(完整版)高中物理磁场部分难题专练(非常好)

合集下载

高中物理选修1-1磁场练习题较难带答案

高中物理选修1-1磁场练习题较难带答案

高中物理磁场一.选择题(共30小题)1.如图所示,矩形线圈abcd处在一个很大的匀强磁场中,电流以恒定大小沿abcda方向通过线圈,磁场的感线方向与线圈的中心轴OO′垂直.线圈只在磁场对电流的安培的作用下绕轴OO′转动,当线圈的角速度最小时()A.通过线圈的磁通量最小,线圈所受的安培力矩最大B.通过线圈的磁通量最大,线圈所受的安培力矩最小C.通过线圈的磁通量最小,线圈所受的安培力矩最小D.通过线圈的磁通量最大,线圈所受的安培力矩最大2.如图所示的天平可用来测定磁感应强度,天平的右臂下面挂有一个矩形线圈,宽为L,共N匝,线圈的下部悬在匀强磁场中,磁场方向垂直于纸面。

当线圈中通有电流I(方向如图)时,在天平左、右两边加上质量各为m1、m2的砝码,天平平衡。

当电流反向(大小不变)时,左边再加上质量为m的砝码后,天平重新平衡。

由上可知()A.磁感应强度的方向垂直纸面向里,大小为B.磁感应强度的方向垂直纸面向外,大小为C.磁感应强度的方向垂直纸面向外,大小为D.磁感应强度的方向垂直纸面向里,大小为3.关于磁感应强度,下列说法正确的是()A.根据B=可知,在磁场中某确定位置,磁感应强度与磁场力成正比,与电流和导线长度的乘积成反比B.一小段通电直导线放在磁感应强度为零的位置上,它受到的磁场力一定等于零C.一小段通电直导线在空间某处不受磁场力作用,那么该处的磁感应强度一定为零D.磁场中某处的磁感应强度的方向,跟电流在该处所受磁场力的方向相同4.如图所示,将一根质量0.3kg长为0.3m的通有电流大小1A的直导线置于固定光滑斜面上,斜面倾角为θ=53°导线所在位置有方向始终垂直导线的磁场,磁感应强度大小随时间变化的规律为B=(2+2t)T(0≤t≤4s)(g=10m/s2,sin53°=0.8),则()A.t=0s时,导线可能处于平衡状态B.t=3s时,导线不可能处于平衡状态C.若导线静止,则其对斜面的最大压力为3.6N D.若导线静止,导线对斜面的最小压力为1.2N5.如图所示,空间有一垂直纸面的磁感应强度为0.5T的匀强磁场,一质量为0.2kg且足够长的绝缘木板静止在光滑水平面上,在木板左端无初速放置一质量为0.1kg、电荷量q=+0.2C的滑块,滑块与绝缘木板之间动摩擦因数为0.5,滑块受到的最大静摩擦力可认为等于滑动摩擦力。

高中物理磁场大题(超全)(完整资料).doc

高中物理磁场大题(超全)(完整资料).doc

【最新整理,下载后即可编辑】高中物理磁场大题一.解答题(共30小题)1.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y 轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连续发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘时刻经的影响).已知t=0时刻进入两板间的带电粒子恰好在t、B为已知量.(不考虑粒极板边缘射入磁场.上述m、q、l、t子间相互影响及返回板间的情况)的大小.(1)求电压U(2)求t时进入两板间的带电粒子在磁场中做圆周运动的半径.(3)何时射入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.2.如图所示,在xOy 平面内,0<x <2L 的区域内有一方向竖直向上的匀强电场,2L <x <3L 的区域内有一方向竖直向下的匀强电场,两电场强度大小相等.x >3L 的区域内有一方向垂直于xOy 平面向外的匀强磁场.某时刻,一带正电的粒子从坐标原点以沿x 轴正方向的初速度v 0进入电场;之后的另一时刻,一带负电粒子以同样的初速度从坐标原点进入电场.正、负粒子从电场进入磁场时速度方向与电场和磁场边界的夹角分别为60°和30°,两粒子在磁场中分别运动半周后在某点相遇.已经两粒子的重力以及两粒子之间的相互作用都可忽略不计,两粒子带电量大小相等.求:(1)正、负粒子的质量之比m 1:m 2;(2)两粒子相遇的位置P 点的坐标;(3)两粒子先后进入电场的时间差.3.如图所示,相距为R 的两块平行金属板M 、N 正对着放置,s 1、s 2分别为M 、N 板上的小孔,s 1、s 2、O 三点共线,它们的连线垂直M 、N ,且s 2O=R .以O 为圆心、R 为半径的圆形区域内存在磁感应强度为B、方向垂直纸面向外的匀强磁场.D为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板.质量为m、带电量为+q的粒子,经s 1进入M、N间的电场后,通过s2进入磁场.粒子在s1处的速度和粒子所受的重力均不计.(1)当M、N间的电压为U时,求粒子进入磁场时速度的大小υ;(2)若粒子恰好打在收集板D的中点上,求M、N间的电压值U;(3)当M、N间的电压不同时,粒子从s1到打在D上经历的时间t会不同,求t的最小值.4.如图所示,直角坐标系xoy位于竖直平面内,在‑m≤x≤0的区域内有磁感应强度大小B=4.0×10﹣4T、方向垂直于纸面向里的条形匀强磁场,其左边界与x轴交于P点;在x>0的区域内有电场强度大小E=4N/C、方向沿y轴正方向的条形匀强电场,其宽度d=2m.一质量m=6.4×10﹣27kg、电荷量q=﹣3.2×10‑19C 的带电粒子从P点以速度v=4×104m/s,沿与x轴正方向成α=60°角射入磁场,经电场偏转最终通过x轴上的Q点(图中未标出),不计粒子重力.求:(1)带电粒子在磁场中运动时间;(2)当电场左边界与y轴重合时Q点的横坐标;(3)若只改变上述电场强度的大小,要求带电粒子仍能通过Q 点,讨论此电场左边界的横坐标x′与电场强度的大小E′的函数关系.5.如图所示,两平行金属板AB中间有互相垂直的匀强电场和匀强磁场.A板带正电荷,B板带等量负电荷,电场强度为E;.平行金属板右侧有一磁场方向垂直纸面向里,磁感应强度为B1挡板M,中间有小孔O′,OO′是平行于两金属板的中心线.挡.CD为磁板右侧有垂直纸面向外的匀强磁场,磁场应强度为B2边界上的一绝缘板,它与M板的夹角θ=45°,O′C=a,场B2现有大量质量均为m,含有各种不同电荷量、不同速度的带电粒子(不计重力),自O点沿OO′方向进入电磁场区域,其中有些粒子沿直线OO′方向运动,并进入匀强磁场B中,求:2(1)进入匀强磁场B的带电粒子的速度;2(2)能击中绝缘板CD的粒子中,所带电荷量的最大值;(3)绝缘板CD上被带电粒子击中区域的长度.6.在平面直角坐标系xoy中,第I象限存在沿y轴负方向的匀强电场,第IV象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m,电荷量为q的带正电的粒子从y轴正半垂直于y轴射入电场,经x轴上的N点与轴上的M点以速度vx轴正方向成45°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计粒子重力,求:;(1)M、N两点间的电势差UMN(2)粒子在磁场中运动的轨道半径r;(3)粒子从M点运动到P点的总时间t.7.如图所示的平行板器件中,存在相互垂直的匀强磁场和匀强=0.40T,方向垂直纸面向里,电场强电场,磁场的磁感应强度B1度E=2.0×105V/m,PQ为板间中线.紧靠平行板右侧边缘xOy 坐标系的第一象限内,有垂直纸面向外的匀强磁场,磁感应强度=0.25T,磁场边界AO和y轴的夹角∠AOy=45°.一束带电量B2q=8.0×10﹣19C的正离子从P点射入平行板间,沿中线PQ做直线运动,穿出平行板后从y轴上坐标为(0,0.2m)的Q点垂直y轴射入磁场区,离子通过x轴时的速度方向与x轴正方向夹角在45°~90°之间.则:(1)离子运动的速度为多大?(2)离子的质量应在什么范围内?(3)现只改变AOy区域内磁场的磁感应强度大小,使离子都不应满足什么条件?能打到x轴上,磁感应强度大小B28.如图所示,在空间中存在垂直纸面向里的匀强磁场,其竖直边界AB、CD的宽度为d,在边界AB左侧是竖直向下、场强为E的匀强电场.现有质量为m、带电量为+q的粒子(不计重力)的水平初速度射入电场,随后与边界AB成从P点以大小为v45°射入磁场.若粒子能垂直CD边界飞出磁场,穿过小孔进入如图所示两竖直平行金属板间的匀强电场中减速至零且不碰到正极板.(1)请画出粒子上述过程中的运动轨迹,并求出粒子进入磁场时的速度大小v;(2)求匀强磁场的磁感应强度B;(3)求金属板间的电压U的最小值.9.如图甲,真空中竖直放置两块相距为d的平行金属板P、Q,的周期性变化的电压,在Q板右两板间加上如图乙最大值为U侧某个区域内存在磁感应强度大小为B、方向垂直于纸面向里的有界匀强磁场.在紧靠P 板处有一粒子源A ,自t=0开始连续释放初速不计的粒子,经一段时间从Q 板小孔O 射入磁场,然后射出磁场,射出时所有粒子的速度方向均竖直向上.已知电场变化周期T=,粒子质量为m ,电荷量为+q ,不计粒子重力及相互间的作用力.求:(1)t=0时刻释放的粒子在P 、Q 间运动的时间;(2)粒子射入磁场时的最大速率和最小速率;(3)有界磁场区域的最小面积.10.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的半径为L ,电势为φ1,内圆弧面CD 的半径为,电势为φ2.足够长的收集板MN 平行边界ACDB ,O 到MN 板的距离OP=L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子引力的影响.(1)求粒子到达O点时速度的大小;(2)如图2所示,在边界ACDB和收集板MN之间加一个半圆形匀强磁场,圆心为O,半径为L,方向垂直纸面向内,则发现从AB圆弧面收集到的粒子经O点进入磁场后有能打到MN板上(不考虑过边界ACDB的粒子再次返回),求所加磁感应强度的大小;(3)同上问,从AB圆弧面收集到的粒子经O点进入磁场后均不能到达收集板MN,求磁感应强度所满足的条件.试写出定量反映收集板MN上的收集效率η与磁感应强度B的关系的相关式子.11.如图,静止于A处的离子,经电压为U的加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN进入矩形区域的有界匀强电场,电场方向水平向左.静电分析器通道内有均匀,方向如图所示;辐向分布的电场,已知圆弧所在处场强为E离子质量为m、电荷量为q;=2d、=3d,离子重力不计.(1)求圆弧虚线对应的半径R的大小;(2)若离子恰好能打在NQ的中点上,求矩形区域QNCD内匀强电场场强E的值;(3)若撤去矩形区域QNCD内的匀强电场,换为垂直纸面向里的匀强磁场,要求离子能最终打在QN上,求磁场磁感应强度B 的取值范围.12.如图甲所示,一对平行金属板M、N长为L,相距为d,O1O为中轴线.当两板间加电压UMN =U时,两板间为匀强电场,忽略两极板外的电场.某种带负电的粒子从O1点以速度v沿O1O方向射入电场,粒子恰好打在上极板M的中点,粒子重力忽略不计.(1)求带电粒子的比荷;(2)若MN间加如图乙所示的交变电压,其周期,从t=0开始,前内UMN =2U,后内UMN=﹣U,大量的上述粒子仍然以速度v0沿O1O方向持续射入电场,最终所有粒子刚好能全部离开电场而不打在极板上,求U的值;(3)紧贴板右侧建立xOy坐标系,在xOy坐标第I、IV象限某区域内存在一个圆形的匀强磁场区域,磁场方向垂直于xOy坐标平面,要使在(2)问情景下所有粒子经过磁场偏转后都会聚于坐标为(2d,2d)的P点,求磁感应强度B的大小范围.13.如图所示,在第一、二象限存在场强均为E的匀强电场,其中第一象限的匀强电场的方向沿x轴正方向,第二象限的电场方向沿x轴负方向.在第三、四象限矩形区域ABCD内存在垂直于纸面向外的匀强磁场,矩形区域的AB边与x轴重合.M点是第一象限中无限靠近y轴的一点,在M点有一质量为m、电荷量为e的质子,以初速度v沿y轴负方向开始运动,恰好从N点进入磁场,若OM=2ON,不计质子的重力,试求:(1)N点横坐标d;(2)若质子经过磁场最后能无限靠近M点,则矩形区域的最小面积是多少;(3)在(2)的前提下,该质子由M点出发返回到无限靠近M 点所需的时间.14.如图所示,在xOy平面直角坐标系中,直线MN与y轴成30°角,P点的坐标为(,0),在y轴与直线MN之间的区域内,存在垂直于xOy平面向外、磁感应强度为B的匀强磁场.在直角坐标系xOy的第Ⅳ象限区域内存在沿y轴,正方向、大小为的匀强电场,在x=3a处垂直于x轴放置一平面荧从y轴上0≤y 光屏,与x轴交点为Q,电子束以相同的速度v≤2a的区间垂直于y轴和磁场方向射入磁场.已知从y=2a点射入的电子在磁场中轨迹恰好经过O点,忽略电子间的相互作用,不计电子的重力.求:(1)电子的比荷;(2)电子离开磁场垂直y轴进入电场的位置的范围;(3)从y轴哪个位置进入电场的电子打到荧光屏上距Q点的距离最远?最远距离为多少?15.如图(a )所示,水平放置的平行金属板A 、B 间加直流电压U ,A 板正上方有“V”字型足够长的绝缘弹性挡板.在挡板间加垂直纸面的交变磁场,磁感应强度随时间变化如图(b ),垂直纸面向里为磁场正方向,其中B 1=B ,B 2未知.现有一比荷为、不计重力的带正电粒子从C 点静止释放,t=0时刻,粒子刚好从小孔O 进入上方磁场中,在 t 1时刻粒子第一次撞到左挡板,紧接着在t 1+t 2时刻粒子撞到右挡板,然后粒子又从O 点竖直向下返回平行金属板间.粒子与挡板碰撞前后电量不变,沿板的分速度不变,垂直板的分速度大小不变、方向相反,不计碰撞的时间及磁场变化产生的感应影响.求:(1)粒子第一次到达O 点时的速率;(2)图中B的大小;2(3)金属板A和B间的距离d.16.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y 轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响).时,刻经极板边缘已知t=0时刻进入两板间的带电粒子恰好在t射入磁场.上述m、q、l、t、B为已知量.(不考虑粒子间相互影响及返回板间的情况)的大小.(1)求电压U(2)求t时刻进入两板间的带电粒子在磁场中做圆周运动的半径.(3)带电粒子在磁场中的运动时间.17.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场由加了电压的相距为d 的两块水平平行放置的导体板形成,如图甲所示.大量电子(其重力不计)由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t 0,当在两板间加如图乙所示的周期为2t 0、幅值恒为U 0的电压时,所有电子均从两板间通过,然后进入水平宽度为l ,竖直宽度足够大的匀强磁场中,最后通过匀强磁场打在竖直放置的荧光屏上.问:(1)电子在刚穿出两板之间时的最大侧向位移与最小侧向位移之比为多少?(2)要使侧向位移最大的电子能垂直打在荧光屏上,匀强磁场的磁感应强度为多少?(3)在满足第(2)问的情况下,打在荧光屏上的电子束的宽度为多少?(已知电子的质量为m 、电荷量为e )18.如图所示xOy 平面内,在x 轴上从电离室产生的带正电的粒子,以几乎为零的初速度飘入电势差为U=200V 的加速电场中,然后经过右侧极板上的小孔沿x 轴进入到另一匀强电场区域,该电场区域范围为﹣l≤x≤0(l=4cm),电场强度大小为E=×104V/m,方向沿y轴正方向.带电粒子经过y轴后,将进入一与y轴相切的圆形边界匀强磁场区域,磁场区域圆半径为r=2cm,圆心C到x轴的距离为d=4cm,磁场磁感应强度为B=8×10﹣2T,方向垂直xoy平面向外.带电粒子最终垂直打在与y轴平行、到y轴距离为L=6cm的接收屏上.求:(1)带电粒子通过y轴时离x轴的距离;(2)带电粒子的比荷;(3)若另一种带电粒子从电离室产生后,最终打在接收屏上y=cm处,则该粒子的比荷又是多少?19.如图所示,在竖直平面内,虚线MO与水平线PQ相交于O,二者夹角θ=30°,在MOP范围内存在竖直向下的匀强电场,电场强度为E,MOQ上方的某个区域有垂直纸面向里的匀强磁场,磁感应强度为B,O点处在磁场的边界上,现有一群质量为m、电量为+q的带电粒子在纸面内以速度v(0≤v≤)垂直于MO 从O点射入磁场,所有粒子通过直线MO时,速度方向均平行于PQ向左,不计粒子的重力和粒子间的相互作用力.求:(1)速度最大的粒子在磁场中的运动时间;(2)速度最大的粒子打在水平线POQ上的位置离O点的距离;(3)磁场区域的最小面积.20.如图所示为某一仪器的部分原理示意图,虚线OA、OB关于y轴对称,∠AOB=90°,OA、OB将xOy平面分为Ⅰ、Ⅱ、Ⅲ三个区域,区域Ⅰ、Ⅲ内存在水平方向的匀强电场,电场强度大小相等、方向相反.质量为m电荷量为q的带电粒子自x轴上的粒子源P处以速度v0沿y轴正方向射出,经时间t到达OA 上的M点,且此时速度与OA垂直.已知M到原点O的距离OM=L,不计粒子的重力.求:(1)匀强电场的电场强度E的大小;(2)为使粒子能从M点经Ⅱ区域通过OB上的N点,M、N点关于y轴对称,可在区域Ⅱ内加一垂直xOy平面的匀强磁场,求该磁场的磁感应强度的最小值和粒子经过区域Ⅲ到达x轴上Q 点的横坐标;(3)当匀强磁场的磁感应强度取(2)问中的最小值时,且该磁场仅分布在一个圆形区域内.由于某种原因的影响,粒子经过M 点时的速度并不严格与OA垂直,成散射状,散射角为θ,但速度大小均相同,如图所示,求所有粒子经过OB时的区域长度.21.在xoy平面直角坐标系的第Ⅰ象限有射线OA,OA与x轴正方向夹角为30°,如图所示,OA与y轴所夹区域存在y轴负方向的匀强电场,其它区域存在垂直坐标平面向外的匀强磁场;有一带正电粒子质量m,电量q,从y轴上的P点沿着x轴正方向以大小为v的初速度射入电场,运动一段时间沿垂直于OA方向经过Q点进入磁场,经磁场偏转,过y轴正半轴上的M点再次垂直进入匀强电场.已知OP=h,不计粒子的重力.(1)求粒子垂直射线OA经过Q点的速度v;Q(2)求匀强电场的电场强度E与匀强磁场的磁感应强度B的比值;(3)粒子从M点垂直进入电场后,如果适当改变电场强度,可以使粒子再次垂直OA进入磁场,再适当改变磁场的强弱,可以使粒子再次从y轴正方向上某点垂直进入电场;如此不断改变电场和磁场,会使粒子每次都能从y轴正方向上某点垂直进入电场,再垂直OA方向进入磁场…,求粒子从P点开始经多长时间能够运动到O点?22.如图所示,图面内有竖直线DD′,过DD′且垂直于图面的平面将空间分成Ⅰ、Ⅱ两区域.区域I有方向竖直向上的匀强电场和方向垂直图面的匀强磁场B(图中未画出);区域Ⅱ有固定在水平面上高h=2l、倾角α=的光滑绝缘斜面,斜面顶端与直线DD′距离s=4l,区域Ⅱ可加竖直方向的大小不同的匀强电场(图中未画出);C点在DD′上,距地面高H=3l.零时刻,=、方质量为m、带电荷量为q的小球P在K点具有大小v向与水平面夹角θ=的速度,在区域I内做半径r=的匀速圆周运动,经CD水平进入区域Ⅱ.某时刻,不带电的绝缘小球A 由斜面顶端静止释放,在某处与刚运动到斜面的小球P相遇.小球视为质点,不计空气阻力及小球P所带电量对空间电磁场的影响.l已知,g为重力加速度.(1)求匀强磁场的磁感应强度B的大小;;(2)若小球A、P在斜面底端相遇,求释放小球A的时刻tA (3)若小球A、P在时刻t=β(β为常数)相遇于斜面某处,求此情况下区域Ⅱ的匀强电场的场强E,并讨论场强E的极大值和极小值及相应的方向.23.如图,在x轴上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外;在x轴下方存在匀强电场,电场方向与xOy 平面平行,且与x轴成45°夹角.一质量为m、电荷量为q(q从y轴上P点沿y轴正方向射出,一段时>0)的粒子以速度v间后进入电场,进入电场时的速度方向与电场方向相反;又经过,磁场方向变为垂直纸面向里,大小不变,不计重力.一段时间T(1)求粒子从P点出发至第一次到达x轴时所需的时间;(2)若要使粒子能够回到P点,求电场强度的最大值.24.一半径为R的薄圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的中心轴线平行,筒的横截面如图所示.图中直径MN的两端分别开有小孔,筒可绕其中心轴线转动,圆筒的转动方向和角速度大小可以通过控制装置改变.一不计重力的负电粒的角速度子从小孔M沿着MN方向射入磁场,当筒以大小为ω转过90°时,该粒子恰好从某一小孔飞出圆筒.(1)若粒子在筒内未与筒壁发生碰撞,求该粒子的荷质比和速率分别是多大?(2)若粒子速率不变,入射方向在该截面内且与MN方向成30°角,则要让粒子与圆筒无碰撞地离开圆筒,圆筒角速度应为多大?25.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数μ=0.3,OB部分光滑.另一小物块a.放在车的最左=4m/s的速度向右匀速运动,车撞到固定挡板端,和车一起以v后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求:(1)物块a与b碰后的速度大小;(2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.26.如图所示,在光滑的水平面上有一长为L的木板B,上表面粗糙,在其左端有一光滑的圆弧槽C,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B、C静止在水平面上.现有滑块A以初速V0从右端滑上B,并以V滑离B,恰好能到达C的最高点.A、B、C的质量均为m,试求:(1)木板B上表面的动摩擦因素μ;(2)圆弧槽C的半径R;(3)当A滑离C时,C的速度.27.如图所示,一质量M=0.4kg的小物块B在足够长的光滑水平台面上静止不动,其右侧固定有一轻质水平弹簧(处于原长).台面的右边平滑对接有一等高的水平传送带,传送带始终以υ=1m/s的速率逆时针转动.另一质量m=0.1kg的小物块A以速度υ=4m/s水平滑上传送带的右端.已知物块A与传送带之间的动摩擦因数μ=0.1,传送带左右两端的距离l=3.5m,滑块A、B 均视为质点,忽略空气阻力,取g=10m/s2.(1)求物块A第一次到达传送带左端时速度大小;;(2)求物块A第一次压缩弹簧过程中弹簧的最大弹性势能Epm (3)物块A会不会第二次压缩弹簧?28.历史上美国宇航局曾经完成了用“深度撞击”号探测器释放的撞击器“击中”坦普尔1号彗星的实验.探测器上所携带的重达370kg的彗星“撞击器”将以1.0×104m/s的速度径直撞向彗星的彗核部分,撞击彗星后“撞击器”融化消失,这次撞击使该彗星自身的运行速度出现1.0×10﹣7m/s的改变.已知普朗克常量h=6.6×10﹣34J•s.(计算结果保留两位有效数字).求:①撞击前彗星“撞击器”对应物质波波长;②根据题中相关信息数据估算出彗星的质量.29.如图,ABD为竖直平面内的轨道,其中AB段是水平粗糙的、BD段为半径R=0.4m的半圆光滑轨道,两段轨道相切于B点.小沿水平轨道向右运动,与静止在B点的小球甲从C点以速度υ球乙发生弹性碰撞.已知甲、乙两球的质量均为m ,小球甲与AB 段的动摩擦因数为μ=0.5,C 、B 距离L=1.6m ,g 取10m/s 2.(水平轨道足够长,甲、乙两球可视为质点)(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D ,求乙在轨道上的首次落点到B 点的距离;(2)在满足(1)的条件下,求的甲的速度υ0;(3)若甲仍以速度υ0向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B 点的距离范围.30.动量定理可以表示为△p=F △t ,其中动量p 和力F 都是矢量.在运用动量定理处理二维问题时,可以在相互垂直的x 、y 两个方向上分别研究.例如,质量为m 的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小都是υ,如图所示.碰撞过程中忽略小球所受重力.a .分别求出碰撞前后x 、y 方向小球的动量变化△p x 、△p y ;b .分析说明小球对木板的作用力的方向.参考答案与试题解析一.解答题(共30小题)1.(2017•吉林模拟)如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连续发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t0时刻经极板边缘射入磁场.上述m、q、l、t、B为已知量.(不考虑粒子间相互影响及返回板间的情况)(1)求电压U的大小.(2)求t时进入两板间的带电粒子在磁场中做圆周运动的半径.(3)何时射入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.【解答】解:(1)t=0时刻进入两极板的带电粒子在电场中做匀变速曲线运动,t 0时刻刚好从极板边缘射出,则有 y=l ,x=l ,电场强度:E=…①,由牛顿第二定律得:Eq=ma…②,偏移量:y=at 02…③由①②③解得:U 0=…④.(2)t 0时刻进入两极板的带电粒子,前t 0时间在电场中偏转,后t 0时间两极板没有电场,带电粒子做匀速直线运动.带电粒子沿x 轴方向的分速度大小为:v x =v 0=…⑤带电粒子离开电场时沿y 轴负方向的分速度大小为:v y =a•t 0 …⑥带电粒子离开电场时的速度大小为:v=…⑦设带电粒子离开电场进入磁场做匀速圆周运动的半径为R , 由牛顿第二定律得:qvB=m…⑧, 由③⑤⑥⑦⑧解得:R=…⑨;(3)在t=2t 0时刻进入两极板的带电粒子,在电场中做类平抛运动的时间最长,飞出极板时速度方向与磁场边界的夹角最小,。

