小学数学三巧算速算
三年级数学速算和巧算
三年级数学速算和巧算在小学三年级的数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?店铺在此整理了三年级数学速算和巧算,供大家参阅,希望大家在阅读过程中有所收获!三年级数学速算和巧算方法在熟练掌握计算法则和运算顺序的前提下,可以根据题目本身的特点,运用速算和巧算,化繁为简,化难为易,算得又快又准确。
“凑整”先算1.计算:(1)24+44+56 (2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124因为44+56=100是个整百的数,所以先把它们的和算出来。
(2)53+36+47=53+47+36 =(53+47)+36=100+36=136因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来。
2.计算:(1)96+15 (2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111把15分拆成15=4+11,这是因为96+4=100,可凑整先算。
(2)52+69=(21+31)+69 =21+(31+69)=21+100=121因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算。
3.计算:(1)63+18+19 (2)28+28+28解:(1)63+18+19 =60+2+1+18+19 =60+(2+18)+(1+19) =60+20+20=100将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算。
(2)28+28+28 =(28+2)+(28+2)+(28+2)-6 =30+30+30-6=90-6=84因为28+2=30可凑整,但最后要把多加的三个2减去。
改变运算顺序在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19 (2)45+18-19解:(1)45-18+19=45+19-18 =45+(19-18)=45+1=46把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44加18减19的结果就等于减1。
三年级上册数学速算与巧算
三年级上册数学速算与巧算三年级上册数学速算与巧算一、加法中的巧算1.什么叫“补数”?补数”是指两个数相加,若能恰好凑成整十、整百、整千、整万等,就把其中的一个数叫做另一个数的“补数”。
例如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10.另外,对于一个较大的数,可以通过“凑数”的方法来快速计算出它的“补数”,即从最高位凑起,使各位数字相加得9,到最后个位数字相加得10.2.互补数先加。
利用“补数”巧算加法,通常称为“凑整法”。
其中一种方法是先将互为“补数”的数先加起来。
例如:36+87+64,99+136+101,1361+972+639+28.3.拆出补数来先加。
另一种方法是拆出补数,先加补数,再加剩下的数。
例如:188+873,548+996,9889+203.4.竖式运算中互补数先加。
在竖式运算中,也可以先将互为“补数”的数先加起来。
二、减法中的巧算1.把几个互为“补数”的减数先加起来,再从被减数中减去。
例如:300-73-27,1000-90-80-20-10.2.先减去那些与被减数有相同尾数的减数。
例如:4723-(723+189),2356-159-256.3.利用“补数”把接近整十、整百、整千等的数先变整,再运算(注意要将多加的数再减去,将多减的数再加上)。
例如:506-397,323-189,467+997,987-178-222-390.三、加减混合式的巧算1.去括号和添括号的法则在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”。
例如:100+(10+20+30),100-(10+20+30),100-(30-10)。
2.计算加减混合式的算式。
例如:100+10+20+30,100-10-20-30.2.合并同类项的法则在一个算式中,如果有几个数或变量的指数相同,那么它们就是同类项,可以合并。
小学三年级数学:乘、除法速算巧算精要+专项练习!孩子练题需要它
小学三年级数学:乘、除法速算巧算精要+专项练习一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
理论依据:乘法交换率:a×b=b×a乘法结合率:(a×b) ×c=a×(b×c)乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变。
⑵在连除时,可以交换除数的位置,商不变。
⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家)。
⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变。
②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”。
