,∴反比例函数y=﹣图象的两个分支在二、四象限,在每个象限内y随x的增大而增大,∵5>0,∴点A(5,y3)在第四象限,∴y3<0,∵﹣4<﹣3<0,∵点A(﹣3,y1),B(﹣4,y2)在第二象限,∴y1>y2>0,∴y1>y2>y3.故选:A.【点评】本题考查反比例函数图象上点的坐标特征;用到的知识点为:反比例函数的比例系数小于0,图象的2个分支在二、四象限;第四象限的点的纵坐标总小于在第二象限的纵坐标;在同一象限内,y随x的增大而增大.9.如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为()A.24+9B.48+9C.24+18D.48+18【分析】连接PQ,如图,根据等边三角形的性质得AB=AC,∠BAC=60°,再利用旋转的性质得AQ=AP,∠PAQ=60°,则可判断△APQ为等边三角形,所以PQ=AP=6,接着证明△APC≌△AQB得到CP=BQ=10,然后利用勾股定理的逆定理证明△BPQ为直角三角形,∠BPQ=90°,然后根据直角三角形的面积公式和等边三角形的面积公式可计算出四边形APBQ的面积.解:连接PQ,如图,∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AQ=AP,∠PAQ=60°,∴△APQ为等边三角形,∴PQ=AP=6,∵∠PAQ﹣∠PAB=∠CAB﹣∠PAB,∴∠CAP=∠BAQ,在△APC和△AQB中,∴△APC≌△AQB(SAS),∴CP=BQ=10,在△BPQ中,∵PQ=6,BP=8,BQ=10,而62+82=102,∴PQ2+PB2=BQ2,∴△BPQ为直角三角形,∠BPQ=90°,∴四边形APBQ的面积=S△BPQ+S△APQ=×6×8+×62=24+9.故选:A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和全等三角形的判定与性质.10.正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…,按如图所示的方式放置,点A1A2A3,…和点B1B2B3,…分别在直线y=x+1和x轴上,则点C2020的纵坐标是()A.22020B.22019C.22020﹣1D.22019﹣1【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出点A1,A2,A3,A4,A5的坐标,即可根据正方形的性质得出C1,C2,C3,C4,C5的纵坐标,根据点的坐标的变化可找出变化规律点∁n的纵坐标为2n﹣1,再代入n=2020即可得出结论.解:当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵四边形A1B1C1A2为正方形,∴点C1的纵坐标为1,当x=1时,y=x+1=2,∴点A2的坐标为(1,2).∵A2B2C2A3为正方形,∴点C2的纵坐标为2.同理,可知:点A3的坐标为(3,4),点C3的纵坐标为4.∴点∁n的纵坐标为2n﹣1∴点C2020的纵坐标为22019.故选:B.【点评】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律点∁n的纵坐标为2n﹣1是解题的关键.二、填空题(每小题3分,共15分)11.计算:|1﹣2sin60°|﹣=﹣﹣1.【分析】直接利用绝对值的性质以及特殊角的三角函数值、二次根式的性质分别化简得出答案.解:原式=|1﹣2×|﹣2=|1﹣|﹣2=﹣1﹣2=﹣﹣1.故答案为:﹣﹣1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.某口袋中有10个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.要使游戏对甲、乙双方公平,则x应该是2.【分析】游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等即可.解:由题意甲从袋中任意摸出一个球,若为绿球则获胜;甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则获胜可知,绿球与黑球的个数应相等,也为2x个,列方程可得x+2x+2x=10,解得x=2,故答案为:2.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.13.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是(32,4800).【分析】根据题意可以得到关于t的方程,从而可以求得点P的坐标,本题得以解决.解:令150t=240(t﹣12),解得,t=32,则150t=150×32=4800,∴点P的坐标为(32,4800),故答案为:(32,4800).【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.14.如图,在△ABC中,∠C=90°,∠BAC=60°,AC=2,将△ABC绕点A顺时针旋转45°,得到△AB'C',B'C'与AB相交于点D,则图中阴影部分的面积为2π﹣4(﹣1).【分析】根据直角三角形的性质得到AB=2AC=4,∠ABC=30°,过D作DH⊥AB′于H,根据旋转的性质得到AB′=AB=4,∠AB′C′=∠ABC=30°,∠BAB′=45°,AC′=AC=2,设DH=AH=x,得到AH+B′H=x+x=AB′=4,求得x=2(﹣1),根据扇形和三角形的面积公式即可得到结论.解:∵在△ABC中,∠C=90°,∠BAC=60°,AC=2,∴AB=2AC=4,∠ABC=30°,过D作DH⊥AB′于H,∵将△ABC绕点A顺时针旋转45°,得到△AB'C',∴AB′=AB=4,∠AB′C′=∠ABC=30°,∠BAB′=45°,AC′=AC=2,设DH=AH=x,∴B′H=DH=x,∴AH+B′H=x+x=AB′=4,∴x=2(﹣1),∴B′D=2DH=4(﹣1),∴图中阴影部分的面积=S扇形BAB′﹣S△ADB′=﹣=2π﹣4(﹣1),故答案为:2π﹣4(﹣1).【点评】本题考查了扇形面积的计算、旋转的性质.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.15.如图,在菱形ABCD中,∠A=60°,AB=4,点E是射线AB上一动点,把△ADE 沿直线DE折叠,其中点A的对应点为点A',连接A'C,若△A'CD为直角三角形,则AE=8﹣4.【分析】由菱形的性质、折叠的性质可得A′E=AE,EF=2﹣AE,A′F=4﹣2,再根据勾股定理得到关于AE的方程求解即可.解:如图,∵在菱形ABCD中,∠A=60°,AB=4,∴AD=4,AF=2,DF=2,由折叠可知A′E=AE,A′D=4,∴EF=2﹣AE,A′F=4﹣2,∵△A'CD为直角三角形,∴∠A'DC=90°,∴∠A'FE=90°,∴A′E2=EF2+A′F2,即AE2=(2﹣AE)2+(4﹣2)2,解得AE=8﹣4.故答案为:8﹣4.【点评】本题考查了翻折变换、菱形的性质、勾股定理,解决本题的关键是得到关于AE的方程求解即可.三、解答题(共75分)16.先化简,再求值:()÷,其中x的值从不等式组的整数解中选取.【分析】根据分式的减法和除法可以化简题目中的式子,然后求出不等式组的解集,从中取出使得原分式有意义的整数代入化简后的式子即可解答本题.解:()÷====﹣,由不等式组,得﹣3<x≤2,当x=﹣2,1时,原分式无意义,∴当x=0时,原式=﹣=0,当x=﹣1时,原式=﹣=,当x=2时,原式==﹣6.【点评】本题考查分式化简求值的方法、一元一次不等式组的整数解,解答本题的关键是明确分式化简求值的方法.17.某学校为了丰富学生课余生活,提高学生综合素质,开展了“综合实践活动课”,具体课程如下:A.数学史话;B.诗歌赏析;C.英语口语演讲;D.生物与生活.学校规定:每个学生都必须报名且只能选择其中的一个课程.学校随机抽查了部分学生,对他们选择的课程情况进行了统计,并绘制了如图两幅不完整的统计图,请结合统计图中的信息,解决下列问题:(1)这次学校抽查的学生人数是40;课程B对应的扇形的圆心角是126度;(2)将条形统计图补充完整;(3)如果该校共有1200名学生,请你估计该校报D的学生约有多少人?【分析】(1)根据A组的人数和所占的百分比,可以求得本次调查的人数,然后即可求得课程B对应的扇形的圆心角的度数;(2)根据(1)中的结果和条形统计图中的数据,可以求得C组的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据,可以计算出该校报D的学生约有多少人.解:(1)这次学校抽查的学生人数是:12÷30%=40,课程B对应的扇形的圆心角是:360°×=126°,故答案为:40,126;(2)选择C的学生有:40﹣12﹣14﹣4=10(人),补全的条形统计图如右图所示;(3)1200×=120(人),答:该校报D的学生约有120人.【点评】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,在△ABC中,∠ACB=90°,点D为AC边的中点.(1)尺规作图:作出以BC为直径的圆O交AB于点E,连接OD,DE.(保留作图痕迹,不写作法)(2)求证:DE是圆O的切线.(3)当∠ABC=45°时,四边形BODE是平行四边形,此时,四边形OCDE的形状为正方形.【分析】(1)尺规作图:作出以BC为直径的圆O交AB于点E,连接OD,DE即可;(2)根据切线的判定方法即可证明DE是圆O的切线;(3)根据切线的性质,当∠ABC=45°时,可以证明四边形BODE是平行四边形,此时,四边形OCDE的形状是正方形.解:(1)如图所示,即为所求;(2)证明:连接OE,∵点D为AC边的中点,O为圆心,∴OD∥AB,∴∠COD=∠B,∠DOE=∠BEO,∵OB=OE,∴∠B=∠BEO∴∠COD=∠DOE,∵OC=OE,OD=OD,∴△COD≌△EOD(SAS),∴∠OED=∠OCD=90°,∴DE是圆O的切线;(3)当∠ABC=45°时,∵OB=OE,∴∠OEB=45°,∴∠COE=90°,∵∠DCO=∠DEO=90°,∴四边形OEDC是矩形,∵OC=OE,∴矩形OEDC是正方形.∴DE∥BC,∵OD∥AB,∴四边形BODE是平行四边形.故答案为:45°,正方形.【点评】本题考查了作图﹣复杂作图、平行四边形的判定、圆周角定理、切线的判定与性质,解决本题的关键是准确画图.19.如图,AB是垂直于水平面的建筑物,为测量AB的高度,小红从建筑物底端B出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D在同一平面内),斜坡CD的坡度(或坡比)i=1:2.4,求建筑物AB的高度.(精确到个位)(参考数据:sin=27°≈0.45,cos27°≈0.89,tan27°≈0.5l)【分析】过点E作EM⊥AB与点M,根据斜坡CD的坡度(或坡比)i=1:2.4可设CD=x,则CG=2.4x,利用勾股定理求出x的值,进而可得出CG与DG的长,故可得出EG的长.由矩形的判定定理得出四边形EGBM是矩形,故可得出EM=BG,BM=EG,再由锐角三角函数的定义求出AM的长,进而可得出结论.解:过点E作EM⊥AB与点M,延长ED交BC于G,∵斜坡CD的坡度(或坡比)i=1:2.4,BC=CD=52米,∴设DG=x,则CG=2.4x.在Rt△CDG中,∵DG2+CG2=DC2,即x2+(2.4x)2=522,解得x=20,∴DG=20米,CG=48米,∴EG=20+0.8=20.8米,BG=52+48=100米.∵EM⊥AB,AB⊥BG,EG⊥BG,∴四边形EGBM是矩形,∴EM=BG=100米,BM=EG=20.8米.在Rt△AEM中,∵∠AEM=27°,∴AM=EM•tan27°≈100×0.51=51米,∴AB=AM+BM=51+20.8≈72(米).答:建筑物AB的高度约为72米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(﹣3,),AB =1,AD=2.(1)直接写出B、C、D三点的坐标;(2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数y=(x >0)的图象上,得矩形A′B′C′D′.求矩形ABCD的平移距离m和反比例函数的解析式.【分析】(1)由四边形ABCD是矩形,得到AB=CD=1,BC=AD=2,根据A(﹣3,),AD∥x轴,即可得到B(﹣3,),C(﹣1,),D(﹣1,);(2)根据平移的性质将矩形ABCD向右平移m个单位,得到A′(﹣3+m,),C(﹣1+m,),由点A′,C′在反比例函数y=(x>0)的图象上,得到方程(﹣3+m)=(﹣1+m),即可求得结果.解:(1)∵四边形ABCD是矩形,∴AB=CD=1,BC=AD=2,∵A(﹣3,),AD∥x轴,∴B(﹣3,),C(﹣1,),D(﹣1,);(2)∵将矩形ABCD向右平移m个单位,∴A′(﹣3+m,),C(﹣1+m,),∵点A′,C′在反比例函数y=(x>0)的图象上,∴(﹣3+m)=(﹣1+m),解得:m=4,∴A′(1,),∴k=,∴矩形ABCD的平移距离m=4,反比例函数的解析式为:y=.【点评】本题考查了矩形的性质,图形的变换﹣平移,反比例函数图形上点的坐标特征,求反比例函数的解析式,掌握反比例函数图形上点的坐标特征是解题的关键.21.“禹州钧瓷”名扬天下、某网店专门销售某种品牌的钧瓷花瓶,成本为40元/件、每天销量y(件)与销售单价x(元)之间存在一次数关系,如图所示,(1)求y与x之间的函数关系式.(2)如果规定每天钧瓷花瓶的销售量不低于120件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少元?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出100元给希望工程,为了保证捐款后每天剩余利润不低于2000元、试确定该钧瓷花瓶销售单价的范围.【分析】(1)利用待定系数法求解可得;(2)根据总利润=每件利润×销售量列出函数解析式,配方成顶点式,再利用二次函数的性质求解可得;(3)根据题意列出不等式﹣4(x﹣65)2+2500﹣100≥2000,解之可得.解:(1)设y=kx+b,由图象可知过点(40,200)和(90,0),∴,解得:,∴y=﹣4x+360.(2)设每天获取的利润为w元,则w=(x﹣40)(﹣4x+360)=﹣4(x﹣65)2+2500,∵﹣4x+360≥120,∴x≤60,∵﹣4<0,∴当x≤65时,w随x的增大而增大,∴当x=60时,w最大,最大值为﹣4×(60﹣65)2+2500=2400.答:当销售单价为60元时,每天获取的利润最大,最大利润是2400元.(3)依题意得:w﹣100≥2000,即﹣4(x﹣65)2+2500﹣100≥2000,解得55≤x≤75,答:该钧瓷花瓶销售单价的范围是大于等于55元且小于等于75元.【点评】本题主要考查二次函数的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出函数解析式及熟练掌握二次函数的性质.22.如图1,在△ABC中,∠ACB=90°,点D为AB边上的动点、DE∥BC交AC于点E.问题发现:(1)如图2,当∠BAC=45°时,=;EC与BD所在直线相交所成的锐角等于45°.类比探究:(2)当∠BAC=30°时,把△ADE绕点A逆时针旋转到如图3的位置时,请求出的值以及EC与BD所在直线相交所成的锐角.拓展应用:(3)若AC=4,BC=2,点D为AB边的中点,△ADE绕点A逆时针旋转的过程中,当点B、D、E三点在同一直线上时,请直接写出线段EC的长度.【分析】(1)利用等腰直角三角形的性质解决问题即可.(2)证明△ACE∽△ABD,可得==cos30°=,∠ACE=∠ABD,如图3中,延长BD交AC于F,交CE的延长线于G.利用“8字型”证明∠CGB=∠CAB=30°即可.(3)分两种情形:如图4﹣1中,当B,D,E共线在AB的上方时,证明△EAC∽△DAB,推出==,解直角三角形求出BD即可解决问题.如图4﹣2中,当B,D,E共线在AB的下方时,同法可求.解:(1)如图2中,∵∠A=45°,∠C=90°,∴∠A=∠B=45°,∴CA=CB,∴BA=AC,∵DE∥BC,∴∠AED=∠C=90°,∠ADE=∠B=45°,∴∠A=∠EDA=45°,∴AD=AE,∴===,故答案为:,45°.(2)由图1可知:△ADE∽△ABC,∴=,∠DAE=∠BAC,∴=,∠DAB=∠CAE,∴△ACE∽△ABD,∴==cos30°=,∠ACE=∠ABD,如图3中,延长BD交AC于F,交CE的延长线于G.∵∠CFG=∠AFB,∴∠CGB=∠CAB=30°,即CE与BD所在的直线相交所成的锐角为30°.(3)如图4﹣1中,当B,D,E共线在AB的上方时,在Rt△ACB中,∵AC=4,BC=2,∠ACB=90°,∴AB===2,∵△ADE∽△ABC,AD=AB∴===,∴AE=2,DE=2,AD=,∵∠AEB=90°,∴BE===4,∴BD=BE﹣DE=3,∵=,∠EAC=∠DAB,∴△EAC∽△DAB,∴==,∴EC=×3=如图4﹣2中,当B,D,E共线在AB的下方时,同法可得BD=5,EC=BD=2综上所述,CE的值为或2.【点评】本题属于几何变换综合题,考查了相似三角形的判定和性质,解直角三角形,等腰直角三角形的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会用分类讨论思想思考问题,属于中考压轴题.23.如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣2,0)和B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)当点P为直线BC下方抛物线上一动点(不与点B、C重合),PM⊥BC于点M,PD⊥AB于点D,交直线BC于点N,当P点的坐标为何值时,PM+PN的值最大?(3)点P在第四象限的抛物线上移动,以PC为边作正方形CPEF、当抛物线的对称轴经过点E时,求出此时点P的坐标.【分析】(1)用待定系数法确定抛物线解析式即可;(2)求出直线BC的解析式为y=.设P点坐标为(n,),N点的坐标为(n,),则PN=,由锐角三角函数表示PM=PN,则由二次函数的性质可得解;(3)过点P作PK⊥y轴于K,交抛物线的对称轴于G,证明△PEG≌△CPK(AAS),得出CK=PG,设P(x,x2﹣x﹣3),抛物线的对称轴为直线x=1,则G(1,x2﹣x﹣3),K(0,x2﹣x﹣3),可得出PG=|1﹣x|,CK=|x2﹣x﹣3+3|=|x2﹣x|,解方程即可得解.解:(1)依题意得:,解得:,∴抛物线的解析式为y=x﹣3;(2)设直线BC的解析式为y=kx+m,∴,解得:,∴y=x﹣3.设P点坐标为(n,n﹣3),N点的坐标为(n,n﹣3),∴PN=n,∵PM⊥BC,PD⊥AB,∴∠PMN=∠PDB,∵∠PNM=∠BND,∴∠MPN=∠OBC,∵OB=4,OC=3,∴BC===5,∴PM=PN•cos∠MPN=PN•cos∠OBC=PN,∴PM+PN=PN=﹣n=﹣.即当n=2时,PM+PN的值最大,此时P点坐标为(2,﹣3).(3)过点P作PK⊥y轴于K,交抛物线的对称轴于G,如图,∵四边形PEFC为正方形,∴PE=PC,∠EPC=90°∵∠PGE=∠PKC=90°,∴∠PEG=∠CPK,∴△PEG≌△CPK(AAS),∴CK=PG,设P(x,x2﹣x﹣3),抛物线的对称轴为直线x=1,则G(1,x2﹣x﹣3),K(0,x2﹣x﹣3),∴PG=|1﹣x|,CK=|x2﹣x﹣3+3|=|x2﹣x|,∴|1﹣x|=|x2﹣x|,解方程1﹣x=x2﹣x得,x1=﹣,x2=﹣2(舍去);解方程x﹣1=x2﹣x得,x1=,x2=﹣4(舍去);∴P点坐标为(,﹣)或(,﹣).【点评】本题考查了二次函数的综合题,考查了二次函数图象上点的坐标特征、二次函数的性质和正方形的性质;利用待定系数法求二次函数解析式,解一元二次方程;理解坐标与图形性质是解题的关键.。
2020河南省中考数学模拟试卷(三) (含解析)