高考物理带电粒子在磁场中的运动及其解题技巧及练习题(含答案)及解析

高考物理带电粒子在磁场中的运动及其解题技巧及练习题(含答案)及解析

高考物理带电粒子在磁场中的运动及其解题技巧及练习题(含答案)及解析一、带电粒子在磁场中的运动专项训练1.如图所示,一匀强磁场磁感应强度为B;方向向里,其边界是半径为R的圆,AB为圆的一直径.在A点有一粒子源向圆平面内的各个方向发射质量m、电量-q的粒子,粒子重力不计.(1)有一带电粒子以的速度垂直磁场进入圆形区域,恰从B点射出.求此粒子在磁场中运动的时间.(2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子沿半径方向射入磁场,经过2次碰撞后回到A点,则该粒子的速度为多大?(3)若R=3cm、B=0.2T,在A点的粒子源向圆平面内的各个方向发射速度均为3×105m/s、比荷为108C/kg的粒子.试用阴影图画出粒子在磁场中能到达的区域,并求出该区域的面积(结果保留2位有效数字).【答案】(1)(2)(3)【解析】【分析】(1)根据洛伦兹力提供向心力,求出粒子的半径,通过几何关系得出圆弧所对应的圆心角,根据周期公式,结合t=T求出粒子在磁场中运动的时间.(2)粒子径向射入磁场,必定径向反弹,作出粒子的轨迹图,通过几何关系求出粒子的半径,从而通过半径公式求出粒子的速度.(3)根据粒子的半径公式求出粒子的轨道半径,作出粒子轨迹所能到达的部分,根据几何关系求出面积.【详解】(1)由得r1=2R粒子的运动轨迹如图所示,则α=因为周期.运动时间.(2)粒子运动情况如图所示,β=.r2=R tanβ=R由得(3)粒子的轨道半径r3==1.5cm粒子到达的区域为图中的阴影部分区域面积为S=πr32+2×π(2r3)2−r32=9.0×10-4m2【点睛】本题考查了带电粒子在磁场中的运动问题,需掌握粒子的半径公式和周期公式,并能画出粒子运动的轨迹图,结合几何关系求解.该题对数学几何能力要求较高,需加强这方面的训练.2.如图所示,在长度足够长、宽度d=5cm的区域MNPQ内,有垂直纸面向里的水平匀强磁场,磁感应强度B=0.33T.水平边界MN上方存在范围足够大的竖直向上的匀强电场,电场强度E=200N/C.现有大量质量m=6.6×10﹣27kg、电荷量q=3.2×10﹣19C的带负电的粒子,同时从边界PQ上的O点沿纸面向各个方向射入磁场,射入时的速度大小均为V=1.6×106m/s,不计粒子的重力和粒子间的相互作用.求:(1)求带电粒子在磁场中运动的半径r;(2)求与x 轴负方向成60°角射入的粒子在电场中运动的时间t ;(3)当从MN 边界上最左边射出的粒子离开磁场时,求仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围,并写出此时这些粒子所在位置构成的图形的曲线方程. 【答案】(1)r=0.1m (2)43.310t s -=⨯ (3)3060~ 曲线方程为222x y R +=(30.1,0.1R m m x m =≤≤) 【解析】 【分析】 【详解】(1)洛伦兹力充当向心力,根据牛顿第二定律可得2v qvB m r=,解得0.1r m =(2)粒子的运动轨迹如图甲所示,由几何关系可知,在磁场中运动的圆心角为30°,粒子平行于场强方向进入电场,粒子在电场中运动的加速度qE a m= 粒子在电场中运动的时间2v t a= 解得43.310t s -=⨯(3)如图乙所示,由几何关系可知,从MN 边界上最左边射出的粒子在磁场中运动的圆心角为60°,圆心角小于60°的粒子已经从磁场中射出,此时刻仍在磁场中的粒子运动轨迹的圆心角均为60°,则仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围为30°~60° 所有粒子此时分别在以O 点为圆心,弦长0.1m 为半径的圆周上,曲线方程为22x y R += 30.1,0.120R m m x m ⎛⎫=≤≤ ⎪ ⎪⎝⎭【点睛】带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径3.如图所示,同轴圆形区域内、外半径分别为R1=1 m、R2=3m,半径为R1的圆内分布着B1=2.0 T的匀强磁场,方向垂直于纸面向外;外面环形磁场区域分布着B2=0.5 T的匀强磁场,方向垂直于纸面向内.一对平行极板竖直放置,极板间距d=3cm,右极板与环形磁场外边界相切,一带正电的粒子从平行极板左板P点由静止释放,经加速后通过右板小孔Q,垂直进入环形磁场区域.已知点P、Q、O在同一水平线上,粒子比荷4×107C/kg,不计粒子的重力,且不考虑粒子的相对论效应.求:(1) 要使粒子不能进入中间的圆形磁场区域,粒子在磁场中的轨道半径满足什么条件?(2) 若改变加速电压大小,可使粒子进入圆形磁场区域,且能竖直通过圆心O,则加速电压为多大?(3) 从P点出发开始计时,在满足第(2)问的条件下,粒子到达O点的时刻.【答案】(1) r1<1m. (2) U=3×107V. (3) t=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…)【解析】【分析】(1)画出粒子恰好不进入中间磁场区的临界轨迹,先根据几何关系求出半径;(2)画出使粒子进入圆形磁场区域,且能竖直通过圆心O的轨迹,结合几何关系求解半径,然后根据洛伦兹力提供向心力列方程,再根据动能定理对直线加速过程列方程,最后联立方程组求解加速电压;(3)由几何关系,得到轨迹对应的圆心角,求解粒子从Q孔进入磁场到第一次到O点所用的时间,然后考虑周期性求解粒子到达O点的时刻.【详解】(1) 粒子刚好不进入中间磁场时轨迹如图所示,设此时粒子在磁场中运动的半径为r1,在Rt△QOO1中有r12+R22=(r1+R1)2代入数据解得r1=1m粒子不能进入中间磁场,所以轨道半径r1<1m.(2) 轨迹如图所示,由于O、O3、Q共线且水平,粒子在两磁场中的半径分别为r2、r3,洛伦兹力不做功,故粒子在内外磁场的速率不变,由qvB=m2 v r得r=mvqB易知r3=4r2且满足(r2+r3)2=(R2-r2)2+r32解得r2=34m,r3=3m又由动能定理有qU=12mv2代入数据解得U=3×107V.(3)带电粒子从P到Q的运动时间为t1,则t1满足12v t1=d得t1=10-9s令∠QO2O3=θ,所以cosθ=0.8,θ=37°(反三角函数表达亦可)圆周运动的周期T=2mqBπ故粒子从Q孔进入磁场到第一次到O点所用的时间为8221372180532610360360m mt sqB qBππ-⨯⨯⨯-=+=考虑到周期性运动,t总=t1+t2+k(2t1+2t2)=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…).4.如图所示,半径r=0.06m的半圆形无场区的圆心在坐标原点O处,半径R=0.1m,磁感应强度大小B=0.075T的圆形有界磁场区的圆心坐标为(0,0.08m),平行金属板MN的极板长L=0.3m、间距d=0.1m,极板间所加电压U=6.4x102V,其中N极板收集到的粒子全部中和吸收.一位于O处的粒子源向第一、二象限均匀地发射速度为v的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x轴正方向,已知粒子在磁场中的运动半径R0=0.08m,若粒子重力不计、比荷q m=108C/kg、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6.(1)求粒子的发射速度v的大小;(2)若粒子在O点入射方向与x轴负方向夹角为37°,求它打出磁场时的坐标:(3)N板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s;(2)(0,0.18m);(3)29%【解析】【详解】(1)由洛伦兹力充当向心力,即qvB=m2vR可得:v=6×105m/s;(2)若粒子在O点入射方向与x轴负方向夹角为37°,作出速度方向的垂线与y轴交于一点Q,根据几何关系可得PQ=0.0637cos=0.08m,即Q为轨迹圆心的位置;Q到圆上y轴最高点的距离为0.18m-0.0637sin=0.08m,故粒子刚好从圆上y轴最高点离开;故它打出磁场时的坐标为(0,0.18m);(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:y=12at2…①a=qEm=qUmd…②t=Lv …③由①②③解得:y=0.08m设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα可知tanα=43,即α=53°比例η=53180×100%=29%5.在如图所示的xoy坐标系中,一对间距为d的平行薄金属板竖直固定于绝缘底座上,底座置于光滑水平桌面的中间,极板右边与y轴重合,桌面与x轴重合,o点与桌面右边相距为74d,一根长度也为d的光滑绝缘细杆水平穿过右极板上的小孔后固定在左极板上,杆离桌面高为1.5d,装置的总质量为3m.两板外存在垂直纸面向外、磁感应强度为B的匀强磁场和匀强电场(图中未画出),假设极板内、外的电磁场互不影响且不考虑边缘效应.有一个质量为m、电量为+q的小环(可视为质点)套在杆的左端,给极板充电,使板内有沿x正方向的稳恒电场时,释放小环,让其由静止向右滑动,离开小孔后便做匀速圆周运动,重力加速度取g.求:(1)环离开小孔时的坐标值;(2)板外的场强E2的大小和方向;(3)讨论板内场强E1的取值范围,确定环打在桌面上的范围.【答案】(1)环离开小孔时的坐标值是-14 d;(2)板外的场强E2的大小为mgq,方向沿y轴正方向;68m m44【解析】【详解】(1)设在环离开小孔之前,环和底座各自移动的位移为x1、x2.由于板内小环与极板间的作用力是它们的内力,系统动量守恒,取向右为正方向,根据动量守恒定律,有:mx1-3mx2=0 ①而x1+x2=d ②①②解得:x1=34d③x2=1 4 d环离开小孔时的坐标值为:x m=34d-d=-14d(2)环离开小孔后便做匀速圆周运动,须qE2=mg解得:2mgEq=,方向沿y轴正方向(3)环打在桌面上的范围可画得如图所示,临界点为P、Q,则若环绕小圆运动,则R=0.75d ④根据洛仑兹力提供向心力,有:2v qvB mR=⑤环在极板内做匀加速运动,设离开小孔时的速度为v,根据动能定理,有:qE1x1=12mv2⑥联立③④⑤⑥解得:2 138qB d Em=若环绕大圆运动,则R2=(R-1.5d)2+(2d)2 解得:R=0.48d ⑦联立③⑤⑥⑦解得:2 16qB d Em≈68m m446.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2gkB(3)2222232(,)28g k B L L k B g -【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-7.如图,第一象限内存在沿y 轴负方向的匀强电场,电场强度大小为E ,第二、三、四象限存在方向垂直xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为B ,第三、四象限磁感应强度大小相等,一带正电的粒子,从P (-d ,0)点沿与x 轴正方向成α=60°角平行xOy 平面入射,经第二象限后恰好由y 轴上的Q 点(图中未画出)垂直y 轴进入第一象限,之后经第四、三象限重新回到P 点,回到P 点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)3EB(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 2360d d dr sin sin α===︒ 根据200mv qv B r =得023qBdv =粒子在第一象限中做类平抛运动,则有21602qE r cos t m -︒=(); 00y v qEt tan v mv α==联立解得03Ev B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2y v y t =得03222y v y tan x v α=== 由几何知识可得 y=r-rcosα= 1323r d = 则得23x d =所以粒子在第三、四象限圆周运动的半径为1253239d d R d sin α⎛⎫+ ⎪⎝⎭==粒子进入第三、四象限运动的速度00432v qBdv v cos α===根据2'v qvB m R=得:B′=2.4B考点:带电粒子在电场及磁场中的运动8.如图所示,平面直角坐标系xoy 的第二、三象限内有方向沿y 轴正向的匀强电场,第一、四象限内有圆形有界磁场,有界磁场的半径为当22L ,磁扬场的方向垂直于坐标平面向里,磁场边界与y 轴相切于O 点,在x 轴上坐标为(-L ,0)的P 点沿与x 轴正向成θ=45°方向射出一个速度大小为v 0的带电粒子,粒子的质量为m ,电荷量为q ,粒子经电场偏转垂直y 轴射出电场,粒子进人磁场后经磁场偏转以沿y 轴负方向的速度射出磁场,不计粒子的重力.求(1)粒子从y轴上射出电场的位置坐标;(2)匀强电场电场强度大小及匀强磁场的磁感应强度大小;(3)粒子从P点射出到出磁场运动的时间为多少?【答案】(1)(0,12L)(2)22mvEqL=022mvBqL=(3)002(1)L Ltvπ+=【解析】【分析】(1)粒子在电场中的运动为类平抛运动的逆过程,应用类平抛运动规律可以求出粒子出射位置坐标.(2)应用牛顿第二定律求出粒子在电场中的加速度,应用位移公式求出电场强度;粒子在磁场中做圆周运动,应用牛顿第二定律可以求出磁感应强度.(3)根据粒子运动过程,求出粒子在各阶段的运动时间,然后求出总的运动时间.【详解】(1)粒子在电场中的运动为类平抛运动的逆运动,水平方向:L=v0cosθ•t1,竖直方向:y=12v0sinθ•t1,解得:y=12 L,粒子从y轴上射出电场的位置为:(0,12 L);(2)粒子在电场中的加速度:a=qEm,竖直分位移:y=12a t12,解得:22mvEqL =;粒子进入磁场后做匀速圆周运动,粒子以沿y轴负方向的速度射出磁场,粒子运动轨迹运动轨迹如图所示,由几何知识得:AC 与竖直方向夹角为45°, 2y=22L , 因此AAC 刚好为有界磁场边界圆的直径,粒子在磁场中做圆周运动的轨道半径:r=L ,粒子在磁场中做圆周运动,由牛顿第二定律得:qvB=m 2v r,其中,粒子的速度:v=v 0cosθ,解得:02mv B =; (3)粒子在电场中的运动时间:1002L Lt v cos v θ==, 粒子离开电场进入磁场前做匀速直线运动,位移:2122x L L =-, 粒子做运动直线运动的时间:20(22)2x L t v v ==, 粒子在磁场中做圆周运动的时间:301122442m Lt T qB v ππ==⨯=, 粒子总的运动时间:t=t 1+t 2+t 3=)00212L Lv v π++; 【点睛】本题考查了带电粒子在磁场中运动的临界问题,粒子在磁场中的运动运用洛伦兹力提供向心力结合几何关系求解,类平抛运动运用运动的合成和分解牛顿第二定律结合运动学公式求解,解题关键是要作出临界的轨迹图,正确运用数学几何关系,分析好从电场射入磁场衔接点的速度大小和方向,运用粒子在磁场中转过的圆心角,结合周期公式,求解粒子在磁场中运动的时间.9.如图所示,x 轴的上方存在方向与x 轴成45角的匀强电场,电场强度为E ,x 轴的下方存在垂直纸面向里的匀强磁场,磁感应强度0.5.B T =有一个质量1110m kg -=,电荷量710q C -=的带正电粒子,该粒子的初速度30210/v m s =⨯,从坐标原点O 沿与x 轴成45角的方向进入匀强磁场,经过磁场和电场的作用,粒子从O 点出发后第四次经过x 轴时刚好又回到O 点处,设电场和磁场的区域足够宽,不计粒子重力,求:①带电粒子第一次经过x 轴时的横坐标是多少?②电场强度E 的大小及带电粒子从O 点出发到再次回到O 点所用的时间.【答案】①带电粒子第一次经过x 轴时的横坐标是0.57m ;②电场强度E 的大小为3110/V m ⨯,带电粒子从O 点出发到再次回到O 点所用的时间为32.110.s -⨯【解析】 【分析】(1)粒子在磁场中受洛伦兹力作用下做一段圆弧后第一次经过x 轴,根据洛伦兹力提供向心力公式求出半径,再根据几何关系求出坐标;(2)然后进入电场中,恰好做匀减速运动直到速度为零后又返回,以相同速率再次进入磁场仍在洛伦兹力作用下又做一段圆弧后,再次进入电场正好做类平抛运动.粒子在磁场中两次运动刚好完成一个周期,由粒子在电场中的类平抛运动,根据垂直电场方向位移与速度关系,沿电场方向位移与时间关系,结合牛顿第二定律求出E ,三个过程的总时间即为总时间. 【详解】①粒子在磁场中受磁场力的作用沿圆弧运动,洛仑兹力提供向心力,2v qvB m R=,半径0.4mvR m Bq==, 根据圆的对称性可得粒子在磁场中第一次偏转所对的圆心角为90, 则第一次经过x 轴时的横坐标为120.420.57x R m m =≈②第一次进入电场,运动方向与电场方向相反,做匀减速直线运动,速度减为零后又反向加速返回磁场,在磁场中沿圆周运动,再次进入电场时速度方向刚好垂直电场方向,在电场力的作用下偏转,打在坐标原点O 处,其运动轨迹如图所示.由几何关系可得,第二次进入电场中的位移为22R , 在垂直电场方向的位移11s vt =, 运动时间4112410s R t s v v-===⨯ 在沿电场方向上的位移22112s at =, 又因22s R = 得722212110/s a m s t ==⨯ 根据牛顿第二定律Eq a m= 所以电场强度3110/maE V m q==⨯ 粒子从第一次进入电场到再返回磁场的时间422410vt s a-==⨯, 粒子在磁场中两段运动的时间之和刚好是做一个完整圆周运动的周期42410mT s Bqππ-==⨯ 所以粒子从出发到再回到原点的时间为312 2.110t t t T s -=++≈⨯【点睛】本题考查带电粒子在电场、磁场中两运动模型:匀速圆周运动与类平抛运动,及相关的综合分析能力,以及空间想像的能力,应用数学知识解决物理问题的能力.10.如图(a)所示,在空间有一坐标系xoy ,直线OP 与x 轴正方向的夹角为30°,第一象限内有两个方向都垂直纸面向外的匀强磁场区域Ⅰ和Ⅱ,直线OP 是它们的边界,OP 上方区域Ⅰ中磁场的磁感应强度为B ,一质量为m ,电荷量为+q 的质子(不计重力及质子对磁场的影响)以速度v 从O 点沿与OP 成30°角的方向垂直磁场进入区域Ⅰ,质子先后通过磁场区域Ⅰ和Ⅱ后,恰好垂直于x 轴进入第四象限,第四象限存在沿-x 轴方向的特殊电场,电场强度E的大小与横坐标x的关系如图(b)所示,试求:(1)区域Ⅱ中磁场的磁感应强度大小;(2)质子再次到达y轴时的速度大小和方向。

