机械设计 名词解释汇总(附章节习题)

合集下载

机械设计_名词解释汇总(附章节习题)

机械设计_名词解释汇总(附章节习题)

第一部分;1.1机械:机器和机构的总称。

1.2.机器:有若干个构件组成的具有确定的运动的人为组合体,可用来变换或传递能量,代替人完成有用的机械功。

1.3.机构:有若干哥构件组成的具有确定相对运动的认定为组合体,再机器中起着改变运动速度,运动方向和运动形式的作用。

1.4.构件:机器中的运动单元体。

1.5.零件:机器中的制造单元体。

1.6.失效:机械零件由于某种原因丧失了工作能力。

常见的失效形式有断裂,变形。

磨损。

打滑,过热,强烈振动。

1.7.工作能力:零件所能安全工作的限度。

1.8.计算准则:针对各种不同的失效形式而确定的判定条件,主要有强度计算准则,刚度计算准则,耐磨计算准则和振动稳定性计算准则。

1.9.机械设计师应满足那些基本要求?a.根据使用报告要求,选择零件的构建类型,b.根据工作要求,对零件进行受力分析 c.根据受力情况对零件进行应力分析 d.根据工作条件及特殊要求选择材料 e.根据零件所受荷载,进行失效形式分析。

f.根据计算准则和设计方法选用计算公式。

g.根据数据确定零件的组要尺寸h.绘制零件工作图2.1运动副:机构是由许多构件组合而成的,使两构件直接接触而又能产生一定的相对运动的联接称为运动服。

运动副分类:高副和低副(转动副,移动副)2.2机构运动简图:用简单的线条和符号代表构件的运动副,并按比例各运动副位置,表示机构的组成和传动情况。

这样绘制出的简图就称为运动简图。

2.3机构运动简图绘制步骤:a.分析构件和运动情况 b.确定构件数目,运动副类型和数目 c.测量运动尺寸 d.选择视图平面 e.绘制机构运动简图2.4 绘制和使用机构运动简图应注意哪些:a.熟识常用的运动副的符号和表示 b.再机构运动简图中,应标出各运动副的位置机与运动有关的尺寸c.正确地选择和使用比例尺2.5自由度:机构的的自由度是机构所具有的独立运动的数目。

2.6约束:作平面运动的自由构件有3个自由度。

当它与另一构件组成运动副后,构件间的直接接触使某些独立运动受到限制,自由度减少。

(完整版)机械设计课后习题答案

(完整版)机械设计课后习题答案

第一章绪论(1)1-2 现代机械系统由哪些子系统组成, 各子系统具有什么功能?(2)答: 组成子系统及其功能如下:(3)驱动系统其功能是向机械提供运动和动力。

(4)传动系统其功能是将驱动系统的动力变换并传递给执行机构系统。

第二章执行系统其功能是利用机械能来改变左右对象的性质、状态、形状或位置, 或对作业对象进行检测、度量等, 按预定规律运动, 进行生产或达到其他预定要求。

第三章控制和信息处理系统其功能是控制驱动系统、传动系统、执行系统各部分协调有序地工作, 并准确可靠地完成整个机械系统功能。

第四章机械设计基础知识2-2 什么是机械零件的失效?它主要表现在哪些方面?答:(1)断裂失效主要表现在零件在受拉、压、弯、剪、扭等外载荷作用时, 由于某一危险截面的应力超过零件的强度极限发生的断裂, 如螺栓的断裂、齿轮轮齿根部的折断等。

(2)变形失效主要表现在作用在零件上的应力超过了材料的屈服极限, 零件产生塑性变形。

(3)表面损伤失效主要表现在零件表面的腐蚀、磨损和接触疲劳。

2-4 解释名词: 静载荷、变载荷、名义载荷、计算载荷、静应力、变应力、接触应力。

答: 静载荷大小、位置、方向都不变或变化缓慢的载荷。

变载荷大小、位置、方向随时间变化的载荷。

名义载荷在理想的平稳工作条件下作用在零件上的载荷。

计算载荷计算载荷就是载荷系数K和名义载荷的乘积。

静应力不随时间变化或随时间变化很小的应力。

变应力随时间变化的应力, 可以由变载荷产生, 也可由静载荷产生。

(1)2-6 机械设计中常用材料选择的基本原则是什么?(2)答:机械中材料的选择是一个比较复杂的决策问题, 其基本原则如下:①材料的使用性能应满足工作要求。

使用性能包含以下几个方面:②力学性能③物理性能④化学性能①材料的工艺性能应满足加工要求。

具体考虑以下几点:②铸造性③可锻性④焊接性⑤热处理性⑥切削加工性①力求零件生产的总成本最低。

主要考虑以下因素:②材料的相对价格③国家的资源状况④零件的总成本2-8 润滑油和润滑脂的主要质量指标有哪几项?答: 衡量润滑油的主要指标有: 粘度(动力粘度和运动粘度)、粘度指数、闪点和倾点等。

机械设计名词

机械设计名词

1 基点:一个零件轮廓曲线可能有许多不同的几何元素所组成,如直线,圆弧,二次曲线等,各几何元素之间的连接点为基点。

2节点:是在满足容差要求条件下当用若干个差不线段(直线段或圆弧段)去逼近实际轮廓曲线时,相邻两插补线段的交点。

3级比:变速组中两大小相邻的传动比的比值4级比指数:在一个变速组中,相邻传动比相距的格数5主轴主件的概念:主轴主件是机床的一个重要组成部分,它包括主轴,轴承以及安装在主轴上的传动件6数控机床:是一种将数字计算技术应用于机床的控制技术,是一种典型的机电一体化产品7爬行现象:动导轨做低速运动和微量位移时易产生摩擦自激震动,爬行会降低定位精度或增大被加工工件表面的粗糙度值8防爬措施:1用滚动摩擦代替滑动摩擦2采用卸荷导轨和静压导轨3采用减磨材料4使用专用导轨润滑油5提高传动系统的刚度6减小运动质量7减少传动路线9感应同步器特点:对环境要求低,工作可靠抗干扰能力强,大量程接长方便,维护简单寿命长成本低等原理:是一种非接触似的电磁测量装置,根据电磁耦合原理将位移或转角转换成电信号。