添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”。
竖式计算25×38= 98×87= 52×39= 92×68=46×59= 17×75= 19×53= 75×18=99×45= 93×39= 65×19= 93×35=33×16= 69×42= 26×76= 68×88=42×59= 84×93= 44×64= 15×95=68×69= 83×29= 32×75 76×92=39×69= 74×64= 73×76= 48×54=35×74= 29×29= 24×18= 96×18=22×56= 55×57= 32×95= 68×19=66×43= 74×38= 98×48= 98×32=29×57= 33×94= 14×49= 83×29=53×93= 85×74= 96×22= 98×26=竖式计算,有☆的验算。
小学数学《 速算与巧算(三)》练习题(含答案)
小学数学《速算与巧算(三)》练习题(含答案)例1 计算9+99+999+9999+99999解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成1000—1去计算.这是小学数学中常用的一种技巧.9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105.例2 计算199999+19999+1999+199+19解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如 199+1=200)199999+19999+1999+199+19=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5=200000+20000+2000+200+20-5=222220-5=22225.1.计算899998+89998+8998+898+882.计算799999+79999+7999+799+79例3计算(1+3+5+...+1989)-(2+4+6+ (1988)解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是:从2到1988共有994个偶数,凑成497个1990.1990×497+995—1990×497=995.3.计算(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)4.计算1—2+3—4+5—6+…+1991—1992+1993例4 计算 389+387+383+385+384+386+388解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数.389+387+383+385+384+386+388=390×7—1—3—7—5—6—4—2=2730—28=2702.解法2:也可以选380为基准数,则有389+387+383+385+384+386+388=380×7+9+7+3+5+4+6+8=2660+42=2702.例5 计算(4942+4943+4938+4939+4941+4943)÷6解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数.(4942+4943+4938+4939+4941+4943)÷6=(4940×6+2+3—2—1+1+3)÷6=(4940×6+6)÷6(这里没有把4940×6先算出来,而是运=4940×6÷6+6÷6运用了除法中的巧算方法)=4940+1=4941.5.计算92+94+89+93+95+88+94+96+87例6 计算54+99×99+45解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了.54+99×99+45=(54+45)+99×99=99+99×99=99×(1+99)=99×100=9900.例7 计算 9999×2222+3333×3334解:此题如果直接乘,数字较大,容易出错.如果将9999变为3333×3,规律就出现了.9999×2222+3333×3334=3333×3×2222+3333×3334=3333×6666+3333×3334=3333×(6666+3334)=3333×10000=33330000.例8 1999+999×999解法1:1999+999×999=1000+999+999×999=1000+999×(1+999)=1000+999×1000=1000×(999+1)=1000×1000=1000000.解法2:1999+999×999=1999+999×(1000-1)=1999+999000-999=(1999-999)+999000=1000+999000=1000000.6.计算(125×99+125)×16有多少个零.总之,要想在计算中达到准确、简便、迅速,必须付出辛勤的劳动,要多练习,多总结,只有这样才能做到熟能生巧.17.两个10位数1111111111和9999999999的乘积中,有几个数字是奇数?练习1.计算999999×780532.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依次类推.