固体物理第一章

合集下载

固体物理_第一章(1.4晶向、晶面指数)

固体物理_第一章(1.4晶向、晶面指数)

固体物理_第⼀章(1.4晶向、晶⾯指数)第1章晶体结构1.1 晶格的周期性1.2 典型晶格实例1.3 晶格的对称性1.4 晶向、晶⾯指数1.5 倒格⼦、布⾥渊区和晶体散射1.4.1 晶列指数(晶胞中)特别性质:所有平⾏晶列组成晶列族,包含所有格点晶列上的格点也是周期性的,且每⼀列格点分布⼀致同⼀个截⾯内,晶列是平⾏等距的晶列:连接任意格点的平⾏直线晶向:晶列的取向晶列指数:晶向的⽮量表达1.4.2 晶⾯指数(密勒指数)*平⾏的晶⾯组成晶⾯族,晶⾯族包含所有格点;* 晶⾯上的格点分布具有特定周期性,是⼆维格⼦* 同⼀族晶⾯中,每⼀个晶⾯的格点分布⼀致* 同⼀族晶⾯中,相邻晶⾯平⾏等距:系列平⾏等距晶⾯构成晶族晶⾯:晶格中任意三个不在同⼀直线上的格点决定的平⾯向与晶⾯正交(即为该晶⾯的法向⽮量):⽤平⾯的法线式⽅程可证明若截距为负数,则对应指数头上加“-”号等效晶⾯常⽤⼤括号表⽰{hkl},例如(100),(010)统⼀⽤{100}表⽰,同样包括{110}、{111}晶⾯;晶⾯指数较⼩的⾯,⼀般为解理⾯晶⾯指数可⽤于计算两个⾯之间的夹⾓等效于法线⽮量的夹⾓:⼆者内积/模的乘积晶⾯指数可⽤于计算两个⾯之间的间距:等效于离原点最近的晶⾯上任意⼀点的格⽮长度,在法线⽅向的投影即,假设基⽮长度分别为a、b、c,晶⾯指数为(h, k, l),则对应⽴体坐标系下的截距分别为a/h, b/k, c/l,继⽽,该晶⾯的法线⽮量为(h/a, k/b, l/c),写成⽅向向量为(h/a, k/b, l/c)222选择在a轴上的截距,在法线的投影,即a/h在⽅向的投影d222。

固体物理 第一章 晶体结构 晶格的周期性

固体物理 第一章  晶体结构 晶格的周期性
固体物理学
Ch1晶体结构 1.2晶格的周期性
1
前课回顾
• 什么是晶格?什么是基元? • 常见的晶格结构?
2
本节内容
• 晶格具有周期性,用原胞和基矢描述。 • 原胞:一个晶格最小的重复单元。 • 晶体学单胞(晶胞):反映晶格对称性,选取较大的
周期单元。
• 基矢:原胞或晶胞的边矢量,α1、α2、α3 。 • 简立方、面心立方、体心立方、六角密堆积的原胞、
34
Click to edit Master title style
Click to edit Master subtitle style
35
Click to edit Master title style
Click to edit Master subtitle style
36
Click to edit Master title style
Click to edit Master subtitle style
42
Click to edit Master title style
晶向、晶面和它们的标志
Click to edit Master subtitle style
43
本课小结
晶体结构=晶格+基元 布拉维格子、基矢、格矢、格点 原胞,晶体中体积最小的周期性重复单元 维格纳-塞茨(WS)原胞及其构造方法 常见的布拉维格子及其WS原胞
原胞是晶体中体积最小的周期性重复单元,常取 以基矢为棱边的平行六面体; 对某一晶格,尽管习惯上常取三个不共面的最短 格矢为基矢,但基矢的取法并不唯一,因此原胞 的取法也不唯一。
无论如何选取,原 胞都具有相同的体 积,每个原胞只含 有一个格点。