10 旋转变压器特点:结构简单动作灵敏工作可靠对环境条件要求低输出信号幅度大和抗干扰能力强原理:根据互感原理工作,定子与转子之间气隙磁通分布呈正、余弦规律,当定子加上一定频率激磁电压时,通过电磁耦合,转子绕组产生感应电势,其输出电压的大小取决于定子与转子两个绕组轴线在空间的相对位置11 脉冲编码器工作原理:将被测轴的角位移换成增量脉冲形式或绝对式角代码形式编码方式:绝对式和增量式接触式光电式和电磁式12 C刀具半径补偿的工作过程在C功能刀补工作状态中,CNC装置内部总是同时存储着三个程序阶段的信息,进行补偿时,第一阶段程序先被读入BS,在BS中算得的第一段编程轨迹被送入CS暂存后,又将第二阶段程序读入BS,算出第二段的编程轨迹,接着对第一,第二两段编程轨迹由CS送到AS,第二段编程轨迹由BS送入CS,随后由CPU将AS中的内容送到OS进行插补运算,运算结果送伺服驱动装置时予以执行。

机械设计名词解释

机械设计名词解释

机械设计名词解释:1.机械零件的失效与破坏:答:零件失去设计所要求的效能(功能)2.名义载荷与计算载荷:答: 1)名义载荷:根据原动机额定功率(或阻力、阻力矩)计算出来的作用于机械零件上的载荷,一般用F表示力,用T表示力矩。

2)计算载荷:考虑机械零件在工作时有冲击、振动和由于各种因素引起的栽荷分布不均匀等,将名义载荷修正后用于零件计算的栽荷,以Fc ,Tc表示。

计算载荷与名义载荷的关系为:Fc = KFTc= KT式中,K为载荷系数,一般取K≥1。

3.工作应力与工作能力:答:1)工作应力:构件工作时,由载荷引起的应力2)工作能力:零件不发生失效时的安全工作限度4.可靠性和可靠度:答:1)可靠性:指零件在规定条件下和规定的时间内,完成规定功能的能力 2)可靠度:可靠性的概率度量5.极限应力与许用应力:答:1)极限应力:材料能力承受的最大应力叫做材料的极限应力2)许用应力:用极限应力除以大于1的安全系数作为构件工作应力的最高限度6.油的黏性与油性:答:1)黏性:流体在运动状态下抵抗剪切变形速率能力的性质,称为粘滞性或简称黏性2)油性(润滑性):润滑性是指润滑油中极性分子与金属表面吸附形成一层边界油膜,以减少摩擦和磨损的性能。

7.摩擦和磨损:答:1)摩擦:当物体与另一物体沿接触面的切线方向运动或有相对运动的趋势时,在两物体的接触面之间有阻碍它们相对运动的作用力,这种力叫摩擦力。

接触面之间的这种现象或特性叫“摩擦”2)磨损:运动副之间的摩擦将导致零件表面材料的逐渐丧失或迁移8.物理吸附膜与化学吸附膜:答:1)物理吸附膜:润滑剂中脂肪酸的极性分子牢固地吸附在金属表面上形成物理吸附膜2)化学吸附膜:润滑剂中分子受化学键力作用而贴附在金属表面上所形成的吸附膜则称为化学吸附膜9.接触表面处的挤压强度与接触强度:答:1)挤压强度:是在挤压应力作用下抵抗破坏的能力称为挤压强度2)接触强度:是在接触应力作用下抵抗破坏(变形和断裂)的能力称为接触强度,包括接触静强度和接触疲劳强度10.有限寿命设计与无限寿命设计:答:1)有限寿命设计:以机器指定寿命为依据进行的设计2)无限寿命设计:以机器使用寿命无限长为依据所进行的设计11.设计机器时应满足哪些基本要求?设计零件时应满足哪些基本要求?答:1)使用功能要求;经济性要求;劳动保护和环境保护要求;寿命与可靠性的要求;其他专用要求2)避免在预定寿命期内失效的要求;结构工艺性要求;经济性要求;质量小的要求;可靠性要求12.简述机械零件的主要失效形式有哪些,主要计算准则有哪些。

机械设计习题集(3)

机械设计习题集(3)

第1章机械设计概论思考题1. 什么是部件什么是零件什么是构件什么是通用零件什么是专用零件机械设计课程研究的是哪类零件从哪几个方面来研究这类零件2. 机械设计应满足哪些基本要求机械零件设计应满足哪些基本要求3. 机械设计的一般步骤是怎样的第2章机械零件的工作能力和计算准则一、填空题1. 在压力作用下,以点、线相接触的两物体在接触处产生的应力称为应力。