从1点到12点这12个小时内时钟共敲了多少下?3.求出从1~25的全体自然数之和.4.计算 1000+999—998—997+996+995—994—993+…+108+107—106—105+104+103—102—1015.计算 3×999+3+99×8+8+2×9+2+999999×77778+33333×666661966+1976+1986+1996+2006273×4500-45×173001234562-12345523600000÷125÷32÷25习题一解答1.利用凑整法解.899998+89998+8998+898+88=(899998+2)+(89998+2)+(8998+2)+(898+2)(88+2)-10=900000+90000+9000+900+90-10=999980.2.利用凑整法解.799999+79999+7999+799+79=800000+80000+8000+800+80-5=888875.3.(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)=1988+1986+1984+…+6+4+2-1-3-5…-1983-1985-1987=(1988-1987)+(1986-1985)+…+(6-5)+(4-3)+(2-1)=994.4.1-2+3—4+5-6+…+1991-1992+1993=1+(3-2)+(5-4)+…+(1991-1990)+(1993-1992)= 1+1×996=997.5.1+2+3+4+5+6+7+8+9+10+11+12=13×6=78(下).6.1+2+3+…+24+25=(1+25)+(2+24)+(3+23)+…+(11+15)+(12+14)+13=26×12+13=325.7.解法1:1000+999—998—997+996+995—994-993+…+108+107—106—105+104+103—102—101=(1000+999—998—997)+(996+995—994-993)+…+(108+107—106—105)+(104+103—102—101)解法 2:原式=(1000—998)+(999—997)+(104—102)+(103—101)=2 × 450=900.解法 3:原式=1000+(999—998—997+996)+(995—994 -993+992)+…+(107—106—105+104)+(103—102—101+100)-100=1000—100=900.9.(125×99+125)×16=125×(99+1)×16= 125×100×8×2=125×8×100×2=200000.10.3×999+3+99×8+8+2×9+2+9= 3×(999+1)+8×(99+1)+2×(9+1)+9=3×1000+8×100+2×10+9=3829.11.999999×78053=(1000000—1)×78053=78053000000—78053=78052921947.12.1111111111×9999999999=1111111111×(10000000000—1)=11111111110000000000—1111111111 =11111111108888888889.这个积有10个数字是奇数.。
三年级速算与巧算
学科培优数学速算与巧算知识定位本讲知识点属于计算板块的部分,难度并不大。
要求学生熟记加减法运算规则和运算律,并在计算中运用凑整的技巧。
重点难点:找出题目中可以进行“凑整”的数。
利用运算律或者公式调整运算顺序。
考点:做复杂、多个数的连加计算时,利用运算律或者公式,尽量避免进位。
适当调整运算顺序。
知识梳理一、巧算的几种方法:分组凑整法:就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千......的数,再将各组的结果求和(差)加补凑整法1、移位凑整法:先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加。
2、借数凑整法:有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整。
其他类型的巧算二、基本运算律及公式:两个运算律:一、加法加法交换律:两个数相加,交换加数的位置,他们的和不变。
即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。
即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。
二、减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a +c-b,其中a,b,c各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。
小学三年级数学乘、除法的速算与巧算知识点
小学三年级数学乘、除法的速算与巧算知识点一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
理论依据:乘法交换率:a×b=b×a乘法结合率:(a×b) ×c=a×(b×c)乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变。