高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)及解析

高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)及解析
量为四电荷量为 q 的带负电粒子从坐标(L,3L/2)处以初速度 v0 沿 x 轴负方向射入电场,射
出电场时通过坐标(0,L)点,不计粒子重力.
(1)求电场强度大小 E; (2)为使粒子进入磁场后途经坐标原点 0 到达坐标(-L,0)点,求匀强磁场的磁感应强度大小 B; (3)求第(2)问中粒子从进入磁场到坐标(-L,0)点所用的时间.
Q 两点之间的距离为 L ,飞出电场后从 M 点进入圆形区域,不考虑电子所受的重力。 2
(1)求 0≤x≤L 区域内电场强度 E 的大小和电子从 M 点进入圆形区域时的速度 vM; (2)若圆形区域内加一个垂直于纸面向外的匀强磁场,使电子穿出圆形区域时速度方向垂 直于 x 轴,求所加磁场磁感应强度 B 的大小和电子在圆形区域内运动的时间 t; (3)若在电子从 M 点进入磁场区域时,取 t=0,在圆形区域内加如图乙所示变化的磁场 (以垂直于纸面向外为正方向),最后电子从 N 点飞出,速度方向与进入圆形磁场时方向 相同,请写出磁场变化周期 T 满足的关系表达式。
1 4
T0
T 2
2 m 又 T0 eB0
则 T 的表达式为T mL (n=1,2,3,…)。 2n 2emU
3.如图所示,一匀强磁场磁感应强度为 B;方向向里,其边界是半径为 R 的圆,AB 为圆 的一直径.在 A 点有一粒子源向圆平面内的各个方向发射质量 m、电量-q 的粒子,粒子重力 不计.
R,圆弧对应的圆心角为
2
.则有
x2
2R2 ,此时满足
L 2n 1 x2
联立可得:
R2
2n
L
1
2
由牛顿第二定律,洛伦兹力提供向心力,则有: qvB2
m
v2 R2
得:

高考物理带电粒子在磁场中的运动专项训练100(附答案)含解析

高考物理带电粒子在磁场中的运动专项训练100(附答案)含解析

高考物理带电粒子在磁场中的运动专项训练100(附答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,在两块水平金属极板间加有电 压U 构成偏转电场,一束比荷为510/qC kg m=的带正电的粒子流(重力不计),以速度v o =104m/s 沿 水平方向从金属极板正中间射入两板.粒子经电 场偏转后进入一具有理想边界的半圆形变化磁场 区域,O 为圆心,区域直径AB 长度为L =1m , AB 与水平方向成45°角.区域内有按如图所示规 律作周期性变化的磁场,已知B 0=0. 5T ,磁场方向 以垂直于纸面向外为正.粒子经偏转电场后,恰好从下极板边缘O 点与水平方向成45°斜向下射入磁场.求:(1)两金属极板间的电压U 是多大?(2)若T o =0.5s ,求t =0s 时刻射人磁场的带电粒子在磁场中运动的时间t 和离开磁场的位置.(3)要使所有带电粒子通过O 点后的运动过程中 不再从AB 两点间越过,求出磁场的变化周期B o ,T o 应满足的条件.【答案】(1)100V (2)t=5210s π-⨯,射出点在AB 间离O 点0.042m (3)5010s 3T π-<⨯【解析】试题分析:(1)粒子在电场中做类平抛运动,从O 点射出使速度代入数据得U=100V (2)粒子在磁场中经过半周从OB 中穿出,粒子在磁场中运动时间射出点在AB 间离O 点(3)粒子运动周期,粒子在t=0、….时刻射入时,粒子最可能从AB 间射出如图,由几何关系可得临界时 要不从AB 边界射出,应满足得考点:本题考查带电粒子在磁场中的运动2.如图所示,虚线MN 沿竖直方向,其左侧区域内有匀强电场(图中未画出)和方向垂直纸面向里,磁感应强度为B 的匀强磁场,虚线MN 的右侧区域有方向水平向右的匀强电场.水平线段AP 与MN 相交于O 点.在A 点有一质量为m ,电量为+q 的带电质点,以大小为v 0的速度在左侧区域垂直磁场方向射入,恰好在左侧区域内做匀速圆周运动,已知A 与O 点间的距离为03mv qB ,虚线MN 右侧电场强度为3mgq,重力加速度为g .求:(1)MN 左侧区域内电场强度的大小和方向;(2)带电质点在A 点的入射方向与AO 间的夹角为多大时,质点在磁场中刚好运动到O 点,并画出带电质点在磁场中运动的轨迹;(3)带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度的大小v p .【答案】(1)mgq,方向竖直向上;(2);(3013v .【解析】 【详解】(1)质点在左侧区域受重力、电场力和洛伦兹力作用,根据质点做匀速圆周运动可得:重力和电场力等大反向,洛伦兹力做向心力;所以,电场力qE =mg ,方向竖直向上; 所以MN 左侧区域内电场强度mgE q左=,方向竖直向上; (2)质点在左侧区域做匀速圆周运动,洛伦兹力做向心力,故有:200mv Bv q R=,所以轨道半径0mv R qB=; 质点经过A 、O 两点,故质点在左侧区域做匀速圆周运动的圆心在AO 的垂直平分线上,且质点从A 运动到O 的过程O 点为最右侧;所以,粒子从A 到O 的运动轨迹为劣弧; 又有033AO mv d R qB==;根据几何关系可得:带电质点在A 点的入射方向与AO 间的夹角1260AOd arcsin Rθ==︒; 根据左手定则可得:质点做逆时针圆周运动,故带电质点在磁场中运动的轨迹如图所示:;(3)根据质点在左侧做匀速圆周运动,由几何关系可得:质点在O 点的竖直分速度003602y v v sin v =︒=,水平分速度001602x v v cos v =︒=; 质点从O 运动到P 的过程受重力和电场力作用,故水平、竖直方向都做匀变速运动; 质点运动到P 点,故竖直位移为零,所以运动时间023y v v t g==所以质点在P 点的竖直分速度03yP y v v ==, 水平分速度000317322xP x v qE v v t v g v m =+==; 所以带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度22013P yP xP v v v v =+=;3.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)含解析

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)含解析

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。

y 轴右侧存在一个匀强电场,方向沿y 轴正方向,电场区域宽度l =0.1m 。

现从坐标为(﹣0.2m ,﹣0.2m )的P 点发射出质量m =2.0×10﹣9kg 、带电荷量q =5.0×10﹣5C 的带正电粒子,沿y 轴正方向射入匀强磁场,速度大小v 0=5.0×103m/s (粒子重力不计)。

(1)带电粒子从坐标为(0.1m ,0.05m )的点射出电场,求该电场强度;(2)为了使该带电粒子能从坐标为(0.1m ,﹣0.05m )的点回到电场,可在紧邻电场的右侧区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和方向。

【答案】(1)1.0×104N/C (2)4T ,方向垂直纸面向外【解析】【详解】解:(1)带正电粒子在磁场中做匀速圆周运动,根据洛伦兹力提供向心力有:200v qv B m r= 可得:r =0.20m =R根据几何关系可以知道,带电粒子恰从O 点沿x 轴进入电场,带电粒子做类平抛运动,设粒子到达电场边缘时,竖直方向的位移为y 根据类平抛规律可得:2012l v t y at ==, 根据牛顿第二定律可得:Eq ma =联立可得:41.010E =⨯N/C(2)粒子飞离电场时,沿电场方向速度:30 5.010y qE l v at m v ===⨯m/s=0v 粒子射出电场时速度:02=v v根据几何关系可知,粒子在B '区域磁场中做圆周运动半径:2r y '=根据洛伦兹力提供向心力可得: 2v qvB m r '='联立可得所加匀强磁场的磁感应强度大小:4mv B qr '=='T 根据左手定则可知所加磁场方向垂直纸面向外。

高中物理磁场练习题(含解析)

高中物理磁场练习题(含解析)
C.法拉第提出了“电场”的概念,并制造出第一台电动机
D.库仑通过与万有引力类比,在实验的基础上验证得出库仑定律
4.电磁炮是利用电磁系统中电磁场产生的安培力来对金属炮弹进行加速,使其达到打击目标所需的巨大动能,如图甲所示。原理图可简化为如图乙所示,其中金属杆表示炮弹,磁场方向垂直轨道平面向上,则当弹体中通过如图乙所示的电流时,炮弹加速度的方向为( )
高中物理磁场练习题
学校:___________姓名:___________班级:___________
一、单选题
1.假设一个力单独作用的效果跟某几个力共同作用的效果相同,这个力就叫作那几个力的合力,以下概念的建立方法与合力相同的是( )
A.瞬时速度B.交流电的有效值
C.电场强度D.磁通量
2.如图所示,匀强磁场方向垂直纸面向里,匀强电场方向竖直向下,有一正离子恰能沿直线从左向右水平飞越此区域。不计重力,则( )
16.“用霍尔元件测量磁场”的实验中,把载流子为带负电的电子e的霍尔元件接入电路如图,电流为I,方向向左,长方体霍尔元件长宽高分别为 、 、 ,处于竖直向上的恒定匀强磁场中。
(1)前后极板M、N,电势较高的是___________。(选填“M板”或“N板”)
(2)某同学在实验时,改变电流的大小,记录了不同电流下对应的 值,如下表
14.如图所示,面积为10m2的正方形导线框处于磁感应强度为 的匀强磁场中。在线框平面以ad边为轴转过180°的过程中,线圈中________感应电流产生(选填“有”或“无”),整个过程中,磁通量变化量为________Wb。
四、实验题
15.奥斯特研究电和磁的关系的实验中,通电导线附近的小磁针发生偏转的原因是______ 实验时为使小磁针发生明显偏转,通电前导线应放置在其上方,并与小磁针保持______ 选填“垂直”、“平行”、“任意角度” .元电荷的电量是______C.