2020河南省中考数学模拟试卷(三)一、选择题(本大题共10小题,共30.0分) 1. 下列几组数中互为相反数的是( )A. −17和0.7B. 13和−0.333C. −(−6)和6D. −14和0.252. 某图书馆有图书约927000册,数据927000用科学记数法可表示为( )A. 927×103B. 92.7×104C. 9.27×105D. 0.927×1063. 如图,直线a//b ,射线DC 与a 相交于点C ,过点D 作DE ⊥b 于点E ,∠1=25°,则∠2度数为( )A. 115°B. 125°C. 155°D. 165°4. 下列运算正确的是( )A. a 2+a 3=a 5B. 2a −a =2C. √a +√b =√abD. a 6÷a 3=a 35. 如图,图1是由5个完全相同的正方体搭成的几何体,现将标有E的正方体平移至图2所示的位置,下列说法中正确的是( ) ①左、右两个几何体的主视图相同 ②左、右两个几何体的俯视图相同 ③左、右两个几何体的左视图相同.A. ①②③B. ②③C. ①②D. ①③6. 已知关于x 的一元二次方程x 2+mx −8=0的一个实数根为2,则另一实数根及m 的值分别为( )A. 4,−2B. −4,−2C. 4,2D. −4,27. 为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是( ). 月用电量(度)25 30 40 50 60 户数12421A. 极差是3B. 众数是4C. 平均数是40D. 中位数408.若A(2,y1)、B(−√5,y2)、C(−2,y3)是抛物线y=x2−2x上的三个点,则y1、y2、y3的大小关系是()A. y1<y3<y2B. y3<y1<y2C. y3=y1<y2D. y2<y3<y19.如图,DE分别是⊙O的半径OA,OB上的点,CD⊥OA,CE⊥OB,CD=CE,则AC⌢与BC⌢的大小关系是()A. =B. >C. <D. 不能确定10.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2019的坐标为()A. (1009,0)B. (1009,1)C. (1010,0)D. (1010,1)二、填空题(本大题共5小题,共15.0分)11.计算:√3−√27=______.12.不等式组{2(x+1)>5x−7x+103>2x的解集是______.13.写有“2π”、“cos60∘”、“227”、“√8”的四张卡片,从中随机抽取一张,抽到卡片上的数为无理数的概率是______.14.如图,在圆心角为90°的扇形ACB中,半径CA=6,以AC为直径作半圆O.过点O作BC的平行线交两弧于点D、E,则图中阴影部分的面积是______.15.如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为__________.三、计算题(本大题共1小题,共8.0分)16.先化简,再求值:(x−1x2−1+1x+1)÷4x2+x,其中x=−2.四、解答题(本大题共7小题,共67.0分)17.如图,在△ABD中,AB=AD,以AB为直径的⊙F交BD于点C,交AD与点E,GC是⊙F的切线;CG交AD于点G.(1)求证:GC⊥AD.(2)填空:①若△BCF的面积为15,则△BDA的面积为______.②当∠GCD的度数为______时,四边形EFCD是菱形.18.红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:分析数据:根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?19.如图,九年级学生在一次社会实践活动中参观了具有深厚文化底蕴的观音山后感概万千,这座观音多高呢?为了测量这座观音像的高度AB,数学兴趣小组在C处用高为1.5米的测角仪CE,测得观音像的顶端A的仰角为42°,再向观音像方向前进12米到达D点,又测得观音像的顶端A的仰角为61°,求这座观音像的高度AB.(参考数据:sin42°≈0.67,tan42°≈0.90,sin61°≈0.87,tan61°≈1.80,结果保留整数)20.某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t 天后的质量为m(kg),销售单价为y 元/kg.根据以往经验可知:m 与t 的函数关系为m ={20000(0≤t ≤50)100t +15000(50<t ≤100);y 与t 的函数关系如图所示.①分别求出当0≤t ≤50和50<t ≤100时,y 与t 的函数关系式;②设将这批淡水鱼放养t 天后一次性出售所得利润为W 元,求当t 为何值时,W 最大?并求出最大值.(利润=销售总额−总成本)21. 如图,AB 为半圆O 的直径,半径的长为4cm ,点C 为半圆上一动点,过点C 作CE ⊥AB ,垂足为点E ,点D 为弧AC 的中点,连接DE.如果DE =2OE ,求线段AE 的长.小何根据学习函数的经验,将此问题转化为函数问题解决.小何假设AE的长度为x cm,线段DE的长度为y cm.(当点C与点A重合时,AE长度为0cm),对函数y随自变量x的变化而变化的规律进行探究.下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数) (1)通过取点、面图、测量,得到了x与y的几组值,如下表:x/cm012345678y/cm0 1.6 2.5 3.3 4.0 4.7 5.8 5.7当x=6cm时,请你在上图中帮助小何完成作图,并使用刻度尺度量出此时线段DE的长度,填写在表格空白处;(2)建立平面直角坐标系,描出补全后的表中各组对应值为坐标的点,面出该函数的图象;(3)结合画出的函数图象解决问题:当DE=2OE时,AE的长度约为________cm.22.在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)问题发现:如图1,若∠DAB=120°,且∠B=90°,直接写出AD,AB,AC的数量关系____________(2)思考探究:如图2,若将(1)中的条件“∠B=90°”去掉,则(1)中的结论是否仍成立?请说明理由;(3)拓展应用:如图3,若∠DAB=90°,AD=2,AB=3,求线段AC的长度.23.如图①,已知抛物线y=ax2+bx+c的图象经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC//x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案与解析】1.答案:D解析:本题考查了相反数的定义,是基础题,熟记概念是解题的关键. 根据只有符号不同的两数叫做互为相反数解答. 解:−17和0.7,13和−0.333,−(−6)和6,−14和0.25中, 只有−14和0.25是互为相反数. 故选D .2.答案:C解析:此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于927000有6位,所以可以确定n =6−1=5. 解:927000=9.27×105, 故选C .3.答案:A解析:解:如图,过点D 作c//a . 则∠1=∠CDB =25°. 又a//b ,DE ⊥b , ∴b//c ,DE ⊥c ,∴∠2=∠CDB +90°=115°. 故选:A .如图,过点D 作c//a.由平行线的性质进行解题.本题考查了平行线的性质.此题利用了“两直线平行,同位角相等”来解题的.解析:解:A、a2+a3不能合并同类项,故A错误;B、2a−a=a,故B错误;C、√a+√b不能合并同类二次根式,故C错误;D、a6÷a3=a3,故D正确.故选:D.各项化简得到结果,即可作出判断.此题考查了合并同类项,同底数幂的除法以及二次根式的加减,熟练掌握运算法则是解本题的关键.5.答案:B解析:此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.直接利用已知几何体分别得出三视图进而分析得出答案.解:①左、右两个几何体的主视图为:,故不相同;②左、右两个几何体的俯视图为:,故相同;③左、右两个几何体的左视图为:,故相同.故选:B.解析:【试题解析】此题考查了根与系数的关系式,熟练掌握一元二次方程根与系数的关系是解本题的关键.根据题意,利用根与系数的关系式列出关系式,确定出另一根及m的值即可.解:由根与系数的关系式得:2x2=−8,2+x2=−m,解得:x2=−4,m=2,则另一实数根及m的值分别为−4,2,故选D.7.答案:D解析:本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.根据极差、平均数、中位数、众数的概念求解.解:这组数据按照从小到大的顺序排列为:25,30,30,40,40,40,40,50,50,60,极差为:60−25=35,众数为:40,中位数为:40,=40.5.平均数为:25+30+30+40+40+40+40+50+50+6010故选D.8.答案:A解析:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.分别计算出自变量为2,−√5和−2所对应的函数值,然后比较函数值的大小即可.解:当x=2时,y1=x2−2x=4−4=0;当x=−√5时,y2=x2−2x=5+2√5;当x=−2时,y3=x2−2x=4+4=8;所以y1<y3<y2.故选A.9.答案:A解析:本题考查了圆心角、弦、弧的关系及全等三角形的判定(SAS)与性质,难度一般.已知CD⊥OA,CE⊥OB⇒∠CDO=∠CEO=90°,CD=CE,CO=CO⇒△COD≌△COE.根据圆心角、弧、弦的关系(在同圆或等圆中,如果两个圆心角、两条弧、两条弦中只要有一组量相等,那么它们所对应的其余各组量都分别相等.)可得AC⏜=CB⏜.解:∵CD⊥OA,CE⊥OB,∴∠CDO=∠CEO=90°,∵CD=CE,CO=CO,∴△COD≌△COE,∴∠AOC=∠BOC,∴AC⏜=CB⏜.故选A.10.答案:A解析:本题属于循环类规律探究题,考查了学生归纳猜想的能力,结合图象找准循环节是解决本题的关键.根据图形可找出点A3、A7、A11、…、的坐标,根据点的坐标的变化可找出变化规律“A4n+3(2n+ 1,1)(n为自然数)”,依此规律即可得出结论.解:结合图象可知:纵坐标每四个点循环一次,而2019=504×4+3,故A 2019的纵坐标与A3的纵坐标相同,都等于0,由A3(1,0),A7(3,0),A11(5,0)…可得到以下规律,A4n+3(2n+1,0)(n为自然数),当n=504时,A2019(1009,0).故选A.11.答案:−2√3解析:解:原式=√3−3√3=−2√3. 故答案为:−2√3.直接化简二次根式进而计算得出答案.此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.12.答案:x <2解析:解:解不等式2(x +1)>5x −7,得:x <3,解不等式x+103>2x ,得:x <2,则不等式组的解集为x <2,故答案为:x <2.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.答案:12解析:本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比;易错点是得到无理数的个数.用无理数的个数除以数的总个数即为抽到无理数的概率.解:因为一共4个数,其中“2π”,“√8”两个是无理数,cos60∘=12、227是有理数, 所以抽到无理数的概率为24=12.故答案为12. 14.答案:512π−12√3解析:解:如图,连接CE .∵AC ⊥BC ,AC =BC =2,以AC 为直径作半圆,圆心为点O ;以点C 为圆心,BC为半径作AB⏜,∴∠ACB=90°,OA=OC=OD=1,BC=CE=2.又∵OE//BC,∴∠AOE=∠COE=90°.∴在直角△OEC中,OC=12CE,∴∠OEC=30°,OE=√3.∴∠ECB=∠OEC=30°,∴S阴影=S扇形ACB−S扇形AOD−S扇形ECB−S△OCE=90π×22360−90⋅π×12360−30⋅π×22360−12×1×√3=512π−12√3.故答案为512π−12√3.如图,图中S阴影=S扇形ACB−S扇形AOD−S扇形ECB−S△OCE.根据已知条件易求得OA=OC=OD=2,BC=CE=4.∠ECB=∠OEC=30°,所以由扇形面积公式、三角形面积公式进行解答即可.本题考查了扇形面积的计算.不规则图形的面积一定要注意分割成规则图形的面积进行计算.15.答案:5.解析:本题考查了矩形的性质以及勾股定理,在Rt△FC′D中,利用勾股定理找出关于FC′的长度的一元一次方程是解题的关键.设FC′=x,则FD=9−x,根据矩形的性质结合BC=6、点C′为AD的中点,即可得出C′D的长度,在Rt△FC′D中,利用勾股定理即可找出关于x的一元一次方程,解之即可得出结论.解:设FC′=x,则FD=9−x,∵BC=6,四边形ABCD为矩形,点C′为AD的中点,∴AD=BC=6,C′D=3.在Rt△FC′D中,∠D=90°,∴FC′2=FD2+C′D2,即x2=(9−x)2+32,解得:x=5.故答案为5.16.答案:解:原式=2x+1÷4x(x+1)=2x+1×x(x+1)4=x2,当x=−2时,原式=−22=−1.解析:先根据分式混合运算的法则把原式进行化简,再把x=2代入进行计算即可.本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.答案:(1)证明:∵AB=AD,FB=FC,∴∠B=∠D,∠B=∠BCF,∴∠D=∠BCF,∴CF//AD,∵GC是⊙F的切线,∴CG⊥CF;∴CG⊥AD;(2)①60;②30°.解析:本题是圆的综合题目,考查了切线的判定、圆的半径相等、等腰三角形的性质、等边三角形的判定与性质、相似三角形的判定与性质、平行四边形的判定、菱形的判定等知识;熟练掌握切线的判定方法,证明CF//AD是解决问题(1)的关键.(1)由等腰三角形的性质得出∠D=∠BCF,证出CF//AD,由已知条件得出CG⊥CF,即可得出结论;(2)①根据平行线的性质得出△BCF∽△BDA,得出BFBA =12,△BCF的面积:△BDA的面积=1:4,即可得出结果;②∠GCD=30°时,证出△BCF是等边三角形,得出∠BFC=60°,再分别证出△ABD、△AFE均是等边三角形,则CF=12AD=AE,则CF=ED,证出四边形EFCD是平行四边形,再由FC=FE即可得出结论.(1)见答案;(2)①∵CF//AD,∴△BCF∽△BDA,∴BFBA =12,∴△BCF的面积:△BDA的面积=1:4,∴△BDA的面积=4×△BCF的面积=4×15=60;故答案为:60;②当∠GCD的度数为30°时,四边形EFCD是菱形.理由如下:∵CG⊥CF,∠GCD=30°,∴∠FCB=60°,∵FB=FC,∴△BCF是等边三角形,∴∠BFC=60°,∵CF//AD,∴∠A=60°,∵AB=AD,∴△ABD是等边三角形,∴CF=12AB=12AD,∵∠A=60°,AF=EF,∴△AEF是等边三角形,∴AE=AF=FC=12AD,∴CF=DE,又∵CF//AD,∴四边形EFCD是平行四边形,∵CF=EF,∴四边形EFCD是菱形.故答案为:30°.18.答案:解:(1)由题意知a=4,b=110×(90+60+70+80+80+80+80+90+100+100)=83,2班成绩重新排列为60,70,80,80,80,90,90,90,90,100,∴c=80+902=85,d=90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)570×430=76(张),答:估计需要准备76张奖状.解析:【试题解析】(1)根据众数和中位数的概念求解可得;(2)分别从平均数、众数和中位数三个方面比较大小即可得;(3)利用样本估计总体思想求解可得.本题主要考查众数、平均数、中位数,掌握众数、平均数、中位数的定义及其意义是解题的关键.19.答案:解:如图,记EF的延长线交CD于H,根据题意得:BH=CE=DF=1.5m,EF=CD=12m,设AH=xm,在Rt△AEH中,∠AEH=42°,AH═xm,∴EH=AHtan42∘=xtan42∘,在Rt△AFH中,∠AFH=61°,AH=xm,∴FH=AHtan61∘=xtan61∘,∵EF=EH−FH=x0.9−x1.8=12,∴x=21.6,∴AB=1.5+21.6≈23m,答:这座观音像的高度AB约为23m.解析:根据题意得到BH =CE =DF =1.5m ,EF =CD =12m ,设AH =xm ,解直角三角形即可得解.本题考查解直角三角形的应用−仰角俯角问题,解题的关键是灵活运用所学知识解决问题,本题的突破点是利用EF =EH −FH =12建立方程,属于中考常考题型.20.答案:解:(1)由题意,得:{10a +b =0.0420a +b =30.8, 解得{a =0.04b =30, 答:a 的值为0.04,b 的值为30;(2)①当0≤t ≤50时,设y 与t 的函数解析式为y =k 1t +n 1,将(0,15)、(50,25)代入,得:{n 1=1550k 1+n 1=25, 解得:{k 1=15n 1=15, ∴y 与t 的函数解析式为y =15t +15;当50<t ≤100时,设y 与t 的函数解析式为y =k₂t +n₂,将点(50,25)、(100,20)代入,得:{50k 2+n 2=25100k 2+n 2=20, 解得:{k 2=−110n 2=30, ∴y 与t 的函数解析式为y =−110t +30;②由题意,当0≤t ≤50时,W =20000(15t +15)−(400t +300000)=3600t ,∵3600>0, ∴当t =50时,W 最大值=180000(元);当50<t ≤100时,W =(100t +15000)(−110t +30)−(400t +300000)=−10t²+1100t +150000=−10(t −55)²+180250,∵−10<0,∴当t =55时,W 最大值=180250(元),综上所述,放养55天时,W 最大,最大值为180250元.解析:本题主要考查二次函数的应用,熟练掌握待定系数法求函数解析式,根据相等关系列出利润的函数解析式及二次函数的性质是解题的关键.(1)由放养10天的总成本为30.4万元;放养20天的总成本为30.8万元可得答案;(2)①分0≤t ≤50、50<t ≤100两种情况,结合函数图象利用待定系数法求解可得;②就以上两种情况,根据“利润=销售总额−总成本”列出函数解析式,依据一次函数性质和二次函数性质求得最大值即可得.21.答案:解:(1)通过取点、画图、测量可得x=6时,y=5.3cm,(2)利用描点法,图象如图所示:(3)2.6cm或6.8cm.解析:本题考查圆综合题、坐标与图形的关系等知识,解题的关键是理解题意,学会用测量法、图象法解决实际问题,属于中考压轴题.(1)利用取点,测量的方法,即可解决问题;(2)利用描点法,画出函数图象即可;(3)结合画出的函数图象,当DE=2OE时,AE的长度约为2.6cm或6.8cm.解:(1)通过取点、画图、测量可得x=6时,y=5.3cm,故答案为5.3.(2)见答案;(3)结合画出的函数图象,当DE=2OE时,AE的长度约为2.6cm或6.8cm.故答案为2.6cm或6.8cm.22.答案:解:(1)AD+AB=AC;(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:AD+AB=√2AC.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠D=∠CBE,∴△CDA≌△CBE,∴AD=BE,∴AD+AB=AE.在Rt△ACE中,∠CAB=45°,∴AE=AC cos45°=√2AC,∴AD+AB=√2AC.∴AC=√2=52√2.解析:本题考查四边形综合题、等边三角形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.(1)结论:AC=AD+AB,只要证明AD=12AC,AB=12AC即可解决问题;(2)(1)中的结论成立.以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,只要证明△DAC≌△BEC即可解决问题;(3)过点C作CE⊥AC交AB的延长线于点E,只要证明△ACE是等腰直角三角形,△DAC≌△BEC即可得AD+AB=√2AC,进而求解AC.解:(1)如图1中,在四边形ABCD中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC平分∠DAB,∴∠DAC=∠BAC=60°,∵∠B=90°,∴AB=12AC,同理AD=12AC.∴AD+AB=AC.故答案为AD+AB=AC;(2)见答案;(3)见答案.23.答案:解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x−1)(x−3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2−4x+3;(2)如图2,∵△AOE的面积是定值,所以当△OEP面积最大时,四边形AOPE面积最大,设P(m,m2−4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG//y轴,交OE于点G,∴G(m,m),∴PG=m−(m2−4m+3)=−m2+5m−3,∴S四边形AOPE=S△AOE+S△POE,=12×3×3+12PG⋅AE,=92+12×3×(−m2+5m−3),=−32m2+15m2,=−32(m−52)2+758,∵−32<0,∴当m=52时,S有最大值是758;(3)分四种情况:①当P在对称轴的左边,且在x轴下方时,如图3,过P作MN⊥y轴,交y轴于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2−4m+3),则−m2+4m−3=2−m,解得:m=5+√52(舍)或5−√52,∴P的坐标为(5−√52,1−√52);②当P在对称轴的左边,且在x轴上方时,如图3,同理得:2−m=m2−4m+3,解得:m1=3+√52(舍)或m2=3−√52,③当P在对称轴的右边,且在x轴下方时,如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF ,∴PN =FM ,则−m 2+4m −3=m −2,解得:x =3+√52或3−√52(舍);P 的坐标为(3+√52,1−√52); ④当P 在对称轴的右边,且在x 轴上方时,同理得m 2−4m +3=m −2,解得:m =5+√52或5−√52(舍)P 的坐标为:(5+√52,√5+12); 综上所述,点P 的坐标是:(5+√52,√5+12)或(5−√52,1−√52)或(3+√52,1−√52)或(3−√52,1+√52).解析:【试题解析】本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.(1)利用对称性可得点D 的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m 2−4m +3),根据OE 的解析式表示点G 的坐标,表示PG 的长,根据面积和可得四边形AOPE 的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据|OM|=|PN|,列方程可得点P的坐标;同理可得其他图形中点P的坐标.。
2020年河南中考数学模拟卷03(原卷版)