固体物理第一章总结

固体物理第一章总结

第一章晶体结构1.晶格实例面心立方(fcc)配位数12 格点等价格点数4 致密度原胞基矢:()()()123222aa j kaa k iaa i j=+=+=+原胞体积3123()/4Ωa a a a=⋅⨯=NaCl: 两组面心立方格子平行穿套而成的复式格子基元= Na+ + Cl-具有面心立方:简单格子(Al、Cu、Ag; Ar Kr Xe Ne)、复式格子(Cao MgS 碱卤族等)简单立方(SC)配位数6 格点等价格点数1 致密度CsCl两组简单立方格子穿套而成的复式结构基元= Cs+ + Cl-钙钛矿结构:CaTiO3五个简单立方穿套而成基元:Ca、Ti、OI、OII、OIII (OI、OII、OIII 的化学环境各不相同,氧八面体) 典型晶体:BaTiO3、PbZrO3、LiNbO3、LiTaO3??氯化铯型结构: CsCl, CsBr, CsI, TlCl, TlBr, TlI 等体心立方(bcc)配位数8 格点等价格点数2 致密度原胞基矢:123()2()2()2aa i j kaa i j kaa i j k=-++=-+=+-原胞体积:3123()/2Ωa a a a=⋅⨯=体心立方晶体: 碱金属、W、Mo、Nb、V、Fe等六角密堆(hcp)配位数12 两种格点原子数6 基元数3 致密度典型晶体举例:He, Be, Mg, Ti, Zn, Cd, Co, Y, Lu 等金刚石结构最近邻原子数4 次近邻原子数12 致密度晶体结构=布拉维格子(面心立方)+ 基元(A+B)*将金刚石结构中的基元置换成一对硫离子和锌离子,则为两个面心立方复合而成的复式结构,典型晶体:SiC, ZnSe, AlAs, GaP, GaAs 等2.晶体的周期性结构基本概念晶体:1. 化学性质相同 2. 几何环境相同基元:晶体结构中最小的重复单元布拉维点阵(布拉维格子): 112233R n a n a n a =++ 晶体结构 = 布拉维格子+基元原胞:由基矢1a 、2a 、3a 确定的平行六面体,是体积最小的周期性结构单元,原胞只包含一个格点晶胞:同时计及周期性及对称性的尽可能小的重复单元,原胞实际上是体积最小的晶胞 维格纳-赛茨原胞(WS 原胞)1. 作某个格点与其它格点的连接矢量2. 作所有这些连接矢量的垂直平分面3. 这些垂直平分面围起的凸多面体就是维格纳-赛茨原胞3. 晶向、晶面及其标志晶列(向)指数:[l m n] 晶面指数(米勒指数):( h k l )米勒指数是以晶胞基矢为基准,而面指数则以原胞基矢为基准标定4. 布里渊区倒格子空间中的维格纳-赛茨(WS )原胞,即所谓的第一布里渊区,布里渊区包含了所有能在晶体上发生布拉格反射的波的波矢22h h k G G ⋅= 简单立方的倒格矢(简单立方——简单立方)基矢123a aia aj a ak ⎧=⎪=⎨⎪=⎩ 倒格矢123(2π/a)(2π/a)(2π/a)b i b j b k⎧=⎪=⎨⎪=⎩体心立方晶格的倒格子(体心立方——面心立方)基矢1231()21()21()2a a i j k a a i j k a a i j k ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩ 倒格矢1232π()2π()2π()b j k a b k i a b i j a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩倒格矢可以表示为:1122332331122π[()()()]h G h b h b h b h h i h h j h h k a=++=+++++ 其中(h1 h2 h3)是米勒指数,h G 垂直于米勒指数,其第一布里渊区是一个正十二面体面心立方晶格的倒格子(面心立方——体心立方)基矢1231()21()21()2a a j k a a k i a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩ 倒格矢1232π()2π()2π()b i j k a b i j k a b i j k a ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩第一布里渊区为截角八面体即5. 晶体的宏观对称性xx xy xz x x y yx yy yz y z zx zy zz z D E D E D E εεεεεεεεε⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭对于所有立方对称的晶体中,介电常数是一个对角张量:0 (,,,)x y z αβαβεεδαβ==该结论适用于一切具有二阶张量形式的宏观性质 (如电导率、热导率)六角对称的晶体中,若坐标轴选取在六角轴的方向和与它垂直的平面内,则介电常数有如下形式// 0 00 00 0 εεε⊥⊥⎛⎫ ⎪ ⎪ ⎪⎝⎭ ,//////D E ε=, D E ε⊥⊥⊥=,六角对称的晶体有双折射现象对称操作(正交变换:旋转、中心反演、镜面反映) 1. 旋转绕 z 轴旋转 q 角的正交矩阵cos sin 0sin cos 0 0 0 1θθθθ-⎛⎫ ⎪ ⎪ ⎪⎝⎭,中心反演的正交矩阵 1 0 0 0 1 0 0 0 1-⎛⎫ ⎪- ⎪ ⎪-⎝⎭由于cost = (1 - m)/2 所以 m = -1 0 1 2 3,所以t = 0 2π/6 2π/4 2π/3 2π/2,没有所谓的5度轴和7度轴。