⑵在连除时,可以交换除数的位置,商不变。
⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家)。
⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变。
②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”。
添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”。
竖式计算25×38= 98×87= 52×39= 92×68=46×59= 17×75= 19×53= 75×18=99×45= 93×39= 65×19= 93×35=33×16= 69×42= 26×76= 68×88=42×59= 84×93= 44×64= 15×95=68×69= 83×29= 32×75 76×92=39×69= 74×64= 73×76= 48×54=35×74= 29×29= 24×18= 96×18=22×56= 55×57= 32×95= 68×19=66×43= 74×38= 98×48= 98×32=29×57= 33×94= 14×49= 83×29=53×93= 85×74= 96×22= 98×26=竖式计算,有☆的验算。
小学三年级数学奥数知识点速算与巧算
1.快速计算乘法口诀表在小学三年级,学生已经开始学习乘法口诀表。
熟练掌握乘法口诀表是进行速算和巧算的基础。
学生应该掌握1乘以任意数等于该数本身,以及0乘以任意数等于0的原则。
另外,在计算乘法的过程中,还可以利用一些巧妙的方法,如利用乘法交换律和结合律,简化计算的步骤。
2.快速计算除法在小学三年级,学生已经开始学习除法运算。
为了进行快速计算除法,学生需要熟悉乘法和除法之间的关系。
例如,学生可以通过将除法问题转化为乘法问题来进行计算。
另外,学生还需要熟悉常见的除法口诀,如9除以任意数的口诀。
3.快速计算加法与减法在小学三年级,学生已经开始学习加法和减法运算。
为了进行速算和巧算,学生可以借助一些技巧。
例如,学生可以利用补数进行计算,将加法问题转化为减法问题或将减法问题转化为加法问题。
另外,在计算的过程中,学生还可以利用进位和借位的方法简化计算的步骤。
4.快速计算小数在小学三年级,学生已经开始学习小数的运算。
为了进行快速计算小数,学生需要熟悉小数的基本概念,如小数点的意义和小数的大小比较。
另外,在计算小数的过程中,学生还可以利用近似计算和适当舍入的方法简化计算的步骤。
5.快速计算整数问题在小学三年级,学生已经开始学习整数的运算。
为了进行速算和巧算,学生需要熟悉整数的基本概念,如正数、负数和零的概念。
另外,在计算整数的过程中,学生还可以利用相反数的概念简化计算的步骤。
6.快速计算组合问题在小学三年级,学生已经开始学习组合的概念。
为了进行快速计算组合问题,学生需要熟悉排列组合的基本原理,如乘法原理和加法原理。
另外,在计算组合的过程中,学生还可以利用化简问题和分类讨论的方法简化计算的步骤。
7.快速计算面积和周长问题在小学三年级,学生已经开始学习面积和周长的计算。
为了进行速算和巧算,学生需要熟悉面积和周长的基本公式,如长方形的面积和周长的计算公式。
另外,在计算面积和周长的过程中,学生还可以利用化简问题和近似计算的方法简化计算的步骤。
小学三年级数学乘法除法速算与巧算
第二讲乘法中的巧算1. 两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:例1计算①123X 4X 25 2. 分解因数,凑整先乘。
例2计算①24 X 253. 应用乘法分配律。
例 3 计算① 175 X 34 + 175X 66 4.几种特殊因数的巧算例5 一个数X 10,数后添0; 一个数X 100,数后添00; —个数X 1000,数后添000; 以此类推:如:15X 10=15015X 100=150015X 1000= 15000例6 一个数X 9,数后添0,再减此数;一个数X 99,数后添00,再减此数; 一个数X 999,数后添000,再减此数; 以此类推。
例 7222 X 11 2456 X 11[分析]为了速算,可以记一句口诀:“两头一拉,中间相加”2 2 22 4 4 2 222 X 11=2442 2 4 5 6 2 7 0 1 6 2456X 11=27016 例 8、16X 5[分析]一个数X 5,可以除以“ 2”添上“ 0”。
16X 5=(16 - 2) X 10=80 例 9 24 X 15[分析]一个数X 15,“加半添0”。
5X 2=1025X 4=100 125X 8=1000② 125 X 2X 8X 25X 5X 4② 56 X 125 ③ 125 X 5X 32X 5例4计算①123 X 101② 123 X 99如:12X 9= 120-12 = 108 12 X 99= 1200- 12= 1188 12 X 999= 12000-12=11988 ②67X 12+67X 35+ 67X52+624 X 15= (24+12)X 10=360例4 从10到20X之间的两位数相乘(十几X十几)13X 14[分析]个位数相加后再加“10”,然后乘“ 10”,个位数相乘后,所得两个数相加。
