插补的基本概念、脉冲增量插补与数据采样插补的特点和区别共30页文档
第三章 插补原理及控制方法
控
制
方
法
插补计算的任务就
是对轮廓线的起点到终
点之间再密集地计算出
有限个坐标点,刀具沿
第 着这些坐标点移动,来 三 逼近理论轮廓,以保证 章 切削过程中每一点的精
度和表面质量。
插
补
插补的实质是根据有限的信息完成 “数据
原 理 及
密化” 的工作,即数控装置依据编程时的有 限数据,按照一定方法产生基本线型 (直线、
补 期的进给段(轮廓步长),即用弦线或割线逼
原 理
近轮廓轨迹。
及
控
制
方
法
数据采样插补运算分 两步完成。
第一步为粗插补,在给定
起点和终点的曲线之间插
入若干个点,即用若干条
第
微小直线段来逼近
三 章
给定曲线,每一微小直线段的长度⊿L都相等,且与
给定进给速度有关。粗插补在每个插补运算周期中计
算一次,因此,每一微小直线段的长度与进给速度F
章
插 补
若m在OA直线上方,则
yj ye xi xe
原
理
即 xe yj xi ye 0
及
控 制
若m在OA直线下方,则 yj ye
方
xi xe
法
即 xe yj xi ye 0
由此可以取
Fi j xe y j xi ye
第
偏差判别函数为
三
章
插 补
若Fi j =0,表明 m 在直线上;
原 理
第一、偏差判别 判别实际加工点相对规定几
第
何轨迹的偏离位置,然后决定刀具走向;
三 第二、进给运动 控制某坐标轴使工作台进给
章
一步,向规定的几何轨迹靠拢,缩小偏差;
一、插补及其算法 插补:是指在一条已知起点和终点的曲线上进行数
插补: 插补:是指在一条已知起点和终点的曲线上进行 数据点的密化。 数据点的密化。 CNC系统插补功能:直线插补功能 系统插补功能: 系统插补功能 圆弧插补功能 抛物线插补功能 螺旋线插补功能
淮海工学院
8.1
插补原理
直线和圆弧插补功能插补算法: 直线和圆弧插补功能插补算法:
⑴逐点比较法直线插补的象限与坐标变换 线 G01 型 偏 差 判 别 F≥0 F<0 象 2 限 3
1
4
+X +Y
+Y - X
-X -Y
-Y +X
淮海工学院
8.1
插补原理
(2)逐点比较法圆弧插补象限与坐标变换 )
象 线 型 偏差判别 F≥0 G02 G03 F<0 F≥0 F<0 1 -Y +X -X +Y 2 +X +Y -Y -X 3 +Y -X +X -Y 限 4 -X -Y +Y +X
淮海工学院
或半闭环)CNC系统的加减速控制 二、闭环(或半闭环 闭环 或半闭环 系统的加减速控制
前加减速控制: 前加减速控制 (1)稳定速度和瞬时速度 ) (2)线性加减速处理 ①加速处理 )
②减速处理 ③终点判别处理
8.1
插补原理
图8-2 逐点比较法直线插补轨迹
淮海工学院
8.1
插补原理
2.逐点比较法圆弧插补 逐点比较法圆弧插补
(1)判别函数及判别条件 ) (2)进给方向判别 ) (3)迭代法偏差函数F的推导 )迭代法偏差函数 的推导 (4)逐点比较法圆弧插补终点判别 )
淮海工学院
8.1
插补原理
⒊ 坐标变换及自动过象限处理
插补原理
新点的偏差Fi+1,i=XeYi-(Xi+1)Ye =XeYi-Xi Ye-Ye=Fi-Ye
(新点的偏差值可以通过老点的偏差和终点坐标求出)
同理:当F<0,走+ Δy,新点位于(Xi,Yi +1 )
Fi,i+1= Xe (Yi +1) -Ye Xi = Xe + Fi = Fi + Xe
2021/4/3
20
运算过程:
2021/4/3
21
2.3.3 圆弧插补 用逐点比较法也能检修圆弧插补