2. 零件在变应力作用下的强度计算属于强度计算,它不同于静强度计算。

3. 零件的计算载荷与名义载荷的关系是。

4. 零件的名义载荷是指载荷。

5. 零件的实际载荷与计算载荷的差异对零件的强度影响,将在中考虑。

二、简答与思考题1. 解释下列名词:静载荷、变载荷、稳定循环变载荷、动载荷、工作载荷、额定载荷、计算载荷、静应力、变应力、疲劳及疲劳极限。

静载荷是否一定产生静应力变载荷是否一定产生变应力2. 什么是变应力的循环特性r对于静应力、脉动循环变应力和对称循环变应力,其r值各等于多少3. 在一定的循环特性r下工作的金属试件,其应力循环次数与疲劳极限之间有怎样的内在联系怎样区分试件的无限工作寿命和有限工作寿命怎样计算在有限寿命下工作的试件的疲劳极限4. 两个曲面形状的金属零件相互压紧,其表面接触应力的大小由哪些因素确定如果这两个零件的材料、尺寸都不同,其相互接触的各点上彼此的接触应力值是否相等三、计算题1. 图示为对心直动滚子从动件凸轮机构。

从动件顶端承受压力F=12kN。

当压力角α达到最大值αmax=250时,相应的凸轮轮廓在接触点上的曲率半径为R=75mm。

已知:滚子半径r=15mm,凸轮与滚子的宽度b=20mm;两者材料的弹性模量和泊松比均为E=×105Mpa和μ=;许用接触应力[σ]H=1500Mpa。

试校核凸轮与滚子的表面接触强度。

题1图第3章机械零件的疲劳强度一、简答题1.已知某零件的简化极限应力图及其危险剖面上的σm、σa工作应力点M(σm,σa),如图示,当其应力变化规律按σm=C(常数)变化时,在图中找出相应的极限应力点,并计算其安全系数。

机械设计习题

机械设计习题

第三章 机械零件的强度一、 名词解释1、循环特性r 、对称循环、脉动循环2、静强度、疲劳强度、高周疲劳、低周疲劳、N -σ曲线、等寿命曲线(极限应力线图)3、寿命系数K N 、循环基数、单向稳定变应力、单向不稳定变应力、双向稳定变应力、设计安全系数、计算安全系数二、选择题1、若传动轴作正、反向转动,则轴上某点的扭转应力(剪应力)可按 处理。

A 、脉动循环B 、对称循环C 、静止不变D 、以上都不是2、以下四种叙述中, 是正确的。

A 、变应力只能由变载荷产生B 、静载荷不能产生变应力C 、变应力是由静载荷产生的D 、变应力由变载荷产生,也可能由静载荷产生3、变应力特性可用max σ、min σ、a σ、m σ、r 中五个参数的任意 个来描述。

A 、一个B 、两个C 、三个D 、四个4、零件的截面形状一定,如绝对尺寸(横截面尺寸)增大,疲劳强度将随之_____。

A 、 增高B 、 不变C 、 降低D 、不确定5、零件的材料、形状,尺寸,结构相同时,磨削加工的零件与精车加工相比,其疲劳强度______。

A 、 较高B 、 较低C 、 相同6、零件的表面经淬火,渗氮,喷丸,滚子碾压等处理后,其疲劳强度_______。

A 、 增高B 、 降低C 、 不变D 、 增高或降低视处理方法而定三、问答题1、在N -σ曲线上指出静强度、低周疲劳和高周疲劳区及有限寿命疲劳阶段和无限寿命疲劳阶段。

2、弯曲疲劳极限的综合影响系数K σ的含义是什么?它与哪些因素有关?它对零件的疲劳强度和静强度各有何影响?四、计算题1、一零件用合金钢制造,已知材料的弯曲疲劳极限的综合影响系数K σ=1.6,MPa MPa MPa MPa O S B 746,485,800,10001====-σσσσ,试绘制该零件的简化极限应力限图。

若测得零件的工作应力MPa MPa 50,350min max ==σσ,当(1)r=C,(2)C m =σ时, 分别用计算法和图解法求该零件的计算安全系数S ca 。

机械设计基础名词解释

机械设计基础名词解释

1切屑运动:用刀具切除工件上多余的金属时,刀具和工件之间必须具有一定的相对运动,称为切削运动。

2、切削方式:直角切屑和斜角切屑,自由切屑和非自由切屑。

3、组合机床:以通用部件为基础陪异界共建特定性状和加工工艺设计的专用部件和夹具,组成的非自动或自动专用机床。

4、基准不重合误差:当共建的供需基准与定位基准不重合时,则在工序基准与定位基准之间必然存在位置误差,由此引起同一批工件工序基准发生变动,其最大变动范围称为基准不重合误差。

5、基准位移误差:定位基面和定位元件本身的制造误差会引起同一批工件定位基准的相对位置发生变动,这一变动的最大范围称为基准位移误差。

6、刀具寿命:指刀具刃磨后开始切削,一直到磨损量达到刀具的磨钝标准所经过的净切削时间。

7、磨钝标准:刀具磨损到一定的限度不能继续使用,这个磨损限度成为磨钝标准。

8、扩散磨损:刀具表面与被切出工件新鲜表面接触,在高温下,两摩擦面的化学元素获得足够的能量,相互扩散改变了接触面个方向的化学成分,降低了刀具材料的性能,从而造成刀具磨损。

9、磨轮硬度:指磨粒在外力作用下自砂轮表面上脱落的难易程度。

10、切削用量三要素:切削速度、进给量、背吃刀量11、表面成形运动:形成发生线的运动,成为了要形成表面的发生线,机床上的刀具和工件按照形成发生线的方法,而所做的相对运动。