word完整版本高中物理磁场经典练习习题题型分类含答案,文档

word完整版本高中物理磁场经典练习习题题型分类含答案,文档

寒假磁场题组练习题组一1.如下图,在xOy平面内,y≥0的地区有垂直于xOy平面向里的匀强磁场,磁感觉强度为B,一质量为m、带电量大小为q的粒子从原点O沿与x轴正方向成60°角方向以v0射入,粒子的重力不计,求带电粒子在磁场中运动的时间和带电粒子走开磁场时的地点。

2.如下图,abcd是一个正方形的盒子,在cd边的中点有一小孔e,盒子中存在着沿ad方向的匀强电场,场强盛小为E,一粒子源不停地从a处的小孔沿ab方向向盒内发射同样的带电粒子,粒子的初速度为v0,经电场作用后恰巧从e处的小孔射出,现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感觉强度大小为B(图中未画出),粒子仍恰巧从e孔射出。

(带电粒子的重力和粒子之间的互相作用均可忽视不计)1)所加的磁场的方向怎样?2)电场强度E与磁感觉强度B的比值为多大?题组二a bv0E d e c4.如下图的坐标平面内,在y轴的左边存在垂直纸面向外、磁感觉强度大小B1=T的匀强磁场,在y轴的右边存在垂直纸面向里、宽度d=2m=10×-8kg、电量q=10×-4m的匀强磁场B。

某时辰一质量C的带电微粒(重力可忽视不计),从x轴上坐标为(m,0)的P点以速度v=×103m/s沿y轴正方向运动。

试求:1)微粒在y轴的左边磁场中运动的轨道半径;2)微粒第一次经过y轴时速度方向与y轴正方向的夹角;3)要使微粒不可以从右边磁场界限飞出,B2应知足的条件。

5.图中左边有一对平行金属板,两板相距为d,电压为U;两板之间有匀强磁场,磁场应强度大小为B0,方向平行于板面并垂直于纸面朝里。

图中右边有一边长为a的正三角形地区EFG(EF边与金属板垂直),在此地区内及其界限上也有匀强磁场,磁感觉强度大小为B,方向垂直于纸面朝里。

假定一系列电荷量为q的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的地区,并经EF边中点H射入磁场地区。

高中物理:磁场练习及答案(解析版)

高中物理:磁场练习及答案(解析版)

高中物理:磁场练习及答案一、选择题1、如图所示,空间的某一区域存在着相互垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由A点进入这个区域沿直线运动,从C点离开区域;如果将磁场撤去,其他条件不变,则粒子从B点离开场区;如果将电场撤去,其他条件不变,则这个粒子从D点离开场区。

已知BC=CD,设粒子在上述三种情况下,从A到B、从A到C和从A到D所用的时间分别是t1,t2和t3,离开三点时的动能分别是Ek1、Ek2、Ek3,粒子重力忽略不计,以下关系式正确的是 ( )A.t1=t2<t3B.t1<t2=t3C.Ek1=Ek2<Ek3D.Ek1>Ek2=Ek32、(多选)下列说法正确的是()A.磁场中某点的磁感应强度可以这样测定:把一小段通电导线放在该点时,受到的磁场力F与该导线的长度L、通过的电流I的乘积的比值B=FIL,即磁场中某点的磁感应强度B.通电导线在某点不受磁场力的作用,则该点的磁感应强度一定为零C.磁感应强度B=FIL只是定义式,它的大小取决于场源及磁场中的位置,与F、I、L以及通电导线在磁场中的方向无关D.磁场是客观存在的3、如图所示,用三条细线悬挂的水平圆形线圈共有n匝,线圈由粗细均匀、单位长度质量为2.5 g的导线绕制而成,三条细线呈对称分布,稳定时线圈平面水平,在线圈正下方放有一个圆柱形条形磁铁,磁铁的中轴线OO′垂直于线圈平面且通过其圆心O,测得线圈的导线所在处磁感应强度大小为0.5 T,方向与竖直线成30°角,要使三条细线上的张力为零,线圈中通过的电流至少为(g取10 m/s2)()A.0.1 A B.0.2 A C.0.05 A D.0.01 A4、(多选)光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20 cm的两段光滑圆弧导轨相接,一根质量m=60 g、电阻R=1 Ω、长为L 的导体棒ab,用长也为L的绝缘细线悬挂,如图所示,系统空间有竖直方向的匀强磁场,磁感应强度B=0.5 T,当闭合开关S后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成θ=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin 53°=0.8,g取10 m/s2则()A.磁场方向一定竖直向下B.电源电动势E=3.0 VC.导体棒在摆动过程中所受安培力F=3 ND.导体棒在摆动过程中电源提供的电能为0.048 J5、(多选)一质量为m、电荷量为q的负电荷在磁感应强度为B的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是()A.4qBm B.3qBm C.2qBm D.qBm6、如图所示,正六边形abcdef区域内有垂直于纸面的匀强磁场.一带正电的粒子从f点沿fd 方向射入磁场区域,当速度大小为v b时,从b点离开磁场,在磁场中运动的时间为t b;当速度大小为v c时,从c点离开磁场,在磁场中运动的时间为t c.不计粒子重力.则()A.v b∶v c=1∶2,t b∶t c=2∶1B.v b∶v c=2∶1,t b∶t c=1∶2C.v b∶v c=2∶1,t b∶t c=2∶1D.v b∶v c=1∶2,t b∶t c=1∶27、速度相同的一束粒子由左端射入质谱仪后分成甲、乙两束,其运动轨迹如图所示,其中S0A=23S0C,则下列说法中正确的是()A.甲束粒子带正电,乙束粒子带负电B.甲束粒子的比荷大于乙束粒子的比荷C.能通过狭缝S0的带电粒子的速率等于E B2D.若甲、乙两束粒子的电荷量相等,则甲、乙两束粒子的质量比为3∶2*8、关于磁感线的描述,下列说法中正确的是()A.磁感线可以形象地描述各点磁场的强弱和方向,它每一点的切线方向都和小磁针放在该点静止时北极所指的方向一致B.磁感线可以用细铁屑来显示,因而是真实存在的C.两条磁感线的空隙处一定不存在磁场D.两个磁场叠加的区域,磁感线就可能相交*9、如图所示,在同一平面内互相绝缘的三根无限长直导线ab、cd、ef围成一个等边三角形,三根导线通过的电流大小相等,方向如图所示,O为等边三角形的中心,M、N分别为O关于导线ab、cd的对称点.已知三根导线中的电流形成的合磁场在O点的磁感应强度大小为B1,在M点的磁感应强度大小为B2,若撤去导线ef,而ab、cd中电流不变,则此时N点的磁感应强度大小为()A.B1+B2B.B1-B2C.B1+B22D.B1-B2210、在如图所示的平行板器件中,电场强度E和磁感应强度B相互垂直。

高中物理:磁场练习及答案(解析版)

高中物理:磁场练习及答案(解析版)

高中物理:磁场练习及答案一、选择题1、如图所示,空间的某一区域存在着相互垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由A点进入这个区域沿直线运动,从C点离开区域;如果将磁场撤去,其他条件不变,则粒子从B点离开场区;如果将电场撤去,其他条件不变,则这个粒子从D点离开场区。

已知BC=CD,设粒子在上述三种情况下,从A到B、从A到C和从A到D所用的时间分别是t1,t2和t3,离开三点时的动能分别是Ek1、Ek2、Ek3,粒子重力忽略不计,以下关系式正确的是 ( )A.t1=t2<t3B.t1<t2=t3C.Ek1=Ek2<Ek3D.Ek1>Ek2=Ek32、(多选)下列说法正确的是()A.磁场中某点的磁感应强度可以这样测定:把一小段通电导线放在该点时,受到的磁场力F与该导线的长度L、通过的电流I的乘积的比值B=FIL,即磁场中某点的磁感应强度B.通电导线在某点不受磁场力的作用,则该点的磁感应强度一定为零C.磁感应强度B=FIL只是定义式,它的大小取决于场源及磁场中的位置,与F、I、L以及通电导线在磁场中的方向无关D.磁场是客观存在的3、如图所示,用三条细线悬挂的水平圆形线圈共有n匝,线圈由粗细均匀、单位长度质量为2.5 g的导线绕制而成,三条细线呈对称分布,稳定时线圈平面水平,在线圈正下方放有一个圆柱形条形磁铁,磁铁的中轴线OO′垂直于线圈平面且通过其圆心O,测得线圈的导线所在处磁感应强度大小为0.5 T,方向与竖直线成30°角,要使三条细线上的张力为零,线圈中通过的电流至少为(g取10 m/s2)()A.0.1 A B.0.2 A C.0.05 A D.0.01 A4、(多选)光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20 cm的两段光滑圆弧导轨相接,一根质量m=60 g、电阻R=1 Ω、长为L 的导体棒ab,用长也为L的绝缘细线悬挂,如图所示,系统空间有竖直方向的匀强磁场,磁感应强度B=0.5 T,当闭合开关S后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成θ=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin 53°=0.8,g取10 m/s2则()A.磁场方向一定竖直向下B.电源电动势E=3.0 VC.导体棒在摆动过程中所受安培力F=3 ND.导体棒在摆动过程中电源提供的电能为0.048 J5、(多选)一质量为m、电荷量为q的负电荷在磁感应强度为B的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是()A.4qBm B.3qBm C.2qBm D.qBm6、如图所示,正六边形abcdef区域内有垂直于纸面的匀强磁场.一带正电的粒子从f点沿fd 方向射入磁场区域,当速度大小为v b时,从b点离开磁场,在磁场中运动的时间为t b;当速度大小为v c时,从c点离开磁场,在磁场中运动的时间为t c.不计粒子重力.则()A.v b∶v c=1∶2,t b∶t c=2∶1B.v b∶v c=2∶1,t b∶t c=1∶2C.v b∶v c=2∶1,t b∶t c=2∶1D.v b∶v c=1∶2,t b∶t c=1∶27、速度相同的一束粒子由左端射入质谱仪后分成甲、乙两束,其运动轨迹如图所示,其中S0A=23S0C,则下列说法中正确的是()A.甲束粒子带正电,乙束粒子带负电B.甲束粒子的比荷大于乙束粒子的比荷C.能通过狭缝S0的带电粒子的速率等于E B2D.若甲、乙两束粒子的电荷量相等,则甲、乙两束粒子的质量比为3∶2*8、关于磁感线的描述,下列说法中正确的是()A.磁感线可以形象地描述各点磁场的强弱和方向,它每一点的切线方向都和小磁针放在该点静止时北极所指的方向一致B.磁感线可以用细铁屑来显示,因而是真实存在的C.两条磁感线的空隙处一定不存在磁场D.两个磁场叠加的区域,磁感线就可能相交*9、如图所示,在同一平面内互相绝缘的三根无限长直导线ab、cd、ef围成一个等边三角形,三根导线通过的电流大小相等,方向如图所示,O为等边三角形的中心,M、N分别为O关于导线ab、cd的对称点.已知三根导线中的电流形成的合磁场在O点的磁感应强度大小为B1,在M点的磁感应强度大小为B2,若撤去导线ef,而ab、cd中电流不变,则此时N点的磁感应强度大小为()A.B1+B2B.B1-B2C.B1+B22D.B1-B2210、在如图所示的平行板器件中,电场强度E和磁感应强度B相互垂直。

磁场难题集锦(含答案).

磁场难题集锦(含答案).