13X 14=182想:(3+4+1Q X 10=1703 X 4=12170+12=182例 5 62 X 68 81 X 89[分析]62 X 68, —首数6+仁7,头X头是:7X 6=42,尾X尾是2X 8=16,42 与16 在一起:421681 X 89, —首数8+仁9,头X头9X 8=72,尾X尾是1X 9=9,因为9小于10,所以72与9相联时,在9的前面添一个0。
小学数学三年级巧算、速算
乘除法中的速算、巧算一、一、1、一个数与10、100、1000……相乘,就是往这个数后面加0、00、000…………2、巧算一个数与99相乘,99×1=99 99×2=198 99×8=792 通过观察发现一个数与99相乘就是在这个数后面加上00,然后减去此数,即可,然后减去此数,即可 99×1=100—1=99 99×2=200—2=198 99×8=800—8=792 3、通过以上规律,那么一个数与999相乘呢?相乘呢?999×2=2000—2=1998 999×8=8000—8=7992 二、二、巧算两位数与11的乘积。
的乘积。
12×11=132 35×11=385 47×11=517 69×11=759 观察上面每一组题,观察上面每一组题,发现俩位数与发现俩位数与11相乘,只要把这个俩位数拉开,只要把这个俩位数拉开,个位数字做积的个位,个位数字做积的个位,十位数字做积的百位;个位数字与十位数字相加的和做积的十位,如果满十的话要向百位进一。
概括为口诀:俩边一拉,中间相加。
一。
概括为口诀:俩边一拉,中间相加。
三、三、1、巧算三位数与11相乘。
相乘。
432×11=4752 168×11=1848 口诀:俩边一拉,中间俩加。
口诀:俩边一拉,中间俩加。
注意哦,也是要满十进一的。
注意哦,也是要满十进一的。
2、巧算俩位数与101相乘。
相乘。
101×45=4545 101×67=6767 规律就是积把这个俩位数连续写俩遍。
规律就是积把这个俩位数连续写俩遍。
那么三位数与1001相乘呢?相乘呢?1001×782=782782 自己总结规律自己总结规律四、四、例题:根据37×3=111,简算下面各题。
,简算下面各题。
37×9=37×3×3=333 37×12=37×3×4=444 37×33=37×3×11=1221 37×36=37×3×12=1332 五、五、41×41×49=49=?【详解】相乘的两个数都是两位数,且十位上的数字相同,个位上的数字之和正好是10,这就可以运用"头同尾合十"的巧算法进行简便计算。
完整版小学数学三年级速算与巧算技巧
第一讲:速算与巧算关键培养孩子的思维习惯:遇到计算题先观察,再思考,然后选择适合的速算方法!所谓“一看〞“二想〞“三选择〞一、分组法适用于有一定规律的加减混合运算,通过加减重新组合,将原有计算转变为较小数或相同数的计算,从而简便计算过程。
观察:1、数字有一定规律2、符号有一定规律方法:看符号,找周期。
根据符号的规律划分周期,进行分组计算。
切记不要忘了第一个数的符号!1、简单分组例:10-9+8-7+6-5+4-3+2-1+-+-+-+-+-〔符号周期为+、-,两个数为一组〕那么原式=〔10-9〕+〔8-7)+〔6-5〕+〔4-3〕+〔2-1〕=1+1+1+1+1=52、分组有剩余例:20+19–18+17–16+15–14+13–12+11–10++-+-+-+-+-〔符号周期为+、-,两个数一组,但第一个数多余出来了〕那么原式=20+〔19-18〕+〔17-16〕+〔15-14〕+〔13-12〕+〔11-10〕=20+1+1+1+1+1=253、复杂分组例:48+47-46-45+44+43–42–41+40+39–38–37+36++--++--++--+〔符号周期为+、+、-,-,四个数一组〕那么原式=〔48+47-46-45〕+〔44+43–42–41〕+〔40+39–38–37〕+36=4+4+4+36=48例:15+14–13+12+11–10+9+8–7+6+5–4+3+2-1++-++-++-++-++-〔符号周期为+、+、-,三个数一组〕那么原式=〔15+14–13〕+〔12+11–10〕+〔9+8–7〕+〔6+5–4〕+〔3+2–1〕=16+13+10+7+4〔这里提醒孩子也要善于观察,每组后两个数先做运算得1,再加第一个数比拟简便〕=〔16+4〕+〔13+7〕+10=20+20+10=504、重新分〔即符号或数字的律不好用,需要察重新“排〞分〕例:1-2+3-4+5-6+7-8+9-10+11察,数字和符号都是有律的,可是按照〔1-2〕+〔3-4〕⋯⋯分的,每个括号里都不减。
三年级数学专题讲义第一讲 速算与巧算
第一讲速算与巧算〖内容概述〗计算是数学学习的根本,任何问题到最终都要归结为数的计算,从而得到最终结果。
而计算的方法的好坏直接决定我们的解题速度。
一个好的计算方法,往往使得原本计算量很大计算简化,从而节省我们的时间。
在本讲里我们主要向大家介绍一些常规的计算技巧,其中包括凑整构造法,拆分法构造法,分组构造法,推理计算及等差数列法等。
〖经典例题〗例1.计算768674232++=。
解析:本题数字比较大,如果我们按顺序计算的话,会发现非常的麻烦,但可以发现768和232的个位数字的和为10,我们考虑先将这两个数进行运算。