12、六点定位:用空间中合理分布的六个点限制物体的六个自由度。

13、刀具标注前脚:在正交平面内测量的刀前面和基面间的夹角。

14、外联系传动链:联系动力源与机床执行元件使其运动,并能改变运动速度方向但不要求有严格传动比。

15、内联系传动链:传动链的两个末端作的转角或者位移量之间如果有严格的比例关系要求的传动链,称为内联系传动链。

16、传动原理图:为研究机床的传动联系,用一些简明的符号把传动原理和传动路线表示出来。

17、传动系统图:在一个平面上能反映机床基本外形和主要部件相互位置,并且各传动元件按传动顺序展开画的图。

机械类专业名词解释

机械类专业名词解释

机械类专业名词解释引言:机械类专业是一门应用科学,涵盖了许多与机械结构、能源转换、设计和制造相关的领域。

为了更好地理解机械类专业中常用的术语和名词,在本文中,将详细解释一些常见的机械类专业名词。

一、力学力学是机械类专业中的基础学科,研究物体运动和力的关系。

力学包括静力学和动力学两个方面。

静力学研究物体处于静止状态时受力的平衡条件,而动力学研究物体在力的作用下的运动规律。

1. 力(Force)力是导致物体运动或改变物体状态的作用,它是由物体受到的相互作用所导致的。

力通常用牛顿(N)作为单位来表示。

2. 质点(Particle)质点是指物体在力学研究中被简化为一个点的物体,质点的质量通常被忽略。

3. 牛顿第二定律(Newton's Second Law)牛顿第二定律是力学中最重要的定律之一,它表明物体的加速度与作用在物体上的力成正比,与物体的质量成反比。

二、热学热学是机械类专业中的一个重要学科,研究物体的热力学性质,以及热传导、热辐射等热现象。

1. 温度(Temperature)温度是表征物体热平衡状态的物理量,常用单位是摄氏度(℃)或开尔文(K)。

2. 热传导(Heat Conduction)热传导是指物体内部热能通过分子振动和碰撞的方式传递的过程。

热传导的速率与物体的导热系数和温度梯度有关。

3. 热容量(Heat Capacity)热容量是物体吸收或释放热量时所需的热量变化量。

它表示单位温度变化时物体内部的热量变化。

三、材料力学材料力学是机械类专业中涉及材料的力学性质和性能研究的学科,包括材料的强度、刚度和损伤等方面。

1. 弹性(Elasticity)弹性是指物体在受力作用下能够恢复原来形状和大小的性质。

弹性体的应力和应变成正比。

2. 塑性(Plasticity)塑性是指物体在受力作用下发生形变并保持新形状的性质。

塑性体的应力和应变不再成正比。

3. 破坏力学(Fracture Mechanics)破坏力学是研究材料裂纹扩展和断裂行为的学科。

机械设计基础名词解释大全

机械设计基础名词解释大全

机械设计基础名词解释大全
以下是一些机械设计基础名词解释:
-机械:机器、机械设备和机械工具的统称。

-机器:是执行机械运动,变换机械运动方式或传递能量的装置。

-机构:由若干零件组成,可在机械中转变并传递特定的机械运动。

-构件:由若干个零件组成的一个组成部分,如齿轮、轴、联轴器等。

-自由度:机构具有的运动自由程度。

-原动件数:机构中驱动其他零部件运动的零部件数量。

-机械设计:根据使用要求对机械的工作原理、结构、运动方式、力和能量的传递方式、各个零件的材料和形状尺寸、润滑方法等进行构思、分析和计算并将其转化为具体的描述以作为制造依据的工作过程。

(完整版)机械设计复习要点及重点习题

(完整版)机械设计复习要点及重点习题

(完整版)机械设计复习要点及重点习题摩擦、磨损及润滑概述1、如何⽤膜厚⽐衡量两滑动表⾯间的摩擦状态?【答】膜厚⽐(λ)⽤来⼤致估计两滑动表⾯所处的摩擦(润滑)状态。

2/12221min)(q q R R h +=λ式中,min h 为两滑动粗糙表⾯间的最⼩公称油膜厚度,1q R 、2q R 分别为两表⾯轮廓的均⽅根偏差。

膜厚⽐1≤λ时,为边界摩擦(润滑)状态;当31~=λ时,为混合摩擦(润滑)状态;当3>λ时为流体摩擦(润滑)状态。

2、机件磨损的过程⼤致可分为⼏个阶段?每个阶段的特征如何?【答】试验结果表明,机械零件的⼀般磨损过程⼤致分为三个阶段,即磨合阶段、稳定磨损阶段及剧烈磨损阶段。

1)磨合阶段:新的摩擦副表⾯较粗糙,在⼀定载荷的作⽤下,摩擦表⾯逐渐被磨平,实际接触⾯积逐渐增⼤,磨损速度开始很快,然后减慢;2)稳定磨损阶段:经过磨合,摩擦表⾯加⼯硬化,微观⼏何形状改变,从⽽建⽴了弹性接触的条件,磨损速度缓慢,处于稳定状态;3)剧烈磨损阶段:经过较长时间的稳定磨损后,因零件表⾯遭到破化,湿摩擦条件发⽣加⼤的变化(如温度的急剧升⾼,⾦属组织的变化等),磨损速度急剧增加,这时机械效率下降,精度降低,出现异常的噪声及振动,最后导致零件失效。