磁场难题集锦一.解答题(共9小题)1.(2009?浙江)如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.(2)请指出这束带电微粒与x轴相交的区域,并说明理由.(3)在这束带电磁微粒初速度变为2V,那么它们与x轴相交的区域又在哪里?并说明理由.2.(2011?江苏)某种加速器的理想模型如图1所示:两块相距很近的平行小极板中间各开有一小孔a、b,两极板间电压u ab的变化图象如图2所示,电压的最大值为U0、周期为T0,在两极板外有垂直纸面向里的匀强磁场.若将一质量为m0、电荷量为q的带正电的粒子从板内a孔处静止释放,经电场加速后进入磁场,在磁场中运动时间T0后恰能再次从 a 孔进入电场加速.现该粒子的质量增加了.(粒子在两极板间的运动时间不计,两极板外无电场,不考虑粒子所受的重力)(1)若在t=0时刻将该粒子从板内a孔处静止释放,求其第二次加速后从b孔射出时的动能;(2)现在利用一根长为L的磁屏蔽管(磁屏蔽管置于磁场中时管内无磁场,忽略其对管外磁场的影响),使图1中实线轨迹(圆心为O)上运动的粒子从a孔正下方相距L处的c孔水平射出,请在答题卡图上的相应位置处画出磁屏蔽管;(3)若将电压u ab的频率提高为原来的2倍,该粒子应何时由板内a孔处静止开始加速,才能经多次加速后获得最大动能?最大动能是多少?3.如图,在区域内存在与xy平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0~180°范围内.已知沿y轴正方向发射的粒子在t=t0时刻刚好从磁场边界上点离开磁场.求:(1)粒子在磁场中做圆周运动的半径R及粒子的比荷;(2)此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;(3)从粒子发射到全部粒子离开磁场所用的时间.4.图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁感应强度大小为B0,方向平行于板面并垂直于纸面朝里.图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里.假设一系列电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域.不计重力.(1)已知这些离子中的离子甲到达磁场边界EG后,从边界EF穿出磁场,求离子甲的质量.(2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为.求离子乙的质量.(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达.5.(2006?甘肃)如图所示,在x<0与x>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向均垂直于纸面向里,且B1>B2.一个带负电荷的粒子从坐标原点O以速度v沿x轴负方向射出,要使该粒子经过一段时间后又经过O点,B1与B2的比值应满足什么条件.6.如图,空间存在匀强电场和匀强磁场,电场方向为y轴正方向,磁场方向垂直于xy平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P(x=0,y=h)点以一定的速度平行于x轴正方向入射.这时若只有磁场,粒子将做半径为R0的圆周运动:若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P点运动到x=R0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x轴交于M点,不计重力.已知h=6cm,R0=10cm,求:(1)粒子到达x=R0平面时速度方向与x轴的夹角以及粒子到x轴的距离;(2)M点的横坐标x M.7.(2007?江苏)磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源S发出质量为m、电量为q的α粒子沿垂直磁场方向进入磁感应强度为B的匀强磁场,被限束光栏Q限制在2φ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P上.(重力影响不计)(1)若能量在E~E+△E(△E>0,且△E?E)范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围△x1.(2)实际上,限束光栏有一定的宽度,α粒子将在2φ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围△x2.8.如图,在x轴下方有匀强磁场,磁感应强度大小为B,方向垂直于x y平面向外.P是y轴上距原点为h的一点,N0为x轴上距原点为a的一点.A是一块平行于x轴的挡板,与x轴的距离为,A的中点在y轴上,长度略小于.带点粒子与挡板碰撞前后,x方向的分速度不变,y方向的分速度反向、大小不变.质量为m,电荷量为q(q >0)的粒子从P点瞄准N0点入射,最后又通过P点.不计重力.求粒子入射速度的所有可能值.9.(2007?浙江)两屏幕荧光屏互相垂直放置,在两屏内分别去垂直于两屏交线的直线为x和y轴,交点O为原点,如图所示.在y>0,0<x<a的区域有垂直于纸面向内的匀强磁场,在y>0,x>a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B.在O点出有一小孔,一束质量为m、带电量为q(q>0)的粒子沿x 周经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮.入射粒子的速度可取从零到某一最大值之间的各种数值.已知速度最大的粒子在0<x<a的区域中运动的时间与在x>a的区域中运动的时间之比为2:5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中做圆周运动的周期.试求两个荧光屏上亮线的范围(不计重力的影响).磁场难题集锦参考答案与试题解析一.解答题(共9小题)1.(2009?浙江)如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.(2)请指出这束带电微粒与x轴相交的区域,并说明理由.(3)在这束带电磁微粒初速度变为2V,那么它们与x轴相交的区域又在哪里?并说明理由.考点:带电粒子在匀强磁场中的运动.专题:压轴题.分析:带电粒子沿半径方向射入匀强磁场中,做匀速圆周运动后,沿半径的方向射出.当没有沿半径方向射入时仍做匀速圆周运动,则圆心必经过入射点与出射点连线的中垂线.解答:解:本题考查带电粒子在复合场中的运动.带电粒子平行于x轴从C点进入磁场,说明带电微粒所受重力和电场力平衡.设电场强度大小为E,由mg=qE可得方向沿y轴正方向.带电微粒进入磁场后,将做圆周运动.且r=R如图(a)所示,设磁感应强度大小为B.由得方向垂直于纸面向外(2)一:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动,其圆心位于其正下方的Q点,如图b所示,这束带电微粒进入磁场后的圆心轨迹是如图b的虚线半圆,此圆的圆心是坐标原点.二:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动.如图b示,高P点与O′点的连线与y轴的夹角为θ,其圆心Q的坐标为(﹣Rsinθ,Rcosθ),圆周运动轨迹方程为(x+Rsinθ)2+(y﹣Rcosθ)2=R2得x=0 或x=﹣Rsinθ,y=0 或y=R(1+cosθ)可得带电微粒做圆周运动的轨迹与磁场边界的交点为,求,坐标为后者的点就是P点,须舍去,可见,这束带电微粒都是通过坐标原点离开磁场的.(3)带电微粒初速度大小变为2v,则从任一点P水平进入磁场的带电微粒在磁场中做匀速圆周运动的半径r′为带电微粒在磁场中经过一段半径为r′的圆弧运动后,将在y轴的右方(x>0)的区域离开磁场并做匀速直线运动,如图c所示.靠近圆磁场上边发射出来的带电微粒在恰好没有磁场力,则会射向x轴正方向的无穷远处,靠近圆磁场下边发射出来的带电微粒会在靠近原点之处穿出磁场.所以,这束带电微粒与x轴相交的区域范围是x>0.答案:(1);方向垂直于纸面向外;(2)通过坐标原点离开磁场的;(3)与x同相交的区域范围是x>0.点评:带电粒子以相同的速度方向,沿不同位置进入匀强磁场时,轨迹的圆弧长度不同,则运动的时间不同,但半径仍相同.2.(2011?江苏)某种加速器的理想模型如图1所示:两块相距很近的平行小极板中间各开有一小孔a、b,两极板间电压u ab的变化图象如图2所示,电压的最大值为U0、周期为T0,在两极板外有垂直纸面向里的匀强磁场.若将一质量为m0、电荷量为q的带正电的粒子从板内a孔处静止释放,经电场加速后进入磁场,在磁场中运动时间T0后恰能再次从 a 孔进入电场加速.现该粒子的质量增加了.(粒子在两极板间的运动时间不计,两极板外无电场,不考虑粒子所受的重力)(1)若在t=0时刻将该粒子从板内a孔处静止释放,求其第二次加速后从b孔射出时的动能;(2)现在利用一根长为L的磁屏蔽管(磁屏蔽管置于磁场中时管内无磁场,忽略其对管外磁场的影响),使图1中实线轨迹(圆心为O)上运动的粒子从a孔正下方相距L处的c孔水平射出,请在答题卡图上的相应位置处画出磁屏蔽管;(3)若将电压u ab的频率提高为原来的2倍,该粒子应何时由板内a孔处静止开始加速,才能经多次加速后获得最大动能?最大动能是多少?分析:(1)求第二次加速后从b孔射出时的动能只需知道加速时所对应的电压,故图2求电压即可.(2)加入屏蔽管后粒子在屏蔽管中做匀速直线运动,离开屏蔽管后运动轨迹与原来的运动轨迹相似,只是向下平移了l.(3)从图象可以看出,时间每改变(图象中为1),电压改变为(图象中为4),所以图象中电压分别为50,46,42,38,…10,6,2,共13个,设某时刻t,u=U0时被加速,此时刻可表示为,静止开始加速的时刻t1为,其中n=12,将n=12代入得,因为,在u>0时,粒子被加速,则最多连续被加速的次数:N=,所以只能取N=25,解得,由于电压的周期为,所以(n=0,1,2,3…)故粒子由静止开始被加速的时刻(n=0,1,2,…)故加速时的电压分别,,…,,,加速电压做的总功,即动能的最大值,故粒子的最大动能解得.解答:解:(1)质量为m0的粒子在磁场中作匀速圆周运动Bqv=,则当粒子的质量增加了m0,其周期增加△T=T0根据题图2可知,粒子第一次的加速电压u1=U0经过第二次加速,第2次加速电压u2,如图 2在三角形中,,所以粒子第二次的加速电压粒子射出时的动能E k2=qu1+qu2解得(2)因为磁屏蔽管使粒子匀速运动至以下L处,出管后仍然做圆周运动,可到C点水平射出.磁屏蔽管的位置如图1所示.粒子运动的轨迹如图3.(3)如图4(用Excel作图)设T0=100,U0=50,得到在四分之一周期内的电压随时间变化的图象从图象可以看出,时间每改变(图象中为1),电压改变为(图象中为4),所以图象中电压分别为50,46,42,38,…10,6,2,共13个,设某时刻t,u=U0时被加速,此时刻可表示为,静止开始加速的时刻t1为,其中n=12,将n=12代入得,因为,在u>0时,粒子被加速,则最多连续被加速的次数:N=,得N=25.所以只能取N=25,解得,由于电压的周期为,所以(n=0,1,2,3…)故粒子由静止开始被加速的时刻(n=0,1,2,…)故加速时的电压分别,,…,,,加速电压做的总功,即动能的最大值,故粒子的最大动能解得.3.如图,在区域内存在与xy平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0~180°范围内.已知沿y轴正方向发射的粒子在t=t0时刻刚好从磁场边界上点离开磁场.求:(1)粒子在磁场中做圆周运动的半径R及粒子的比荷;(2)此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;(3)从粒子发射到全部粒子离开磁场所用的时间.解答:解:(1)初速度与y轴方向平行的粒子在磁场中的运动轨迹如图1中的弧OP所示,其圆心为C.由几何关系可知,∠POC=30°;△OCP为等腰三角形故∠OCP=①此粒子飞出磁场所用的时间为t0=②式中T为粒子做圆周运动的周期.设粒子运动速度的大小为v,半径为R,由几何关系可得R= a ③由洛仑兹力公式和牛顿第二定律有qvB=m④T=⑤联立②③④⑤解得⑥(2)仍在磁场中的粒子其圆心角一定大于120°,这样粒子角度最小时从磁场右边界穿出;角度最大时从磁场左边界穿出.依题意,同一时刻仍在磁场内的粒子到O点距离相同.在t0时刻仍在磁场中的粒子应位于以O点为圆心、OP为半径的弧上.如图所示.设此时位于P、M、N三点的粒子的初速度分别为v P、v M、v N.由对称性可知v P与OP、v M与OM、v N与ON的夹角均为.设v M、v N与y轴正向的夹角分别为θM、θN,由几何关系有⑦⑧对于所有此时仍在磁场中的粒子,其初速度与y轴正方向所成的夹角θ应满足≤θ≤(3)在磁场中飞行时间最长的粒子的运动轨迹应与磁场右边界相切,其轨迹如图2所示.由几何关系可知:OM=OP由对称性可知ME=OP由图可知,圆的圆心角为240°,从粒子发射到全部粒子飞出磁场所用的时间2t0;4.图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁感应强度大小为B0,方向平行于板面并垂直于纸面朝里.图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里.假设一系列电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域.不计重力.(1)已知这些离子中的离子甲到达磁场边界EG后,从边界EF穿出磁场,求离子甲的质量.(2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为.求离子乙的质量.(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达.解答:解:(1)粒子进入正交的电磁场做匀速直线运动,设粒子的速度为v,电场的场强为E0,根据平衡条件得E0q=B0qv①②由①②化简得③粒子甲垂直边界EF进入磁场,又垂直边界EF穿出磁场,则轨迹圆心在EF上.粒子运动中经过EG,说明圆轨迹与EG相切,在如图的三角形中半径为R=acos30°tan15°④⑤连立④⑤化简得⑥在磁场中粒子所需向心力由洛仑兹力提供,根据牛顿第二定律得⑦连立③⑦化简得⑧(2)由于I点将EG边按1比3等分,根据三角形的性质说明此轨迹的弦与EG垂直,在如图的三角形中,有⑨同理⑩(3)最轻离子的质量是甲的一半,根据半径公式离子的轨迹半径与离子质量成正比,所以质量在甲和最轻离子之间的所有离子都垂直边界EF穿出磁场,甲最远离H的距离为,最轻离子最近离H的距离为,所以在离H的距离为到之间的 E F边界上有离子穿出磁场.比甲质量大的离子都从EG穿出磁场,其中甲运动中经过EG上的点最近,质量最大的乙穿出磁场的1位置是最远点,所以在EG上穿出磁场的离子都在这两点之间.5.(2006?甘肃)如图所示,在x<0与x>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向均垂直于纸面向里,且B1>B2.一个带负电荷的粒子从坐标原点O以速度v沿x轴负方向射出,要使该粒子经过一段时间后又经过O点,B1与B2的比值应满足什么条件.解答:解:根据牛顿第二定律得化简得①②如右图是粒子在一个周期的运动,则粒子在一个周期内经过y负半轴的点在y负半轴下移2(R2﹣R1),在第n次经过y负半轴时应下移2R1,则有2n(R2﹣R1)=2R1③连立①②③化简得,n=1,2,3,…6.如图,空间存在匀强电场和匀强磁场,电场方向为y轴正方向,磁场方向垂直于xy平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P(x=0,y=h)点以一定的速度平行于x轴正方向入射.这时若只有磁场,粒子将做半径为R0的圆周运动:若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P点运动到x=R0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x轴交于M点,不计重力.已知h=6cm,R0=10cm,求:(1)粒子到达x=R0平面时速度方向与x轴的夹角以及粒子到x轴的距离;(2)M点的横坐标x M.解答:解:(1)做直线运动有:qE=qBv0①做圆周运动有:qBv0=m②只有电场时,粒子做类平抛运动,有:qE=ma ③R0=v0t ④v y=at ⑤从③④⑤解得⑥,从①得E=Bv0⑦,从②式得⑧,将⑦、⑧代入⑥得:v y=v0粒子速度大小为:v==v0速度方向与x轴夹角为:θ=粒子与x轴的距离为:H=h+at2=h+代入数据得H=11cm.(2)撤电场加上磁场后,有:qBv=m解得:R=R0,代入数据得R=14cm.粒子运动轨迹如图所示,圆心C位于与速度v方向垂直的直线上,该直线与x轴和y轴的夹角均为,由几何关系得C点坐标为:x c=2R0,代入数据得x C=20cmy c=H﹣R0=h﹣,代入数据得y C=1cm过C作x轴的垂线,在△CDM中:=R=R0=y c=h﹣解得:==M点横坐标为:x M=2R0+代入数据得x M=34cm答:(1)粒子到达x=R0平面时速度方向与x轴的夹角为,粒子到x轴的距离为11cm;(2)M点的横坐标x M为34cm.7.(2007?江苏)磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源S发出质量为m、电量为q的α粒子沿垂直磁场方向进入磁感应强度为B的匀强磁场,被限束光栏Q限制在2φ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P上.(重力影响不计)(1)若能量在E~E+△E(△E>0,且△E?E)范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围△x1.(2)实际上,限束光栏有一定的宽度,α粒子将在2φ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围△x2.解答:解析:设α粒子以速度v进入磁场,打在胶片上的位置距S的距离为x圆周运动α粒子的动能且x=2R解得:.△x1=﹣当x<<1时,(1+x)n≈1+x n由上式可得:.(2)动能为E的α粒子沿±φ角入射,轨道半径相同,设为R圆周运动α粒子的动能由几何关系得答:(1)(2)8.如图,在x轴下方有匀强磁场,磁感应强度大小为B,方向垂直于x y平面向外.P是y轴上距原点为h的一点,N0为x轴上距原点为a的一点.A是一块平行于x轴的挡板,与x轴的距离为,A的中点在y轴上,长度略小于.带点粒子与挡板碰撞前后,x方向的分速度不变,y方向的分速度反向、大小不变.质量为m,电荷量为q(q >0)的粒子从P点瞄准N0点入射,最后又通过P点.不计重力.求粒子入射速度的所有可能值.解答:解:设粒子的入射速度为v,第一次射出磁场的点为N′0,与板碰撞后再次进入磁场的位置为N1,子在磁场中运动的轨道半径为R,有 (1)粒子速率不变,每次进入磁场与射出磁场位置间距离x1保持不变有x1=N0′N0=2Rsinθ (2)粒子射出磁场与下一次进入磁场位置间的距离x2始终不变,与N0′N0相等.由图可以看出x2=a (3)设粒子最终离开磁场时,与档板相碰n次(n=0、1、2、3…).若粒子能回到P点,由对称性,出射点的x坐标应为﹣a,即(n+1)x1﹣nx2=2a (4)由(3)(4)两式得 (5)若粒子与挡板发生碰撞,有 (6)联立(3)(4)(6)得:n<3 (7)联立(1)(2)(5)得: (8)把代入(8)中得;;;答:粒子入射速度的所有可能值为;;.9.(2007?浙江)两屏幕荧光屏互相垂直放置,在两屏内分别去垂直于两屏交线的直线为x和y轴,交点O为原点,如图所示.在y>0,0<x<a的区域有垂直于纸面向内的匀强磁场,在y>0,x>a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B.在O点出有一小孔,一束质量为m、带电量为q(q>0)的粒子沿x 周经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮.入射粒子的速度可取从零到某一最大值之间的各种数值.已知速度最大的粒子在0<x<a的区域中运动的时间与在x>a的区域中运动的时间之比为2:5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中做圆周运动的周期.试求两个荧光屏上亮线的范围(不计重力的影响).解答:解:对于y轴上的光屏亮线范围的临界条件如图1所示:带电粒子的轨迹和x=a相切,此时r=a,y轴上的最高点为y=2r=2a;对于x轴上光屏亮线范围的临界条件如图2所示:左边界的极限情况还是和x=a相切,此刻,带电粒子在右边的轨迹是个圆,由几何知识得到在x轴上的坐标为x=2a;速度最大的粒子是如图2中的实线,又两段圆弧组成,圆心分别是c和c′由对称性得到c′在x轴上,设在左右两部分磁场中运动时间分别为t1和t2,满足解得由数学关系得到:OP=2a+R代入数据得到:所以在x 轴上的范围是.。

高中物理:磁场 练习(含答案)

高中物理:磁场 练习(含答案)