2020年河南中考数学模拟卷03班级___________ 姓名___________ 学号____________ 分数____________(考试时间:100分钟试卷满分:120分)第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.–2020的绝对值是A.–2020 B.2020 C.−12020D.120202.已知空气的单位体积质量为1.24×10–3克/厘米3,1.24×10–3用小数表示为A.0.000124 B.0.0124 C.–0.00124 D.0.001243.下列四种标志图案中,既是轴对称图形又是中心对称图形的是A.B.C.D.4.下列运算正确的是A.(–a3)2=–a5B.a3•a2=a5C.(–ab3)2=a2b9D.2a2–a2=15.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是A.325B.320C.110D.156.王明同学把5次月考成绩(单位:分,满分100分)整理如下:75,74,78,73,75,关于这组数据的说法正确的是A.众数为74 B.中位数为74 C.平均数为76 D.方差为2.87.一元二次方程x(x–1)=(3–x)(x–1)根的情况是A.只有一个实根为32B.有两个实根,一正一负C.两个正根D.无实数根8.已知二次函数y=–2(x–m)2+4,当x<–2时,y随x增大而增大,当x>0时,y随增大而减小,且m满足m2–2m–3=0,则当x=0时,y的值为A.2 B.4C.1+√2D.1士√29.如图,在菱形OABC中,∠AOC=30°,OA=4,以O为坐标原点,以OA所在的直线为x轴建立AB的长为半径作弧,两平面直角坐标系,如图按以下步骤作图:①分别以点A,B为圆心,以大于12弧相交于点M,N;②作直线MN交BC于点P.则点P的坐标为A.(4,2)B.(8−4√3,2)3C.(4+2√3,2)D.(3√3,2)310.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是A.B.C.D.第Ⅱ卷(非选择题共90分)二、填空题(共5小题,每小题3分,计15分)11.计算:(−1)–1−√(−2)2=__________.212.不等式组{−x +2>−3x−12≤4的解集是__________.13.如图,把一条直的等宽纸带折叠,∠α的度数为__________.14.如图,在扇形OAB 中,∠AOB =90°.D ,E 分别是半径OA ,OB 上的点,以OD ,OE 为邻边的▱ODCE 的顶点C 在AB̂上.若OD =8,OE =6,则阴影部分图形的面积是__________(结果保留π).15.如图,在Rt △ABC 中,∠ACB =90°,AB =10,AC =6,点D 是BC 上一动点,连接AD ,将△ACD 沿AD 折叠,点C 落在点C ',连接C 'D 交AB 于点E ,连接BC '.当△BC 'D 是直角三角形时,DE 的长为__________.三、解答题(共8小题,计75分.解答应写出过程) 16.(8分)先化简,再求值:(1−1x−2)÷x 2−6x+92x−4,其中x 的值从不等式组{3−x ≤12x −1<8中的整数解中选取.17.(9分)如图,AB 为⊙O 的直径,点C 为AB 上方的圆上一动点,过点C 作⊙O 的切线l ,过点A 作直线l 的垂线AD ,交⊙O 于点D ,连接OC ,CD ,BC ,BD ,且BD 与OC 交于点E . (1)求证:△CDE ≌△CBE ; (2)若AB =6,填空:①当CD̂的长度是__________时,△OBE 是等腰三角形; ②当BC =__________时,四边形OADC 为菱形.18.(9分)中招体育考试在即,为了解我校九年级学生的体育水平,随机抽取了九年级若干名学生的模拟测试成绩进行统计分析,并根据成绩分为四个等级(A、B、C、D),绘制了如下统计图表(不完整):成绩等级A B C D人数60 100 30 10请根据以上统计图表提供的信息,解答下列问题:(1)本次抽查的学生有__________名,成绩为B类的学生人数为__________名,这组数据的中位数所在等级为__________;(2)请补全条形统计图;(3)根据调查结果,请估计我校九年级学生(约900名)体育测试成绩为D类的学生人数.19.(9分)如图是某种品牌的篮球架实物图与示意图,已知底座BC=0.6米,底座BC与支架AC 所成的角∠ACB=75°,支架AF的长为2.5米,篮板顶端F点到篮筐D的距离FD=1.4米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮筐D到地面的距离.(精确到0.1米.参考数据:cos75°≈0.3,sin75°≈0.9,.tan75°≈3.7,√3≈1.7,√2≈1.4)20.(9分)如图,反比例函数y=m(x>0)的图象经过格点(网格线的交点)A,作AC⊥x轴于x点C.(1)求反比例函数的解析式.(2)直线AB:y=kx+b经过格点A交x轴于点B.记△ABC(不含边界)围成区域W.①当直线AB经过格点(0,1)时,区域W内的格点坐标是__________;②若区域W内恰有1个格点,结合函数图象,直接写出正数k的取值范围.21.(10分)“守护碧水蓝天,守护我们的家园”,某市为了改善城市环境,预算116万元购进A、B 两种型号的清扫机,已知A型号清扫机的单价比B型号清扫机单价的3多1.2万元,若购进2台A型4号清扫机和3台B型号清扫机花费54.6万元.(1)求A型号清扫机和B型号清扫机的单价分别为多少万元;(2)该市通过考察决定先购进两种型号的清扫机共10台,且B型号的清扫机数量不能少于A型号清扫机的1.5倍,该市怎样购买才能花费最少?最少花费多少万元?22.(10分)(1)观察猜想如图1,在△ABC中,CA=CB,∠ACB=90°.点D在AC上,点E在BC上,且CD=CE.则BE与AD的数量关系是__________,直线BE与直线AD的位置关系是__________;(2)拓展探究如图2,在△ABC和△CDE中,CA=CB,CD=CE,∠ACB=∠DCE=90°.则BE与AD 的数量关系怎样?直线BE与直线AD的位置关系怎样?请说明理由;(3)解决问题如图3,在△ABC中,CA=CB,∠ACB=90°,BD是△ABC的角平分线,点M是AB的中点.点P在射线BD上,连接PM,以点M为中心,将PM逆时针旋转90°,得到线段MN,请直接写出点A,P,N在同一条直线上时∠CPM的值.23.(11分)如图,抛物线y=ax2+bx+c经过O、A(4,0)、B(5,5)三点,直线l交抛物线于点B,交y轴于点C(0,–4).点P是抛物线上一个动点.(1)求抛物线的解析式;(2)点P关于直线OB的对称点恰好落在直线l上,求点P的坐标;(3)M是线段OB上的一个动点,过点M作直线MN⊥x轴,交抛物线于点N.当以M、N、B为顶点的三角形与△OBC相似时,直接写出点N的坐标.。
2020年河南省郑州一中教育集团中考数学三模试卷(含答案解析)
2020年河南省郑州一中教育集团中考数学三模试卷一、选择题(本大题共10小题,共30.0分)1.下列各数中,比−2小的数是()A. −1B. 0C. −3D. 12.用科学记数法表示“8500亿”为()A. 85×1010B. 8.5×1011C. 85×1011D. 0.85×10123.如图是由6个完全相同的小正方体组成的立体图形,它的左视图是()A.B.C.D.4.如图,已知AB//CD//EF,FC平分∠AFE,∠C=25°,则∠A的度数为()A. 25°B. 35°C. 45°D. 50°5.下列运算正确的是()A. 7a−a=6B. a2⋅a3=a5C. (a3)3=a6D. (ab)4=ab46. 6.如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是()A. 12B. 13C. 16D. 237.某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示,已知这15个数据的中位数为5.部门人数每人所创年利润(单位:万元)A119B38C7xD43这15名员工每人所创年利润的众数、平均数分别是()A. 10,5B. 7,8C. 5,6.5D. 5,68.关于x的一元二次方程x2−2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是()A. B. C. D.9.如图,在菱形ABCD中,按以下步骤作图:①分别以点C和点D为圆心,大于12CD为半径作弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE,则下列说法错误的是()A. ∠ABC=60°B. S△ABE=2S△ADEC. 若AB=4,则BE=4√7D. sin∠CBE=√211410.如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB//x轴,直线y=−x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为()A. 5B. 5√5C. 8D. 10√10二、填空题(本大题共5小题,共15.0分)11.(π−3.14)0−√4=______.12.不等式组{x2≤−1−x+7>4的解集是______.13.如图,在平面直角坐标系中,O为坐标原点,点P是反比例函数y=2x图像上的一点,PA⊥x轴于点A,则△POA的面积为________.14.如图,直径AB为8的半圆,绕点A逆时针旋转45°,此时点B到了点B′,则图中阴影部分的面积是______.15.如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与射线OA、OB相交于点D、E,请写出OE+OD与OC的数量关系______________________.三、解答题(本大题共8小题,共75.0分)16.先化简,再求值:x−2x2−1÷(1−2xx+1+x−1),其中x是方程x2+x−6=0的根.17.为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表:分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=______,b=______,样本成绩的中位数落在______范围内;(2)请把频数分布直方图补充完整;(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?18.如图,AB为⊙O的直径,且AB=4,DB⊥AB于B,点C是弧AB上的任一点,过点C作⊙O的切线交BD于点E.连接OE交⊙O于F.(1)求证:AD//OE;(2)填空:连接OC、CF,①当DB=____时,四边形OCEB是正方形;②当DB=____时,四边形OACF是菱形.19. 小华为了测量楼房AB 的高度,他从楼底的B 处沿着斜坡向上行走20m ,到达坡顶D 处.已知斜坡的坡角为15°.小华的身高ED 是1.6m ,他站在坡顶看楼顶A 处的仰角为45°,求楼房AB 的高度.(计算结果精确到1m)(参考数据:sin15°=14,cos15°=2425,tan15°=726)20. 某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍。
(完整word版)2020年河南省中考数学模拟试卷解析版
2020年河南省中考数学模拟试卷解析版一.选择题(共10小题,满分30分,每小题3分)1.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|2.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A.1。
3×106B.130×104C.13×105D.1。
3×1053.将一个正方体沿图1所示切开,形成如图2的图形,则图2的左视图为()A.B.C.D.4.如图,直线a∥b,点C,D分别在直线b,a上,AC⊥BC,CD平分∠ACB,若∠1=65°,则∠2的度数为()A.65°B.70°C.75°D.80°5.为迎接体育中考,九年级(1)班八名同学课间练习垫排球,记录成绩(个数)如下:40,38,42,35,45,40,42,42,则这组数据的众数与中位数分别是( )A.40,41 B.42,41 C.41,42 D.41,406.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.如图,菱形ABCD中,对角线AC、BD交于点O,点E为AB的中点,连接OE,若OE=3,∠ADC=60°,则BD 的长度为()A.6B.6 C.3D.38.两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球,7个小球除标号外其余均相同,随机从两个袋子中抽取一个小球,则其标号数字和大于6的概率为()A.B.C.D.9.如图,在平面直角坐标系中,等边△OBC的边OC在x轴正半轴上,点O为原点,点C坐标为(12,0),D 是OB上的动点,过D作DE⊥x轴于点E,过E作EF⊥BC于点F,过F作FG⊥OB于点G.当G与D重合时,点D的坐标为()A.(1,)B.(2,2)C.(4,4)D.(8,8)10.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE 的长为x,y关于x的函数图象如图2,则△EFG的最小面积为( )A.B.C.2 D.二.填空题(共5小题,满分15分,每小题3分)11.计算:(﹣π)0﹣=.12.如图,在⊙O中,直径EF⊥CD,垂足为M,EM•MF=12,则CD的长度为.13.如果函数y=﹣2x与函数y=ax2+1有两个不同的交点,则实数a的取值范围是.14.如图,等腰三角形ABC中,AB=AC=2,∠B=75°,以C为旋转中心将△ABC顺时针旋转,当点B落在AB 上点D处时,点A的对应点为E,则阴影部分面积为.15.如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=10,BE=2,则AB2﹣AC2的值为.三.解答题(共8小题,满分75分)16.(8分)先化简,再求值:(x﹣2﹣)÷,其中x=2﹣4.17.(9分)某超市对今年“元旦"期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?18.(9分)如图,⊙O中,AB为直径,点P为⊙O外一点,且PA=AB,PA、PB交⊙O于D、E两点,∠PAB 为锐角,连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为;②当DE=时,四边形OBED为菱形.19.(9分)济南大明湖畔的“超然楼"被称作“江北第一楼”.某校数学社团的同学对超然楼的高度进行了测量.如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,则该楼的高度CD多少米?(结果保留根号)20.(9分)如图,已知一次函数y=mx﹣4(m≠0)的图象分别交x轴,y轴于A(﹣4,0),B两点,与反比例函数y=(k≠0)的图象在第二象限的交点为C(﹣5,n)(1)分别求一次函数和反比例函数的表达式;(2)点P在该反比例函数的图象上,点Q在x轴上,且P,Q两点在直线AB的同侧,若以B,C,P,Q为顶点的四边形是平行四边形,求满足条件的点P和点Q的坐标.21.(10分)开学前夕,某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费125元,购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不超过进货价格的40%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.22.(10分)已知:AD是△ABC的高,且BD=CD.(1)如图1,求证:∠BAD=∠CAD;(2)如图2,点E在AD上,连接BE,将△ABE沿BE折叠得到△A′BE,A′B与AC相交于点F,若BE=BC,求∠BFC的大小;(3)如图3,在(2)的条件下,连接EF,过点C作CG⊥EF,交EF的延长线于点G,若BF=10,EG=6,求线段CF的长.23.(11分)如图1,抛物线y=x2+(m﹣2)x﹣2m(m>0)与x轴交于A、B两点(A在B左边),与y轴交于点C.连接AC、BC,D为抛物线上一动点(D在B、C两点之间),OD交BC于E点.(1)若△ABC的面积为8,求m的值;(2)在(1)的条件下,求的最大值;(3)如图2,直线y=kx+b与抛物线交于M、N两点(M不与A重合,M在N左边),连MA,作NH⊥x轴于H,过点H作HP∥MA交y轴于点P,PH交MN于点Q,求点Q的横坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据绝对值的定义进行分析即可得出正确结论.【解答】解:选项A、B、C中,a与b的关系还有可能互为相反数.故选D.【点评】绝对值相等的两个数的关系是相等或互为相反数.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将130万用科学记数法表示为1。
河南2020年中考数学模拟试卷 三(含答案)
23.已知函数y1=x,y2=x2+bx+c,ɑ,β为方程y1-y2=0 的两个根,点M(t,T)在函数y2 的图象上.
(1)若
,求函数y2 的解析式;
(2)在(1)的条件下,若函数y1 与y2 的图象的两个交点为A,B,当△ABM的面积为 1/12 时, 求t的值;
过 A 作 AC⊥x 轴于点 C,过 B 作 BD⊥x 轴于点 D, (1)求 m,n 的值及反比例函数的解析式;
(2)请问:在直线 y=-x+2 上是否存在点 P,使得 S△P△AC =S PBD ?若存在,求出点 P 的坐标;
若不存在,请说明理由.
四、综合题 21.在平面直角坐标中,△ABC 三个顶点坐标为 A(﹣ ,0)、B( ,0)、C(0,3). (1)求△ABC 内切圆⊙D 的半径. (2)过点 E(0,﹣1)的直线与⊙D 相切于点 F(点 F 在第一象限),求直线 EF 的解析式. (3)以(2)为条件,P 为直线 EF 上一点,以 P 为圆心,以 2 为半径作⊙P.若⊙P 上存在 一点到△ABC 三个顶点的距离相等,求此时圆心 P 的坐标.
A.30°
B.40°
C.50°
4.下列根式是最简二次根式的是( )
A.
B.
C.
D.
5.将一个螺栓按如图放置,则螺栓的左视图可能是(
)
D.60°
6.不解方程,判别方程 2x2﹣3 x=3 的根的情况( )
A.有两个相等的实数根 C.有一个实数根
B.有两个不相等的实数根 D.无实数根
7.在样本频率分布直方图中,共有 9 个小长方形,若中间一个小长方形的面积等于其他 8 个小
2020年河南省洛阳市中考数学模拟试卷(三) 解析版
2020年河南省洛阳市中考数学模拟试卷(三)一、选择题(每题3分,共30分)1.(3分)下列各数中是负数的是()A.|﹣3|B.﹣3C.﹣(﹣3)D.2.(3分)下列运算正确的是()A.(﹣a3)2=a6B.a2+a3=a5C.(a﹣b)2=a2﹣b2D.(﹣2a3)2=﹣4a63.(3分)智能手机的芯片都是采用光刻技术制作出来的半导体集成电路,随着科技的迅猛发展,纳米芯片的特征尺寸已达到10纳米(1米=109纳米),那么10纳米用科学记数法表示为()米.A.1.0×10﹣7B.1.0×10﹣8C.1.0×10﹣9D.1.0×10﹣10 4.(3分)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图5.(3分)下列等式是四位同学解方程﹣1=过程中去分母的一步,其中正确的是()A.x﹣1=2x B.x﹣1=﹣2x C.x﹣x﹣1=﹣2x D.x﹣x+1=﹣2x 6.(3分)如图,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C 的度数是()A.100°B.120°C.130°D.150°7.(3分)九年级一班数学老师对全班学生在模拟考试中A卷成绩进行统计后,制成如下的统计表:成绩(分)808284868790人数8129358则该班学生A卷成绩的众数和中位数分别是()A.82分,82分B.82分,83分C.80分,82分D.82分,84分8.(3分)若关于x的一元二次方程x2+(k+3)x+2=0的一个根是﹣2,则另一个根是()A.2B.1C.﹣1D.09.(3分)如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.6π﹣B.6π﹣9C.12π﹣D.10.(3分)如图所示,把多块大小不同的30°角三角板,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与x轴重合且点A的坐标为(2,0),∠ABO=30°,第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交x轴于点B1,第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交y轴于点B2,第四块三角板斜边B2B3与第三块三角板的斜边B1B2垂直且交x轴于点B3.按此规律继续下去,则线段OB2020的长为()A.2×()2020B.2×()2021C.()2020D.()2021二、填空题(每题3分,共15分)11.(3分)计算:|﹣2|﹣=.12.(3分)如图,已知△ABC的周长为13,根据图中尺规作图的痕迹,直线分别与BC、AC交于D、E两点,若AE=2,则△ABD的周长为.13.(3分)为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是.14.(3分)如图1,在四边形ABCD中,AD∥BC,∠B=30°,直线l⊥AB.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E、F.设直线l向右平移的距离为x,线段EF的长为y,且y与x的函数关系如图2所示,则四边形ABCD的周长是.15.(3分)菱形ABCD的边长是4,∠ABC=120°,点M、N分别在边AD、AB上,且MN⊥AC,垂足为P,把△AMN沿MN折叠得到△AˊMN,若△AˊDC恰为等腰三角形,则AP的长为.三、解答题(共75分)16.(8分)先化简,再求值:(﹣)÷,其中x的值从不等式组的整数解中选取.17.(9分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题:(1)A组的频数a比B组的频数b小24,样本容量,a为:(2)n为°,E组所占比例为%:(3)补全频数分布直方图;(4)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀学生有名.18.(9分)如图,已知AB是⊙O的直径,PC切⊙O于点P,过A作直线AC⊥PC交⊙O 于另一点D,连接P A、PB.(1)求证:AP平分∠CAB;(2)若P是直径AB上方半圆弧上一动点,⊙O的半径为2,则①当弦AP的长是时,以A,O,P,C为顶点的四边形是正方形;②当的长度是时,以A,D,O,P为顶点的四边形是菱形.19.(9分)如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据:≈1.732).(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为米;(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G 在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?20.(9分)如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y=(x>0)的函数图象经过点D,点P是一次函数y=kx+3﹣3k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=kx+3﹣3k(k≠0)的图象一定过点C;(3)对于一次函数y=kx+3﹣3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).21.