768674232(768232)6741674++=++=。
例2.计算39655+=。
解析:和上个例题不一样的是,本题就有两个数相加,而且这两个数的个位数字和并不是10,这时我们要发展进攻方略,将396拆成400-4,从而得到我们想要的东西。
39655400554451+=+-=.例3.计算9999+999+99+9= 。
解析:如果直接计算难度会较大,所以我们要寻找一种简单的解题方法来解决此题。
不难发现每个数如果加上1后就会凑成整十、整百、整千,因此我们用凑正法计算。
9999+999+99+9=10000-1+1000-1+100-1+10-1=11110-4=11106。
〖方法总结〗上面各题我们用到的是凑整法。
在这里要引入“补数”的概念:互为补数的两个数个位数之和是10,其他对应位上的数字之和是9。
这样,我们在计算加法时,尾数互补先相加,如例1;当没有尾数互补的数时,我们也可以拆将接近整十、整百的凑成整十、整百相加后再减去补数。
,如例2和例3。
〖巩固练习〗第 1 页共 11 页1.计算858683767882+++++2.计算188+8733.计算9898+2034.计算100000-85426〖经典例题〗例4.计算6324555--= 。
解析:观察本题,算式的两个减数的个位数字的和为10,因此我们想让这两个数先运算。
小学数学三年级速算和巧算技巧
小学三年级是学生接触数学的关键时期,良好的速算和巧算技巧可以帮助他们更好地理解和掌握数学知识。
下面是一些适合小学三年级学生的速算和巧算技巧:1.知识点梳理:首先,要帮助学生梳理和掌握好基本的数学知识点,如加减法、乘除法的口诀和技巧。
例如,学生可以通过加减法口诀表来熟悉数字之间的加减法关系,并可以用乘法口诀表来快速计算乘法运算。
2.数字分解:学生可以通过数字的分解来进行速算。
例如,对于两位数相加相减的计算,在计算过程中,可以将两位数拆分为个位数和十位数,然后进行运算。
对于乘法,学生可以将一个较大的数拆分为易于计算的数,然后进行运算。
3.近似计算:近似计算是一种巧算的技巧,可以快速得到近似答案。
学生可以将复杂的计算问题简化为简单的计算,然后进行近似计算。
例如,将一个数取近似值,然后进行计算,最后再修正结果。
4.列竖式计算:列竖式计算是一种有效的计算方法,可以帮助学生进行加减乘除法的计算。
学生可以按照正确的步骤进行计算,将数字对齐,并逐位进行运算。
5.快速乘除法:对于较大的乘法和除法问题,学生可以通过一些特殊的规律和技巧进行快速计算。
例如,学生可以利用乘法法则中的分配律和结合律来简化乘法计算,或者通过减法法则中的除法运算来简化除法计算。
6.数量关系的转化:对于一些涉及到数量转化的问题,学生可以通过一些简单的技巧来求解。
例如,将百分数转化为小数,然后进行计算;或者将分数转化为小数,然后进行比较大小等。
7.倍数关系:学生可以通过找到数与数之间的倍数关系来进行速算。
例如,学生可以利用倍数关系快速计算两个数的最小公倍数或最大公约数。
8.抽象问题的转化:对于一些抽象的问题,学生可以尝试将其转化为具体的数学问题进行求解。
例如,对于一些关于物体的问题,可以尝试将其转化为长度、面积或体积的问题进行求解。
通过以上的速算和巧算技巧,小学三年级的学生可以更加灵活地运用数学知识,提高计算速度和准确性。
同时,这些技巧也可以让学生更好地理解数学概念和思维方法,培养他们的数学思维能力。
三年级口算心算速算巧算题
三年级口算心算速算巧算题
我可以给你一些三年级口算心算速算巧算题的例子。
以下是几个例子:
1. 巧算加法:
心算计算:37 + 25 = ?
巧算方法:将37拆分为30和7,25拆分为20和5,然后进行分别相加,再将结果相加,即:(30 + 20) + (7 + 5) = 50 + 12 = 62
2. 巧算减法:
心算计算:64 - 38 = ?
巧算方法:通过观察可知,64比40多4,38比40少2,因此,我们可以将64-38转化为40-2-4,即:40 - 2 - 4 = 34
3. 巧算乘法:
心算计算:8 × 7 = ?
巧算方法:我们可以利用倍数关系来进行巧算。
因为7是5的倍数,而8又是2的倍数,所以我们可以先计算2 × 7 = 14,然后再将结果乘以5,即:14 × 5 = 70
4. 巧算除法:
心算计算:72 ÷ 9 = ?
巧算方法:我们可以利用乘法逆运算来进行巧算。
因为9是3的倍数,所以我们可以先计算72 ÷ 3 = 24,然后再将结果乘以3,即:24 × 3 = 72
这些是一些三年级口算心算速算巧算题的例子,希望可以帮到你!如果你有其他问题,请随时告诉我。
(3)速算和巧算(上下)
100个9
=33…3+1
100个3
=33…34
99个3
《奥赛天天练》第2讲,拓展提高,习题1 【题目】:
1998×19991999-1999×19981998。 【解析】:
观察算式特点:这一题中减号左右两道乘法算式的结果中都含有因 数:
1998×1999的积。运用乘法分配律,先把这个公有因数提出来,再 计算就会峰回路转,非常简便:
1998×19991999-1999×19981998 =1998×1999×(10001-10001) =1998×1999×0 =0 《奥赛天天练》第2讲,拓展提高,习题2 【题目】: 计算1012-992+972-952+…+52-32+12。 【解析】: 这道算式可以按从前往后,依次每两个数一组,运用平方差公式展 开成两个数的积。则每组两个因数中都有一个相同的因数2,另一个因 数组成公差为8的等差数列。再运用乘法分配律,提出公因数2,运用求 和公式,求出另一个因数组成数列和,最后算出结果。 计算过程如下:
(三)速算和巧算(上)
《奥赛天天练》第2讲《速算和巧算》。速算和巧算,就是通过观察 题目中数字的特点和变化规律,必要的时候对题中各个数进行适当的转 化,并根据题目的特点灵活运用运算定律或其它比较巧妙的方法,使较 复杂的计算题能很快计算出结果。这既是一种技巧,也是一种思维训 练,可以提高孩子的观察、分析、判断能力,促进思维和智力的发展。
98÷4=24(组)……2(个)。 再运用加法结合律,简便计算:
98+97-96-95+94+93-92-91+90+89-…-4-3+2+1 =(98+97-96-95)+(94+93-92-91)+…+(6+5-4-3)+2+1 =4×24+2+1 =96+3 =99
三年级速算与巧算
三年级速算与巧算对于三年级的小朋友们来说,数学学习中的速算与巧算可是一项非常有趣且实用的技能。
掌握了速算与巧算的方法,不仅能让计算变得更加轻松快捷,还能提高解题的效率和准确性,培养良好的数学思维。
一、加法的速算与巧算1、凑整法这是加法速算中最常用的方法。
比如:28 + 72 = 100,36 + 64 =100 等等。
在计算时,如果能把相加能凑成整十、整百、整千的数先加起来,会让计算变得简单许多。
例如:34 + 57 + 66我们可以先把 34 和 66 相加,得到 100,再加上 57,结果就是 157。
2、加法交换律和结合律加法交换律:两个数相加,交换加数的位置,和不变。
比如:3 +5 = 5 + 3。
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
比如:(2 + 3) + 4 = 2 +(3 + 4)。
在计算中,灵活运用这两个定律,可以使计算更简便。
例如:25 + 18 + 75可以先交换 18 和 75 的位置,变成 25 + 75 + 18,然后先计算 25+ 75 = 100,再加上 18 得到 118。
3、基准数法当相加的数都比较接近某一个数时,可以把这个数作为基准数,然后把每个数都看作基准数加上或减去一个数,最后再进行计算。
比如:92 + 95 + 88 + 91 + 87观察这些数,都接近 90,可以把 90 作为基准数。
原式=(90 + 2) +(90 + 5) +(90 2) +(90 + 1) +(90 3)= 90×5 +(2 + 5 2 + 1 3)= 450 + 3= 453二、减法的速算与巧算1、凑整法与加法类似,在减法中,如果减数可以凑成整十、整百、整千的数,先把它们相加,再进行计算。
例如:100 38 22可以先把 38 和 22 相加,得到 60,然后用 100 减去 60,结果是 40。
2、减法的性质一个数连续减去两个数,等于这个数减去这两个数的和。
三年级速算巧算
第一讲·速算巧算
【内容介绍】
计算是数学的基础,绝大多数数学问题归根结底都要通过计算来完成,所以运算的速度与准确率直接决定解答问题的速度与准确率。
【知识要点】
我们以前学习过加减法的速算,主要是采用凑整的方法,将题目变形成容易计算的形式。
例如:724+99 =724+100 1 =823- 365199 =365200 1 =166--+
在引入乘除法之后,我们还是可以采用凑整的方法使运算过程简化,常用的乘法凑整凑整运算有
25=10
425=1008125=1000
⨯⨯⨯
在进行简便运算时要注意合理的调整运算顺序,有时还需要利用拆分来凑整,比如:75⨯36=3⨯25⨯4⨯9=27⨯100=2700.
【例题习题】
1.
199+298+397+496+595+20=
2. 489+487+483+486+485+488=
3.
500501502503=+++
+++= 4.10182973996
++= 5.371008963
⨯⨯⨯⨯⨯= 6.24512578
⨯-⨯= 7.41252538
⨯-⨯= 8.125161119
⨯⨯+⨯⨯=
9.162534725
+-⨯÷= 10.777777777777777
+⨯÷-⨯÷= 11.64581936125100
【课后练习】
++⨯⨯=
1.992948325
⨯+⨯+=
2.36996312
⨯⨯⨯=
3.251412516
⨯= 4.思考题(第六届“走进美秒数学花园”初赛)1000001999999。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=544+1000=1544
③式=(9898+102)+(203-102)
=10000+101=10101
① 300-73-27 ② 1000-90-80-20-10
解答:①式= 300-(73+ 27)
=300-100=200
②式=1000-(90+80+20+10)
四、
例题:根据37×3=111,简算下面各题。
37×9=37×3×3=333
37×12=37×3×4=444
37×33=37×3×11=1221
37×36=37×3×12=1332
五、
41×49=?