高中物理:磁场 练习(含答案)磁场1、(双选)关于地球的磁场,下列说法正确的是( )A .在地面上放置一个小磁针,小磁针的南极指向地磁场的南极B .地磁场的南极在地理北极附近C .地球上任何地方的地磁场方向都是和地面平行的D .地球磁偏角的数值在地球上不同地点是不同的2、有四条垂直于纸面的长直固定导线.电流方向如图所示,其中a 、b 、c 三条导线到d 导线的距离相等,三条导线与d 的连线互成120度角.四条导线的电流大小为都为I,其中a 导线对d 导线的安培力为F.现突然把c 导线的电流方向改为垂直于纸面向外,电流大小不变.此时d 导线所受安培力的合力为( )A .0B .FC .3FD .2F3、(多选)如图所示,质量为m 、长为L 的直导线用两绝缘细线悬挂于O 、O′,并处于匀强磁场中.当导线中通以沿x 轴正方向的电流I,且导线保持静止时,悬线与竖直方向夹角为θ.则磁感应强度方向和大小可能为(重力加速度为g)( )A .z 轴正方向,mg IL tan θB .y 轴正方向,mg ILC .z 轴负方向,mg IL tan θD .沿悬线向下,mg ILsin θ 4、如图所示,a 为带正电的小物块,b 是一不带电的绝缘物块(设a 、b 间无电荷转移),a 、b 叠放于粗糙的水平地面上,地面上方有垂直于纸面向里的匀强磁场.现用水平恒力F 拉b 物块,使a 、b 一起无相对滑动地向左做加速运动,则在加速运动阶段( )A.a对b的压力不变B.a对b的压力变大C.a、b物块间的摩擦力变大D.a、b物块间的摩擦力不变5、如图为洛伦兹力演示仪的结构图.励磁线圈产生的匀强磁场方向垂直纸面向外,电子束由电子枪产生,其速度方向与磁场方向垂直.电子速度大小可通过电子枪的加速电压来控制,磁场强弱可通过励磁线圈的电流来调节.下列说法正确的是()A.仅增大励磁线圈的电流,电子束径迹的半径变大B.仅提高电子枪的加速电压,电子束径迹的半径变大C.仅增大励磁线圈的电流,电子做圆周运动的周期将变大D.仅提高电子枪的加速电压,电子做圆周运动的周期将变大6、关于磁感应强度B、电流强度I、导线长L和导线所受磁场力F的关系,下列说法中正确的是()A.在B=0的地方,F一定等于零B.在F=0的地方,B一定等于零C.若B=1 T,I=1 A,L=1 m,则F一定等于1 ND.若L=1 m,I=1 A,F=1 N,则B一定等于1 T7、如图所示,A、B、C三根平行通电直导线质量均为m,通入的电流大小均相等,其中C中的电流方向与A、B中的电流方向反向,A、B放置在粗糙的水平面上,C静止在空中,三根导线的截面处于一个等边三角形的三个顶点,且三根导线均保持静止,重力加速度为g,则A导线受到B导线的作用力大小和方向为()A.33mg,方向由A指向B B.33mg,方向由B指向AC.3mg,方向由A指向B D.3mg,方向由B指向A8、(多选)如图所示,在一绝缘、粗糙且足够长的水平管道中有一带正电荷的小球,管道半径略大于球体半径,整个管道处于方向与管道垂直的水平匀强磁场中;现给球施加一个水平向右的初速度v0,以后小球的速度随时间变化的图象可能正确的是()A BC D9、如图,半径为R的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向里.一电荷量为q(q>0)、质量为m的粒子(不计重力)沿平行于直径ab的方向射入磁场区域.若粒子射出磁场时与射入磁场时运动方向间的夹角为90°,则粒子入射的速度大小为()A.qBR2m B.qBRmC.2qBRm D.4qBRm10、关于通电直导线在磁场中所受的安培力,下列说法正确的是()A.磁感应强度跟导线所受的安培力成正比B.安培力的方向跟磁感应强度的方向垂直C.磁感应强度的方向跟安培力的方向相同D.通电直导线在磁场中某处受到的安培力为零,则该处的磁感应强度一定为零11、如图所示的天平可用来测定磁感应强度B.天平的右臂下面挂有一个矩形线圈,宽度为l,共N 匝,线圈下端悬在匀强磁场中,磁场方向垂直纸面.当线圈中通有电流I(方向如图)时,在天平左右两边加上质量各为m1、m2的砝码后,天平平衡,当电流反向(大小不变)时,右边再加上质量为m的砝码后,天平重新平衡,由此可知()A.磁感应强度方向垂直纸面向里,B=(m1-m2)gNIlB.磁感应强度方向垂直纸面向里,B=mg 2NIlC.磁感应强度方向垂直纸面向外,B=(m1-m2)gNIlD.磁感应强度方向垂直纸面向外,B=mg 2NIl12、如图所示,两光滑的平行金属轨道与水平面成θ角,两轨道间距为L,一金属棒垂直两轨道水平放置.金属棒质量为m,电阻为R,轨道上端的电源电动势为E,内阻为r.为使金属棒能静止在轨道上,可加一方向竖直向上的匀强磁场,则该磁场的磁感应强度B应是多大?13、如图所示,一个质量为m,电荷量为-q,不计重力的带电粒子从x轴上的P(a,0)点以速度v,沿与x轴正方向成60°角的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限,求:(1)匀强磁场的磁感应强度B;(2)穿过第一象限的时间.磁场1、(双选)关于地球的磁场,下列说法正确的是()A.在地面上放置一个小磁针,小磁针的南极指向地磁场的南极B.地磁场的南极在地理北极附近C.地球上任何地方的地磁场方向都是和地面平行的D.地球磁偏角的数值在地球上不同地点是不同的BD[在地面上放置一个小磁针,小磁针的南极指向地理南极,即地磁北极,故A错误;地磁场的南极在地理北极附近,地磁场的北极在地理南极附近,故B正确;地磁场不是匀强磁场,与地面不一定平行,如图所示,故C错误;地球的地理两极与地磁两极并不重合,因此,小磁针并非准确的指向南北,其间有一个夹角,这就是地磁偏角;地磁偏角的数值在地球上不同地点是不同的,故D正确.]2、有四条垂直于纸面的长直固定导线.电流方向如图所示,其中a 、b 、c 三条导线到d 导线的距离相等,三条导线与d 的连线互成120度角.四条导线的电流大小为都为I,其中a 导线对d 导线的安培力为F.现突然把c 导线的电流方向改为垂直于纸面向外,电流大小不变.此时d 导线所受安培力的合力为( )A .0B .FC .3FD .2FD [a 导线对d 导线的安培力为F,三条导线与d 的连线互成120°,因此在c 导线的电流方向改变之前,d 导线所受安培力的合力为零;当c 导线的电流方向改变之后,a 、b 导线对d 导线的安培力夹角为120°,大小为F,因此此两个安培力的合力为F,方向指向c 导线,而c 导线对d 导线的安培力大小为F,方向指向c 导线,那么此时三导线对d 导线所受安培力的合力为2F,故A 、B 、C 错误,D 正确.]3、(多选)如图所示,质量为m 、长为L 的直导线用两绝缘细线悬挂于O 、O′,并处于匀强磁场中.当导线中通以沿x 轴正方向的电流I,且导线保持静止时,悬线与竖直方向夹角为θ.则磁感应强度方向和大小可能为(重力加速度为g)( )A .z 轴正方向,mg IL tan θB .y 轴正方向,mg ILC .z 轴负方向,mg IL tan θD .沿悬线向下,mg IL sin θBCD [磁感应强度方向为z 轴正方向时,根据左手定则,直导线所受安培力方向沿y 轴负方向,直导线不能平衡,故A 错误;磁感应强度方向为y 轴正方向时,根据左手定则,直导线所受安培力方向沿z 轴正方向,根据平衡条件,当BIL 刚好等于mg 时,细线的拉力为零,B =mg IL ,故B 正确;磁感应强度方向为z 轴负方向时,根据左手定则,直导线所受安培力方向沿y 轴正方向,根据平衡条件BIL =mg tan θ,所以B =mg IL tan θ,故C 正确;磁感应强度方向沿悬线向下时,根据左手定则,直导线所受安培力方向垂直于细线斜向上,根据平衡条件:F =mg sin θ,得:B =mg sin θIL ,故D 正确.]4、如图所示,a为带正电的小物块,b是一不带电的绝缘物块(设a、b间无电荷转移),a、b叠放于粗糙的水平地面上,地面上方有垂直于纸面向里的匀强磁场.现用水平恒力F拉b物块,使a、b 一起无相对滑动地向左做加速运动,则在加速运动阶段()A.a对b的压力不变B.a对b的压力变大C.a、b物块间的摩擦力变大D.a、b物块间的摩擦力不变B[a、b整体受总重力、拉力F、向下的洛伦兹力q v B、地面的支持力F N和摩擦力f,竖直方向有F N=(m a+m b)g+q v B,水平方向有F-f=(m a+m b)a,f=μF N.在加速阶段,随着v增大,F N增大,f 增大,加速度a减小.对a受力分析,a受重力m a g、向下的洛伦兹力q v B、b对a向上的支持力F N′、b对a向左的静摩擦力f′,竖直方向有F N′=m a g+q v B,水平方向有f′=m a a.随着v的增大,F N′增大,选项A错误,B正确.加速度a在减小,所以a、b物块间的摩擦力变小,选项C、D 错误.]5、如图为洛伦兹力演示仪的结构图.励磁线圈产生的匀强磁场方向垂直纸面向外,电子束由电子枪产生,其速度方向与磁场方向垂直.电子速度大小可通过电子枪的加速电压来控制,磁场强弱可通过励磁线圈的电流来调节.下列说法正确的是()A.仅增大励磁线圈的电流,电子束径迹的半径变大B.仅提高电子枪的加速电压,电子束径迹的半径变大C.仅增大励磁线圈的电流,电子做圆周运动的周期将变大D.仅提高电子枪的加速电压,电子做圆周运动的周期将变大B[电子在加速电场中加速,由动能定理有eU=12m v2①电子在匀强磁场中做匀速圆周运动,洛伦兹力充当向心力,有eB v0=m v20r②解得r=m v0eB=1B2mUe③T=2πmeB④可见增大励磁线圈中的电流,电流产生的磁场增强,由③式可得,电子束的轨道半径变小.由④式知周期变小,故A、C错误;提高电子枪加速电压,电子束的轨道半径变大,周期不变,故B正确,D 错误.]6、关于磁感应强度B、电流强度I、导线长L和导线所受磁场力F的关系,下列说法中正确的是()A.在B=0的地方,F一定等于零B.在F=0的地方,B一定等于零C.若B=1 T,I=1 A,L=1 m,则F一定等于1 ND.若L=1 m,I=1 A,F=1 N,则B一定等于1 TA[当B=0时,导线一定不受磁场力,F一定为零.但是用B=FIL判断B或计算F时,B一定要和通电导线垂直,没有垂直这个条件,B=FIL不成立.故B、C、D错误,A正确.]7、如图所示,A、B、C三根平行通电直导线质量均为m,通入的电流大小均相等,其中C中的电流方向与A、B中的电流方向反向,A、B放置在粗糙的水平面上,C静止在空中,三根导线的截面处于一个等边三角形的三个顶点,且三根导线均保持静止,重力加速度为g,则A导线受到B导线的作用力大小和方向为()A.33mg,方向由A指向B B.33mg,方向由B指向AC.3mg,方向由A指向B D.3mg,方向由B指向A A[导线C受重力,A、B对C的作用力,如图所示:由题意可知F AC=F BC由几何关系得2F AC cos 30°=mg解得F AC=33mg由于三根通电导线电流相等,距离相等,所以各导线间安培力大小相等,所以F AB=F AC=33mg同向电流相吸异向电流相斥可判断A导线受到B导线的作用力方向由A指向B,故A正确,B、C、D错误.]8、(多选)如图所示,在一绝缘、粗糙且足够长的水平管道中有一带正电荷的小球,管道半径略大于球体半径,整个管道处于方向与管道垂直的水平匀强磁场中;现给球施加一个水平向右的初速度v0,以后小球的速度随时间变化的图象可能正确的是()A BC DACD[给小球施加一个水平向右的初速度,小球将受到向上的洛伦兹力,还受重力、可能有向后的滑动摩擦力;若重力小于洛伦兹力,小球受到向下的弹力,则受到摩擦力,做减速运动,洛伦兹力减小,当洛伦兹力等于重力时,做匀速运动,故C正确;若重力大于洛伦兹力,小球受到向上的弹力,则受到摩擦力,将做减速运动,随洛伦兹力的减小,支持力变大,摩擦力变大,加速度逐渐变大,最后速度为零,故D正确;若洛伦兹力等于小球的重力,小球将做匀速直线运动,故A正确.]9、如图,半径为R的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向里.一电荷量为q(q>0)、质量为m的粒子(不计重力)沿平行于直径ab的方向射入磁场区域.若粒子射出磁场时与射入磁场时运动方向间的夹角为90°,则粒子入射的速度大小为()A.qBR2m B.qBRmC.2qBRm D.4qBRmB[带电粒子在磁场中做匀速圆周运动,画出运动轨迹示意图,如图所示,根据几何关系知,粒子运动的轨迹圆的半径为r=R ①根据洛伦兹力提供向心力,有q v B=m v2 r得r=m vqB②联立①②得v=qBRm,故B正确,A、C、D错误.]10、关于通电直导线在磁场中所受的安培力,下列说法正确的是()A.磁感应强度跟导线所受的安培力成正比B.安培力的方向跟磁感应强度的方向垂直C.磁感应强度的方向跟安培力的方向相同D.通电直导线在磁场中某处受到的安培力为零,则该处的磁感应强度一定为零B[磁感应强度B的大小只决定于磁场本身的性质,跟导线所受的安培力及电流与导线长度均没有关系,故A错误;根据左手定则可知,安培力方向与磁场和电流组成的平面垂直,即与电流和磁场方向都垂直,故B正确,C错误;当电流方向与磁场的方向平行,所受安培力为0,而此时的磁感应强度不为零,故D错误.]11、如图所示的天平可用来测定磁感应强度B.天平的右臂下面挂有一个矩形线圈,宽度为l,共N 匝,线圈下端悬在匀强磁场中,磁场方向垂直纸面.当线圈中通有电流I(方向如图)时,在天平左右两边加上质量各为m1、m2的砝码后,天平平衡,当电流反向(大小不变)时,右边再加上质量为m的砝码后,天平重新平衡,由此可知()A.磁感应强度方向垂直纸面向里,B=(m1-m2)gNIlB.磁感应强度方向垂直纸面向里,B=mg 2NIlC.磁感应强度方向垂直纸面向外,B=(m1-m2)gNIlD.磁感应强度方向垂直纸面向外,B=mg 2NIlB[电流反向时,右边再加质量为m的砝码后,天平重新平衡,说明安培力的方向原来竖直向下,由左手定则,知磁感应强度方向垂直纸面向里,设线圈质量为m0,根据平衡条件有m1g=m2g+NBIl+m0g ①m1g=m2g+mg-NBIl+m0g ②由①②解得B=mg2NIl.]12、如图所示,两光滑的平行金属轨道与水平面成θ角,两轨道间距为L,一金属棒垂直两轨道水平放置.金属棒质量为m,电阻为R,轨道上端的电源电动势为E,内阻为r.为使金属棒能静止在轨道上,可加一方向竖直向上的匀强磁场,则该磁场的磁感应强度B应是多大?[解析]导体棒受力分析如图所示则I=ER+r①F安=BIL ②F安=mg tan θ③由①②③解得B=mg(R+r)tan θEL.[答案]mg(R+r)tan θEL13、如图所示,一个质量为m,电荷量为-q,不计重力的带电粒子从x轴上的P(a,0)点以速度v,沿与x轴正方向成60°角的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限,求:(1)匀强磁场的磁感应强度B;(2)穿过第一象限的时间.[解析](1)作出带电粒子做圆周运动的圆心和轨迹,由图中几何关系知:R cos 30°=a,得R=23a 3Bq v=m v2R,得B=m vqR=3m v2qa.(2)带电粒子在第一象限内运动时间t=120°360°·2πmqB=43πa9v.[答案](1)3m v2qa(2)43πa9v。

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间.【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBL v m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开. 如图3和如图4,由几何关系有:2223()(3)22L R R L =+- 解得:58L R =或2L R = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k = A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=2.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。

高考物理带电粒子在磁场中的运动专项训练100(附答案)含解析

高考物理带电粒子在磁场中的运动专项训练100(附答案)含解析

高考物理带电粒子在磁场中的运动专项训练100(附答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。

挡板PQ 垂直MN 放置,挡板的中点置于N 点。

在挡板的右侧区域存在垂直纸面向外的匀强磁场。

在左侧虚线上紧靠M 的上方取点A,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。

已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。

(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。

若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。

【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知2r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】【分析】【详解】(1)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r1由几何关系得112 cos25r l lα==由洛伦兹力提供向心力可得2011vqv B mr=解得:0152mvBql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动 粒子在电场中的运动时间00sin 35l lt v v α== 根据题意得,粒子在磁场中运动时间也为t ,则2Tt = 又22mT qB π=解得0253mv B qlπ=设粒子在磁场中做圆周运动的半径为r ,则0v t r π= 解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=3.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间. 【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBL v m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.如图3和如图4,由几何关系有:2223()(3)22L R R L =+- 解得:58L R =或2L R = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m ⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k =A球在磁场中运动周期为2m TqBπ=当13k=时,如图4,A球在磁场中运动的最长时间34t T=即32mtqBπ=4.如图甲所示,在直角坐标系中的0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有以点(2L,0)为圆心、半径为L的圆形区域,与x轴的交点分别为M、N,在xOy平面内,从电离室产生的质量为m、带电荷量为e的电子以几乎为零的初速度从P点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q点沿x轴正方向进入匀强电场,已知O、Q两点之间的距离为2L,飞出电场后从M点进入圆形区域,不考虑电子所受的重力。

高中物理带电粒子在磁场中的运动专项训练100(附答案)含解析

高中物理带电粒子在磁场中的运动专项训练100(附答案)含解析

高中物理带电粒子在磁场中的运动专项训练100(附答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。

(完整)高中物理磁场习题200题(带答案解析)

(完整)高中物理磁场习题200题(带答案解析)

WORD格式整理一、选择题1.如图所示,一电荷量为q的负电荷以速度v射入匀强磁场中.其中电荷不受洛仑兹力的是( )A. B. C. D.【答案】C【解析】由图可知,ABD图中带电粒子运动的方向都与粗糙度方向垂直,所以受到的洛伦兹力都等于qvB,而图C中,带电粒子运动的方向与磁场的方向平行,所以带电粒子不受洛伦兹力的作用.故C正确,ABD错误.故选C.2.如图所示为电流产生磁场的分布图,其中正确的是( )A. B. C. D.【答案】D【解析】A中电流方向向上,由右手螺旋定则可得磁场为逆时针(从上向下看),故A错误;B图电流方向向下,由右手螺旋定则可得磁场为顺时针(从上向下看),故B错误;C图中电流为环形电流,由由右手螺旋定则可知,内部磁场应向右,故C错误;D图根据图示电流方向,由右手螺旋定则可知,内部磁感线方向向右,故D正确;故选D.点睛:因磁场一般为立体分布,故在判断时要注意区分是立体图还是平面图,并且要能根据立体图画出平面图,由平面图还原到立体图.3.下列图中分别标出了一根放置在匀强磁场中的通电直导线的电流I、磁场的磁感应强度B和所受磁场力F的方向,其中图示正确的是( )A. B. C. D.【答案】C【解析】根据左手定则的内容:伸开左手,使大拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向,可得:A、电流与磁场方向平行,没有安培力,故A错误;B、安培力的方向是垂直导体棒向下的,故B错误;C、安培力的方向是垂直导体棒向上的,故C正确;D、电流方向与磁场方向在同一直线上,不受安培力作用,故D错误.故选C.点睛:根据左手定则直接判断即可,凡是判断力的方向都是用左手,要熟练掌握,是一道考查基础的好题目.4.如图所示,水平地面上固定着光滑平行导轨,导轨与电阻R连接,放在竖直向上的匀强磁场中,杆的初速度为v0,不计导轨及杆的电阻,则下列关于杆的速度与其运动位移之间的关系图像正确的是()A. B. C. D.【答案】C【解析】导体棒受重力、支持力和向后的安培力;感应电动势为:E=BLv感应电流为:I=II安培力为:I=III=I 2I2II=II=I△I△I故:I 2I2II△I=I△I求和,有:I 2I2I∑I△I=I∑△I故:I 2I2II=I(I0−I)故v与x是线性关系;故C正确,ABD错误;故选:C.5.如图所示,直角三角形ABC中存在一匀强磁场,比荷相同的两个粒子沿AB方向射入磁场,粒子仅受磁场力作用,分别从AC边上的P、Q两点射出,则( )A. 从P射出的粒子速度大B. 从Q射出的粒子速度大C. 从P射出的粒子,在磁场中运动的时间长D. 两粒子在磁场中运动的时间一样长【答案】BD【解析】试题分析:粒子在磁场中做圆周运动,根据题设条件作出粒子在磁场中运动的轨迹,根据轨迹分析粒子运动半径和周期的关系,从而分析得出结论.WORD 格式整理粒子在磁场中做匀速圆周运动,根据几何关系(图示弦切角相等),粒子在磁场中偏转的圆心角相等,根据粒子在磁场中运动的时间:I =I 2II ,又因为粒子在磁场中圆周运动的周期I =2II II ,可知粒子在磁场中运动的时间相等,故D 正确,C 错误;如图,粒子在磁场中做圆周运动,分别从P 点和Q 点射出,由图知,粒子运动的半径I I <I I ,又粒子在磁场中做圆周运动的半径I =II II知粒子运动速度I I <I I ,故A 错误B 正确;【点睛】带电粒子在匀强磁场中运动时,洛伦兹力充当向心力,从而得出半径公式I =II II ,周期公式I =2II II ,运动时间公式I =I 2I I ,知道粒子在磁场中运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题,6.在等边三角形的三个顶点a 、b 、c 处,各有一条长直导线垂直纸面放置,导线中通有大小相等的恒定电流,方向如图所示.过c 点的导线所受安培力的方向( )A. 与ab 边平行,竖直向上B. 与ab 边垂直,指向右边C. 与ab 边平行,竖直向下D. 与ab 边垂直,指向左边【答案】D【解析】试题分析:先根据右手定则判断各个导线在c 点的磁场方向,然后根据平行四边形定则,判断和磁场方向,最后根据左手定则判断安培力方向导线a 在c 处的磁场方向垂直ac 斜向下,b 在c 处的磁场方向垂直bc 斜向上,两者的和磁场方向为竖直向下,根据左手定则可得c 点所受安培力方向为与ab 边垂直,指向左边,D 正确;7.下列说法中正确的是( )A. 电场线和磁感线都是一系列闭合曲线B. 在医疗手术中,为防止麻醉剂乙醚爆炸,医生和护士要穿由导电材料制成的鞋子和外套,这样做是为了消除静电C. 奥斯特提出了分子电流假说D. 首先发现通电导线周围存在磁场的科学家是安培【答案】B【解析】电场线是从正电荷开始,终止于负电荷,不是封闭曲线,A 错误;麻醉剂为易挥发性物品,遇到火花或热源便会爆炸,良好接地,目的是为了消除静电,这些要求与消毒无关,B 正确;安培发现了分子电流假说,奥斯特发现了电流的磁效应,CD 错误;8.在如图所示的平行板电容器中,电场强度E 和磁感应强度B 相互垂直,一带正电的粒子q 以速度v 沿着图中所示的虚线穿过两板间的空间而不偏转(忽略重力影响)。

高中物理-磁场 练习(含答案)

高中物理-磁场 练习(含答案)