(10分)在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;(总费用=广告赞助费+门票费)方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为;方案二中,当0≤x≤100时,y与x的函数关系式为;当x>100时,y与x的函数关系式为;(2)如果购买本场足球赛超过100张,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张?22.(10分)已知△ABC是等边三角形,点P是平面内一点,且四边形PBCD为平行四边形,将线段CD绕点C逆时针旋转60°,得到线段CF.(1)如图1,当P为AC的中点时,求证:FC⊥PD;(2)如图2,当P为△ABC内任一点时,连接P A,PF,AF试判断△P AF的形状,并证明你的结论;(3)当B,P,F三点共线且AB=,PB=3时,求P A的长.23.(11分)如图,抛物线y=ax2+bx+过点A(1,0),B(5,0),与y轴相交于点C.(1)求抛物线的解析式;(2)定义:平面上的任一点到二次函数图象上与它横坐标相同的点的距离,称为点到二次函数图象的垂直距离.如:点O到二次函数图象的垂直距离是线段OC的长.已知点E为抛物线对称轴上的一点,且在x轴上方,点F为平面内一点,当以A,B,E,F为顶点的四边形是边长为4的菱形时,请求出点F到二次函数图象的垂直距离.(3)在(2)中,当点F到二次函数图象的垂直距离最小时,在以A,B,E,F为顶点的菱形内部是否存在点Q,使得AQ,BQ,FQ之和最小,若存在,请求出最小值;若不存在,请说明理由.2020年河南省洛阳市中考数学模拟试卷(三)参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)下列各数中是负数的是()A.|﹣3|B.﹣3C.﹣(﹣3)D.【分析】根据负数的定义可得B为答案.【解答】解:﹣3的绝对值=3>0;﹣3<0;﹣(﹣3)=3>0;>0.故选:B.2.(3分)下列运算正确的是()A.(﹣a3)2=a6B.a2+a3=a5C.(a﹣b)2=a2﹣b2D.(﹣2a3)2=﹣4a6【分析】根据幂的乘方的运算法则,合并同类项的法则,完全平方公式,幂的乘方和积的乘方的运算法则计算得到结果,即可作出判断.【解答】解:A、(﹣a3)2=a6,原计算正确,故此选项符合题意;B、a2与a3不是同类项,不能合并,原计算错误,故此选项不符合题意;C、(a﹣b)2=a2﹣2ab+b2,原计算错误,故此选项不符合题意;D、(﹣2a3)2=4a6,原计算错误,故此选项不符合题意.故选:A.3.(3分)智能手机的芯片都是采用光刻技术制作出来的半导体集成电路,随着科技的迅猛发展,纳米芯片的特征尺寸已达到10纳米(1米=109纳米),那么10纳米用科学记数法表示为()米.A.1.0×10﹣7B.1.0×10﹣8C.1.0×10﹣9D.1.0×10﹣10【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:10纳米用科学记数法表示为1.0×10﹣8米.故选:B.4.(3分)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.5.(3分)下列等式是四位同学解方程﹣1=过程中去分母的一步,其中正确的是()A.x﹣1=2x B.x﹣1=﹣2x C.x﹣x﹣1=﹣2x D.x﹣x+1=﹣2x 【分析】两边都乘以x﹣1,再去括号可得答案.【解答】解:两边都乘以x﹣1,得:x﹣(x﹣1)=﹣2x,即x﹣x+1=﹣2x,故选:D.6.(3分)如图,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C 的度数是()A.100°B.120°C.130°D.150°【分析】求出∠CDB,根据平行线的性质求出∠ABD,根据角平分线的定义求出∠ABC,再根据平行线的性质求出即可.【解答】解:∵∠CDE=150°,∴∠CDB=180°﹣150°=30°,∵DC∥AB,∴∠ABD=∠CDB=30°,∵BE平分∠ABC,∴∠ABC=2∠ABD=60°,∵AB∥CD,∴∠C+∠ABC=180°,∴∠C=120°,故选:B.7.(3分)九年级一班数学老师对全班学生在模拟考试中A卷成绩进行统计后,制成如下的统计表:成绩(分)808284868790人数8129358则该班学生A卷成绩的众数和中位数分别是()A.82分,82分B.82分,83分C.80分,82分D.82分,84分【分析】根据中位数与众数的定义进行解答即可.【解答】解:把这组数据从小到大排列,则该班学生成绩的中位数是84;82出现了12次,出现的次数最多,则众数是82;故选:D.8.(3分)若关于x的一元二次方程x2+(k+3)x+2=0的一个根是﹣2,则另一个根是()A.2B.1C.﹣1D.0【分析】根据一元二次方程的根与系数的关系x1•x2=来求方程的另一个根.【解答】解:设x1、x2是关于x的一元二次方程x2+(k+3)x+2=0的两个根,由韦达定理,得x1•x2=2,即﹣2x2=2,解得,x2=﹣1.即方程的另一个根是﹣1.故选:C.9.(3分)如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.6π﹣B.6π﹣9C.12π﹣D.【分析】连接OD,如图,利用折叠性质得由弧AD、线段AC和CD所围成的图形的面积等于阴影部分的面积,AC=OC,则OD=2OC=6,CD=3,从而得到∠CDO=30°,∠COD=60°,然后根据扇形面积公式,利用由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD﹣S△COD,进行计算即可.【解答】解:连接OD,如图,∵扇形纸片折叠,使点A与点O恰好重合,折痕为CD,∴AC=OC,∴OD=2OC=6,∴CD==3,∴∠CDO=30°,∠COD=60°,∴由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD﹣S△COD=﹣•3•3=6π﹣,∴阴影部分的面积为6π﹣.故选:A.10.(3分)如图所示,把多块大小不同的30°角三角板,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与x轴重合且点A的坐标为(2,0),∠ABO=30°,第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交x轴于点B1,第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交y轴于点B2,第四块三角板斜边B2B3与第三块三角板的斜边B1B2垂直且交x轴于点B3.按此规律继续下去,则线段OB2020的长为()A.2×()2020B.2×()2021C.()2020D.()2021【分析】根据题意和图象可以发现题目中的变化规律:OB=2×,OB1=2×()2,OB2=2×()3,……,从而可以推算出OB2020的长.【解答】解:由题意可得,∵OB=OA•tan60°=2×=2,∴B(0,2),∵OB1=OB•tan60°=2×=2×()2,∴B1(﹣2×()2,0),∵OB2=OB1•tan60°=2×()3,∴B2(0,﹣2×()3),∵OB3=OB2•tan60°=2×()4,∴B3(2×()4,0),……∴线段OB2020的长为2×()2021.故选:B.二、填空题(每题3分,共15分)11.(3分)计算:|﹣2|﹣=﹣1.【分析】根据绝对值和立方根的定义计算即可.【解答】解:|﹣2|﹣=2﹣3=﹣1.故答案为:﹣1.12.(3分)如图,已知△ABC的周长为13,根据图中尺规作图的痕迹,直线分别与BC、AC交于D、E两点,若AE=2,则△ABD的周长为9.【分析】根据线段的垂直平分线的判定和性质解决问题即可.【解答】解:由作图可知,DE垂直平分线段AC,∴DA=DC,AE=EC,∵AB+BC+AC=13,AC=2AE=4,∴AB+BC=9,∴△ABD的周长=AB+BD+DA=AB+BD+DC=AB+BC=9,故答案为9.13.(3分)为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是.【分析】将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.【解答】解:将三个小区分别记为A、B、C,列表如下:A B CA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为=.故答案为:.14.(3分)如图1,在四边形ABCD中,AD∥BC,∠B=30°,直线l⊥AB.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E、F.设直线l向右平移的距离为x,线段EF的长为y,且y与x的函数关系如图2所示,则四边形ABCD的周长是.【分析】根据题意和函数图象中的数据,可以得到AB、BC、AD的长,再根据平行线的性质和图形中的数据可以得到CD的长,从而可以求得四边形ABCD的周长.【解答】解:∵∠B=30°,直线l⊥AB,∴BE=2EF,由图可得,AB=4cos30°=4×=2,BC=5,AD=7﹣4=3,由图象可得,AN=5﹣4=1,ND=CM=7﹣5=2,DM=2,∵∠B=30°,EF⊥AB,∴∠M=60°,又∵DM=MC=2,∴△DMC是等边三角形,∴DC=DM=2,∴四边形ABCD的周长是:AB+BC+AD+CD=2+5+3+2=10+2,故答案为:10+2.15.(3分)菱形ABCD的边长是4,∠ABC=120°,点M、N分别在边AD、AB上,且MN⊥AC,垂足为P,把△AMN沿MN折叠得到△AˊMN,若△AˊDC恰为等腰三角形,则AP的长为或2﹣2.【分析】△A'DC恰为等腰三角形,分两种情况进行讨论:当A'D=A'C时,当CD=CA'=4时,分别通过解直角三角形,求得AA'的长,即可得到AP的长.【解答】解:①如图,当A'D=A'C时,∠A'DC=∠A'CD=30°,∴∠AA'D=60°,又∵∠CAD=30°,∴∠ADA'=90°,∴Rt△ADA'中,AA'===,由折叠可得,AP=AA'=;②如图,当CD=CA'=4时,连接BD交AC于O,则Rt△COD中,CO=CD×cos30°=4×=2,∴AC=4,∴AA'=AC﹣A'C=4﹣4,由折叠可得,AP=AA'=2﹣2;故答案为:或2﹣2.三、解答题(共75分)16.(8分)先化简,再求值:(﹣)÷,其中x的值从不等式组的整数解中选取.【分析】首先化简(﹣)÷,然后根据x的值从不等式组的整数解中选取,求出x的值是多少,再把求出的x的值代入化简后的算式,求出算式的值是多少即可.【解答】解:(﹣)÷=÷=解不等式组,可得:﹣2<x≤2,∴x=﹣1,0,1,2,∵x=﹣1,0,1时,分式无意义,∴x=2,∴原式==﹣.17.(9分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题:(1)A组的频数a比B组的频数b小24,样本容量200,a为16:(2)n为126°,E组所占比例为12%:(3)补全频数分布直方图;(4)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀学生有940名.【分析】(1)由于A组的频数比B组小24,而A组的频率比B组小12%,则可计算出调查的总人数,然后计算a和b的值;(2)用360度乘以D组的频率可得到n的值,根据百分比之和为1可得E组百分比;(3)计算出C和E组的频数后补全频数分布直方图;(4)利用样本估计总体,用2000乘以D组和E组的频率和即可.【解答】解:(1)调查的总人数为24÷(20%﹣8%)=200,所以a=200×8%=16,b=200×20%=40,故答案为:200,16;(2)D部分所对的圆心角=360°×=126°,即n=126,E组所占比例为1﹣(8%+20%+25%+×100%)=12%,故答案为126,12;(3)C组的频数为200×25%=50,E组的频数为200﹣16﹣40﹣50﹣70=24,补全频数分布直方图为:(4)2000×=940,所以估计成绩优秀的学生有940人.18.(9分)如图,已知AB是⊙O的直径,PC切⊙O于点P,过A作直线AC⊥PC交⊙O 于另一点D,连接P A、PB.(1)求证:AP平分∠CAB;(2)若P是直径AB上方半圆弧上一动点,⊙O的半径为2,则①当弦AP的长是2时,以A,O,P,C为顶点的四边形是正方形;②当的长度是π或π时,以A,D,O,P为顶点的四边形是菱形.【分析】(1)利用切线的性质得OP⊥PC,再证明AC∥OP得到∠1=∠3,加上∠2=∠3,所以∠1=∠2;(2)①当∠AOP=90°,根据正方形的判定方法得到四边形AOPC为正方形,从而得到AP=2;②根据菱形的判定方法,当AD=AP=OP=OD时,四边形ADOP为菱形,所以△AOP和△AOD为等边三角形,然后根据弧长公式计算的长度.当AD=DP=PO=OA时,四边形ADPO为菱形,△AOD和△DOP为等边三角形,则∠AOP=120°,根据弧长公式计算的长度.【解答】(1)证明:∵PC切⊙O于点P,∴OP⊥PC,∵AC⊥PC,∴AC∥OP,∴∠1=∠3,∵OP=OA,∴∠2=∠3,∴∠1=∠2,∴AP平分∠CAB;(2)解:①当∠AOP=90°,四边形AOPC为矩形,而OA=OP,此时矩形AOPC为正方形,AP=OP=2;②当AD=AP=OP=OD时,四边形ADOP为菱形,△AOP和△AOD为等边三角形,则∠AOP=60°,的长度==π.当AD=DP=PO=OA时,四边形ADPO为菱形,△AOD和△DOP为等边三角形,则∠AOP=120°,的长度==π.故答案为2,π或π.19.(9分)如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据:≈1.732).(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为10.9米;(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G 在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?【分析】(1)根据题意得出,∠BEF最大为45°,当∠BEF=45°时,EF最短,此时ED最长,进而得出EF的长,即可得出答案;(2)利用在Rt△DP A中,DP=AD,以及P A=AD•cos30°进而得出DM的长,利用HM=DM•tan30°得出即可.【解答】解:(1)∵修建的斜坡BE的坡角(即∠BEF)不大于45°,∴∠BEF最大为45°,当∠BEF=45°时,EF最短,此时ED最长,∵∠DAC=∠BDF=30°,AD=BD=30,∴BF=EF=BD=15,DF=15,故:DE=DF﹣EF=15(﹣1)≈10.9(米);若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为10.9m;(2)过点D作DP⊥AC,垂足为P.在Rt△DP A中,DP=AD=×30=15,P A=AD•cos30°=×30=15.在矩形DPGM中,MG=DP=15,DM=PG=15+27,在Rt△DMH中,HM=DM•tan30°=×(15+27)=15+9.GH=HM+MG=15+15+9≈45.6.答:建筑物GH高约为45.6米.20.(9分)如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y=(x>0)的函数图象经过点D,点P是一次函数y=kx+3﹣3k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=kx+3﹣3k(k≠0)的图象一定过点C;(3)对于一次函数y=kx+3﹣3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).【分析】(1)由B(3,1),C(3,3)得到BC⊥x轴,BC=2,根据平行四边形的性质得AD=BC=2,而A点坐标为(1,0),可得到点D的坐标为(1,2),然后把D(1,2)代入y=即可得到m=2,从而可确定反比例函数的解析式;(2)把x=3代入y=kx+3﹣3k(k≠0)得到y=3,即可说明一次函数y=kx+3﹣3k(k ≠0)的图象一定过点C;(3)设点P的横坐标为a,由于一次函数y=kx+3﹣3k(k≠0)过C点,并且y随x的增大而增大时,则P点的纵坐标要小于3,横坐标要小于3,当纵坐标小于3时,由y=得到a>,于是得到a的取值范围.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,∵B(3,1),C(3,3),∴BC⊥x轴,AD=BC=2,而A点坐标为(1,0),∴点D的坐标为(1,2).∵反比例函数y=(x>0)的函数图象经过点D(1,2),∴2=∴m=2,∴反比例函数的解析式为y=;(2)当x=3时,y=kx+3﹣3k=3k+3﹣3k=3,∴一次函数y=kx+3﹣3k(k≠0)的图象一定过点C;(3)设点P的横坐标为a,则a的范围为<a<3.21.(10分)在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;(总费用=广告赞助费+门票费)方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为y=60x+10000;方案二中,当0≤x≤100时,y与x的函数关系式为y=100x;当x>100时,y与x的函数关系式为y=80x+2000;(2)如果购买本场足球赛超过100张,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张?【分析】(1)依题意可得y与x的函数关系式y=60x+10000;本题考查了分段函数的有关知识(0≤x≤100;x>100);(2)设60x+10000>80x+2000,可用方案二买;当60x+1000=80x+2000时,两种方案均可选择;当60x+1000<80x+200时,可选择方案一;(3)设甲、乙单位购买本次足球赛门票数分别为a张、b张,分别可采用方案一或方案二购买.【解答】解:(1)方案一:y=60x+10000;当0≤x≤100时,y=100x;当x>100时,y =80x+2000;(2)因为方案一y与x的函数关系式为y=60x+10000,∵x>100,方案二的y与x的函数关系式为y=80x+2000;当60x+10000>80x+2000时,即x<400时,选方案二进行购买,当60x+10000=80x+2000时,即x=400时,两种方案都可以,当60x+10000<80x+2000时,即x>400时,选方案一进行购买;(3)设甲、乙单位购买本次足球赛门票数分别为a张、b张;∵甲、乙单位分别采用方案一和方案二购买本次足球比赛门票,∴乙公司购买本次足球赛门票有两种情况:0<b≤100或b>100.当b≤100时,乙公司购买本次足球赛门票费为100b,解得不符合题意,舍去;当b>100时,乙公司购买本次足球赛门票费为80b+2000,解得符合题意.答:甲、乙单位购买本次足球赛门票分别为500张、200张.22.(10分)已知△ABC是等边三角形,点P是平面内一点,且四边形PBCD为平行四边形,将线段CD绕点C逆时针旋转60°,得到线段CF.(1)如图1,当P为AC的中点时,求证:FC⊥PD;(2)如图2,当P为△ABC内任一点时,连接P A,PF,AF试判断△P AF的形状,并证明你的结论;(3)当B,P,F三点共线且AB=,PB=3时,求P A的长.【分析】(1)如图1,由等边三角形和平行四边形的性质求得∠FCD+∠D=90°,易得FC⊥PD.(2)△P AF是等边三角形.如图2,连接P A,PF,延长BC,构造全等三角形:△ABP ≌△ACF(SAS),由该全等三角形的对应边相等、对应角相等以及等边三角形的判定定理证得结论;(3)需要分类讨论:当点P在线段BF上和当点P落在线段FB的延长线上两种情况,通过作辅助线,构造直角三角形,结合勾股定理求得线段P A的长度.【解答】(1)证明:如图1,∵△ABC是等边三角形,且P为AC的中点,∴∠PBC=∠ABC=×60°=30°,∵四边形PBCD为平行四边形,∴∠D=∠PBC=30°.∵∠FCD=60°∴∠FCD+∠D=90°,∴FC⊥PD.(2)△P AF是等边三角形,理由如下:如图2,延长BC,证明∵△ABC为等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∠2=60°﹣∠1,∠4=180°﹣60°﹣60°﹣∠3=60°﹣∠3.∵四边形P ACD是平行四边形,∴PB∥CD,PB=CD=FC.∴∠1=∠3.∴∠2=∠4.又AB=AC,PB=FC,∴△ABP≌△ACF(SAS).∴AP=AF,∠BAP=∠CAF.∵∠BAP+∠P AC=60°,∴∠P AC+∠CAF=∠P AF=60°,∴△P AF是等边三角形.(3)①当点P在线段BF上时,如图3,过A作AE⊥BF于E,由(2)可得∠APF=60°,设PE=x,则AE=x,于是得:(x+3)2+32=19,x1=1,x2=﹣(不合题意,故舍去)∴P A=2x=2.②当点P落在线段FB的延长线上时,如图4,过B作BE⊥P A于E,则在Rt△PBE中,PB=3,由(2)可得∠BPE=60°,∴∠PBE=30°.∴PE=,BE=.在Rt△ABE中,AB=,BE=.∴AE==,∴P A=PE+AE=5.由于P点不可能线段BF的延长线上,所以,综上所述,P A的长为2或5.23.(11分)如图,抛物线y=ax2+bx+过点A(1,0),B(5,0),与y轴相交于点C.(1)求抛物线的解析式;(2)定义:平面上的任一点到二次函数图象上与它横坐标相同的点的距离,称为点到二次函数图象的垂直距离.如:点O到二次函数图象的垂直距离是线段OC的长.已知点E为抛物线对称轴上的一点,且在x轴上方,点F为平面内一点,当以A,B,E,F为顶点的四边形是边长为4的菱形时,请求出点F到二次函数图象的垂直距离.(3)在(2)中,当点F到二次函数图象的垂直距离最小时,在以A,B,E,F为顶点的菱形内部是否存在点Q,使得AQ,BQ,FQ之和最小,若存在,请求出最小值;若不存在,请说明理由.【分析】(1)将A,B两点代入可求解析式.(2)分类讨论,以AB为边的菱形和以AB为对角线的菱形,抓住菱形边长为4和E的横坐标为3,可解F点坐标,即可求点F到二次函数图象的垂直距离.(3)构造三角形,根据两点之间线段最短,可得最短距离为AN,根据勾股定理求AN.【解答】解:(1)∵抛物线y=ax2+bx+过点A(1,0),B(5,0),∴0=a+b+0=25a+5b+∴a=,b=﹣3∴解析式y=x2﹣3x+(2)当y=0,则0=x2﹣3x+∴x1=5,x2=1∴A(1,0),B(5,0)∴对称轴直线x=3,顶点坐标(3,﹣2),AB=4∵抛物线与y轴相交于点C.∴C(0,)如图1①如AB为菱形的边,则EF∥AB,EF=AB=4,且E的横坐标为3∴F的横坐标为7或﹣1∵AE=AB=4,AM=2,EM⊥AB∴EM=2∴F(7,2),或(﹣1,2)∴当x=7,y=×49﹣7×3+=6∴点F到二次函数图象的垂直距离6﹣2②如AB为对角线,如图2∵AEBF是菱形,AF=BF=4∴AB⊥EF,EM=MF=2∴F(3,﹣2)∴点F到二次函数图象的垂直距离﹣2+2(3)当F(3,﹣2)时,点F到二次函数图象的垂直距离最小如图3,以BQ为边作等边三角形BQD,将△BQF绕B逆时针旋转60°到△BDN位置,连接AN,作PN⊥AB于P∵等边三角形BQD∴QD=QB=BD,∵将△BQF绕B逆时针旋转60°到△BDN位置∴NB=BF=4,∠FBN=60°,DN=FQ∵AQ+BQ+FQ=AQ+QD+DN∴当AQ,QD,DN共线时AQ+BQ+FQ的和最短,即最短值为AN的长.∵AF=BF=4=AB,∴∠ABF=60°∴∠NBP=60°且BN=4,∴BP=2,PN=2∴AP=6在Rt△ANP中,AN==4∴AQ+BQ+FQ的和最短值为4.。