3、何谓油性与极压性?【答】油性(润滑性)是指润滑油中极性分⼦湿润或吸附于摩擦表⾯形成边界油膜的性能,是影响边界油膜性能好坏的重要指标。

油性越好,吸附能⼒越强。

对于那些低速、重载或润滑不充分的场合,润滑性具有特别重要的意义。

极压性是润滑油中加⼊含硫、氯、磷的有机极性化合物后,油中极性分⼦在⾦属表⾯⽣成抗磨、耐⾼压的化学反应边界膜的性能。

它在重载、⾼速、⾼温条件下,可改善边界润滑性能。

4、润滑油和润滑脂的主要质量指标有哪⼏项?【答】润滑油的主要质量指标有:粘度、润滑性(油性)、极压性、闪点、凝点和氧化稳定性。

润滑脂的主要质量指标有:锥(针)⼊度(或稠度)和滴点。

机械设计基础名词解释

机械设计基础名词解释

机械设计基础名词解释机械设计基础简答题总结第三章:铰链四杆机构有曲柄的条件1、杆长条件:最短杆和最长杆长度之和⼩于或等于其它两杆长度之和。

2、最短杆是连架杆或机架。

(组成周转副的两杆中必⼀个是最短杆)压⼒⾓:在不计摩擦⼒、重⼒、惯性⼒的条件下,机构中驱使从动件运动的⼒的⽅向线与从动件上受⼒点的速度⽅向线所夹的锐⾓。

极位夹⾓:曲柄摇杆机构中曲柄与连杆两次共线位置时曲柄之间所夹锐⾓称为极位夹⾓急回运动:在曲柄等速回转的情况下,摇杆往复摆动速度快慢不同的运动,称为急回运动死点位置:指从动件的传动⾓=0°(或=90°)时机构所处的位置。

(不考虑构件的重⼒、惯性⼒和运动副中的摩擦⼒的影响)死点位置的克服办法:(1)利⽤飞轮惯性来克服死点位置(2)利⽤机构错位排列法来克服死点位置。

第四章:从动件运动规律,是指从动件的位移S、速度v、加速度a、及加速度的变化率(跃度j)随时间t 或凸轮转⾓φ变化的规律。

这种变化的规律可以⽤线图来表⽰,是凸轮设计的依据。

从动件在运动起始位置和终⽌两瞬时的速度有突变,故加速度在理论上由零值突变为⽆穷⼤,惯性⼒也为⽆穷⼤。

由此的强烈冲击称为刚性冲击。

在运动规律推程的始末点和前后半程的交接处,加速度虽为有限值,但加速度对时间的变化率理论上为⽆穷⼤。

由此引起的冲击称为柔性冲击。

在选择从动件的运动规律时,除要考虑刚性冲击与柔性冲击外,还应该考虑各种运动规律的速度幅值、加速度幅值及其影响加以分析和⽐较。

对于重载凸轮机构,应选择值较⼩的运动规律;对于⾼速凸轮机构,宜选择值较⼩的运动规律。

第五章互相啮合的⼀对齿轮,在任⼀位置时的传动⽐,都与其连⼼线O1O2被其啮合齿廓在接触点处的公法线所分成的两段成反⽐。

这⼀定律称为:齿廓啮合的基本定律。

渐开线的性质:(1)NK = N K0,(2) 渐开线上任意⼀点的法线必切于基圆,切于基圆的直线必为渐开线上某点的法线。

与基圆的切点N为渐开线在k点的曲率中⼼,⽽线段NK 是渐开线在点k处的曲率半径。

机械设计学习题及(附答案)

机械设计学习题及(附答案)

机械设计学习题及(附答案)⼀、名词解释:1、功能原理设计:针对产品的主要功能所进⾏的原理性设计2、简单动作功能:仅完成简单的⼀次性动作的功能3、复杂动作功能:能实现连续的传动的动作功能4、机械创新设计:在功能结构图中,有的分功能⽐较复杂,不可能⽤⼀个已知的机构来完成。

这就需要根据分功能的特点,挑选⼏个机构组成⼀个机械运动系统,由这些机构共同完成这个分功能的机械动作。

5、机械协调性设计:当功能结构图中的各机械分功能均已根据分功能的要求选择好相应的机构后,怎样使这些分散的机构组成⼀个协调运动的整体,只是这个系统⽐较⼤,其综合后完成的机械功能,就是整个机械产品的总功能中的全部机械功能。

6、核⼼技术:产品实现总功能和主要技术要求的技术。

7、关键技术:实现某种功能过程中需要解决的技术难题。

8、弹性强化:使构件在受⼯作载荷之前预受⼀个与⼯作载荷相反的载荷,产⽣⼀个相应的预变形,以及⼀个与⼯作应⼒相反的预应⼒,⼯作时该预加载荷部分抵消⼯作载荷,预变形部分抵消⼯作变形,从⽽降低了构件的最⼤应⼒。

9、塑性强化:使构件在⼯作状态下应⼒最⼤那部分材料预先经塑性变形⽽产⽣⼀个与⼯作应⼒符号相反的残留应⼒,⽤以部分抵消⼯件应⼒。

⼆、简答题:1-1机械产品设计的三个基本环节是什么?答:机械产品设计的三个基本环节是:“功能原理设计,实⽤化设计和商品化设计”1-2、机械设计具有哪些主要特点:答:机械设计具有如下主要特点 :(1)多解性 (2)系统性 (3)创新性1-3、近代“机械设计学”的核⼼内容1)“功能”思想的提出:l947年、美国⼯程师麦尔斯创⽴了“价值⼯程“。

他真正重要的贡献在于他提出的关于‘功能”的思想。

2)“⼈机⼯程’’学科的兴起:“宜⼈”的宗旨已经成为现代机械设计的基本观念。

3)“⼯业设计”学科的成熟。

⼯业产品设计的原则是:“技术第⼀,艺术第⼆”。

⼯业设计师应该⾸先是⼀个⼯业技术专家,⽽不⾸先是⼀个艺术家。

1-4、从设计构思的⾓度机械产品设计可归纳为三⼤步:创意、构思和实现。

机械设计基础名词解释

机械设计基础名词解释

机械设计基础名词解释第零章绪论1.机器:执行机械运动的装置,用来变换或传递能量,物料,信息。

原动机:将其他形式的能量变换为机械能的机器工作机:利用机械能去变换或者传递能量,物料,信息的机器2.机器的四个基本组成部分:动力部分,传动部分,控制部分,执行部分。