高中物理-磁场 练习(含答案)磁场1、如图所示,弹簧测力计下挂一铁球,将弹簧测力计自左向右逐渐移动时,弹簧测力计的示数( )A .不变B .逐渐减小C .先减小后增大D .先增大后减小2、如图所示,一个边长L 、三边电阻相同的正三角形金属框放置在磁感应强度为B 的匀强磁场中,若通以图示方向的电流,电流强度为I,则金属框受到的磁场力为( )A .0B .ILBC .43ILBD .2ILB3、物理学中有许多物理量的定义,可用公式来表示,不同的概念定义的方法不一样,下列四个物理量中,定义法与其他物理量不同的一组是( )A .电场强度E =F qB .导体的电阻R =ρl SC .电容C =Q UD .磁感应强度B =F IL4、如图所示,有界匀强磁场边界线SP ∥MN,速度不同的同种带电粒子从Q 点沿SP 方向同时射入磁场,其中穿过a 点的粒子速度v 1与MN 垂直,穿过b 点的粒子,其速度方向与MN 成60°角,设两粒子从S 到a 、b 所需的时间分别为t 1、t 2,则t 1∶t 2为( )A .1∶3B .4∶3C.1∶1 D.3∶25、(双选)如图所示是磁流体发电机的原理示意图,金属板M、N正对平行放置,且板面垂直于纸面,在两极板之间接有电阻R.在极板间有垂直于纸面向里的匀强磁场.当等离子束(分别带有等量正、负电荷的离子束)从左向右进入极板时,下列说法中正确的是(不计粒子所受重力)()A.N板的电势高于M板的电势B.M板的电势高于N板的电势C.R中有由b向a方向的电流D.R中有由a向b方向的电流6、在如图所示的电路中,电池均相同,当开关S分别置于a、b两处时,导线MM′与NN′之间的安培力的大小分别为f a、f b,可判断这两段导线()A.相互吸引,f a>f b B.相互排斥,f a>f bC.相互吸引,f a<f b D.相互排斥,f a<f b7、(双选)如图所示,可自由转动的小磁针上方有一根长直导线,开始时二者在纸面内平行放置.当导线中通以如图所示电流I时,发现小磁针的N极向里,S极向外,停留在与纸面垂直的位置上.这一现象说明()A.小磁针感知到了电流的磁场B.小磁针处磁场方向垂直纸面向里C.小磁针处磁场方向垂直纸面向外D.若把小磁针移走,该处就没有磁场了8、(多选)一个带正电的小球沿光滑绝缘的水平桌面向右运动,小球离开桌面后进入一水平向里的匀强磁场,已知速度方向垂直于磁场方向,如图所示,小球飞离桌面后落到地板上,设飞行时间为t1,水平射程为x1,着地速度为v1.撤去磁场,其余的条件不变,小球飞行时间为t2,水平射程为x2,着地速度为v2.则下列论述正确的是()A.x1>x2B.t1>t2C.v1和v2大小相等D.v1和v2方向相同9、如图,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P为磁场边界上的一点.大量相同的带电粒子以相同的速率经过P点,在纸面内沿不同方向射入磁场.若粒子射入速率为v1,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子射入速率为v2,相应的出射点分布在三分之一圆周上.不计重力及带电粒子之间的相互作用.则v2∶v1为()A.3∶2B.2∶1C.3∶1D.3∶ 210、如图所示,条形磁铁放在光滑斜面上,用平行于斜面的轻弹簧拉住而平衡,A为水平放置的直导线的截面,导线中无电流时磁铁对斜面的压力为F N1;当导线中有垂直纸面向外的电流时,磁铁对斜面的压力为F N2,则下列关于磁铁对斜面的压力和弹簧的伸长量的说法中正确的是()A.F N1<F N2,弹簧的伸长量减小B.F N1=F N2,弹簧的伸长量减小C.F N1>F N2,弹簧的伸长量增大D.F N1>F N2,弹簧的伸长量减小11、对磁现象的研究中有一种“磁荷观点”.人们假定,在N极上聚集着正磁荷,在S极上聚集着负磁荷.由此可以将磁现象与电现象类比,引入相似的概念,得出一系列相似的定律.例如磁的库仑定律、磁场强度、磁偶极矩等.在磁荷观点中磁场强度定义为:磁场强度的大小等于点磁荷在该处所受磁场力与点磁荷所带磁荷量的比值,其方向与正磁荷在该处所受磁场力方向相同.若用H表示磁场强度,F表示点磁荷所受磁场力,q m表示磁荷量,则下列关系式正确的是()A.F=Hq m B.H=Fq mC.H=Fq m D.q m=HF12、如图所示,导体杆ab的质量为m,电阻为R,放置在与水平面夹角为θ的倾斜金属导轨上,导轨间距为d,电阻不计,系统处在竖直向上的匀强磁场中,磁感应强度为B,电池内阻不计,问:若导轨光滑,电源电动势E多大才能使导体杆静止在导轨上?13、如图所示,在0≤x≤a、0≤y≤a2范围内有垂直于xOy平面向外的匀强磁场,磁感应强度大小为B.坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xOy平面内,与y轴正方向的夹角分布在0°~90°范围内.已知粒子在磁场中做圆周运动的半径介于a2到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做匀速圆周运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时的:(1)速度的大小;(2)速度方向与y轴正方向夹角的正弦.磁场1、如图所示,弹簧测力计下挂一铁球,将弹簧测力计自左向右逐渐移动时,弹簧测力计的示数()A.不变B.逐渐减小C.先减小后增大D.先增大后减小C[磁体上磁极的磁性最强,对铁球的吸引力最大,所以铁球自左向右逐渐移动时,所受磁体的引力先减小后增大,弹簧测力计的示数也随之先减小后增大.]2、如图所示,一个边长L、三边电阻相同的正三角形金属框放置在磁感应强度为B的匀强磁场中,若通以图示方向的电流,电流强度为I,则金属框受到的磁场力为()A.0B.ILBC.43ILB D.2ILBA[安培力公式F=BILsin θ中,L是通电导线的有效长度,是导线在磁场中两端点间的距离.由题图可知,正三角形金属框的有效长度是0,所以导线框受到的安培力为零.故选A.]3、物理学中有许多物理量的定义,可用公式来表示,不同的概念定义的方法不一样,下列四个物理量中,定义法与其他物理量不同的一组是()A .电场强度E =F qB .导体的电阻R =ρl SC .电容C =Q UD .磁感应强度B =F ILB [R =ρl S 是电阻定律,电阻的决定式,其它三个式子都是各量的定义式,故本题选B.]4、如图所示,有界匀强磁场边界线SP ∥MN,速度不同的同种带电粒子从Q 点沿SP 方向同时射入磁场,其中穿过a 点的粒子速度v 1与MN 垂直,穿过b 点的粒子,其速度方向与MN 成60°角,设两粒子从S 到a 、b 所需的时间分别为t 1、t 2,则t 1∶t 2为( )A .1∶3B .4∶3C .1∶1D .3∶2D [画出运动轨迹,过a 点的粒子转过90°,过b 点的粒子转过60°,故选项D 正确.]5、(双选)如图所示是磁流体发电机的原理示意图,金属板M 、N 正对平行放置,且板面垂直于纸面,在两极板之间接有电阻R.在极板间有垂直于纸面向里的匀强磁场.当等离子束(分别带有等量正、负电荷的离子束)从左向右进入极板时,下列说法中正确的是(不计粒子所受重力)( )A .N 板的电势高于M 板的电势B .M 板的电势高于N 板的电势C .R 中有由b 向a 方向的电流D .R 中有由a 向b 方向的电流BD [根据左手定则可知带正电荷的离子向上极板偏转,带负电荷的离子向下极板偏转,则M 板的电势高于N 板的电势.M 板相当于电源的正极,那么R 中有由a 向b 方向的电流.故选BD.]6、在如图所示的电路中,电池均相同,当开关S 分别置于a 、b 两处时,导线MM ′与NN ′之间的安培力的大小分别为f a 、f b ,可判断这两段导线( )A.相互吸引,f a>f b B.相互排斥,f a>f bC.相互吸引,f a<f b D.相互排斥,f a<f bD[当S接a时,电路的电源只用了一节干电池,当S接b时,电路的电源用了两节干电池,此时电路中的电流比S接a时大,所以有f a<f b;两导线MM′、NN′中的电流方向相反,依据安培定则和左手定则可知两者相互排斥.故正确选项为D.]7、(双选)如图所示,可自由转动的小磁针上方有一根长直导线,开始时二者在纸面内平行放置.当导线中通以如图所示电流I时,发现小磁针的N极向里,S极向外,停留在与纸面垂直的位置上.这一现象说明()A.小磁针感知到了电流的磁场B.小磁针处磁场方向垂直纸面向里C.小磁针处磁场方向垂直纸面向外D.若把小磁针移走,该处就没有磁场了AB[电流在导线周围产生了磁场,小磁针N极的指向为磁场的方向,所以A、B正确,C错误;该处的磁场与通电电流有关,与小磁针无关,所以D错误.]8、(多选)一个带正电的小球沿光滑绝缘的水平桌面向右运动,小球离开桌面后进入一水平向里的匀强磁场,已知速度方向垂直于磁场方向,如图所示,小球飞离桌面后落到地板上,设飞行时间为t1,水平射程为x1,着地速度为v1.撤去磁场,其余的条件不变,小球飞行时间为t2,水平射程为x2,着地速度为v2.则下列论述正确的是()A.x1>x2B.t1>t2C.v1和v2大小相等D.v1和v2方向相同ABC [当桌面右边存在磁场时,在小球下落过程中由左手定则知,带电小球受到斜向右上方的洛伦兹力作用,此力在水平方向上的分量向右,竖直方向上的分量向上,因此小球水平方向上存在加速度,竖直方向上加速度a<g,所以t 1>t 2、x 1>x 2,A 、B 正确;洛伦兹力对小球不做功,故C 正确;两次小球着地时速度方向不同,故D 错误.]9、如图,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P 为磁场边界上的一点.大量相同的带电粒子以相同的速率经过P 点,在纸面内沿不同方向射入磁场.若粒子射入速率为v 1,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子射入速率为v 2,相应的出射点分布在三分之一圆周上.不计重力及带电粒子之间的相互作用.则v 2∶v 1为( )A .3∶2B .2∶1C .3∶1D .3∶ 2C [相同的带电粒子垂直匀强磁场入射均做匀速圆周运动.粒子以v 1入射,一端为入射点P,对应圆心角为60°(对应六分之一圆周)的弦PP ′必为垂直该弦入射粒子运动轨迹的直径2r 1,如图甲所示,设圆形区域的半径为R,由几何关系知r 1=12R.其他不同方向以v 1入射的粒子的出射点在PP ′对应的圆弧内.同理可知,粒子以v 2入射及出射情况,如图乙所示.由几何关系知r 2=R 2-⎝ ⎛⎭⎪⎫R 22=32R, 可得r 2∶r 1=3∶1.因为m 、q 、B 均相同,由公式r =m v qB 可得v ∝r,所以v 2∶v 1=3∶1.故选C.]10、如图所示,条形磁铁放在光滑斜面上,用平行于斜面的轻弹簧拉住而平衡,A 为水平放置的直导线的截面,导线中无电流时磁铁对斜面的压力为F N1;当导线中有垂直纸面向外的电流时,磁铁对斜面的压力为F N2,则下列关于磁铁对斜面的压力和弹簧的伸长量的说法中正确的是( )A.F N1<F N2,弹簧的伸长量减小B.F N1=F N2,弹簧的伸长量减小C.F N1>F N2,弹簧的伸长量增大D.F N1>F N2,弹簧的伸长量减小C[由于条形磁铁外部的磁感线是从N极出发到S极,所以导线A处的磁场方向是斜向左下方的,导线A中的电流垂直于纸面向外时,由左手定则可判断导线A必受斜向右下方的安培力F,由牛顿第三定律可知磁铁所受作用力F′的方向是斜向左上方的,所以磁铁对斜面的压力减小,即F N1>F N2.同时,F′有沿斜面向下的分力,使得弹簧弹力增大,可知弹簧的伸长量增大,所以选C.]11、对磁现象的研究中有一种“磁荷观点”.人们假定,在N极上聚集着正磁荷,在S极上聚集着负磁荷.由此可以将磁现象与电现象类比,引入相似的概念,得出一系列相似的定律.例如磁的库仑定律、磁场强度、磁偶极矩等.在磁荷观点中磁场强度定义为:磁场强度的大小等于点磁荷在该处所受磁场力与点磁荷所带磁荷量的比值,其方向与正磁荷在该处所受磁场力方向相同.若用H表示磁场强度,F表示点磁荷所受磁场力,q m表示磁荷量,则下列关系式正确的是()A.F=Hq m B.H=Fq mC.H=Fq m D.q m=HFB[题目已经说明磁场强度的大小等于点磁荷在该处所受磁场力与点磁荷所带磁荷量的比值,故:H=Fq m.]12、如图所示,导体杆ab的质量为m,电阻为R,放置在与水平面夹角为θ的倾斜金属导轨上,导轨间距为d,电阻不计,系统处在竖直向上的匀强磁场中,磁感应强度为B,电池内阻不计,问:若导轨光滑,电源电动势E多大才能使导体杆静止在导轨上?解析:由闭合电路欧姆定律得:E=IR导体杆受力情况如图所示,则由共点力平衡条件可得F安=mgtan θF安=BId由以上各式可得出E=mgRtan θBd.答案:mgRtan θBd13、如图所示,在0≤x≤a、0≤y≤a2范围内有垂直于xOy平面向外的匀强磁场,磁感应强度大小为B.坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xOy平面内,与y轴正方向的夹角分布在0°~90°范围内.已知粒子在磁场中做圆周运动的半径介于a2到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做匀速圆周运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时的:(1)速度的大小;(2)速度方向与y轴正方向夹角的正弦.解析:(1)设粒子的发射速度为v,粒子做圆周运动的轨道半径为R,由牛顿第二定律和洛伦兹力公式,得q v B=m v2R①当a2<R<a时,在磁场中运动时间最长的粒子其轨迹是圆心为C的圆弧,圆弧与磁场的上边界相切,如图所示.设该粒子在磁场中运动的时间为t,依题意t=T4,得∠OCA=π2②设最后离开磁场的粒子的发射方向与y轴正方向的夹角为α,由几何关系可得Rsin α=R-a2③Rsin α=a-Rcos α④又sin2α+cos2α=1 ⑤由③④⑤式得R=⎝⎛⎭⎪⎫2-62a ⑥由①⑥式得v=⎝⎛⎭⎪⎫2-62aqBm.(2)由③⑥式得sin α=6-610.答案:(1)⎝⎛⎭⎪⎫2-62aqBm(2)6-610。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.如图所示,带正电的物块A放在不带电的小车B上,开始时都静止,处于垂直纸面向里的匀强磁场中.t=0时加一个水平恒力F向右拉小车B,t=t1时A相对于B开始滑动.已知地面是光滑的.AB间粗糙,A带电量保持不变,小车足够长.从t=0开始A、B的速度﹣时间图象,下面哪个可能正确()A.B.C.D.解答:解:分三个阶段分析本题中A、B运动情况:开始时A与B没有相对运动,因此一起匀加速运动.A所受洛伦兹力向上,随着速度的增加而增加,对A根据牛顿第二定律有:f=ma.即静摩擦力提供其加速度,随着向上洛伦兹力的增加,因此A与B之间的压力减小,最大静摩擦力减小,当A、B之间的最大静摩擦力都不能提供A的加速度时,此时AB将发生相对滑动.当A、B发生发生相对滑动时,由于向上的洛伦兹力继续增加,因此A与B之间的滑动摩擦力减小,故A的加速度逐渐减小,B的加速度逐渐增大.当A所受洛伦兹力等于其重力时,A与B恰好脱离,此时A将匀速运动,B将以更大的加速度匀加速运动.综上分析结合v﹣t图象特点可知ABD错误,C正确.故选C.3.如图所示,纸面内有宽为L水平向右飞行的带电粒子流,粒子质量为m,电量为+q,速率为v0,不考虑粒子的重力及相互间的作用,要使粒子都汇聚到一点,可以在粒子流的右侧虚线框内设计一匀强磁场区域,则磁场区域的形状及对应的磁感应强度可以是哪一种()(其中B0=,A、C、D选项中曲线均为半径是L 的圆弧,B 选项中曲线为半径是的圆)A.B.C.D.解答:解:由于带电粒子流的速度均相同,则当飞入A、B、C这三个选项中的磁场时,它们的轨迹对应的半径均相同.唯有D选项因为磁场是2B0,它的半径是之前半径的2倍.然而当粒子射入B、C两选项时,均不可能汇聚于同一点.而D选项粒子是向上偏转,但仍不能汇聚一点.所以只有A选项,能汇聚于一点.故选:A4.如图所示,匀强磁场的方向竖直向下.磁场中有光滑的水平桌面,在桌面上平放着内壁光滑、底部有带电小球的试管.试管在水平拉力F作用下向右匀速运动,带电小球能从管口处飞出.关于带电小球及其在离开试管前的运动,下列说法中正确的是()A.小球带负电B.洛伦兹力对小球做正功C.小球运动的轨迹是一条抛物线D.维持试管匀速运动的拉力F应增大解答:解:A、小球能从管口处飞出,说明小球受到指向管口洛伦兹力,根据左手定则判断,小球带正电.故A 错误.B、洛伦兹力总是与速度垂直,不做功.故B错误.C、设管子运动速度为v1,小球垂直于管子向右的分运动是匀速直线运动.小球沿管子方向受到洛伦兹力的分力F1=qv1B,q、v1、B均不变,F1不变,则小球沿管子做匀加速直线运动.与平抛运动类似,小球运动的轨迹是一条抛物线.