河南省2020年中招模拟考试数学试卷(含参考答案)
2020年中招模拟考试数学试题温馨提示:1、本试卷共6页,三大题,23小题,满分120分。
闭卷考试,独立答题,禁止讨论和翻阅资料。
请按答题卡上的要求直接在答题卡上作答。
2、答题前请认真阅读答题卡上的注意事项,把答题卡上的相关信息填写清楚,并粘贴条形码。
3、答题时请认真审题,规范作答,字体工整,卷面整洁。
一.选择题(共10小题,满分30分,每小题3分)1.4的绝对值为()A.±4 B.4 C.﹣4 D.22.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60~220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×10113.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠2=42°,则∠1=()A.48°B.42°C.40°D.45°4.下列计算正确的是()=B.(a﹣b)2=a2﹣b2A8232C.a2+a3=a5D.(2a2b3)3=﹣6a6b35.如图1,该几何体是由5个棱长为1个单位长度的正方体摆放而成,将正方体A向右平移2个单位长度后(如图2),所得几何体的视图()A.主视图改变,俯视图改变B.主视图不变,俯视图不变C.主视图改变,俯视图不变D.主视图不变,俯视图改变6.若关于x的一元二次方程x2﹣2x+a﹣1=0没有实数根,则a的取值范围是()A.a<2 B.a>2 C.a<﹣2 D.a>﹣27.在一次捐款活动中,某班50名同学都拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的,如图所示的统计图反映了不同捐款数的人数比例,那么根据图中信息,该班同学平均每人捐款()A .30元B .33元C .36元D .35元8.如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若AD =AC ,∠A =80°,则∠ACB 的度数为( )A .65°B .70°C .75°D .80°9.抛物线y =mx 2+3mx +2(m <0)经过点A (a ,y 1)、B (1,y 2)两点,若y 1>y 2,则实数a 满足( )A.﹣4<a <1B. a <﹣4或a >1C.﹣4<a ≤32-D.32-≤a <110.如图△ABO 的顶点分别是A (3,1),B (0,2),O (0,0),点C ,D 分别为BO ,BA 的中点,连AC ,OD 交于点G ,过点A 作AP ⊥OD 交OD 的延长线于点P .若△APO 绕原点O 顺时针旋转,每次旋转90°,则第2020次旋转结束时,点P 的坐标是( )A .(2,1)B .(2,2)C .(二.填空题(共5小题,满分15分,每小题3分)11.计算:11()92-= .12.不等式组102431x x +⎧⎪⎨⎪-≥⎩>的解集是 .13.一个袋子中有1个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球颜色不同的概率为 .14.如图,矩形ABCD 的边AB =2,BE 平分∠ABC ,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 长为半径画弧,交BC 于点F ,则图中阴影部分的面积是 .15.如图,在矩形ABCD 中,AB =6,AD =8,点E是边AD上的一个动点,把△BAE沿BE折叠,点A落在A′处,如果A′恰在矩形的对角线上,则AE的长为.三.解答题(共8小题,满分75分)16.(8分)先化简,再求值:(2﹣11xx-+)÷22691x xx++-,其中23x=-.17.(9分)如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD =2∠BAC,过点C作CE⊥DB交DB的延长线于点E,直线AB与CE交于点F.(1)求证:CF为⊙O的切线;(2)填空:①若AB=4,当OB=BF时,BE=;②当∠CAB的度数为时,四边形ACFD是菱形.18.(9分)钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量不去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对防护知识的了解,通过微信宣传防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷,社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据:甲小区:85 80 95 100 90 95 85 65 75 8590 90 70 90 100 80 80 90 95 75乙小区:80 60 80 95 65 100 90 85 85 8095 75 80 90 70 80 95 75 100 90整理数据成绩x小区60≤x≤7070<x≤8080<x≤9090<x≤100甲小区 2 5 a b乙小区 3 7 5 5 分析数据统计量小区平均数中位数众数甲小区85.75 87.5 c乙小区83.5 d80应用数据(1)填空:a=,b=,c=,d=;(2)根据以上数据,(填“甲”或“乙”)小区对新型冠状病毒肺炎防护知识掌握得更好,理由是(一条即可)(3)若甲小区共有800人参加答卷,请估计甲小区成绩高于90分的人数.19.(9分)河南省开封铁塔始建于公元1049年(北宋皇佑元年),是国家重点保护文物之一.在900多年中,历经了数次地震、大风、水患而巍然屹立,素有“天下第一塔”之称.如图,小明在铁塔一侧的水平面上一处台阶的底部A处测得塔顶P点的仰角∠1=45°,走上台阶顶部B处,测得塔顶P点的仰角∠2=38.7°.已知台阶的高度BC=3米,点C、A、E在一条直线上,AC =10米,求铁塔的高度PE.(结果保留整数,参考数据:sin38.7°≈0.6,cos38.7°≈0.8,tan38.7°≈0.8)20.(9分)某口罩加工厂有A、B两组工人共150人,A组工人每人每小时可加工口罩70只,B组工人每人每小时可加工口罩50只,A、B两组工人每小时一共可加工口罩9300只.(1)求A、B两组工人各多少人;(2)根据疫情发展,A、B两组工人均提高了工作效率,一名A组工人和一名B组工人每小时共同可生产口罩200只,若A、B两组工人每小时至少加工15000只口罩,那么A组工人每人每小时至少加工多少只口罩?21.(10分)某学具制作小组在制作直角三角形和矩形学具时,运用数形结合思想探究两种学具的边长和面积或周长的数量关系.已知,制作矩形学具一组邻边长为x,y,周长为6,由矩形的周长计算公式,可得2(x+y)=6,从而得到y与x的函数关系是y=﹣x+3;制作的直角三角形学具的边长分别为x,y,面积为2,由三角形的面积计算公式,可得12 xy=2,从而得到y与x的函数关系是y=4x,其反比例函数图象如图所示.(1)在图中的直角坐标系中直接画出y=﹣x+3的图象;(2)把直线y=﹣x+3的图象向上平移a(a>0)个单位长度后与反比例函数y=4x的图象有且只有一个交点,求此时a的值和公共点坐标.22.(10分)在△ABC中,CA=CB,∠ACB=α(0°<α<180°).点P是平面内不与A,C重合的任意一点,连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,CP.点M是AB的中点,点N是AD的中点.(1)问题发现如图1,当α=60°时,MNPC的值是,直线MN与直线PC相交所成的较小角的度数是.(2)类比探究如图2,当α=120°时,请写出的MNPC值及直线MN与直线PC相交所成的较小角的度数,并就图2的情形说明理由.(3)解决问题如图3,当α=90°时,若点E是CB的中点,点P在直线ME上,请直接写出点B,P,D在同一条直线上时PDMN的值.23.(11分)如图1,抛物线y=12x2﹣32x﹣2与x轴交于A,B两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).(1)求A,B,C三点的坐标及直线BE的解析式.(2)如图2,过点A作BE的平行线交抛物线于点D,点P是抛物线上位于线段AD下方的一个动点,连接PA,PD,求△APD面积的最大值.(3)若(2)中的点P为抛物线上一动点,在x轴上是否存在点Q,使得以A,D,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.2020年中招模拟考试数学参考答案一.选择题(共10小题,满分30分,每小题3分)1.B.2.C.3.A.4.A.5.D.6.B.7.B.8.C.9.A.10.B.二.填空题(共5小题,满分15分,每小题3分)11.﹣1.12.﹣1<x≤1.13..14.6﹣π.15.3或.提示:∵矩形ABCD,∴∠A=90°,BD===10,当A′在BD上时,如图1所示:设AE=x,由翻折的性质得:EA′=AE=x,BA′=AB=6,∴ED=8﹣x,∠EFD=∠A=90°,∴A′D=10﹣6=4,在Rt△EA′D中,x2+42=(8﹣x)2,解得:x=3,∴AE=3;当点A′在AC上时,如图2所示:由翻折的性质得:BE垂直平分AA′,AC=10,由射影定理得:AB2=AG•AC,∴AG=,∵∠AGE=∠D=90°,∠EAG=∠CAD,∴△AEG∽△ACD,=,即=,∴AG=AE=,∴AE=.∴AE的长为3或.三.解答题(共11小题,满分75分)16.解:原式=×=,把x=﹣3代入得:原式===1﹣2.17.证明:(1)连结OC,如图,∵OA=OC,∴∠OAC=∠OCA,∴∠BOC=∠A+∠OCA=2∠OAC,∵∠ABD=2∠BAC,∴∠ABD=∠BOC,∴OC∥BD,∵CE⊥BD,∴OC⊥CE,∴CF为⊙O的切线;(2)①∵AB=4,∴OB=BF=OC=2,∴OF=4,∵BE∥OC,∴,∴BE=1,故答案为:1;②当∠CAB的度数为30°时,四边形ACFD是菱形,理由:∵∠CAB=30°,∴∠COF=60°,∴∠F=30°,∴∠CAB=∠F,∴AC=CF,连接AD,∵AB是⊙O的直径,∴AD⊥BD,∴AD∥CF,∴∠DAF=∠F=30°,在△ACB与△ADB中,,∴△ACB≌△ADB(AAS),∴AD=AC,∴AD=CF,∵AD∥CF,∴四边形ACFD是菱形.故答案为:30°.18.解:(1)a=8,b=5,甲小区的出现次数最多的是90,因此众数是90,即c=90.中位数是从小到大排列后处在第10、11位两个数的平均数,由乙小区中的数据可得处在第10、11位的两个数的平均数为(80+85)÷2=82.5,因此d=82.5.(2)根据以上数据,甲小区对新型冠状病毒肺炎防护知识掌握得更好,理由是甲小区的平均数、中位数、众数都比乙小区的大.(3)800×=200(人).答:估计甲小区成绩高于90分的人数是200人.故答案为:8,5,90,82.5;甲,甲小区的平均数、中位数、众数都比乙小区的大.19. 解:设塔高PE =x 米 , 且EF =BC =3 米 , 则PF =PE -EF =(x -3)米 . ∵ 在 Rt △PBF 中 , ∠2=38.7°,tan38.7°=BF PF =F x B 3-≈0.8. ∴ BF =45(x -3) . ∴ CE =BF =45(x -3) . ∵ 在Rt △PEA 中 ,∠1=45°,∴ AE =PE =x .∵ AE +AC =CE , 且AC =10 米 ,∴ x +10=45(x -3) . 解得 x =55.答:铁塔的高度约为55米 .20.解:(1)设A 组工人有x 人、B 组工人有(150﹣x )人,根据题意得,70x +50(150﹣x )=9300,解得:x =90,150﹣x =60,答:A 组工人有90人、B 组工人有60人;(2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200﹣a )只口罩;根据题意得,90a +60(200﹣a )≥15000,解得:a ≥100,答:A 组工人每人每小时至少加工100只口罩.21.解:(1)函数y =﹣x +3的图象如图所示;(2)把直线y =﹣x +3的图象向上平移a (a >0)个单位长度后得y =﹣x +3+a , 解得,x 2﹣(3+a )x +4=0,∵把直线y=﹣x+3的图象向上平移a(a>0)个单位长度后与反比例函数y=的图象有且只有一个交点,∴△=a2+6a﹣7=0,∴a=﹣6或a=1,∵a>0,∴a=1,∴x2﹣(3+1)x+4=0,∴x=2,∴y=2,∴公共点坐标为(2,2).22.解:(1)如图1中,连接PC,BD,延长BD交PC于K,交AC于G.∵CA=CB,∠ACB=60°,∴△ABC是等边三角形,∴∠CAB=∠P AD=60°,AC=AB,∴∠P AC=∠DAB,∵AP=AD,∴△P AC≌△DAB(SAS),∴PC=BD,∠ACP=∠ABD,∵AN=ND,AM=BM,∴BD=2MN,∴=.∵∠CGK=∠BGA,∠GCK=∠GBA,∴∠CKG=∠BAG=60°,∴BK与PC的较小的夹角为60°,∵MN∥BK,∴MN与PC较小的夹角为60°.故答案为,60°.(2)如图设MN交AC于F,延长MN交PC于E.∵CA=CB,P A=PD,∠APD=∠ACB=120°,∴△P AD∽△CAB,∴=,∵AM=MB,AN=ND,∴=,∴△ACP∽△AMN,∴∠ACP=∠AMN,==,∵∠CFE=∠AFM,∴∠FEC=∠F AM=30°.(3)设MN=a,∵==,∴PC=a,∵ME是△ABC的中位线,∠ACB=90°,∴ME是线段BC的中垂线,∴PB=PC=a,∵MN是△ADB的中位线,∴DB=2MN=2a,如图3﹣1中,当点P在线段BD上时,PD=DB﹣PB=(2﹣)a,∴=2﹣.如图3﹣2中,PD=DB+PB=(2+)a,∴=2+.23.解:(1)令y=0,则x2﹣x﹣2=0,解得x=4或x=﹣1,∴A(﹣1,0),B(4,0),令x=0,则y=﹣2,∴C(0,﹣2),设直线BE的解析式为y=kx+b,将B(4,0)、E(0,2)代入得,,解得:,∴y=﹣x+2;(2)由题意可设AD的解析式为y=﹣x+m,将A(﹣1,0)代入,得到m=﹣,∴y=﹣x﹣,联立,解得:,,∴D(3,﹣2),过点P作PF⊥x轴于点F,交AD于点N,过点D作DG⊥x轴于点G.∴S△APD=S△APN+S△DPN=PN•AF+PN•FG=PN(AF+FG)=PN•AG=×4PN =2PN,设P(a,﹣a2﹣a﹣2),则N(a,﹣a﹣),∴PN=﹣a2+a+,∴S△APD=﹣a2+2a+3=﹣(a﹣1)2+4,∵﹣1<0,﹣1<a<3,∴当a=1时,△APD的面积最大,最大值为4;(3)存在;①当PD与AQ为平行四边形的对边时,∵AQ∥PD,AQ在x轴上,∴P(0,﹣2),∴PD=3,∴AQ=3,∵A(﹣1,0),∴Q(2,0)或Q(﹣4,0);②当PD与AQ为平行四边形的对角线时,PD与AQ的中点在x轴上,∴P点的纵坐标为2,∴P(,2)或P(,2),∴PD的中点为(,0)或(,0),∵Q点与A点关于PD的中点对称,∴Q(,0)或Q(,0);综上所述:点Q的坐标为(2,0)或(﹣4,0)或(,0)或(,0).。
河南2020年中考数学模拟试卷 三(含答案)
河南2020年中考数学模拟试卷三一、选择题1.﹣2019的绝对值是( )A.2019 B.﹣2019 C. D.﹣2.下列运算正确的是()A.(x﹣2)2=x2﹣4B.(x2)3=x6C.x6÷x3=x2D.x3•x4=x123.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.30°B.40°C.50°D.60°4.下列根式是最简二次根式的是( )A. B.C.D.5.将一个螺栓按如图放置,则螺栓的左视图可能是()6.不解方程,判别方程2x2﹣3x=3的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.有一个实数根D.无实数根7.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个小长方形的面积和的0.4,且样本容量为140,则中间一组的频数为( )A.28 B.40 C.56 D.608.已知二次函数y=ax2+bx+1的大致图象如图所示,那么函数y=ax+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限9.如图,在边长为1个单位长度的小正方形组成的网格中,A、B都是格点,则线段AB的长度为()A.5B.6C.7D.2510.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1.将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2015次,点B的落点依次为B1,B2,B3,…,则B2015的坐标为( )A.(1343,0)B.(1342,0)C.D.二、填空题11.已知x为整数,且为整数,所有符合条件的x值的和为.12.已知关于x的不等式(a+1)x>3a+3可化为x<3, 则a的取值范围是___________13.在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分A,B,C,D四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是.14.如图,梯形ABCD中,AD∥BC,∠C=90°,AB=AD=4,BC=6,以点A为圆心在梯形内画出一个最大的扇形,则阴影部分的面积为.15.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点B的坐标为(12,6),反比例函数错误!未找到引用源。
2020年河南省大联考中招数学模拟试卷(三)(解析版)
河南省2020年大联考中招数学模拟试卷(三)一.选择题(满分30分,每小题3分)1.2020的相反数是()A.2020 B.﹣2020 C.D.2.计算(2a)3•b4÷12a3b2的结果是()A.b2B.b2C.b2D.3.如图的几何体,从正面看到的图是()A.B.C.D.4.用8块相同的长方形地砖拼成一块大长方形地面,地砖的拼放方式及相关数据如图所示,则每块地砖的长与宽分别是()A.25和20 B.30和20 C.40和35 D.45和155.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿,47.24亿用科学记数法表示为()A.47.24×109B.4.724×109C.4.724×105D.472.4×1056.若关于x的一元二次方程(k+2)x2﹣2x﹣1=0有实数根,则实数k的取值范围是()A.k>3 B.k≥﹣3 C.k>﹣3且k≠﹣2 D.k≥﹣3且k≠﹣27.一组数据2,4,1,4,8的众数为()A.2 B.4 C.1 D.88.如图,是一张平行四边形纸片ABCD,要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:对于甲、乙两人的作法,可判断()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误9.现有两组相同的牌,每组三张且大小一样,三张牌的牌面数字分别是1、2、3,从每组牌中各摸出一张牌.两张牌的牌面数字之和等于4的概率是()A.B.C.D.10.如图,正方形ABCD边长为4,E、F、G、H分别是AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能是()A. B. C. D.二.填空题(满分15分,每小题3分)11.计算:|﹣2|﹣(π﹣4)0=.12.将等腰直角三角形纸片和矩形纸片按如右上图所示的方式叠放在一起,若∠1=30°,则∠2的大小为.13.不等式组的整数解是.14.如图,⊙O的半径是4cm,四边形ABCD是平行四边形,D是的中点,则阴影部分的面积是cm2.15.在三角形纸片ABC中,∠A=90°,∠C=30°,AB=9cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),沿着直线DE剪去△CDE后得到双层△BDE(如图2),再沿过△BDE 的顶点D的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三.解答题16.已知x是方程x2+3x=0的根,求代数式(+1)÷的值.17.某区初二年级组织了一次趣味数学竞赛,从中抽取了部分学生成绩(分数取正整数,满分为100分)进行统计,绘制统计图如图(未完整),在频数直方图中五组的组别从左到右依次是A组、B组、C组、D组、E组.解答下列问题:(1)求出A组、B组分别占总人数的百分比;(2)若A组的频数比B组小24,求频数分布直方能中的m,n的值;(3)扇形统计图中,D部分所对的圆心角为a°,求a的值;(4)该区共有1000名初二年级学生参加趣味数学竞赛,若主办方想把一等奖的人数控制在75人,那么请你通过计算估计一等奖的分数线实在多少分以上?18.如图,△ABC内接于⊙O且AB=AC,延长BC至点D,使CD=CA,连接AD交⊙O于点E,连接BE、CE.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为时,四边形AOCE是菱形;②若AE=6,EF=4,DE的长为.