3.机械设计基础主要是研究机械中的常用机构和通用零件的工作原理,结构特点,基本设计理论和计算方法。

4.机械设计是指规划和设计实现预期功能的新机械或者改进原有机械的性能。

5.设计机械应满足的基本要求:良好的使用性能,安全,可靠耐用,经济,符合环保要求。

第一章平面机构的自由度和速度分析1.自由度:构件相对于参考坐标系的独立运动的数目。

2.运动副:两构件直接接触并能产生一定相对运动的连接称为运动副。

3.低副:两构件通过面接触组成的运动副称为低副。

转动副:组成运动副的两构件只能在平面内相对转动,这种运动副称为转动副。

移动副:组成运动副的两构件只能沿某一轴线相对移动,这种运动副称为转动副。

4.高副:两构件通过点或线接触组成的运动副称为高副。

5.机构运动简图:表明机构各构件间相对运动的关系的简化图形。

6.复合铰链:两个以上构件在同一处用转动副连接就形成了复合铰链。

7.局部自由度:与输出构件运动无关的自由度称为局部自由度。

局部自由度的出现可以减少磨损。

8.虚约束:重复而对机构不起限制作用的约束称为虚约束。

虚约束对运动不起作用,但可以增加机构的刚性或使构件受力均衡。

9.瞬心:平面内做相对运动的两个构件,在任一瞬时,其相对运动可以看作是绕某一重合点的转动,该重合点称为速度瞬心,简称瞬心。

瞬心是两构件上绝对速度相同的重合点。

如果两构件均为运动的,则其为相对瞬心。

如果有一个静止,则其瞬心为绝对瞬心。

10.三心定理:作相对平面运动的三个构件共有三个瞬心,这三个瞬心位于同一直线上。

第二章平面连杆机构1.铰链四杆机构:全部用转动副相连的平面四杆机构2.整转副:组成运动副的两个构件能做整周相对运动,该运动副称为整转副,否则称为摆转副。

《机械设计基础》课程重点总结、含有练习题。适用于机械专业专升本

《机械设计基础》课程重点总结、含有练习题。适用于机械专业专升本

《机械设计基础》课程重点总结、含有练习题。

适⽤于机械专业专升本《机械设计基础》课程重点总结绪论零件是制造的单元,构件是运动的单元,⼀部机器可包含⼀个或若⼲个机构,同⼀个机构可以组成不同的机器。

第⼀章平⾯机构的⾃由度和速度分析1.所以构件都在相互平⾏的平⾯内运动的机构称为平⾯机构;2.两构件直接接触并能产⽣⼀定相对运动的连接称为运动副。

两构件通过⾯接触组成的运动副称为低副,平⾯机构中的低副有移动副和转动副。

两构件通过点或线接触组成的运动副称为⾼副;3.绘制平⾯机构运动简图;4.机构⾃由度F=3n-2P l-P h,原动件数⼩于机构⾃由度,机构不具有确定的相对运动;原动件数⼤于机构⾃由度,机构中最弱的构件必将损坏;机构⾃由度等于零的构件组合,它的各构件之间不可能产⽣相对运动;5.计算平⾯机构⾃由度的注意事项:(1)复合铰链(图1-13)(2)局部⾃由度:凸轮⼩滚⼦焊为⼀体(3)虚约束(4)两个构件构成多个平⾯⾼副,各接触点的公共法线彼此重合时只算⼀个⾼副,各接触点的公共法线彼此不重合时相当于两个⾼副或⼀个低副,⽽不是虚约束;6.⾃由度的计算步骤要全:1)指出复合铰链、虚约束和局部⾃由度2)指出活动构件、低副、⾼副3)计算⾃由度4)指出构件有没有确定的运动。

第⼆章平⾯连杆机构1.平⾯连杆机构是由若⼲构件⽤低副(转动副、移动副)连接组成的平⾯机构,⼜称平⾯低副机构;按所含移动副数⽬的不同,可分为:全转动副的铰链四杆机构、含⼀个移动副的四杆机构和含两个移动副的机构。

2.铰链四杆机构:机构的固定构件称为机架;与机架⽤转动副相连接的构件称为连架杆;不与机架直接相连的构件称为连杆;铰链四杆机构分为曲柄摇杆机构、双曲柄机构、双摇杆机构。

3.含⼀个移动副的四杆机构:曲柄滑块机构、转动导杆机构、摆动导杆机构、定块机构、摇块机构,及其相互之间的倒置。

4.铰链四杆机构有整转副的条件是最短杆和最长杆长度之和⼩于等于其余两杆长度之和;整转副是最短边及其邻边组成的;铰链四杆机构是否存在曲柄依据:1)取最短杆为机架时,机架上有两个整转副,故得双曲柄机构;2)取最短杆的邻边为机架时,机架上只有⼀个整转副,故得曲柄摇杆机构;3)取最短杆的对边为机架时,机架上没有整转副,故得双摇杆机构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分;1.1机械:机器和机构的总称。