【详解】相乘的两个数都是两位数,且十位上的数字相同,个位上的数字之和正好是10,这就可以运用"头同尾合十"的巧算法进行简便计算。
若有4个9,则另一个数只能为6,因此能被4整除的数只有1个。
综合上述情况可知,满足条件的五位数共4个。
巧算:
:
①506-397 ②323-189 ③467+997 ④987-178-222-390
解答:
① =500+6-400+3(把多减的 3再加上)=109
②式=323-200+11(把多减的11再加上)
=123+11=134
③式=467+1000-3(把多加的3再减去)
=1464
④式=987-(178+222)-390=987-400-400+10=197
① 188+873 ②548+996 ③9898+203
解答:①式=(188+12)+(873-12)(熟练之后,此步可略)
=200+861=1061
"头同尾合十"的巧算方法是:用十位上的数字乘十位上的数字加1的积,再乘100,最后加上个位上2个数字的乘积。
41×49,先用(4+1)×4=20,将20作为积的前两位数字,再用1×9=9,可以发现末位数字相乘的积是一位数,那就在9的前面补一个0,作为积的后两位数字。这样答案很简单的就求出了,即41×49=(4+1)×4×100+1×9=2009。
3、通过以上规律,那么一个数与999相乘呢?
999×2=2000—2=1998 999×8=8000—8=7992
二、
巧算两位数与11的乘积。
12×11=132 35×11=385 47×11=517 69×11=759
观察上面每一组题,发现俩位数与11相乘,只要把这个俩位数拉开,个位数字做积的个位,十位数字做积的百位;个位数字与十位数字相加的和做积的十位,如果满十的话要向百位进一。概括为口诀:俩边一拉,中间相加。
一只蜘蛛八条腿,一只蜻蜒有六条腿、二对翅膀,蝉有六条腿和一对翅膀。现有这三种小昆虫共18只,共有118条腿和20对翅膀,问每种小昆虫各有几只?
解答:这个问题比前几个问题要复杂一些。但仔细考虑,发现蜻蜓和蝉的腿条数都是6,因此可从腿的条数入手。
假设18只全是蜘蛛,那么共有8×18=144(条)腿。但实际上只有118条,两者相差144-118=26(条),产生差异的原因是6条腿的蜻蜒和蝉都作为8条腿的蜘蛛了,每一只相差2条腿。被当作蜘蛛的蜻蜒和蝉共有267-243原式=5869-(457+243)=5869-700=5169
(46+56)×(172÷4)+14
解答:原式=102×43+14=(100+2)×43+14=4300+86+14=4300+100=4400。
速算与巧算一个重要技巧是凑整,包括通过加减一个数凑成整十整百。特别要注意末尾能凑成10的数字。
六、五位数字中各位数字之和为42,且能被4整除的数有_______个。
五位数字之和为42,则这个五位数中至少有2个9,至多有4个9.若有2个9,则另3个数字只能全为8,其中能被4整除的数必须末两位数是4的倍数,因此这样的五位数只有3个。
若有3个9,则另两个数字之和为15,只能为8和7,但这种情况下,不能被4整除。
乘除法中的速算、巧算
一、
1、一个数与10、100、1000……相乘,就是往这个数后面加0、00、000……
2、巧算一个数与99相乘,99×1=99 99×2=198 99×8=792
通过观察发现一个数与99相乘就是在这个数后面加上00,然后减去此数,即可
99×1=100—1=99 99×2=200—2=198 99×8=800—8=792
三、
1、巧算三位数与11相乘。
432×11=4752 168×11=1848
口诀:俩边一拉,中间俩加。 注意哦,也是要满十进一的。
2、巧算俩位数与101相乘。
101×45=4545 101×67=6767
规律就是积把这个俩位数连续写俩遍。
那么三位数与1001相乘呢?
1001×782=782782 自己总结规律
因此,蜘蛛有18-13=5(只)。
再假设13只昆虫都是蜻蜒,应有13×2=26(对)翅膀,与实际翅膀数相差26-20=6(对),每把一只蝉当一只蜻蜒,翅膀数就增加1对,所以蝉的只数是6÷1=6(只),蜻蜓数是13-6=7(只)。