=(m≠0)的图象经过点A(﹣2,1),一次19.如图,已知反比例函数y1=kx+b(k≠0)的图象经过点C(0,3)与点A,且与反比例函数的函数y2图象相交于另一点B.(1)分别求出反比例函数与一次函数的解析式;(2)求点B的坐标.20.如图①是某小区入口实景图,图②是该入口抽象成的平面示意图,已知入口BC宽3.9米,门卫室外墙上的O 点处装有一盏灯,点O与地面BC的距离为3.3米,灯臂OM长1.2米,(灯罩长度忽略不计),∠AOM=60°.(1)求点M到地面的距离,(2)某搬家公司一辆总宽2.55米,总高3.5米的货车能否从该入口安全通过?如果能安全通过,请直接写出货车离门卫室外墙AB的最小距离(精确到0.01米);如果不能安全通过,请说明理由.(参考数据: 1.73)21.运动员将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度h(m)与它的飞行时间t(s)满足二次函数关系,t与h的几组对应值如下表所示.t(s)0 0.5 1 1.5 2 …h(m)0 8.75 15 18.75 20 …(1)求h与t之间的函数关系式(不要求写t的取值范围);(2)求小球飞行3s时的高度;(3)问:小球的飞行高度能否达到22m?请说明理由.22.已知,在△ABC中,∠ABC=90°,AB=BC=4,点O是边AC的中点,连接OB,将△AOB绕点A顺时针旋转α°至△ANM,连接CM,点P是线段CM的中点,连接PB,PN.(1)如图1,当α=180时,请直接写出线段PN和PB之间满足的位置和数量关系;(2)如图2,当0<α<180时,请探索线段PN和PB之间满足何位置和数量关系?证明你的结论(3)当△AOB旋转至C,M,N三点共线时,线段BP的长为.23.已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A,B两点(点A在点B左侧),与y 轴交于点C、设直线CM与x轴交于点D.(1)求抛物线的解析式.(2)在抛物线的对称轴上是否存在点P,使以点P为圆心的圆经过A、B两点,且与直线CD相切?若存在,求出P的坐标;若不存在.请说明理由.(3)设直线y=kx+2与抛物线交于Q、R两点,若原点O在以QR为直径的圆外,请直接写出k的取值范围.参考答案一.选择题1.解:2020的相反数是:﹣2020.故选:B.2.解:原式=8a3•b4÷12a3b2=b2,故选:C.3.解:从正面看,主视图有2列,正方体的数量分别是2、1.故选:B.4.解:设每块地砖的长为xcm,宽为ycm,根据题意得,解这个方程组,得,答:每块地砖的长为45cm,宽为15cm,故选:D.5.解:47.24亿=4724 000 000=4.724×109.故选:B.6.解:由题意可知:△=4+4(k+2)≥0,∴解得:k≥﹣3,∵k+2≠0,∴k≥﹣3且k≠﹣2,故选:D.7.解:出现次数最多的数4,因此众数是4,故选:B.8.解:甲的作法正确;∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵EF是AC的垂直平分线,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形;乙的作法正确;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;故选:C.9.解:画树状图得:则共有9种等可能的结果,其中两张牌的牌面数字之和等于4的有3种结果,∴两张牌的牌面数字之和等于4的概率为=,故选:B.10.解:∵正方形ABCD边长为4,AE=BF=CG=DH∴AH=BE=CF=DG,∠A=∠B=∠C=∠D∴△AEH≌△BFE≌△CGF≌△DHG∴y=4×4﹣x(4﹣x)×4=16﹣8x+2x2=2(x﹣2)2+8∴y是x的二次函数,函数的顶点坐标为(2,8),开口向上,从4个选项来看,开口向上的只有A和B,C和D图象开口向下,不符合题意;但是B的顶点在x轴上,故B不符合题意,只有A符合题意.故选:A.二.填空11.解:原式=2﹣1=1,故答案为:112.解:如图,∵四边形ABCD是矩形,∴AD∥BC,∴∠1=∠HEB=30°,∴∠2=∠HEF﹣∠HEB=15°,故答案为:15°13.解:不等式组整理得:,解得:1≤x<2,则不等式组的整数解为1,故答案为:1.14.解:连接OD,∵D是弧AB的中点∴∠DOA=∠DOB=90°,∵OA=OD=4,∴△OAD的面积为OA•OD=8,扇形OAD的面积为:=4π,∴阴影部分面积为:(4π﹣8)cm2.故答案为:(4π﹣8).15.解:∵∠A=90°,∠C=30°,AB=9cm,将该纸片沿过点B的直线折叠,∴BE=AB=9,∠ABD=∠DBE=30°∴∠BDE=60°如图2,过点D作DF平分∠BDE交BE于点F,此时沿DF所在直线将双层三角形剪开,使得展开后的平面图形是平行四边形,∴∠BDF=∠EDF=30°=∠EBD∴BF=DF,DF=2EF∴BF=2EF,∴BE=3EF=9cm∴EF=3cm∴BF=DF=6cm∴平行四边形的周长=4×6=24cm故答案为24三.解答16.解:(+1)÷=•=•=x+1,由x2+3x=0可得x1=0,x2=﹣3,∵当x=0时,原式无意义,∴x=﹣3,当x=﹣3时,原式=﹣3+1=﹣2.17.解:(1)36°÷360°=0.1=10%,72°÷360°=0.2=20%,答:A组占总数的10%,B组占总数的20%.(2)24÷(20%﹣10%)=240人,m=240×10%=24人,n=240×20%=48人,答:频数分布直方能中的m,n的值分别为24,48.(3)360°×=135°答:a的值为135.(4)E组所占的百分比为:1﹣10%﹣20%﹣﹣=7.5%,1000名学生获一等奖的人数为75人,一等奖占=7.5%,因此一等奖的分数应是E组的分数,在90分以上.18.解:(1)∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD,∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC,∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE(AAS);(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;理由是:连接AO、OC,∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°,∵∠ABC=60,∴∠AEC=120°=∠AOC,∵OA=OC,∴∠OAC=∠OCA=30°,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠CAD+∠D,∵AC=CD,∴∠CAD=∠D=30°,∴∠ACE=180°﹣120°﹣30°=30°,∴∠OAE=∠OCE=60°,∴四边形AOCE是平行四边形,∵OA=OC,∴▱AOCE是菱形;②∵△ABE≌△CDE,∴AE=CE=6,BE=ED,∴∠ABE=∠CBE,∠CBE=∠D,又∵∠EAC=∠CBE,∴∠EAC=∠D.又∵∠CED=∠AEB,∴△AEF∽△DEC,∴=,即=,解得DE=9.故答案为:①60°;②9.=的图象上,19.解:(1)∵点A(﹣2,1)在反比例函数y1∴,即m=﹣2,=kx+b图象上,又A(﹣2,1),C(0,3)在一次函数y2∴即,∴反比例函数与一次函数解析式分别为:y=﹣与y=x+3;(2)由得x+3=﹣,即x2+3x+2=0,∴x=﹣2或x=﹣1于是或,∴点B的坐标为(﹣1,2).20.解:如图所示,(1)过点M作MN⊥OA于点N,∵OM长1.2米,∠AOM=60°.∴ON=0.6米,∴BN=OB+ON=3.3+0.6=3.9米.答:点M到地面的距离为3.9米.(2)一辆总宽2.55米,总高3.5米的货车能从该入口安全通过,理由如下:过点A作AE⊥BA,垂足为A,∵设货车高AB=3.5米,则OA=3.5﹣3.3=0.2∴AE=OA tan60°=0.2≈0.35答:货车离门卫室外墙AB的最小距离为0.35米.21.解:(1)∵t=0时,h=0,∴设h与t之间的函数关系式为h=at2+bt(a≠0),∵t=1时,h=15;t=2时,h=20,∴,解得,∴h与t之间的函数关系式为h=﹣5t2+20t;(2)小球飞行3秒时,t=3(s),此时h=﹣5×32+20×3=15(m).答:小球飞行3s时的高度为15米;(3)∵h=﹣5t2+20t=﹣5(t﹣2)2+20,∴小球飞行的最大高度为20m,∵22>20,∴小球的飞行高度不能达到22m.22.解:(1)如图1中,结论:PB=PN,PB⊥PN.理由:当α=180°时,C,A,N共线,B,A,M共线,∵∠CNM=∠CBM=90°,PC=PM,∴PB=PC=PM=PN,∴C,B,N,M四点共圆,∴∠BPN=2∠BMN,∵∠AMN=45°,∴∠BPN=90°,∴PB=PN,PB⊥PN.(2)如图2中,结论:PB=PN,PB⊥PN.理由:延长BP到G,使得PG=PB,连接GM,GN,BN.∵PC=PM,∠CPB=∠MPG,PB=PG,∴△CPB≌△MPG(SAS),∴BC=GM=AB,∠BCP=∠GMP=∠1+45°,∴∠GMN=360°﹣∠GMN﹣∠2﹣∠AMN=360°﹣∠1﹣45°﹣∠2﹣45°=270°﹣∠1﹣∠2,∵∠BAN=45°+∠CAM+45°=90°+(180°﹣∠1﹣∠2)=270°﹣∠1﹣∠2,∴∠NMG=∠BAN,∴AB=MG,AN=NM,∴△BAN≌△GMN(SAS),∴BN=GN,∠BNA=∠GNM,∴∠BNG=∠ANM=90°,∵PB=PG,∴PN=PB=PG,PN⊥BG,即PB=PN,PN⊥PB.(3)①如图3﹣1中,连接BM.当C,M,N共线时,∵∠CNA=90°,AC=2AN,∴∠ACN=30°,∵∠NMA=∠MCA+∠MAC=45°,∴∠CAM=15°,∵∠MAB=∠VAM+∠OAB=60°,∵AB=AM,∴△ABM是等边三角形,∴BA=BM=BC,∵PC=PM,∴BP⊥CM,∵AB=BC=4,∴AC=4,∴AN=OA=2,CN=AN=2,∴CM=CN﹣MN=2﹣2,∴PC=﹣,∴PB===+.②如图3﹣2中,当C,N,M共线时,同法可证∠ACN=30°,∠BAN=15°,∠BAM=60°,∴△ABM是等边三角形,∴BM=BA=BC,∵PC=PM,∴BP⊥CM,∴PB===﹣,综上所述,满足条件的BP的值为±.故答案为±.23.(1)解:由抛物线的顶点是M(1,4),设解析式为y=a(x﹣1)2+4(a<0),又∵抛物线经过点N(2,3),∴3=a(2﹣1)2+4,解得a=﹣1.故所求抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)解:如图:假设在x 轴上方存在这样的P 点,使以P 为圆心的圆经过A 、B 两点,并且与直线CD 相切,设P (1,u )其中u >0,则PA 是圆的半径且PA 2=u 2+22,过P 做直线CD 的垂线,垂足为Q ,则PQ =PA 时以P 为圆心的圆与直线CD 相切.由第(2)小题易得:△MDE 为等腰直角三角形,故△PQM 也是等腰直角三角形,由P (1,u )得PE =u ,PM =|4﹣u |,PQ =PM . 由PQ 2=PA 2得方程:(4﹣u )2=u 2+22,解得u =﹣4+2,u =﹣4﹣2所以,满足题意的点P 存在,其坐标为(1,﹣4+2)或(1,﹣4﹣2).(3)如图,设R (x 1,y 1),Q (x 2,y 2),PQ 的中点为w .由,消去y 得到:x 2+(k ﹣2)x ﹣1=0,∴x 1+x 2=2﹣k ,x 1•x 2=﹣1,∴y 1+y 2=k (x 1+x 2)+4=﹣k 2+2k +4,y 1y 2=k 2(x 1x 2)+2k (x 1+x 2)+4=﹣3k 2+4k +4,∴W (,),RQ = =∵原点O在以QR为直径的圆外,∴2OW>PQ,∴2•>整理得:3k2﹣4k﹣3<0,解得<k<.。
河南省信阳市2020届中考第三次模拟考试数学试题有答案
象大致为
()
二、填空(5×3=15 分)
11.计算: (3)2 (| 3 |)
.
12.如图,在△ABC 中,DE 是中位线,若四边形 EDCB 的面积是 30 cm2,则△AED 的面积是
.
(第 12 题图)
(第 13 题图)
(第 14 题图)
(第 15 题图)
13.如图所示,A、B 是反比例函数 y= k (k>0)图象上的两点,过点 A 作 AC⊥y 轴,垂足为 C,AC 交 x
B.m<2
C_m≥2
D.m≤2
8.已知函数 y=(a-3)x2+2x+l 的 图象与 x 轴有交点,则 a 的取值范围是
A.a<4
B.a≤4
C.a<4 且 a≠3
D.a≤4 且 a≠3
() ()
9.在直角坐标系中,以坐标原点为圆心的⊙O 的半径为 1,则直线 y=-2x+ 5 与⊙O 的位置关系是
() A、相离 B、相交 C、相切 D、无法确定 10.如图,△ABC 中,∠ACB= 90°,∠A=30°, AB=16.点 P 是斜边 AB 上一点.过点 P 作 PQ ⊥AB,垂足为 P,交边 AC(或边 CB)于点 Q,设 AP=x,△APQ 的面积为 y,则 y 与 x 之间的函数图
据: 2 1.414 , 3 1.732 )
20.(9 分)如图,在平面直角坐标系中.直线 y=2x 与反比例函数 y= (k 在第第19一题象图限)内 x
的图象交于点 A(m,2).将直线 y=2x 向下平移后与反比例函数 y= k 在第一象限内的 x
图象交于点 P.且△POA 的面积为 2.
(1)操作发现:
2020年河南省郑州一中教育集团中考数学三模试卷 解析版
2020年河南省郑州一中教育集团中考数学三模试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.22.(3分)据有关部门初步统计,自新冠肺炎疫情发生以来,国家已经投入1390亿资金进行疫情防控,为抗击疫情提供了强力保障,也展现了祖国日益强大的综合国力!将数据1390亿用科学记数法表示为1.390×10n,其中n的值为()A.4B.10C.11D.33.(3分)如图是一个由5个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.4.(3分)如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°5.(3分)下列运算正确的是()A.b4•b4=2b4B.3x2y﹣2x2y=1C.(﹣3a)2=6a2D.(﹣x3)4=x126.(3分)某市公园的东、南、西、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.B.C.D.7.(3分)受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()每天阅读时间(小时)0.51 1.52人数89103A.2,1B.1,1.5C.1,2D.1,18.(3分)关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.9.(3分)如图,在菱形ABCD中,按以下步骤作图:①分别以点C和点D为圆心,大于CD的长为半径作弧,两弧相交于M、N两点;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE.则下列说法错误的是()A.∠ABC=60°B.S△ABE=2S△ADEC.若AB=4,则BE=4D.sin∠CBE=10.(3分)如图①,在平面直角坐标系中,平行四边形ABCD在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,被平行四边形ABCD截得的线段EF的长度l与平移的距离m的函数图象如图②,那么平行四边形ABCD的面积为()A.4B.C.8D.二、填空题(每小题3分,共15分)11.(3分)计算(π﹣1)0+=.12.(3分)不等式组的解集是.13.(3分)如图,P是反比例函数y=图象上的一点,P A⊥y轴于点A,点B为x轴上任一点,连接AB、PB,若△APB的面积为4,则k的值是.14.(3分)如图,将半径为1的半圆O,绕着其直径的一端点A顺时针旋转30°,直径的另一端点B的对应点为B',O的对应点为O',则图中阴影部分的面积是.15.(3分)如图,在矩形ABCD中,AB=4,AD=4,点E为线段CD的中点,动点F 从点C出发,沿C→B→A的方向在CB和BA上运动,将矩形沿EF折叠,点C的对应点为C',当点C'恰好落在矩形的对角线上时(不与矩形顶点重合),点F运动的距离为.三、解答题(共75分)16.(8分)先化简,再求值:÷(﹣1﹣x),其中x的值是方程x2﹣x﹣7=0的根.17.(9分)第二十四届冬季奥林匹克运动会将于2022年在北京市和张家口市举行.为了调查学生对冬奧知识的了解情况,某校随机抽取部分学生进行了相关知识测试,获得了他们的成绩(百分制),根据调查结果绘制了如图尚不完整的统计图表:组别成绩分组(单位:分)频数频率A50≤x<6030.06B60≤x<700.24C70≤x<8016bD80≤x<90aE90≤x<10080.16所抽取学生测试成绩在80≤m<90这一组的具体成绩是:80 82 83 83 85 85 86 86 86 88 89根据以上信息,解答下列问题:(1)填空:这次被调查的学生共有人,a=;b=;(2)请补全频数分布直方图;(3)本次调查中,所抽取学生的中位数落在组;(4)该校共有学生1200人,若成绩在85分以上(含85分)的为优秀,假如全部学生参加此次测试,请估计该校学生成绩为优秀的人数.18.(9分)如图,AB为⊙O的直径,且AB=4,DB⊥AB于B,点C是弧AB上的任一点,过点C作⊙O的切线交BD于点E.连接OE交⊙O于F.(1)求证:AD∥OE;(2)填空:连接OC、CF,①当DB=时,四边形OCEB是正方形;②当DB=时,四边形OACF是菱形.19.(9分)在一次课外活动中,小明和小华测量小山AF的高度,如图,已知山底有一斜坡CE,通过测量,斜坡CE的坡角为30°,小明沿斜坡坡脚E处行走至斜坡的中点D处,在D处测得山顶A的仰角为53°,斜坡CE的长度为60m,坡顶C与小山的距离BC=100m,求小山AF的高度.(结果精确到0.1m,参考数据:cos53°≈0.6,sin53°≈0.8,tan53°≈1.33,≈1.73)20.(9分)网络商店(简称网店)是近年来迅速兴起的一种电子商务形式,小明的网店销售红枣、小米两种商品的相关信息如下表:商品红枣小米规格1kg/袋2kg/袋成本(元/袋)4038售价(元/袋)6054根据上表提供的信息,解答下列问题(1)已知今年前四个月,小明的网店销售上表中规格的红枣和小米共2000kg,获得利润2.8万元,求这前四个月小明的网店销售这种规格的红枣和小米各多少袋?(2)根据之前的销售情况,估计今年5月到12月这后八个月,小明的网店还能销售同规格的红枣和小米共4000kg,其中,红枣的销售量不低于1200kg.假设这后八个月,销售红枣x(kg),销售红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求出这后八个月,小明的网店销售这种规格的红枣和小米至少获得总利润多少元?21.(10分)若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数y=的图象与性质,探究过程如下,请补充完整.(1)列表:x…﹣3﹣12﹣﹣1﹣0123…y…m12101n…其中,m=,n=.(2)描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示,请画出函数的图象.(3)研究函数并结合图象与表格,回答下列问题:①点A(﹣6,y1),B(﹣,y2),C(x1,),D(x2,6)在函数图象上,则y1y2,x1x2;(填“>”,“=”或“<”)②当函数值y=1时,求自变量x的值;(4)若直线y=x+b与函数图象有且只有一个交点,请直接写出b的取值范围.22.(10分)问题:如图(1),点M、N分别在正方形ABCD的边BC、CD上,∠MAN=45°,试判断BM、MN、ND之间的数量关系.(1)研究发现如图1,小聪把△ADN绕点A顺时针旋转90°至△ABG,从而发现BM、MN、DN之间的数量关系为(直接写出结果,不用证明)(2)类比引申如图2,在(1)的条件下,AM、AN分别交正方形ABCD的对角线BD于点E、F.已知EF=5,DF=4.求BE的长.(3)拓展提升如图3,在(2)的条件下,AM、AN分别交正方形ABCD的两个外角平分线于Q、P,连接PQ.请直接写出以BQ、PQ、DP为边构成的三角形的面积.23.(11分)如图,在平面直角坐标系中,抛物线y=ax2﹣x+c与x轴交于点A、B,与y 轴交于点C,直线y=x+2经过A、C两点.(1)求抛物线的解析式;(2)若点D为线段AC上的一个动点,过点D作DE∥y轴,交抛物线于点E,过E作EF⊥y轴,交直线AC于点F,以DE、EF为边作矩形DEFG,矩形DEFG的周长能为10吗?如果能,请求出点E的横坐标;如果不能,请说明理由;(3)点P是抛物线上的一个动点,当∠PCA=∠BCO时,请直接写出点P的坐标.2020年河南省郑州一中教育集团中考数学三模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.2【分析】先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比﹣2小的数是﹣3.【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:A.2.(3分)据有关部门初步统计,自新冠肺炎疫情发生以来,国家已经投入1390亿资金进行疫情防控,为抗击疫情提供了强力保障,也展现了祖国日益强大的综合国力!将数据1390亿用科学记数法表示为1.390×10n,其中n的值为()A.4B.10C.11D.3【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1390亿=1390×108=1.39×1011.故选:C.3.(3分)如图是一个由5个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.【分析】分别判断每个选项的视图是从哪个方向看到的即可求解;【解答】解:A选项是从上面看到的,是俯视图;D选项是从正面看到的,是主视图;故选:B.4.(3分)如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【解答】解:∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴∠CBE=∠ABC=35°,故选:B.5.