1.2.机器:有若干个构件组成的具有确定的运动的人为组合体,可用来变换或传递能量,代替人完成有用的机械功。

1.3.机构:有若干哥构件组成的具有确定相对运动的认定为组合体,再机器中起着改变运动速度,运动方向和运动形式的作用。

1.4.构件:机器中的运动单元体。

1.5.零件:机器中的制造单元体。

1.6.失效:机械零件由于某种原因丧失了工作能力。

常见的失效形式有断裂,变形。

磨损。

打滑,过热,强烈振动。

1.7.工作能力:零件所能安全工作的限度。

1.8.计算准则:针对各种不同的失效形式而确定的判定条件,主要有强度计算准则,刚度计算准则,耐磨计算准则和振动稳定性计算准则。

1.9.机械设计师应满足那些基本要求?a.根据使用报告要求,选择零件的构建类型,b.根据工作要求,对零件进行受力分析 c.根据受力情况对零件进行应力分析 d.根据工作条件及特殊要求选择材料 e.根据零件所受荷载,进行失效形式分析。

f.根据计算准则和设计方法选用计算公式。

g.根据数据确定零件的组要尺寸h.绘制零件工作图2.1运动副:机构是由许多构件组合而成的,使两构件直接接触而又能产生一定的相对运动的联接称为运动服。

运动副分类:高副和低副(转动副,移动副)2.2机构运动简图:用简单的线条和符号代表构件的运动副,并按比例各运动副位置,表示机构的组成和传动情况。

这样绘制出的简图就称为运动简图。

2.3机构运动简图绘制步骤:a.分析构件和运动情况 b.确定构件数目,运动副类型和数目 c.测量运动尺寸 d.选择视图平面 e.绘制机构运动简图2.4 绘制和使用机构运动简图应注意哪些:a.熟识常用的运动副的符号和表示 b.再机构运动简图中,应标出各运动副的位置机与运动有关的尺寸c.正确地选择和使用比例尺2.5自由度:机构的的自由度是机构所具有的独立运动的数目。

2.6约束:作平面运动的自由构件有3个自由度。

当它与另一构件组成运动副后,构件间的直接接触使某些独立运动受到限制,自由度减少。

这种对独立运动所加的限制称为约束。

2.7 复合铰链:定义--两个以上的机构在同一处以转动副相连接的运动副称为复合铰链。

处理方法—由k哥构件汇成的复合铰链应包含k-1个转动副。

2.8局部自由度:定义--若机构中某些构件所具有的自由度仅与其自身的局部运动有关,并不影响其他构件的运动,则称这种自由度为局部自由度。

场合—再减小高副摩擦而将滑动摩擦变成滚动摩擦所增加的滚子数。

处理方法—可将滚子与安装滚子的构件视为一体进行计算。

或在计算公式中减去局部自由度即可。

2.9虚约束:定义—不产生实际约束效果的重复约束。

场合—a.两构件组成多个移动副且导路相互平行 b.两构件构成多个转动副且其轴线相互重合 c. 轨迹重合 d.构件中对运动不起作用的对称部分。

2.10 机构具有确定运动的条件:a.机构自有度大于0 b.原动机数=构件自由度数3.1平面四杆机构:平面连杆机构是由若干个构件用低副连接,且构件在相互平行的平面内运动的机构,又称平面低副机构。

3.2铰链四杆机构的基本类型:a.曲柄摇杆机构b.双曲柄机构c.双摇杆机构3.3曲柄存在的条件:a.最短杆为连架杆或机架b.最短杆与最长杆之和小于或等于其他两杆长度之和。

3.3铰链四杆机构3种基本形形式的判别依据:(1)当铰链四杆机构满足杆才长条件时:最短杆为连架杆—曲柄摇杆机构。

最短杆为机架时—双曲柄机构。

最短杆为连杆—双摇杆机构(2)当铰链四杆机构不满足杆长条件—双摇杆机构。

3.4急回特性:当原动件作匀速定轴转动,从动件相对机架作往复运动时,从动件正反两个行程的平均速度不相等的现象。

K=180+@/180-@3.5压力角:不计摩擦力,惯性力和重力时。

通过连杆作用于从动件上的力与力作用点绝对速度间所夹的锐角。

3.6最小传动位置:当以曲柄为原动件时。

机构的最小传动角出现在曲柄与机架两次共线的位置之一处。

3.7:死点:机构在运动过程中,当从动件传动角为0.驱动力与从动件受力点的运动方向垂直。

其有效分力等于0,这时机构不能运动,陈此位置为死点位置。

4.1凸轮机构组成:凸轮:具有曲线轮廓或凹槽的构件。

从动件:被凸轮直接推动的构件。

机架。

4.2.凸轮机构的特点:a.可使从动件实现任意给定的运动规律 b.结构简单,紧凑工作可靠 c. 高副接触容易磨损 d. 加工复杂e从动件行程不宜过大,否则是凸轮变的笨重。

4.3基圆半径:以凸轮轴心为圆心,以其轮廓最小向径为半斤的圆称为机缘。

偏心距:凸轮回转中心与从动件导路间的偏置距离。

行程h:在推程或回程中从动件的最大位移。

推程运动角:与从动件推程相对应的凸轮转角。

远修止角:与从动件远休程相对应的凸轮转角。

回程运动角:与从动件回程相对应的凸轮转角。

近休止角:与动件近休程相对应的凸轮转角。

4.4 从动件的运动规律;从动件子啊推程或回程时,其位移s,速度v和加速度a随时间t的变换规律。

4.5反转法:将凸轮机构绕凸轮轴线按-w 的方向转过原来突轮所转的@脚,则相当于凸轮静止不动,而导路和从动件以其绕凸轮反方向转了@角,而从动件按已选定的运动规律相对于导路移动。