固体物理-第一章

固体物理-第一章



ai
aj
ak




顶角8个格点→8×1/8=1个原 子;→平均包含1个原子
原胞的体积 V a1 (a2 a3 ) a3
➢晶体的周期性
面心立方晶胞



ABC ABC 排列(立方密堆)


a1

a 2
jk
顶角8个格点→8×1/8=1个原子;面心6个原 子→6×½=3个原子;→平均包含4个原子
1.1 晶体的周期性
1.1.1 常见的晶体
沸石晶体
方沸石
化学式:RR[Alx+2ySin-(x+2y)O2n]·mH2O含水架状结 构铝硅酸盐矿物,单斜和正交(斜方)晶系为主。 式中R代表碱金属离子,基本上为K+或Na+。
菱沸石
纯净的各种沸石均为无色或白色,但可因混入杂质而呈各种浅色。玻璃光泽。解 理随晶体结构而异。沸石的晶体结构是由硅(铝)氧四面体连成三维的格架,格架中 有各种大小不同的空穴和通道,具有很大的开放性。碱或碱土金属子和水分子均分布 在空穴和通道中,与格架的联系较弱。不同的离子交换对沸石结构影响很小,但使沸 石的性质发生变化。晶格中存在的大小不同空腔,可以吸取或过滤大小不同的其他物 质的分子。工业上常将其作为分子筛,以净化或分离混合成分的物质 ,如气体分离、 石油净化、处理工业污染等。此外沸石还具有独特的吸附性、催化性、离子交换性, 离子的选择性、耐酸性、热稳定性、多成份性、及很高的生物活性和抗毒性等。
1.1.3 基本概念
晶体的特点:晶体具有规则 的几何外形,固定的熔 点,某些晶体具有一定 的解理性。
周期性:晶体中 微粒的排列按照 一定的方式不断 的做周期性重复 的性质,称为晶 体结构的周期性。

固体物理第一章1

固体物理第一章1

晶格物理性质周期性(平移对称性):
Γ (x+na) = Γ (x)
上式表示原胞中任一处x的物理性质,同另一原胞相应处的物 理性质相同。
原子
一维的喇菲格子
例:一维复式格子
定义:晶格中含有n(n≥2)类原子,其周围情况不一样,它们组成一维无
限周期性点列,周期为a。 原胞:长为a的一根直线段,一类原子在其两端点,其余原子在线段上。 每个原胞含n个原子。 周期性: Γ (x+na) = Γ (x)
晶体分单晶体和多晶体
单晶体( Single Crystal ) 原子排列的周期性是在整个固体内部存在的;无限大的严格的单 晶体可以看成是完美晶体。 多晶体( Multiple Crystal ) 由很多不同取向的单晶体的晶粒组成的固体;仅在各晶粒内原子 才有序排列,不同晶粒内的原子排列是不同的。
单晶体是个凸多面体,围成这个凸多面体的面是光滑的,称 为晶面。 晶面的大小和形状受晶体生长条件的影响,它们不是晶体品 种的特征因素。
1 a 1 ( a b c ) 2 1 a 2 (a b c ) 2 1 a 3 (a b c ) 2


a a1 ( i j k) 2 a a 2 (i - j k) 2 a a 3 (i j k) 2
四、各向异性
晶带:单晶体的晶面排列成带状,晶面的交线(称为晶棱)互相平行, 这些晶面的组合称为晶带。晶棱的方向称为带轴。 晶轴:重要的带轴,互相平行的晶棱(晶面的交线)的共同方向。
各向异性: 晶体的物理性质,常随方向不同而有量的 差异,晶体所具有的这种性质——各向异性。
如介电常数、压电常数、弹性常数等。

固体物理

固体物理

第一章晶体结构⏹布拉菲点阵概念⏹惯用晶胞(单胞)概念⏹初基晶胞(原胞)概念⏹Wigner-Seize晶胞⏹晶体结构基元+点阵=晶体结构⏹简单的晶体结构(1)sc,bcc,fcc结构的特征(2)金刚石结构(3)六角密堆积结构(4)NaCl结构(5)CsCl结构⏹晶列, 晶向, 晶面, 晶面族, 晶面指数, 密勒指数, 晶面间距晶面指数(hkl)的定义和求法方向指数[abc]的定义和求法⏹对称操作⏹7种晶系和14种布拉菲点阵1以堆积模型计算由同种原子构成的同体积的简立方和面心立方晶体中的原子数之比。

2证明立方晶系的晶列[hkl]与晶面族(hkl)正交3某元素晶体的结构为体心立方布拉菲格子,试指出其格点面密度最大的晶面系的密勒指数,并求出该晶面系相邻晶面的面间距4在立方晶胞中画出(122),(001),(10),(210)晶面和[122]5晶体中可以独立存在的8种对称元素是:、、、、、、、。

⏹布拉格定理⏹倒易点阵初基矢量公式⏹布里渊区的求法(二维正方格子和长方格子)⏹实验衍射方法(劳厄法、转动晶体法和粉末法)⏹倒易点阵矢量和晶面指数间的关系1考虑晶体中一组互相平行的点阵平面(hkl),(a)证明倒易点阵矢量G(hkl)=hb1+kb2+lb3垂直于这组平面(hkl);(b)证明两个相邻的点阵平面间的距离d(hkl)为2从体心立方铁的(110)平面来的X-射线反射的布喇格角为22º,X-射线波长λ=1.54Å。