(3分)下列运算正确的是()A.b4•b4=2b4B.3x2y﹣2x2y=1C.(﹣3a)2=6a2D.(﹣x3)4=x12【分析】利用同底数幂的乘法法则、合并同类项法则、积的乘方法则、幂的乘方法则逐个计算得结论.【解答】解:因为b4•b4=b8≠2b4,故选项A错误;3x2y﹣2x2y=x2y≠1,故选项B错误;(﹣3a)2=9a2≠6a2,故选项C错误;(﹣x3)4=x12,计算正确.故选:D.6.(3分)某市公园的东、南、西、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为=,故选:B.7.(3分)受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()每天阅读时间(小时)0.51 1.52人数89103A.2,1B.1,1.5C.1,2D.1,1【分析】根据表格中的数据可知七年级2班有30人,从而可以得到全班学生平均每天阅读时间的中位数和众数,本题得以解决.【解答】解:由表格可得,全班学生平均每天阅读时间的中位数和众数分别是1、1.5,故选:B.8.(3分)关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围,再将其表示在数轴上即可得出结论.【解答】解:∵关于x的一元二次方程x2﹣2x+k+2=0有实数根,∴△=(﹣2)2﹣4(k+2)≥0,解得:k≤﹣1.故选:C.9.(3分)如图,在菱形ABCD中,按以下步骤作图:①分别以点C和点D为圆心,大于CD的长为半径作弧,两弧相交于M、N两点;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE.则下列说法错误的是()A.∠ABC=60°B.S△ABE=2S△ADEC.若AB=4,则BE=4D.sin∠CBE=【分析】利用基本作图得到AE垂直平分CD,再根据菱形的性质得到AD=CD=2DE,AB∥DE,利用三角函数求出∠D=60°,则可对A选项进行判断;利用三角形面积公式可对B选项进行判断;当AB=4,则DE=2,先计算出AE=2,再利用勾股定理计算出BE=2,则可对C选项进行判断;作EH⊥BC交BC的延长线于H,如图,设AB =4a,则CE=2a,BC=4a,BE=2a,先计算出CH=a,EH=a,则可根据正弦的定义对D选项进行判断.【解答】解:由作法得AE垂直平分CD,即CE=DE,AE⊥CD,∵四边形ABCD为菱形,∴AD=CD=2DE,AB∥DE,在Rt△ADE中,cos D==,∴∠D=60°,∴∠ABC=60°,所以A选项的结论正确;∵S△ABE=AB•AE,S△ADE=DE•AE,而AB=2DE,∴S△ABE=2S△ADE,所以B选项的结论正确;若AB=4,则DE=2,∴AE=2,在Rt△ABE中,BE==2,所以C选项的结论错误;作EH⊥BC交BC的延长线于H,如图,设AB=4a,则CE=2a,BC=4a,BE=2a,在△CHE中,∠ECH=∠D=60°,∴CH=a,EH=a,∴sin∠CBE===,所以D选项的结论正确.故选:C.10.(3分)如图①,在平面直角坐标系中,平行四边形ABCD在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,被平行四边形ABCD截得的线段EF的长度l与平移的距离m的函数图象如图②,那么平行四边形ABCD的面积为()A.4B.C.8D.【分析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,当直线经过D点,设交AB 与N,则DN=2,作DM⊥AB于点M.利用三角函数即可求得DM即平行四边形的高,然后利用平行四边形的面积公式即可求解.【解答】解:根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.∵y=﹣x与x轴形成的角是45°,又∵AB∥x轴,∴∠DNM=45°,∴DM=DN•sin45°=2×=2,则平行四边形的面积是:AB•DM=4×2=8,故选:C.二、填空题(每小题3分,共15分)11.(3分)计算(π﹣1)0+=4.【分析】根据非零数的零次幂都等于1和算式平方根计算可得.【解答】解:原式=1+3=4,故答案为:4.12.(3分)不等式组的解集是﹣2≤x<﹣1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+4<3,得:x<﹣1,解不等式≤1,得:x≥﹣2,则不等式组的解集为﹣2≤x<﹣1,故答案为:﹣2≤x<﹣1.13.(3分)如图,P是反比例函数y=图象上的一点,P A⊥y轴于点A,点B为x轴上任一点,连接AB、PB,若△APB的面积为4,则k的值是﹣8.【分析】设P(m,n),根据题意用m、n的代数式表示AP和OA,进而根据已知三角形的面积,求得ab,进而用待定系数法求得k.【解答】解:设P(m,n),∵P A⊥y轴于点A,∴A(0,n),∴OA=﹣n,AP=m,∵点B为x轴上任一点,∴点B到AP的距离=OA=﹣n,∵△APB的面积为4,∴m(﹣n)=4,∴mn=﹣8,∵P是反比例函数y=图象上的一点,∴k=mn=﹣8,故答案为:﹣8.14.(3分)如图,将半径为1的半圆O,绕着其直径的一端点A顺时针旋转30°,直径的另一端点B的对应点为B',O的对应点为O',则图中阴影部分的面积是﹣.【分析】连接O′D、B′D,根据旋转变换的性质求出∠B′AB,根据等腰三角形的性质求出∠AO′D,根据勾股定理求出AD,根据扇形面积公式、三角形面积公式计算即可.【解答】解:连接O′D、B′D,∵∠B′AB=30°,∴∠AO′D=120°,∵AB′是半圆O′的直径,∴∠ADB′=90°,又∠B′AB=30°,∴B′D=AB′=1,由勾股定理得,AD==,∴图中阴影部分的面积=(﹣﹣×1××)+(﹣×1××)=﹣,故答案为:﹣.15.(3分)如图,在矩形ABCD中,AB=4,AD=4,点E为线段CD的中点,动点F 从点C出发,沿C→B→A的方向在CB和BA上运动,将矩形沿EF折叠,点C的对应点为C',当点C'恰好落在矩形的对角线上时(不与矩形顶点重合),点F运动的距离为2或4+.【分析】分点C′落在对角线BD上和点C′落在对角线AC上两种情况分别进行讨论求解,即可得出点F运动的距离.【解答】解:分两种情况:①当点C′落在对角线BD上时,连接CC′,如图1所示:∵将矩形沿EF折叠,点C的对应点为点C′,且点C'恰好落在矩形的对角线上,∴CC′⊥EF,∵点E为线段CD的中点,∴CE=ED=EC′,∴∠CC′D=90°,即CC′⊥BD,∴EF∥BD,∴点F是BC的中点,∵在矩形ABCD中,AD=4,∴BC=AD=4,∴CF=2,∴点F运动的距离为2;②当点C′落在对角线AC上时,作FH⊥CD于H,则CC′⊥EF,四边形CBFH为矩形,如图2所示:在矩形ABCD中,AB=4,AD=4,∠B=∠BCD=90°,AB∥CD,∴BC=AD=4,tan∠BAC===,∴∠BAC=30°,∵EF⊥AC,∴∠AFE=60°,∴∠FEH=60°,∵四边形CBFH为矩形,∴HF=BC=4,∴EH===,∵EC=CD=2,∴BF=CH=CE﹣EH=2﹣=,∴点F运动的距离为4+;综上所述:点F运动的距离为2或4+;故答案为:2或4+.三、解答题(共75分)16.(8分)先化简,再求值:÷(﹣1﹣x),其中x的值是方程x2﹣x﹣7=0的根.【分析】先算括号内的减法,把除法变成乘法,算乘法,求出x2﹣x=7,再代入求出即可.【解答】解:原式=÷=•=﹣∵x的值是方程x2﹣x﹣7=0的根,∴x2﹣x=7,当x2﹣x=7时,原式=﹣.17.(9分)第二十四届冬季奥林匹克运动会将于2022年在北京市和张家口市举行.为了调查学生对冬奧知识的了解情况,某校随机抽取部分学生进行了相关知识测试,获得了他们的成绩(百分制),根据调查结果绘制了如图尚不完整的统计图表:组别成绩分组(单位:分)频数频率A50≤x<6030.06B60≤x<700.24C70≤x<8016bD80≤x<90aE90≤x<10080.16所抽取学生测试成绩在80≤m<90这一组的具体成绩是:80 82 83 83 85 85 86 86 86 88 89根据以上信息,解答下列问题:(1)填空:这次被调查的学生共有50人,a=11;b=0.32;(2)请补全频数分布直方图;(3)本次调查中,所抽取学生的中位数落在C组;(4)该校共有学生1200人,若成绩在85分以上(含85分)的为优秀,假如全部学生参加此次测试,请估计该校学生成绩为优秀的人数.【分析】(1)根据A组的频数和频率,可以求得本次调查的人数,然后即可计算出a和b的值;(2)根据频数分布表中的数据,可以得到B组和D组的频数,从而可以将频数分布直方图补充完整;(3)根据频数分布表中的数据,可以得到中位数落在哪一组;(4)根据频数分布表中的数据,可以计算出该校学生成绩为优秀的人数.【解答】解:(1)这次被调查的学生共有3÷0.06=50(人),b=16÷50=0.32,a=50×(1﹣0.06﹣0.24﹣0.32﹣0.16)=11,故答案为:50,11,0.32;(2)由(1)知,a=11,B组的频数为:50×0.24=12,补全的频数分布直方图如右图所示;(3)由频数分布表可知,本次调查中,所抽取学生的中位数落在C组;(4)1200×=360(人),即该校学生成绩为优秀有360人.18.(9分)如图,AB为⊙O的直径,且AB=4,DB⊥AB于B,点C是弧AB上的任一点,过点C作⊙O的切线交BD于点E.连接OE交⊙O于F.(1)求证:AD∥OE;(2)填空:连接OC、CF,①当DB=4时,四边形OCEB是正方形;②当DB=4时,四边形OACF是菱形.【分析】(1)由AB为⊙O的直径,DB⊥AB于B可证DB是⊙O的切线,又因为CE也是⊙O的切线的切线,根据切线长定理得BE=CE,即点E在BC的垂直平分线上;又半径OB=OC,故点O在BC的垂直平分线上,即OE垂直平分BC.又由圆周角定理可得∠ACB=90°即AC⊥BC,根据“同垂直于同一直线的两直线平行”得证.(2)①由正方形OCEB四边相等得BE=OB=2.又OE∥AC根据平行线分线段定理可得,故有DE=BE=2,求得DB=4.②由菱形OACF性质可得CO平分∠ACF,CF∥OA,故有∠ACO=∠FCO=∠AOC,再由半径OA=OC可得∠A=∠ACO=∠AOC,证得△AOC是等边三角形,∠A=60°.在Rt△ABD中,tan A=,即求得DB=4.【解答】解:(1)证明:连接OC、BC∵AB为⊙O的直径,DB⊥AB于B∴DB是⊙O的切线∵CE与⊙O相切于点C∴BE=CE∴点E在BC的垂直平分线上∵OB=OC∴点O在BC的垂直平分线上∴OE⊥BC∵∠ACB=90°,即AC⊥BC∴AD∥OE(2)①∵四边形OCEB是正方形,AB=4∴CE=BE=OB=OC=AB=2∵OE∥AC∴∴DE=BE=2∴BD=BE+DE=4故答案为:4.②∵四边形OACF是菱形∴CO平分∠ACF,CF∥OA∴∠ACO=∠FCO=∠AOC∵OA=OC∴∠A=∠ACO=∠AOC∴△AOC是等边三角形∴∠A=60°∵∠ABD=90°∴Rt△ABD中,tan A=∴BD=4故答案为:4.19.(9分)在一次课外活动中,小明和小华测量小山AF的高度,如图,已知山底有一斜坡CE,通过测量,斜坡CE的坡角为30°,小明沿斜坡坡脚E处行走至斜坡的中点D处,在D处测得山顶A的仰角为53°,斜坡CE的长度为60m,坡顶C与小山的距离BC=100m,求小山AF的高度.(结果精确到0.1m,参考数据:cos53°≈0.6,sin53°≈0.8,tan53°≈1.33,≈1.73)【分析】作CG⊥EF,延长GH交AD于点H,作HP⊥AB可得四边形BCHP、四边形PFGH为矩形,则BC=PH=100,BP=CH,PF=GH,BF=CG,∠AHP=∠HDQ=53°,由三角函数求出AP的长,作DQ⊥GH知∠CDQ=∠CEG=30°,求出CD=30,CG=30,CQ=15,DQ=15,再求得QH、CH的长,由AF=AP+PF=AP+GH=AP+CH+CG 可得答案.【解答】解:如图,过点C作CG⊥EF于点G,延长GH交AD于点H,过点H作HP ⊥AB于点P,则四边形BCHP、四边形PFGH为矩形,PH∥DQ,∴BC=PH=100,BP=CH,PF=GH,BF=CG,∠AHP=∠HDQ=53°,∵tan∠AHP==tan53°≈1.33,∴AP=1.33PH=133,过点D作DQ⊥GH于点Q,则DQ∥EG,∴∠CDQ=∠CEG=30°,∵D是CE的中点,CE=60,∴CD=CE=30,CG=CE=30,∴CQ=CD=15,DQ=CQ=15,∵tan∠HDQ==tan53°≈1.33,∵QH≈1.33DQ=1.33×15≈34.51,∴CH=QH﹣CQ=34.51﹣15=19.51,∴AF=AP+PF=AP+GH=AP+CH+CG=133+19.51+30≈182.5(m),即小山AF的高度约为182.5m.20.(9分)网络商店(简称网店)是近年来迅速兴起的一种电子商务形式,小明的网店销售红枣、小米两种商品的相关信息如下表:商品红枣小米规格1kg/袋2kg/袋成本(元/袋)4038售价(元/袋)6054根据上表提供的信息,解答下列问题(1)已知今年前四个月,小明的网店销售上表中规格的红枣和小米共2000kg,获得利润2.8万元,求这前四个月小明的网店销售这种规格的红枣和小米各多少袋?(2)根据之前的销售情况,估计今年5月到12月这后八个月,小明的网店还能销售同规格的红枣和小米共4000kg,其中,红枣的销售量不低于1200kg.假设这后八个月,销售红枣x(kg),销售红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求出这后八个月,小明的网店销售这种规格的红枣和小米至少获得总利润多少元?【分析】(1)设未知数,列二元一次方程组解答即可,(2)根据利润与销售量的关系,得出y与x之间的函数关系式,再根据函数的增减性,得出何时利润最少.【解答】解:(1)设销售这种规格的红枣x袋,小米y袋,由题意得,解得,x=1000,y=500,答:销售这种规格的红枣1000袋,小米500袋.(2)由题意得,y=(60﹣40)x+(54﹣38)=12x+32000,∴y随x的增大而增大,∵x≥1200,当x=1200时,y最小=12×1200+32000=46400元,答:y与x之间的函数关系式为y=12x+32000,后八个月,小明的网店销售这种规格的红枣和小米至少获得总利润46400元.21.(10分)若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数y=的图象与性质,探究过程如下,请补充完整.(1)列表:x…﹣3﹣12﹣﹣1﹣0123…y…m12101n…其中,m=,n=2.(2)描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示,请画出函数的图象.(3)研究函数并结合图象与表格,回答下列问题:①点A(﹣6,y1),B(﹣,y2),C(x1,),D(x2,6)在函数图象上,则y1<y2,x1<x2;(填“>”,“=”或“<”)②当函数值y=1时,求自变量x的值;(4)若直线y=x+b与函数图象有且只有一个交点,请直接写出b的取值范围.【分析】(1)把x=﹣3代入y=﹣中即可求得m的值;把x=3代入y=|x﹣1|中,即可求得n的值;(2)描点连线即可;(3)①A与B在y=﹣上,y随x的增大而增大,所以y1<y2;C与D在y=|x﹣1|上,观察图象可得x1<x2;②当y=1时,1=|x﹣1|,则有x=0或x=2;1=﹣,则有x=﹣2;(4)由图象可知,﹣1<b<2或b>3.【解答】解:(1)x=﹣3代入y=﹣得,y=,∴m=,把x=3代入y=|x﹣1|中得,y=2,∴n=2,故答案为,2;(2)如图所示:(3)①由图象可知A与B在y=﹣上,y随x的增大而增大,所以y1<y2;C与D在y=|x﹣1|上,所以x1<x2;故答案为<,<;②当y=1时,x>﹣1时,有1=|x﹣1|,∴x=0或x=2,当y=1时,x≤﹣1时,有1=﹣,∴x=﹣2,故x=0或x=2或x=﹣2;(4)由图象可知,﹣1<b<2或b>3.22.(10分)问题:如图(1),点M、N分别在正方形ABCD的边BC、CD上,∠MAN=45°,试判断BM、MN、ND之间的数量关系.(1)研究发现如图1,小聪把△ADN绕点A顺时针旋转90°至△ABG,从而发现BM、MN、DN之间的数量关系为BM+DN=MN(直接写出结果,不用证明)(2)类比引申如图2,在(1)的条件下,AM、AN分别交正方形ABCD的对角线BD于点E、F.已知EF=5,DF=4.求BE的长.(3)拓展提升如图3,在(2)的条件下,AM、AN分别交正方形ABCD的两个外角平分线于Q、P,连接PQ.请直接写出以BQ、PQ、DP为边构成的三角形的面积.【分析】(1)如图1,根据全等三角形的判定定理证明△AMN≌△AMG,根据全等三角形的性质解答即可(2)如图2,将△ADF绕点A顺时针旋转90°至△ABF',可使AB与AD重合,证明△EAF≌△EAF'(SAS),可得EF'=EF=5,最后利用勾股定理可得结论;(3)把△ABP绕点A顺时针旋转90°得到△ABP',连接P'Q,根据勾股定理得到AB2=72,同理得△AQP≌△AQP',得PQ=P'Q,证明△ADP∽△QBA,列比例式可得BQ•DP=AB2,从而可解答.【解答】解:(1)如图1,BM+DN=MN,理由如下:∵四边形ABCD是正方形,∴AB=AD,∠D=∠ABC=∠BAD=90°,小聪把△ADN绕点A顺时针旋转90°至△ABG,由旋转可得:BG=DN,AN=AG,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABM=90°+90°=180°,因此,点G,B,M在同一条直线上,∵∠MAN=45°,∴∠2+∠3=∠BAD﹣∠MAN=90°﹣45°=45°,∵∠1=∠2,∴∠1+∠3=45°,∴∠GAM=∠MAN,∵AM=AM,∴△AMN≌△AMG(SAS),∴MN=GM,∵GM=BM+BG=BM+DN,∴BM+DN=MN;故答案为:BM+DN=MN;(2)如图2,把△ADF绕点A顺时针旋转90°至△ABF',连接EF',∴AF'=AF,∠DAF=∠BAF',∠ABF'=∠ADF=45°,BF'=DF=4,∵∠ABE=45°,∴∠EBF'=45°+45°=90°,∵AE=AE,同理得△EAF≌△EAF'(SAS),∴EF'=EF=5,在Rt△EBF'中,由勾股定理得:BE===3;(3)由(2)知:BE=3,EF=5,DF=4,∴BD=3+4+5=12,由勾股定理得:AB2+AD2=BD2,∵AB=AD,∴AB2=72,如图3,把△ADP绕点A顺时针旋转90°至△ABP',连接BP',则∠ABP'=∠ADP,PD =P'B,AP=AP',∵AM、AN分别交正方形ABCD的两个外角平分线于Q、P,∴∠ADP=∠ABQ=135°,∴∠DAP+∠APD=45°,∵∠DAP+∠BAQ=45°,∴∠BAQ=∠APD,∴△ADP∽△QBA,∴,∴BQ•PD=AD•AB=72,∵∠ABP'=∠ABQ=135°,∴∠QBP'=360°﹣135°﹣135°=90°,∴S△BP'Q====36,∵AP=AP',∠P AQ=∠P'AQ,AQ=AQ,∴△QAP≌△QAP'(SAS),∴PQ=P'Q,∴以BQ、PQ、DP为边构成的三角形的面积为36.23.(11分)如图,在平面直角坐标系中,抛物线y=ax2﹣x+c与x轴交于点A、B,与y 轴交于点C,直线y=x+2经过A、C两点.(1)求抛物线的解析式;(2)若点D为线段AC上的一个动点,过点D作DE∥y轴,交抛物线于点E,过E作EF⊥y轴,交直线AC于点F,以DE、EF为边作矩形DEFG,矩形DEFG的周长能为10吗?如果能,请求出点E的横坐标;如果不能,请说明理由;(3)点P是抛物线上的一个动点,当∠PCA=∠BCO时,请直接写出点P的坐标.【分析】(1)直线y=x+2经过A、C两点,则点A、C的坐标分别为(﹣4,0)、(0,2),再用待定系数法即可求解;(2)设点D(m,m+2),则点E(m,﹣m2﹣m+2),则点F的坐标为(﹣m2﹣3m,﹣m2﹣m+2),利用矩形DEFG的周长=2(DE+EF)=20,即可求解;(3)分点P在点A的下方、点P(P′)在点A的上方两种情况,利用解直角三角形的方法即可求解.【解答】解:(1)直线y=x+2经过A、C两点,则点A、C的坐标分别为(﹣4,0)、(0,2),将点A、C的坐标代入抛物线表达式得,解得,故抛物线的表达式为y=﹣x2﹣x+2①;(2)不能,理由:对于y=﹣x2﹣x+2,令y=0,即y=﹣x2﹣x+2=0,解得x=﹣4或1,故点B(1,0);点D在直线AC上,设点D(m,m+2),则点E(m,﹣m2﹣m+2),由于点E、F的纵坐标相同,当y=﹣m2﹣m+2时,即x+2=﹣m2﹣m+2,解得x=﹣m2﹣3m,即点F的坐标为(﹣m2﹣3m,﹣m2﹣m+2),矩形DEFG的周长=2(DE+EF)=2(﹣m2﹣3m﹣m﹣m2﹣m+2﹣m﹣2)=﹣3m2﹣12m=20,即3m2+12m+20=0,∵△=122﹣3×4×20<0,∴方程无解,即矩形DEFG的周长不能为10;(3)由点A、B、C的坐标知,AB=4,OC=2,OB=1,则AC=2,则tan∠BCO==,同理tan∠CAO=,即∠BCO=∠CAO,①当点P在点A的下方时,如下图,设直线PC交x轴于点H,过点H作NH⊥AC于点N,∵∠PCA=∠BCO=∠CAO,故△AHC为等腰三角形,则AN=AC=,在Rt△AHN中,设NH=x,则AN=2x=,则AH=x=,故OH=4﹣=,故点H(﹣,0),由点C、H的坐标得,直线CH的表达式为y=x+2②,联立①②并解得,故点P的坐标为(﹣,﹣);②当点P(P′)在点A的上方时,同理可得,点P(﹣3,2);综上,点P的坐标为(﹣,﹣)或(﹣3,2).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年河南省中考数学模拟试卷(三)一、选择题(每小题3分,共30分)1.(3分)计算(﹣2)+(﹣3)的结果是()A.﹣5B.﹣1C.1D.52.(3分)下列运算正确的是()A.2a3+3a2=5a5B.3a3b2÷a2b=3abC.(a﹣b)2=a2﹣b2D.(﹣a)3+a3=2a33.(3分)不等式组的解集在数轴上表示为()A.B.C.D.4.(3分)已知反比例函数,当x>0时,它的图象在()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD 于点F,则等于()A.B.C.D.6.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.07.(3分)如图,在△ABC中,已知EF∥BC,=,四边形BCFE的面积为8,则△ABC 的面积等于()A.9B.10C.12D.138.