这样从动件尖端的运动轨迹就是凸轮的轮廓曲线。

5.1棘轮机构的组成,分类,场合:组成—棘轮,棘爪,机架。

分类—齿式棘轮和摩擦式棘轮。

场合—适用于转速不高,转角不大及小功率场合。

5.2棘轮机构的工作原理,实用场合:棘轮机构用于将原动件往复摆动转换为棘轮的单向间歇转动,其结构简单,制作方便,运动可靠,且棘轮的转角可以根据要求进行调整。

它可以实现间歇送进,制动,传位,分度和超离合器等工作要求,但是机构传力小,工作有冲击和噪声。

5.3.槽轮机构运动特点,实用场合:槽轮机构用于将运动件销轮的连续转动转化为槽轮的单向间歇运动,其结构简单,能准确控制转角,机械效率高。

为避免槽轮再运动开始和终止时产生刚性冲击,应注意掌握原动机上的圆销能顺利而平稳的进入和脱离槽轮的径向槽的几何条件。

锁止弧的配合关系,转角不能调节。

5.4槽轮机构的组成,分类,场合:组成—径向槽的槽轮,带有圆销的拨盘和机架。

分类—外齿合槽轮机构,内齿合槽轮机构。

场合—中速。

第二部分:绪论 1.机构:用来传递运动和力的、有一个构件为机架的、用构件间能够相对运动的连接方式组成的构件系统称为机构。

2.一般机器包含四个基本组成部分:动力部分、传动部分、控制部分、执行部分。

3.机构与机器的区别在于:机构只是一个构件系统,而机器除构件系统以外,还包含电气、液压等其他装置,机构只用于传递运动和力,而机器除传递运动和力外,还具有变换或传递能量、物料、信息的功能。

但是,在研究构件的运动和受力情况,机器与机构并无差别。

所以,习惯上用“机械”一词作为机器和机构的总称。

4.机械设计是指规划和设计实现预期功能的新机械或改进原有的机械的性能。

5.设计机械应满足的基本要求是:安全、可靠耐用、经济、符合环保条件。

6.机械设计包刮以下主要内容:确定机械的工作原理,选择适宜的机构;拟定方案;进行运动分析和动力分析,计算作用在各构件上的载荷;进行零部件工作能力计算、总体设计和结构设计。

第一章1.1.平面机构:所有构件都在相互平行的平面内运动的机构称为平面机构,否则称为空间机构1.2.自由度:构件相对于参考系的独立运动称为自由度。

1.3.两构件直接接触并能产生一定相对运动的连接称为运动副。

1.4低副(面接触):两构件通过面接触组成的运动副称为低副。

平面机构中的低副有转动副和移动副。

1.5转动副:若组成运动副的两构件只能在平面内相对转动,这种运动副称为转动副,或称为铰链。

1.6移动副:若组成运动副的两个构件只能沿某一轴线相对移动,这种运动副称为移动副。

1.7.高副(线点接触):两构件通过点或线接触组成的运动副称为高副。

1.8这种表明机构间相对运动关系的简化图形称为机构运动简图。

1.9机构中的构件可分为三类:固定构件(机架)、原动件(主动件)、从动件。

1.10固定构件:用来支撑活动构件(运动构件)的构件。

1.11.原动件:运动规律已知的活动构件。

它的运动时由外界输入的,故称为输入构件。

活塞就是原动件。

1.12从动件:机构中随原动件运动而运动的其余活动构件。

1.13自由度计算公式:F=3n(可移动构件)—2PL(L为下标)(低副)—PH(H为下标)(高副) 1.14复合铰链:两个以上构件同时在一处用转动副相连接就构成复合铰链。

1.15.局部自由度:机构中常出现一种与输出构件运动无关的自由度,称为局部自由度(或称为多余自由度),在计算机机构自由度时应予排除。

1.16 .虚约束:这种重复而对机构不起限制作用的约束称为虚约束或消极约束。

1.17.平面机构中的虚约束常出现在下列场合:两构件之间组成多个导路平行的移动副时,只有一个移动副起作用,其余都是虚约束、两个构件之间组成多个轴线重和的转动副时,只有一个转动副起作用,其余都是虚约束、机构中传递运动不起独立作用的对称部分。

1.18.瞬心:在任一瞬时,其相对运动可看作是绕某一重合点的转动,该重和点称为速度瞬心或瞬时回转中心,简称瞬心。

瞬心是该两个刚体上绝对速度相同的重和点(简称同速点) 1.19.如果这两个刚体都是运动的,则其瞬心称为相对瞬心;如果两刚体之一是静止的,则瞬心称为绝对瞬心。

1.20瞬心数N=k(k-1)/2.第二章 2.1.平面连杆机构:由若干构件用低副(转动副、移动副)连接组成平面机构,又称平面低副机构。

2.2.连杆机构的缺点是:不易精确实现复杂的运动规律,且设计较为复杂;当构件和运动副数多时,效率较低。

2.3.铰链四杆机构:全部用转动副相连的平面四杆机构称为平面铰链四杆机构,简称铰链四杆机构。

2.4.铰链四杆机构分为三种基本型式:曲柄摇杆机构、双曲柄机构和双摇杆机构。

2.5.铰链四杆机构有整转副的条件是最短杆与最长杆长度之和小于或等于其余两杆之和 2.6.整转副是由最短杆与其邻边组成的。

2.7.取最短杆为机架时,机架上有两个整转副,故得双曲柄机构。

2.8.取最短杆的邻边为机架时,机架上只有一个整转副,故得曲柄摇杆机架。

2.9.取最短杆的对边为机架时,机架上没有整转副,故得双摇杆机构。

这种具有整转副而没有曲柄的铰链四杆机构常用作电风扇的摇头机构。

2.10.K(急回运动特性)=(180°+θ)/(180°-θ),,θ为极为夹角。

2.11.机构的这种传动角为零的位置称为死点位置。

死点位置会使机构的从传动件出现卡死或运动不确定现象。

为了消除死点位置的不良影响,可以对从动曲柄施加外力,或利用飞轮及构件自身的惯性作用,使机构通过死点位置。

第三章 3.1凸轮机构主要有凸轮,从动件,和机架三个基本构件组成。

相关文档
最新文档