试计算铁的立方晶胞边长;(b)从体心立方结构铁的(111)平面来的反射的布喇格角是多少?答案:a)a=2.91Å;b)θ=27.28º3对于点阵常数为a的二维六角点阵,(a)写出正点阵的初基矢量;(b )计算倒易点阵的初基矢量;(c )画出第一、第二、第三布里渊区;(d )计算第一布里渊区的体积。

4半导体材料Si 和Ge 单晶的晶体点阵类型为 ,倒易点阵类型为 ,第一布里渊区的形状为 ,每个 原子的最近邻原子数为 。

固体物理讲义第一章

固体物理讲义第一章

固体物理讲义第一章前言:固体物理学是用自然科学的基本原理从微观上解释固体的宏观性质并阐明其规律的科学课程的主要内容晶体的物理性质与内部微观结构以及其组成粒子(原子、离子、电子)运动规律之间的关系●晶体结构(基于X射线衍射)●晶体结合与晶体缺陷●晶格振动(基于统计物理和量子力学研究固体热学性质)●固体能带论(基于量子力学和统计物理研究固体的导电性)第一章晶体结构内容:晶体中原子排列的形式及其数学描述主要包括:●晶体的周期结构●十四种布拉菲格子和七大晶系●典型的晶体结构●晶面和米勒指数●晶体的对称性固体的性质取决于组成固体的原子以及它们的空间排列。

例如同为碳元素组成的石墨(导体)、碳60和金刚石就有明显不同的特性。

1.1晶体的周期结构晶体结构的特征:周期性组成晶体的粒子(原子、分子、离子或它们的集团)在空间的排列具有周期性(长程有序、平移对称性*)对称性晶体的宏观形貌以及晶体内部微观结构都具有自身特有的对称性。

晶体可以看成是一个原子或一组原子以某种方式在空间周期性重复平移的结果。

晶体内部原子排列具有周期性是晶体的主要特征,另一个特征是由周期性所决定的对称性(表现在晶体具有规则的外形)。

周期排列所带来的物理后果的讨论是本课程的中心。

(对称性最初是用来描述某些图形或花样的几何性质,后来经过推广、加深,用它表示各种物理性质/物理相互作用/物理定律在一定变换下的不变性。

在这里,我们主要关注的是对称性最初的、狭义的意义,即几何图形和结构(不管有限还是无限)的对称性。

虽然眼睛看不到晶体中的原子,但是原子的规则排列往往在晶体的一些几何特征上明显的反映出来。

实际上,人们最初正是从大量采用矿物晶体的实践中,观察到天然晶体外型的几何规则性,从理论上推断晶体是由原子作规则的晶格排列所构成。

后来这种理论被X衍射所证实。

)布拉菲空间点阵和基元●为了描述粒子排列的周期性,把基元抽象为几何点,这些点的集合称为布拉菲点阵。

布拉菲点阵的特点:所有格点是等价的,即整个布拉菲点阵可以看成一个格点沿三个不同的方向,各按一定的周期平移的结果●格点:空间点阵中周期排列的几何点●基元:一个格点所代表的物理实体●空间点阵:格点在空间中的周期排列在理想的情况下,晶体是由全同的原子团在空间无穷重复排列而构成。

固体物理-第一章

固体物理-第一章
B A
B
C
(3)金刚石晶格
金刚石和石墨 金刚石由碳原子构成,在一个面心立方 原胞内还有四个原子,这四个原子分别 位于四个空间对角线的 1/4处。一个碳 原子和其它四个碳原子构成一个正四面 体。
金刚石晶格
c
c
金刚石晶格是由两个面心晶格重叠相嵌而成。两个面心立方 子晶格沿体对角线位移1/4的长度套构而成,
ak
a1
aj
a2 a3
ai
典型的晶体结构
结构型 单胞中的 原子在单胞 最近邻 原子个数 中的位置 距离 配位数
(Cu)
fcc
4 2
Cs+ 1
bcc
11 ( (000) 0) 22 1 1 ( 0 ) (0 1 1 ) 2 2 22
2a 2 3a 2 3a 2
12
(W)
(000)
11 1 ( ) 22 2
§1.1
一些晶格的实例
一、晶格(晶体的格子)中原子排列的具体形式。
(1)考虑原子球层的正方排列形成的晶格结构
原子正方排列: 把原子看成原子球,一层层排列,一个原子与相邻原 子组成正方形,每层都为正方排列.
如此堆积而成的晶格分为两类:
(i) 简单立方晶格
原子球规则排列最简单的形式为正方排列,如果把这样的原子层叠起来,各层的 球完全对应,上下对称,为简单立方晶格。
(1 ,2 ,3 )为一组整数
对于金刚石晶格,面心立方顶点位置的原子的位置:
1 a1 2 a 2 3 a 3
面心立方体对角线1/4处位置的原子位置: 1 a1 2 a 2 3 a 3 r 一组 1 a1 2 a 2 3 a 3 可以包括所有的格点 布拉伐格子: 由 1 a1 2 a 2 3 a 3 确定的空间格子 任一点的位矢 r,V(r ) V(r 1 a1 2 a 2 3 a 3 ),