(3分)下列说法正确的是()A.要了解一批灯泡的使用寿命,应采用普查的方式B.若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖C.甲、乙两组数据的样本容量与平均数分别相同,若方差S甲2=0.1,S乙2=0.2,则甲组数据比乙组数据稳定D.“掷一枚硬币,正面朝上”是必然事件9.(3分)如图,将△ABC绕点C(0,﹣1)旋转180°得到△A′B′C,设点A′的坐标为(a,b),则点A的坐标为()A.(﹣a,﹣b)B.(﹣a,﹣b﹣1)C.(﹣a,﹣b+1)D.(﹣a,﹣b﹣2)10.(3分)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2016,0)二、填空题(每小题3分,共15分)11.(3分)﹣|﹣1|=.12.(3分)已知直线m∥n,将一块含有30°角的直角三角板ABC按如图方式放置,其中A、B两点分别落在直线m、n上,若∠1=20°,则∠2=度.13.(3分)有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.14.(3分)如图,将边长为的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为平方单位.15.(3分)如图,在矩形ABCD中,AB=6,E,H分别为AD,CD的中点,沿BE将△ABE 折叠,若点A恰好落在BH上的F处,则AD=.三、解答题(本大题共8小题,共75分)16.(8分)在学习分式计算时有这样一道题:先化简÷,再选取一个你喜欢且合适的数代入求值.张明同学化简过程如下:解:÷=÷()=()=()(1)在括号中直接填入每一步的主要依据或知识点;(2)如果你是张明同学,那么在选取你喜欢且合适的数进行求值时,你不能选取的数有.17.(9分)为了解家长对“学生在校带手机”现象的看法,某校“九年级兴趣小组”随机调查了该校学生家长若干名,并对调查结果进行整理,绘制如下不完整的统计图.根据以上信息,解答下列问题:(1)这次接受调查的家长总人数为人.(2)在扇形统计图中,求“很赞同”所对应的扇形圆心角的度数;(3)若在这次接受调查的家长中,随机抽出一名家长,恰好抽到“无所谓”的家长概率是多少?18.(9分)如图,AB是⊙O的直径,割线DA,DB分别交⊙O于点E,C,且AD=AB,∠DAB是锐角,连接EC、OE、OC.(1)求证:△OBC≌△OEC.(2)填空:①若AB=2,则△AOE的最大面积为;②当∠ABD的度数为时,四边形OBCE是菱形.19.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)20.(9分)已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B 两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)21.(9分)平高集团有限公司准备生产甲、乙两种开关,共8万件,销往东南亚国家和地区,已知2件甲种开关与3件乙种开关销售额相同;3件甲种开关比2件乙种开关的销售额多1500元.(1)甲种开关与乙种开关的销售单价各为多少元?(2)若甲、乙两种开关的销售总收入不低于5400万元,则至少销售甲种开关多少万件?22.(10分)阅读并完成下面的数学探究:(1)【发现证明】如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,小颖把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.(2)【类比延伸】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.(3)【结论应用】如图(3),四边形ABCD中,AB=AD=80,∠B=60°,∠ADC=120°,∠BAD=150°,点E、F分别在边BC、CD上,且AE⊥AD,DF=40(),连E、F,求EF的长(结果保留根号).23.(12分)如图,抛物线y=ax2+bx(a≠0)的图象过原点O和点A(1,),且与x轴交于点B,△AOB的面积为.(1)求抛物线的解析式;(2)若抛物线的对称轴存在一点M,使△AOM的周长最小,求M的点的坐标;(3)点F是x轴上一动点,过F作x轴的垂线,交直线AB于点E,交抛物线于点P,且PE=,直接写出点E的坐标(写出符合条件的两个点即可)2020年河南省中考数学模拟试卷(三)参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)计算(﹣2)+(﹣3)的结果是()A.﹣5B.﹣1C.1D.5【分析】原式利用同号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(2+3)=﹣5.故选:A.2.(3分)下列运算正确的是()A.2a3+3a2=5a5B.3a3b2÷a2b=3abC.(a﹣b)2=a2﹣b2D.(﹣a)3+a3=2a3【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式;完全平方公式:(a ±b)2=a2±2ab+b2进行计算即可.【解答】解:A、2a3和3a2不是同类项,不能合并,故原题计算错误;B、3a3b2÷a2b=3ab,故原题计算正确;C、(a﹣b)2=a2﹣2ab+b2,故原题计算错误;D、(﹣a)3+a3=0,故原题计算错误;故选:B.3.(3分)不等式组的解集在数轴上表示为()A.B.C.D.【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:,由①得:x>1,由②得:x≤2,则不等式组的解集为1<x≤2,表示在数轴上,如图所示:故选:C.4.(3分)已知反比例函数,当x>0时,它的图象在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】首先根据反比例函数的比例系数确定图象的大体位置,然后根据自变量的取值范围确定具体位置.【解答】解:∵比例系数k=﹣2<0,∴其图象位于二、四象限,∵x>0,∴反比例函数的图象位于第四象限,故选:D.5.(3分)在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD 于点F,则等于()A.B.C.D.【分析】根据题意得出△DEF∽△BCF,那么=;由AE:ED=2:1可设ED=k,得到AE=2k,BC=3k;得到=,即可解决问题.【解答】解:如图,∵四边形ABCD为平行四边形,∴ED∥BC,BC=AD,∴△DEF∽△BCF,∴=,设ED=k,则AE=2k,BC=3k;∴==,故选:A.6.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.0【分析】将x=0代入方程可得:a2﹣1=0,解之求得a的值,在根据一元二次方程的定义求解可得.【解答】解:根据题意将x=0代入方程可得:a2﹣1=0,解得:a=1或a=﹣1,∵a﹣1≠0,即a≠1,∴a=﹣1,故选:B.7.(3分)如图,在△ABC中,已知EF∥BC,=,四边形BCFE的面积为8,则△ABC 的面积等于()A.9B.10C.12D.13【分析】由题意可证△AEF∽△ABC,可得=()2=,即可求△ABC的面积.【解答】解:∵∴=∵EF∥BC∴△AEF∽△ABC∴=()2=∴S△ABC=9S△AEF∵S四边形BCFE=S△ABC﹣S△AEF=8S△AEF=8∴S△AEF=1∴S△ABC=9故选:A.8.(3分)下列说法正确的是()A.要了解一批灯泡的使用寿命,应采用普查的方式B.若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖C.甲、乙两组数据的样本容量与平均数分别相同,若方差S甲2=0.1,S乙2=0.2,则甲组数据比乙组数据稳定D.“掷一枚硬币,正面朝上”是必然事件【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、要了解一批灯泡的使用寿命,应采用抽样调查的方式,故本选项错误;B、若一个游戏的中奖率是1%,则做100次这样的游戏不一定会中奖,故本选项错误;C、若方差=0.1,=0.2,则甲组数据比乙组数据稳定,说法正确,故本选项正确;D、“掷一枚硬币,正面朝上”是随机事件,故本选项错误;故选:C.9.(3分)如图,将△ABC绕点C(0,﹣1)旋转180°得到△A′B′C,设点A′的坐标为(a,b),则点A的坐标为()A.(﹣a,﹣b)B.(﹣a,﹣b﹣1)C.(﹣a,﹣b+1)D.(﹣a,﹣b﹣2)【分析】设点A的坐标是(x,y),根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可.【解答】解:根据题意,点A、A′关于点C对称,设点A的坐标是(x,y),则=0,=﹣1,解得x=﹣a,y=﹣b﹣2,∴点A的坐标是(﹣a,﹣b﹣2).故选:D.10.(3分)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2016,0)【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2015的坐标.【解答】解:半径为1个单位长度的半圆的周长为:,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P1秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2015÷4=503 (3)∴P2015的坐标是(2015,﹣1),故选:B.二、填空题(每小题3分,共15分)11.(3分)﹣|﹣1|=2.【分析】原式利用立方根定义,以及绝对值的代数意义计算即可求出值.【解答】解:原式=3﹣1=2,故答案为:212.(3分)已知直线m∥n,将一块含有30°角的直角三角板ABC按如图方式放置,其中A、B两点分别落在直线m、n上,若∠1=20°,则∠2=50度.【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,据此进行计算即可.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故答案为:50.13.(3分)有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.【分析】列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:列表得:(1,5)(2,5)(3,5)(4,5)﹣(1,4)(2,4)(3,4)﹣(5,4)(1,3)(2,3)﹣(4,3)(5,3)(1,2)﹣(3,2)(4,2)(5,2)﹣(2,1)(3,1)(4,1)(5,1)∴一共有20种情况,这两个球上的数字之和为偶数的8种情况,∴这两个球上的数字之和为偶数的概率是=.14.(3分)如图,将边长为的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为6﹣2平方单位.【分析】由旋转角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;设B′C′和CD 的交点是O,连接OA,构造全等三角形,用S阴影部分=S正方形﹣S四边形AB′OD,计算面积即可.【解答】解:设B′C′和CD的交点是O,连接OA,∵AD=AB′,AO=AO,∠D=∠B′=90°,∴Rt△ADO≌Rt△AB′O,∴∠OAD=∠OAB′=30°,∴OD=OB′=,S四边形AB′OD=2S△AOD=2××=2,∴S阴影部分=S正方形﹣S四边形AB′OD=6﹣2.15.(3分)如图,在矩形ABCD中,AB=6,E,H分别为AD,CD的中点,沿BE将△ABE 折叠,若点A恰好落在BH上的F处,则AD=.【分析】连接EH,运用HL可证明△EFH≌△EDH,从而根据BH=BF+HF,得出BH 的长,在Rt△BCH中,利用勾股定理可求出BC,即得AD的长度.【解答】解:如图,连接EH,∵点E、点H是AD、DC的中点,∴AE=ED,CH=DH=CD=AB=3,由折叠的性质可得AE=FE,∴FE=DE,在Rt△EFH和Rt△EDH中,,∴Rt△EFH≌Rt△EDH(HL),∴FH=DH=3,∴BH=BF+HF=AB+DH=6+3=9,在Rt△BCH中,BC==6,∴AD=BC=.故答案为:.三、解答题(本大题共8小题,共75分)16.(8分)在学习分式计算时有这样一道题:先化简÷,再选取一个你喜欢且合适的数代入求值.张明同学化简过程如下:解:÷=÷(通分、因式分解)=(分式的除法法则)=(约分)(1)在括号中直接填入每一步的主要依据或知识点;(2)如果你是张明同学,那么在选取你喜欢且合适的数进行求值时,你不能选取的数有2,﹣2,1.【分析】(1)根据通分、约分、分式的除法法则解答;(2)根据分式有意义的条件进行解答即可.【解答】解:(1)原式═÷(通分、因式分解)=(分式的除法法则)=(约分)故答案为:通分,分解因式;分式的除法法则;约分;(2)∵x2﹣4≠0,x﹣1≠0,∴x≠±2,1.故答案为:2,﹣2,1.17.(9分)为了解家长对“学生在校带手机”现象的看法,某校“九年级兴趣小组”随机调查了该校学生家长若干名,并对调查结果进行整理,绘制如下不完整的统计图.根据以上信息,解答下列问题:(1)这次接受调查的家长总人数为200人.(2)在扇形统计图中,求“很赞同”所对应的扇形圆心角的度数;(3)若在这次接受调查的家长中,随机抽出一名家长,恰好抽到“无所谓”的家长概率是多少?【分析】(1)根据表示“赞同”的人数是50,所占的百分比是25%即可求得总人数;(2)利用360°乘以对应的百分比即可求得圆心角的度数;(3)利用概率公式求解.【解答】解:(1)这次接受调查的家长总人数为50÷25%=200人,故答案为:200;(2)∵“无所谓”的人数为200×20%=40人,∴“很赞同”的人数为200﹣(50+40+90)=20人,则“很赞同”所对应的扇形圆心角的度数为360°×=36°;(3)∵在所抽取的200人中,表示“无所谓”的人数为40,∴恰好抽到“无所谓”的家长概率是=0.2.18.(9分)如图,AB是⊙O的直径,割线DA,DB分别交⊙O于点E,C,且AD=AB,∠DAB是锐角,连接EC、OE、OC.(1)求证:△OBC≌△OEC.(2)填空:①若AB=2,则△AOE的最大面积为;②当∠ABD的度数为60°时,四边形OBCE是菱形.【分析】(1)利用垂直平分线,判断出∠BAC=∠DAC,得出EC=BC,用SSS判断出结论;(2)先判断出三角形AOE面积最大,只有点E到直径AB的距离最大,即是圆的半径即可;(3)由菱形判断出△AOC是等边三角形即可.【解答】解:(1)连接AC,∵AB是⊙O的直径,∴AC⊥BD,∵AD=AB,∴∠BAC=∠DAC,∴,∴BC=EC,在△OBC和△OEC中,∴△OBC≌△OEC,(2)∵AB是⊙O的直径,且AB=2,∴OA=1,设△AOE的边OA上的高为h,∴S△AOE=OA×h=×1×h=h,∴要使S△AOE最大,只有h最大,∵点E在⊙O上,∴h最大是半径,即h最大=1∴S△AOE最大=,故答案为:,(3)由(1)知,BC=EC,OC=OB,∵四边形OBCE是菱形.∴BC=OB=OC,∴∠ABD=60°,故答案为60°.19.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)【分析】延长CA交BE于点D,得CD⊥BE,设AD=x,得BD=x米,CD=(20+x)米,根据=tan∠DCB列方程求出x的值即可得.【解答】解:如图,延长CA交BE于点D,则CD⊥BE,由题意知,∠DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中,=tan∠DCB,∴=tan33°≈0.65,解得x≈37,答:这段河的宽约为37米.20.(9分)已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B 两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)【分析】(1)根据根的判别式,可得答案;(2)根据根与系数的关系,可得A、B间的距离,根据二次函数的性质,可得答案.【解答】解:(1)△=(m﹣3)2﹣4(﹣m)=m2﹣2m+9=(m﹣1)2+8,∵(m﹣1)2≥0,∴△=(m﹣1)2+8>0,∴原方程有两个不等实数根;(2)存在,由题意知x1,x2是原方程的两根,∴x1+x2=m﹣3,x1•x2=﹣m.∵AB=|x1﹣x2|,∴AB2=(x1﹣x2)2=(x1+x2)2﹣4x1x2=(m﹣3)2﹣4(﹣m)=(m﹣1)2+8,∴当m=1时,AB2有最小值8,∴AB有最小值,即AB==221.(9分)平高集团有限公司准备生产甲、乙两种开关,共8万件,销往东南亚国家和地区,已知2件甲种开关与3件乙种开关销售额相同;3件甲种开关比2件乙种开关的销售额多1500元.(1)甲种开关与乙种开关的销售单价各为多少元?(2)若甲、乙两种开关的销售总收入不低于5400万元,则至少销售甲种开关多少万件?【分析】(1)可设甲种商品的销售单价x元,乙种商品的销售单价y元,根据等量关系:①2件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比2件乙种商品的销售收入多1500元,列出方程组求解即可;(2)可设销售甲种商品a万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.【解答】解:(1)设甲种商品的销售单价为x元/件,乙种商品的销售单价为y元/件,根据题意得:,解得:.答:甲种商品的销售单价为900元/件,乙种商品的销售单价为600元/件.(2)设销售甲种商品a万件,依题意有900a+600(8﹣a)≥5400,解得a≥2.答:至少销售甲种商品2万件.22.(10分)阅读并完成下面的数学探究:(1)【发现证明】如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,小颖把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.(2)【类比延伸】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系∠EAF=∠BAD时,仍有EF=BE+FD.(3)【结论应用】如图(3),四边形ABCD中,AB=AD=80,∠B=60°,∠ADC=120°,∠BAD=150°,点E、F分别在边BC、CD上,且AE⊥AD,DF=40(),连E、F,求EF的长(结果保留根号).【分析】(1)根据旋转变换的性质和正方形的性质证明△EAF≌△GAF,得到EF=FG,证明结论;(2)把△ABE绕点A逆时针旋转至△ADH,使AB与AD重合,证明△EAF≌△HAF,证明即可;(3)延长BA交CD的延长线于P,连接AF,根据四边形内角和定理求出∠C的度数,得到∠P=90°,求出PD、P A,证明∠EAF=∠BAD,又(2)的结论得到答案.【解答】(1)证明:由旋转的性质可知,△ABE≌△ADG,∴BE=DG,AE=AG,∠BAE=∠DAG,∠ADG=∠ABE=90°,∴G、D、F在同一条直线上,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAG=90°,又∠EAF=45°,∴∠F AG=45°,在△EAF和△GAF中,,∴△EAF≌△GAF,∴EF=FG,∴EF=BE+FD;(2)当∠EAF=∠BAD时,仍有EF=BE+FD.证明:如图(2),把△ABE绕点A逆时针旋转至△ADH,使AB与AD重合,则BE=DH,∠BAE=∠DAH,∠ADH=∠B,又∠B+∠D=180°,∴∠ADH+∠D=180°,即F、D、H在同一条直线上,当∠EAF=∠BAD时,∠EAF=∠HAF,由(1)得,△EAF≌△HAF,则EF=FH,即EF=BE+FD,故答案为:∠EAF=∠BAD;(3)如图(3),延长BA交CD的延长线于P,连接AF,∵∠B=60°,∠ADC=120°,∠BAD=150°,∴∠C=30°,∴∠P=90°,又∠ADC=120°,∴∠ADP=60°,∴PD=AD×cos∠ADP=40,AP=AD×sin∠ADP=40,∴PF=PD+DF=40,∴P A=PF,∴∠P AF=45°,又∠P AD=30°,∴∠DAF=15°,∴∠EAF=75°,∠BAE=60°,∴∠EAF=∠BAD,由(2)得,EF=BE+FD,又BE=BA=80,∴EF=BE+FD=40().23.(12分)如图,抛物线y=ax2+bx(a≠0)的图象过原点O和点A(1,),且与x轴交于点B,△AOB的面积为.(1)求抛物线的解析式;(2)若抛物线的对称轴存在一点M,使△AOM的周长最小,求M的点的坐标;(3)点F是x轴上一动点,过F作x轴的垂线,交直线AB于点E,交抛物线于点P,且PE=,直接写出点E的坐标(写出符合条件的两个点即可)【分析】(1)利用三角形面积公式求出OB得到B(﹣2,0),然后利用待定系数法求抛物线解析式;(2)抛物线的对称轴为直线x=﹣1,连接AB交直线x=﹣1于点M,如图1,利用两点之间线段最短判断此时MO+MA的值最小,△MAO的周长最小,再利用待定系数法求出直线AB的解析式为y=x+,然后计算自变量为﹣1时的一次函数值即可得到M 点的坐标;(3)如图2,设E(x,x+),则P(x,x2+x),则PE=|x2+x ﹣|,从而得到|x2+x﹣|=,然后解方程x2+x﹣=和方程x2+x﹣=﹣即可得到对应E点坐标.【解答】解:(1)∵△AOB的面积为,∴••OB=,解得OB=2,∴B(﹣2,0),设抛物线解析式为y=ax(x+2),把A(1,)代入y=ax(x+2)得a•1•3=,解得a=,∴抛物线解析式为y=x(x+2),即y=x2+x;(2)抛物线的对称轴为直线x=﹣1,连接AB交直线x=﹣1于点M,如图1,∵MB=BO,∴MO+MA=MB+MA=AB,∴此时MO+MA的值最小,△MAO的周长最小,设直线AB的解析式为y=kx+m,把B(﹣2,0),A(1,)代入得,解得,∴直线AB的解析式为y=x+,当x=﹣1时,y=x+=,此时M点的坐标为(﹣1,);(3)如图2,设E(x,x+),则P(x,x2+x),∴PE=|x2+x﹣(x+|=|x2+x﹣|,而PE=,∴|x2+x﹣|=,解方程x2+x﹣=得x1=,x2=,此时E点坐标为(,)或(,),解方程x2+x﹣=﹣得x1=0,x2=﹣1,此时E点坐标为(0,)或(﹣1,),综上所述,E点坐标为(,)或(,)或(0,)或(﹣1,).。