故C正确.D、设小球沿管子的分速度大小为v2,则小球受到垂直管子向左的洛伦兹力的分力F2=qv2B,v2增大,则F2增大,而拉力F=F2,则F逐渐增大.故D正确.故选CD.5.如图所示,在第二象限内有水平向右的匀强电场,电场强度为E,在第一、第四象限内分别存在如图所示的匀强磁场,磁感应强度大小相等.有一个带电粒子以初速度v0垂直x轴,从x轴上的P点进入匀强电场,恰好与y 轴成45°角射出电场,再经过一段时间又恰好垂直于x轴进入下面的磁场.已知OP之间的距离为d,则带电粒子()A.在电场中运动的时间为B.在磁场中做圆周运动的半径为 dC.入磁场至第二次经过x轴所用时间为D.自进入电场至在磁场中第二次经过x轴的时间为解答:解:根据题意作出粒子的运动轨迹,如图所示:A、粒子进入电场后做类平抛运动,从x轴上的P点进入匀强电场,恰好与y轴成45°角射出电场,所以v==v x=v0tan45°=v0沿x轴方向有:x=所以OA=2OP=2d在垂直电场方向做匀速运动,所以在电场中运动的时间为:t1=,故A正确;B、如图,AO1为在磁场中运动的轨道半径,根据几何关系可知:AO1=,故B错误;C、粒子从A点进入磁场,先在第一象限运动个圆周而进入第四象限,后经过半个圆周,第二次经过x轴,所以自进入磁场至第二次经过x轴所用时间为t2=,故C错误;D、自进入电场至在磁场中第二次经过x轴的时间为t=t1+t2=,故D正确.故选AD6.如图(甲)所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N.现有一质量为m,带电量为e的电子,从y轴上的A 点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,速度方向与x轴夹角为30°.此时在圆形区域加如图(乙)所示周期性变化的磁场,以垂直于纸面向外为磁场正方向),最后电子运动一段时间后从N飞出,速度方向与进入磁场时的速度方向相同(与x轴夹角也为30°).求:(1)电子进入圆形磁场区域时的速度大小;(2)0≤x≤L区域内匀强电场场强E的大小;(3)写出圆形磁场区域磁感应强度B0的大小、磁场变化周期T各应满足的表达式.解答:解:(1)电子在电场中作类平抛运动,射出电场时,如图1所示.由速度关系:解得(2)由速度关系得在竖直方向解得(3)在磁场变化的半个周期内粒子的偏转角为60°,根据几何知识,在磁场变化的半个周期内,粒子在x轴方向上的位移恰好等于R.粒子到达N点而且速度符合要求的空间条件是:2nR=2L电子在磁场作圆周运动的轨道半径解得(n=1、2、3…)若粒子在磁场变化的半个周期恰好转过圆周,同时MN间运动时间是磁场变化周期的整数倍时,可使粒子到达N点并且速度满足题设要求.应满足的时间条件:解得T的表达式得:(n=1、2、3…)7.如图所示为一种获得高能粒子的装置.环形区域内存在垂直纸面向外、大小可调的匀强磁场.M、N为两块中心开有小孔的距离很近的极板,板间距离为d,每当带电粒子经过M、N板时,都会被加速,加速电压均为U;每当粒子飞离电场后,M、N板间的电势差立即变为零.粒子在电场中一次次被加速,动能不断增大,而绕行半径R 不变.当t=0时,质量为m、电荷量为+q的粒子静止在M板小孔处.(1)求粒子绕行n圈回到M板时的速度大小v n;(2)为使粒子始终保持在圆轨道上运动,磁场必须周期性递增,求粒子绕行第n圈时磁感应强度B n的大小;(3)求粒子绕行n圈所需总时间t总.解答:解:(1)粒子绕行一圈电场做功一次,由动能定理:即第n次回到M板时的速度为:(2)绕行第n圈的过程中,由牛顿第二定律:得(3)粒子在每一圈的运动过程中,包括在MN板间加速过程和在磁场中圆周运动过程.在MN板间经历n次加速过程中,因为电场力大小相同,故有:即加速n次的总时间而粒子在做半径为R的匀速圆周运动,每一圈所用时间为,由于每一圈速度不同,所以每一圈所需时间也不同.第1圈:第2圈:…第n圈:故绕行n圈过程中在磁场里运动的时间综上:粒子绕行n圈所需总时间t总=+.8.如图所示,圆心为坐标原点、半径为R的圆将xoy平面分为两个区域,即圆内区域Ⅰ和圆外区域Ⅱ.区域Ⅰ内有方向垂直于xoy平面的匀强磁场B1.平行于x轴的荧光屏垂直于xoy平面,放置在坐标y=﹣2.2R的位置.一束质量为m电荷量为q动能为E0的带正电粒子从坐标为(﹣R,0)的A点沿x轴正方向射入区域Ⅰ,当区域Ⅱ内无磁场时,粒子全部打在荧光屏上坐标为(0,﹣2.2R)的M点,且此时,若将荧光屏沿y轴负方向平移,粒子打在荧光屏上的位置不变.若在区域Ⅱ内加上方向垂直于xoy平面的匀强磁场B2,上述粒子仍从A点沿x轴正方向射入区域Ⅰ,则粒子全部打在荧光屏上坐标为(0.4R,﹣2.2R)的N点.求(1)打在M点和N点的粒子运动速度v1、v2的大小.(2)在区域Ⅰ和Ⅱ中磁感应强度B1、B2的大小和方向.(3)若将区域Ⅱ中的磁场撤去,换成平行于x轴的匀强电场,仍从A点沿x轴正方向射入区域Ⅰ的粒子恰好也打在荧光屏上的N点,则电场的场强为多大?解答:解:(1)粒子在磁场中运动时洛伦兹力不做功,打在M点和N点的粒子动能均为E0,速度v1、v2大小相等,设为v,由可得(2)如图所示,区域Ⅱ中无磁场时,粒子在区域Ⅰ中运动四分之一圆周后,从C点沿y轴负方向打在M 点,轨迹圆心是o1点,半径为r1=R区域Ⅱ有磁场时,粒子轨迹圆心是O2点,半径为r2,由几何关系得r22=(1.2R)2+(r2﹣0.4R)2解得r2=2R由得故,方向垂直xoy平面向外.,方向垂直xoy平面向里.(3)区域Ⅱ中换成匀强电场后,粒子从C点进入电场做类平抛运动,则有1.2R=vt,解得场强.9.如图甲所示,直角坐标系中直线AB与横轴x夹角∠BAO=30°,AO长为a.假设在点A处有一放射源可沿∠BAO 所夹范围内的各个方向放射出质量为m、速度大小均为v、带电量为e的电子,电子重力忽略不计.在三角形ABO 内有垂直纸面向里的匀强磁场,当电子从顶点A沿AB方向射入磁场时,电子恰好从O点射出.试求:①从顶点A沿AB方向射入的电子在磁场中的运动时间t;②磁场大小、方向保持不变,改变匀强磁场分布区域,使磁场存在于三角形ABO内的左侧,要使放射出的电子穿过磁场后都垂直穿过y轴后向右运动,试求匀强磁场区域分布的最小面积S.③磁场大小、方向保持不变,现改变匀强磁场分布区域,使磁场存在于y轴与虚线之间,示意图见图乙所示,仍使放射出的电子最后都垂直穿过y轴后向右运动,试确定匀强磁场左侧边界虚线的曲线方程.解答:解:(1)根据题意,电子在磁场中的运动的轨道半径R=a,由evB=得:B=由T=t==(2)有界磁场的上边界:以AB方向发射的电子在磁场中的运动轨迹与AO中垂线交点的左侧圆弧有界磁场的上边界:以A点正上方、距A点的距离为a的点为圆心,以a为半径的圆弧.故最小磁场区域面积为:(3)设在坐标(x,y)的点进入磁场,由相似三角形得到:圆的方程为:x2+(y+b)2=a2消去(y+b),磁场边界的方程为:10.如图,在直角坐标系xoy中,点M(0,1)处不断向+y方向发射出大量质量为m、带电量为﹣q的粒子,粒子的初速度大小广泛分布于零到v0之间.已知这些粒子此后所经磁场的磁感应强度大小为B,方向垂直于纸面向里,所有粒子都沿+x方向经过b区域,都沿﹣y的方向通过点N(3,0).(1)通过计算,求出符合要求的磁场范围的最小面积;(2)若其中速度为k1v0和k2v0的两个粒子同时到达N点(1>k1>k2>0),求二者发射的时间差.解答:解(1)在a区域,设任一速度为v的粒子偏转90°后从(x,y)离开磁场,由几何关系有x=R,,得,上式与R无关,说明磁场右边界是一条直线左边界是速度为v0的粒子的轨迹:,得:此后粒子均沿+x方向穿过b区域,进入c区域,由对称性知,其磁场区域如图.磁场的面积(2)如图所示,速度为k1v0的粒子在a区域磁场的时间为两个阶段的直线运动的时间共为在c区域磁场的时间为所以这两个粒子的发射时间差只与t2有关速度为k2v0的粒子在直线运动阶段的时间为11.隐身技术在军事领域应用很广.某研究小组的“电磁隐形技术”可等效为下面的模型,如图所示,在y>0的区域内有一束平行的α粒子流(质量设为M,电荷量设为q),它们的速度均为v,沿x轴正向运动.在0≤x<d的区间有磁感应强度为B的匀强磁场,方向垂直纸面向里;在d≤x<3d的区间有磁感应强度为B的匀强磁场,方向垂直纸面向外;在3d≤x<4d的区间有磁感应强度为B的匀强磁场,方向垂直纸面向里.要求α粒子流经过这些区域后仍能沿原直线运动,这样使第一象限某些区域α粒子不能到达,达到“屏蔽”α粒子的作用效果.则:(1)定性画出一个α粒子的运动轨迹;(2)求对α粒子起“屏蔽”作用区间的最大面积;(3)若v、M、q、B已知,则d应满足什么条件?解答:解:(1)轨迹如图.(2)要使α粒子流经过这些区域后仍能沿直线运动,则每一小段小于等于四分之一圆弧,且四分之一圆弧时“屏蔽”的面积最大.此时半径为d,如图.由几何关系可知最大面积S max=4d2(3)由得而要使α粒子可以继续向右运动,则要求R≥d即:12.如图所示,在xOy坐标系中分布着四个有界场区,在第三象限的AC左下方存在垂直纸面向里的匀强磁场B1=0.5T,AC是直线y=﹣x﹣0.425(单位:m)在第三象限的部分,另一沿y轴负向的匀强电场左下边界也为线段AC的一部分,右边界为y轴,上边界是满足y=﹣10x2﹣x﹣0.025(单位:m)的抛物线的一部分,电场强度E=2.5N/C.在第二象限有一半径为r=0.1m的圆形磁场区域,磁感应强度B2=1T,方向垂直纸面向里,该区域同时与x轴、y轴相切,切点分别为D、F.在第一象限的整个空间存在垂直纸面向外的匀强磁场,磁感应强度B3=1T.另有一厚度不计的挡板PQ垂直纸面放置,其下端坐标P(0.1m,0.1m),上端Q在y轴上,且∠PQF=30°.现有大量m=1×10﹣6kg,q=﹣2×10﹣4C的粒子(重力不计)同时从A点沿x轴负向以v0射入,且v0取0<v0<20m/s之间的一系列连续值,并假设任一速度的粒子数占入射粒子总数的比例相同.(1)求所有粒子从第三象限穿越x轴时的速度;(2)设从A点发出的粒子总数为N,求最终打在挡板PQ右侧的粒子数N′.解答:解:(1)设某速度为v0的粒子从A点入射后到达AC上的G点,因v0与AC成45°角,其对应圆心角为90°,即恰好经过四分之一圆周,故到达G点时速度仍为v0,方向沿Y轴正向.粒子在电场中沿Y轴正向加速运动,设G点坐标为G(x,y),刚好穿出电场时坐标为(x,y1),粒子穿出电场时速度为v1,在电场中运动的过程中,由动能定理得:而y=﹣x﹣0.425又代入数据解得v1=20m/s,可见粒子穿出电场时速度大小与x无关.因v0<20m/s,由代入数据得:R<0.2m由数学知识可知,k点坐标为k(﹣0.2m,﹣0.225m),故从A点射出的所有粒子均从AK之间以20m/s的速度沿Y轴正向射出电场,在到达X轴之前粒子作匀速直线运动,故所有粒子从第三象限穿越X轴时的速度大小均为20m/s的速度沿Y轴正向.(2)因为r=0.1m,故离子束射入B2时,离子束宽度刚好与2r相等,设粒子在B2中运动轨道半径为R2,,解得R2=r=0.1m考察从任一点J进入B2的粒子,设从H穿出B2磁场,四边形JO2HO1为菱形,又因为JO2水平,而JO2∥HO1,故H应与F重合,即所有粒子经过B2后全部从F点离开B2进入B3磁场.对v0趋于20m/s的粒子,圆心角∠JO2F→180°,故射入B3时速度趋于Y轴负向;对v0趋于0的粒子,圆心角∠JO2F→0°,故射入B3时速度趋于Y轴正向,即进入B3的所有粒子速度与Y轴正向夹角在0~180°角之间.由于B3=B2,所以R3=R2,由几何关系知:无限靠近Y轴负向射入的粒子轨迹如图所示,最终打在PQ板的右侧O3;与Y轴负向成60°角的粒子刚好经过P点到达Q点;因此与Y轴正向在0~120°角之间从F点射出的粒子要么打在PQ板的左侧,要么打不到板上而穿越Y轴离开B3.由于是“大量”粒子,忽略打在P或Q的临界情况,所以最终打在挡板PQ右侧的粒子数答:(1)所有粒子从第三象限穿越x轴时的速度为20m/s;(2)设从A点发出的粒子总数为N,最终打在挡板PQ右侧的粒子数N′为.13.如图所示,有界匀强磁场磁感应强度为B,方向垂直纸面向里,MN为其左边界,磁场中放置一半径为R的圆柱形金属圆筒,圆心O到MN的距离OO1=2R,圆筒轴线与磁场平行.圆筒用导线通过一个电阻r0接地,最初金属圆筒不带电.现有范围足够大的平行电子束以速度v0从很远处沿垂直于左边界MN向右射入磁场区,已知电子质量为m,电量为e.(1)若电子初速度满足,则在最初圆筒上没有带电时,能够打到圆筒上的电子对应MN边界上O1两侧的范围是多大?(2)当圆筒上电量达到相对稳定时,测量得到通过电阻r0的电流恒为I,忽略运动电子间的相互作用,求此时金属圆筒的电势φ和电子到达圆筒时速度v(取无穷远处或大地电势为零).(3)在(2)的情况下,求金属圆筒的发热功率.解答:解:(1)如图所示,设电子进入磁场回旋轨道半径为r,则解得r=3R大量电子从MN上不同点进入磁场轨迹如图,从O1上方P点射入的电子刚好擦过圆筒同理可得到O1下Q点距离.(2)稳定时,圆柱体上电荷不再增加,与地面电势差恒为U,U=Ir0电势φ=﹣Ir0电子从很远处射到圆柱表面时速度为v,有解得.(3)电流为I,单位时间到达圆筒的电子数电子所具有总能量消耗在电阻上的功率P r=I2r0所以圆筒发热功率.14.图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B=2.0×10﹣3T,在x轴上距坐标原点L=0.50m的P处为离子的入射口,在y上安放接收器.现将一带正电荷的粒子以v=3.5×104m/s的速率从P处射入磁场,若粒子在y轴上距坐标原点L=0.50m的M处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,不计其重力.(1)求上述粒子的比荷;(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y轴正方向做匀速直线运动,求该匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场;(3)为了在M处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形.解答:解:(1)设粒子在磁场中的运动半径为r,依题意MP连线即为该粒子在磁场中作匀速圆周运动的直径,由几何关系得,由洛伦兹力提供粒子在磁场中作匀速圆周运动的向心力,可得,联立解得:=4.9×107C/kg(2)此时加入沿x轴正方向的匀强电场,电场力与此时洛伦兹力平衡,qE=qvB,代入数据得:E=70V/m.所加电场的场强方向沿x轴正方向.设带点粒子做匀速圆周运动的周期为T,所求时间为t=T/8,而,解得t=7.9×10﹣6s(3)该区域面积S=2r2=0.25m2,矩形如图所示.15.如图所示,在xOy 平面的第一、四象限内存在着方向垂直纸面向外,磁感应强度为B 的匀强磁场,在第四象限内存在方向沿﹣y 方向、电场强度为 E 的匀强电场.从y 轴上坐标为(0,a)的P 点向磁场区发射速度大小不等的带正电同种粒子,速度方向范围是与+y 方向成30°﹣150°角,且在xOy 平面内.结果所有粒子经过磁场偏转后都垂直打到x 轴上,然后进入第四象限内的正交电磁场区.已知带电粒子电量为+q,质量为m,粒子重力不计.(1)所有通过第一象限磁场区的粒子中,求粒子经历的最短时间与最长时间的比值;(2)求粒子打到x 轴上的范围;(3)从x 轴上x=a 点射入第四象限的粒子穿过正交电磁场后从y 轴上y=﹣b 的Q 点射出电磁场,求该粒子射出电磁场时的速度大小.解答:解:(1)、各种离子在第一象限内运动时,与y轴正方向成30°的粒子运动时间最长,时间为:…①与y轴正方向成150°的粒子运动时间最短,时间为:…②①②两式联立得:(2)、设带电粒子射入方向与y轴夹角成150°时的轨道半径为R1,由几何关系有:带电粒子经过的最左边为:设带电粒子射入方向与y轴夹角30°时的轨道半径为R2,由几何关系有:带电粒子经过的最右边为:所以粒子打到x 轴上的范围范围是:(3)带电粒子在第一象限的磁场中有:由题意知:R=a带电粒子在第四象限中运动过程中,电场力做功转化为带电粒子的动能,设经过Q点是的速度为v,由动能定理由:解得:v=16.如图(甲)所示,x≥0的区域内有如图乙所示大小不变、方向随时间周期性变化的磁场,磁场方向垂直纸面向外时为正方向.现有一质量为m、带电量为q的正电粒子,在t=0时刻从坐标原点O以速度v沿着与x轴正方向成75°角射入.粒子运动一段时间到达P点,P点坐标为(a,a),此时粒子的速度方向与OP延长线的夹角为30°.粒子在这过程中只受磁场力的作用.(1)若B为已知量,试求粒子在磁场中运动时的轨道半径R及周期T的表达式.(2)说明在OP间运动的时间跟所加磁场的变化周期T之间应有什么样的关系才能使粒子完成上述运动.(3)若B为未知量,那么所加磁场的变化周期T、磁感强度B0的大小各应满足什么条件,才能使粒子完成上述运动?(写出T及B0各应满足条件的表达式)例4如图所示,的区域内有如图所示大小不变、方向随时间周期性变化的磁场,磁场方向垂直纸面向外时为正方向。

相关文档
最新文档