固体物理第一章课件

固体物理第一章课件

1
3
E = V ∫0 g ( E ) EdE = V ∫0
F
E
E
F
E 2m3 2m3 E 2m 3 2 2 F 2 EdE = V E dE = V E ∫ 0 π2ℏ 3 π2 ℏ 3 π2 ℏ 3 5 F
3
5
E=3E N 5 F
能态密度的更一般形式
g ( E )= dN dE
E k =const.
NZ NZ NZ
自由电子模型的物理思想
◆ 自由电子近似 离子静止,忽略电子和离子实之间的相互作用,电子运动范围 仅受限于晶体表面势垒,被限制在晶体内部 ◆ 独立电子近似 忽略电子和电子之间的相互作用 ◆ 驰豫时间近似
Zn Zm ℏ2 e2 H= −∑ ∇n 2 + ∑′ 1 2 n, m 4πε0 R − R n =1 2M n n m Zn e2 ℏ 2 2 e2 1 1 1 −∑ ∇i + ∑′ −∑∑ 2 i =1 2m i , j 4πε r − r i =1 n=1 4πε r − R i 0 i 0 i j n
kF = 3π2 ne
ℏ 2 kF 2 2m
1/3
108cm -1 2~10eV
费米能量:
EF=
费米动量: 费米速度: 费米温度:
pF = ℏk F
υF = ℏkF /m T F = EF / k B
108cm/s 104 ~105 K 参见表 1.1
单位体积内的平均能量
T=0时,单位体积内的平均能量为:
Drude 模型:应用经典力学,服从经典统计,麦克斯韦- 玻耳兹曼分布 Sommerfeld 模型:应用量子理论,服从量子统计,费米-狄拉克分布
f ( E )= e

固体物理第一章总结

固体物理第一章总结

固体物理(黄昆)第一章总结(总5页)页内文档均可自由编辑,此页仅为封面第一章晶体结构1.晶格实例1.1面心立方(fcc)配位数12 格点等价格点数4 致密度0.74原胞基矢:()()()123222aa j kaa k iaa i j=+=+=+原胞体积3123()/4Ωa a a a=⋅⨯=NaCl: 两组面心立方格子平行穿套而成的复式格子基元= Na+ + Cl-具有面心立方:简单格子(Al、Cu、Ag; Ar Kr Xe Ne)、复式格子(Cao MgS 碱卤族等)1.2简单立方(SC)配位数6 格点等价格点数1 致密度0.52CsCl两组简单立方格子穿套而成的复式结构基元= Cs+ + Cl-钙钛矿结构:CaTiO3五个简单立方穿套而成基元:Ca、Ti、OI、OII、OIII (OI、OII、OIII 的化学环境各不相同,氧八面体) 典型晶体:BaTiO3、PbZrO3、LiNbO3、LiTaO3氯化铯型结构: CsCl, CsBr, CsI, TlCl, TlBr, TlI 等1.3体心立方(bcc)配位数8 格点等价格点数2 致密度0.68原胞基矢:123()2()2()2aa i j kaa i j kaa i j k=-++=-+=+-原胞体积:3123()/2Ωa a a a=⋅⨯=体心立方晶体: 碱金属、W、Mo、Nb、V、Fe等1.4六角密堆(hcp)配位数12 两种格点原子数6 基元数3 致密度0.74典型晶体举例:He, Be, Mg, Ti, Zn, Cd, Co, Y, Lu 等1.5金刚石结构最近邻原子数4 次近邻原子数12 致密度0.34晶体结构=布拉维格子(面心立方)+ 基元(A+B)*将金刚石结构中的基元置换成一对硫离子和锌离子,则为两个面心立方复合而成的复式结构,典型晶体:SiC, ZnSe, AlAs, GaP, GaAs 等2.晶体的周期性结构2.1基本概念晶体:1. 化学性质相同 2. 几何环境相同 基元:晶体结构中最小的重复单元布拉维点阵(布拉维格子): 112233R n a n a n a =++ 晶体结构 = 布拉维格子+基元原胞:由基矢1a 、2a 、3a 确定的平行六面体,是体积最小的周期性结构单元,原胞只包含一个格点晶胞:同时计及周期性及对称性的尽可能小的重复单元,原胞实际上是体积最小的晶胞2.2维格纳-赛茨原胞(WS 原胞)1. 作某个格点与其它格点的连接矢量2. 作所有这些连接矢量的垂直平分面3. 这些垂直平分面围起的凸多面体就是维格纳-赛茨原胞3. 晶向、晶面及其标志 晶列(向)指数:[l m n]晶面指数(米勒指数):( h k l )米勒指数是以晶胞基矢为基准,而面指数则以原胞基矢为基准标定4. 布里渊区倒格子空间中的维格纳-赛茨(WS )原胞,即所谓的第一布里渊区,布里渊区包含了所有能在晶体上发生布拉格反射的波的波矢22h h k G G ⋅=4.1简单立方的倒格矢(简单立方——简单立方)基矢123a aia aj a ak ⎧=⎪=⎨⎪=⎩ 倒格矢123(2π/a)(2π/a)(2π/a)b i b j b k ⎧=⎪=⎨⎪=⎩4.2体心立方晶格的倒格子(体心立方——面心立方)基矢1231()21()21()2a a i j k a a i j k a a i j k ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩ 倒格矢1232π()2π()2π()b j k a b k i a b i j a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩倒格矢可以表示为:1122332331122π[()()()]h G h b h b h b h h i h h j h h k a=++=+++++ 其中(h1 h2 h3)是米勒指数,h G 垂直于米勒指数,其第一布里渊区是一个正十二面体4.3面心立方晶格的倒格子(面心立方——体心立方)基矢1231()21()21()2a a j k a a k i a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩ 倒格矢1232π()2π()2π()b i j k a b i j k a b i j k a ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩第一布里渊区为截角八面体即5. 晶体的宏观对称性xx xy xz x x y yx yy yz y z zx zy zz z D E D E D E εεεεεεεεε⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭5.1对于所有立方对称的晶体中,介电常数是一个对角张量:0 (,,,)x y z αβαβεεδαβ==该结论适用于一切具有二阶张量形式的宏观性质 (如电导率、热导率)5.2六角对称的晶体中,若坐标轴选取在六角轴的方向和与它垂直的平面内,则介电常数有如下形式// 0 00 00 0 εεε⊥⊥⎛⎫ ⎪ ⎪ ⎪⎝⎭ ,//////D E ε=, D E ε⊥⊥⊥=,六角对称的晶体有双折射现象5.3对称操作(正交变换:旋转、中心反演、镜面反映) 1. 旋转绕 z 轴旋转 q 角的正交矩阵cos sin 0sin cos 0 0 0 1θθθθ-⎛⎫ ⎪⎪ ⎪⎝⎭,中心反演的正交矩阵1 0 0 0 1 0 0 0 1-⎛⎫⎪- ⎪ ⎪-⎝⎭由于cost = (1 - m)/2 所以 m = -1 0 1 2 3,所以t = 0 2π/6 2π/4 2π/3 2π/2,没有所谓的5度轴和7度轴。

固体物理基础第1章-晶体结构

固体物理基础第1章-晶体结构

ˆ a3 ck
*
*
一个原胞中包含A层
和B层原子各一个 共两个原子
六角密排晶格的原胞和单胞一样
第一讲回顾
什么是固体? 研究固体的思路?复杂到简单
为什么从研究晶体开始? 原胞的选取唯一吗?
1-3 晶格的周期性
1.3.3 复式晶格
• 简单晶格:原胞中仅包含1个原子,所有原子的几何位置和化 学性质完全等价 • 复式晶格:包含两种或更多种等价的原子(或离子) * 两种不同原子或离子构成:NaCl, CsCl * 同种原子但几何位置不等价:金刚石结构、六方密排结构
管原子是金或银还是铜,不管原子之间间距的大小,那他们是完全相 同的,就是他们的结构完全相同!

数学方法抽象描写:不区分物理、化学成分,每个原子都是不可区分
的,只有原子(数学上仅仅是一个几何点)的相对几何排列有意义。
1-2 晶格
• 理想晶体:实际晶体的数学抽象 以完全相同的基本结构单元(基元)规则地,重复的以完 全相同的方式无限地排列而成 • 格点(结点):基元位置,代表基元的几何点 • 晶格(点阵):格点(结点)的总和
1-4 晶向和晶面
1.4.1 晶向
晶向指数
晶向指数
1-4 晶向和晶面
1.4.1 晶向 简单立方晶格的主要晶向
# 立方边OA的晶向
立方边共有6个不同的晶向<100>
# 面对角线OB的晶向
面对角线共有12个不同的晶向<110>
# 体对角线OC晶向
体对角线共有?个不同的晶向<111>
1-4 晶向和晶面
1-3 晶格的周期性
Wigner-Seitz 原胞
以某个格点为中心,作其与邻近格点的中垂面,这些 中垂面所包含最小体积的区域为维格纳-赛兹原胞

固体物理学第一章1

固体物理学第一章1
一个平行六面体的体积等于:V=| 1 • 2 x 3 |。
选取原胞的另一种方式如下:用直线连接一个给定格点的所有近邻格点,在这些 连线的中点作垂直平分线或垂直平分面,这样所包围的最小体积就是维格纳-塞茨 原胞(Wigner-Seitz cell)。
赵铧
16
简单立方晶格的立方单元已是最小的周期性单元,所以就取它为原胞,晶 格基矢1, 2, 3 就沿三个立方边,长短相等:
六角密排晶格的原胞
六角密排晶格的典型单元
Be, Mg, Zn, Cd 等金属
具有六角密排晶格结构
赵铧
7
4. 金刚石晶格
由面心立方单元的中心 到顶角引8条对角线, 在 其中互不相邻的4条对角 线的中点,各加上一个原 子, 就得到金刚石晶格 结构
其特点: 每个原子有4个 最近邻, 它们正 好在一个正四 面体的顶角 A
B
AB
A B
金刚石晶格结构的典型单元
赵铧
8
5. 化合物晶体的结构
(1) 岩盐NaCl晶体结构
它好象是一个简单立方晶格, 但是, 在每一行相间地排列着 正的Na+离子和负的Cl–离子.
碱金属 Li, Na, K, Rb 和卤 族元素 F, Cl, Br, I 的化合物 都具有 NaCl 晶体结构.
Na+
Cl–
Na+
Cl–
NaCl晶格结构中的典型单元
赵铧
9
(2) CsCl晶体结构
它好象一个体心立方, 体心位置有一种离子, 顶角为另一个离子.
体心位置和顶角位置 完全等价, 各占一半, 正好容纳数目相等的 正,负离子.
Cs+ ( Cl– )
Cl– ( Cs+ )

固体物理学第一章

固体物理学第一章

金刚石的配位数为 4;
2. 简单化合物晶体 NaCl结构
典型晶体:NaCl、LiF、KBr
CsCl结构 典型晶体:CsCl、CsBr、CsI
闪锌矿结构
在晶胞顶角和面心处的原子与体内原子分别属 于不同的元素。 许多重要的半导体化合物都是闪锌矿结构。典型 晶体:ZnS、CdS、GaAs、-SiC
特点:结晶学原胞不仅在平行六面体顶角上有格点,面上 及内部亦可有格点。其体积是固体物理学原胞体积的整数倍。 基矢:结晶学原胞的基矢一般用 a , b, c 表示。 体积为:
v a bc n Ω

(3)维格纳--塞茨原胞 构造:以一个格点为原点,作原点与其它格点连接的中
垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积
二、学科领域
固体物理研究固体材料中那些最基本的、有普 遍意义的问题。形成许多分支学科。 晶格结构 理想晶格 晶格动力学 晶格理 晶格热力学 论 实际晶格理论 固 能带理论(包括电磁场中的电子运动) 体 电子理 物 金属中的自由电子气 论 理 功函数、接触电势等 输运理论 :电子与晶格的相互作用 固体物理分论: 半导体、磁学、超导、非线性光学
本课程学习内容
1、描述晶体周期性的基本方法,典型的晶 格结构。 2、固体的结合力(四种) 3、晶格动力学
4、晶体中电子运动规律(能带理论,自由 电子气) 5、介绍一些典型固体材料的性质
第一章 晶体结构
晶体的宏观性质
1. 周期性--从原子排列的角度来讲 (均一性 ――从宏观理化性质的角度来讲) ;
规则结构,分子或原子按一定的周期性
长程有序性,有固体的熔点。E.g. 水晶 岩盐
非晶体:非规则结构,分子或原子排列没有一定的周 期性。 短程有序性,没有固定的熔点。 玻璃 橡胶 准晶体: 有长程的取向序,沿取向序的对称轴方 向 有准周期性,但无长程周期性 没有缺陷和杂质的晶体叫做理想晶体。缺陷: 缺陷是指微量的不规则性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7、体心立方元素晶体,[111]方向上的结晶学周期为多大?实际
周期为多大?
[答]对于晶胞,基矢为a,b,c,格矢为c
+
h+
=,因此,
a
b
R l
k
体心立方元素晶体[111]方向上的结晶学周期是立方体的体对角线,其长度为a3(a为立方体的边长);实际周期为a3/2。

8、非晶态材料的基本特点是什么?
[答]非晶态材料的基本特点是:失去了晶体材料的长程有序性,而具有短程有序性。

其短程有序性包括:近邻原子的种类、数目;近邻原子的间距以及近邻原子配置的几何方位。

9、什么是表面的弛豫与重构?
[答]晶体表面附近垂直于表面的面间距与晶体内部的差别称为弛豫。

多数弛豫只表现在表层原子与次表层原子之间距离的下降。

晶体中表层原子排列的周期与晶体内部不同的情形称为重构。

多是在半导体材料中有这种现象。

11、简述晶面角守恒定律,并说明晶体的晶面角守恒的原因。

[答]同一品种的晶体,两个对应晶面(或晶棱)之间的夹角恒定不变,这就是晶面角守恒定律。

对于同一品种的晶体,尽管外界条件的变化使晶体的外形不同,但其内部结构相同,其共同性就表现为晶面夹角的守恒。

二、填空题(fill in the blanks)(并用英语表达)
1、构成阵点的具体原子、离子、分子或其集团,都是构成晶体的
基本结构单元,当晶体中含有数种原子时,这数种原子构成的基
本结构单元,称为 基元(basis ) 。

2、布喇菲格子的格点可以看成分列在一系列相互平行的直线上而
无遗漏,这样的直线叫 晶列(crystal array ) , 晶列的取向称
为 晶向(crystal direction ), 一组能表示晶列方向的数称
为 晶向指数(indices of crystal direction ) 。

3、布喇菲格子的格点,也可以看成分列在相互平行、间距相等的
平面上而无遗漏,这些包含格点的平面称为 晶面(crystal
face ) ;而那些相互平行、间距相等、格点分布情况相同的总
体,称为 晶面族(crystal face cluster) ;同一格子可能有 无
穷多(endless )个取向的晶面族。

能够标志晶面取向的一组数,
称为 晶面指数(indices of crystal face )。

4、正格子基矢与倒格子基矢之间满足 。

正格
矢与倒格矢的关系为 ( μ为整数) 。

ij
j i δ=•b a πμ2=•h l K R
5、使晶体恢复原状的操作,称为对称操作(symmetry operation);
对称操作的集合,称为对称群(symmetry group),或空间群(space group);保持空间某一点不动的操作称为点对称操作(point symmetry operation。

三、解释下列物理概念(explain the following physics concepts):
1、空间点阵
[答]晶体的内部结构,可以概括为由一些相同的化学质点在空间有规律地作周期性的无限分布。

这些化学质点(代表原子、离子、分子或其集团的重心)的分布总体称为点阵或格子(lattice)。

点阵中的点子称为阵点或结点,也称为格点(lattice site)。

2、固体物理学原胞和结晶学原胞
[答]原胞也叫固体物理学原胞,它是一个平行六面体,是晶格的最小重复单元,
只反映晶格的周期性。

对布拉菲格子,原胞中只含一个阵点。

其特点是:结点只在平行六面体的顶点上,内部和面上皆不含任何结点。

结晶学原胞也称晶胞(lattice cell)。

在结晶学上,除要反映晶格的周期性以
外,同时还要反映其对称性,因此,通常取最小重复单元的几倍作为晶胞。

其特点是:结点不仅在晶胞的顶角上,也可以在体心和面心上。

3、密堆积和配位数
[答]在点阵中,和一个粒子最近邻的粒子数目,称为配位数;
它反映晶体中粒子排列的紧密程度。

如果晶体由全同的一种粒子组成,并把粒子视为小圆球,
则这些小圆球的最紧密的堆积称为密堆积。

4、原子散射因子和几何结构因子
[答]原子散射因子定义为:原子内所有电子的散射波的振幅的
几何和与一个电子的散射波的振幅之比。

几何结构因子:对复式格子,总的衍射强度取决于原胞中
原子的相对位置和原子散射因子。

因此,几何结构因子定义为:原胞内所有原子的散射波在所考虑的方向上与一个电子的散射波的振幅之比。

由此定义,在所考虑的方向上,几何结构因子可表示为 j i j e
f F R S s •∑=λπ2)( 其中f j 表示第j 个原子的散射因子,R j 为第j 个原子的位置矢量。

5、结构消光
因此,Gh 与ABC 垂直,同时也垂直于整个晶面族。

八、对于简单立方晶格,证明密勒指数为(h,k,l )的晶面系,面间
距d 满足 2222
2
l k h a d ++=
其中a 为立方边的边长。

[解]设沿立方晶系晶轴a ,b ,c 的单位矢量为I,j,k ,则正格子基矢为
倒格子基
矢为
与晶面族(hkl )正交的倒
格矢为
由面间距与倒格矢的关系式

i a a =j b a =k c a =i a a π
2*=j
b a π
2*=k c a π2*=*
**c b a G l k h h ++=|
|2h d G
π=2
222
2l k h a d ++=。

相关文档
最新文档