F=(Xi2- X02) + (Yi2- Y02)
2021/4/3
22
逐点比较法圆弧插补结论
当F≥0,点在圆弧的外面,走-X可以靠近圆弧,
新点偏差:
Fi1,i Xi 1 X0 2 Yi Y0 2
综合之:此脉冲分配器(可控脉冲发生器)可 以输出与控制数据一致的脉冲数(把控制数据 转化为相应的脉冲个数)
2.2.2 数字脉冲乘法的直线插补 以下是2个坐标方向的数字脉冲硬件插补电路图
2021/4/3
10
控制过程
1.清0 2.插补控制信号—SD ,使TG—1 3.MF发出脉冲通过与门I,插补开始 4.插补完后,T1溢出脉冲,TG —0
2021/4/3
11
例子2—1
1,3,5,7,9,11,13,15
X
4,12
2,6,10,14
Y 4;12
(X,Y)=(10,6)=(1010,0110)
4,12 8
2021/4/3
12
2.2.3数字脉冲乘法器插补速度 分析 2.2.3.1脉冲分配的不均匀性问题
数控技术第3章插补原理
5. 运算举例(第Ⅰ 象限逆圆弧) 运算举例( 象限逆圆弧) 加工圆弧AE 起点(4,3) AE, (4,3), 终点(0,5) E=(4-0)+(5加工圆弧AE,起点(4,3), 终点(0,5) ,E=(4-0)+(53)=6 插补过程演示
三.逐点比较法的进给速度 逐点比较法的进给速度
逐点比较法除能插补直线和圆弧之外,还能插补椭圆、 逐点比较法除能插补直线和圆弧之外,还能插补椭圆、 抛物线和双曲线等二次曲线。此法进给速度平稳, 抛物线和双曲线等二次曲线。此法进给速度平稳, 精度较高。在两坐标联动机床中应用普遍. 精度较高。在两坐标联动机床中应用普遍. 对于某一坐标而言, 对于某一坐标而言,进给脉冲的频率就决定了进给速 度 :
插补是数控系统最重要的功能; 插补是数控系统最重要的功能; 插补实际是数据密集化的过程; 插补实际是数据密集化的过程; 插补必须是实时的; 插补必须是实时的; 插补运算速度直接影响系统的控制速度; 插补运算速度直接影响系统的控制速度; 插补计算精度影响到整个数控系统的精度。 插补计算精度影响到整个数控系统的精度。 插补器按数学模型分类,可分为一次插补器、 插补器按数学模型分类,可分为一次插补器、二次插补器及高 次曲线插补器; 次曲线插补器; 根据插补所采用的原理和计算方法不同, 根据插补所采用的原理和计算方法不同,分为软件插补和硬件 插补。目前大多采用软件插补或软硬件结合插补。 插补。目前大多采用软件插补或软硬件结合插补。 根据插补原理可分为:脉冲增量插补和数字采样插补。 根据插补原理可分为:脉冲增量插补和数字采样插补。
脉冲当量: 脉冲当量:每一个脉冲使执行件按指令要求方向移动的直线 距离,称为脉冲当量, 表示。一般0.01mm 0.001mm。 0.01mm~ 距离,称为脉冲当量,用δ表示。一般0.01mm~0.001mm。 脉冲当量越小, 脉冲当量越小,则机床精度越高
数控机床插补原理
对圆弧,提供起点、终点、顺圆或逆圆、以及圆心相对于起点的位置。为满
足零件几何尺寸精度要求,必须在刀具(或工件)运动过程中实时计算出满足 线形和进给速度要求的若干中间点(在起点和终点之间),这就是数控技术中
插补(Interpolation)的概念。据此可知,插补就是根据给定进给速度和给定
轮廓线形的要求,在轮廓已知点之间,确定一些中间点的方法,这种方法称 为插补方法或插补原理。
Xm+1=Xm+1, Ym+1=Ym
新的偏差为
Fm+1=Ym+1Xe-Xm+1Ye=Fm-Ye
若Fm<0时,为了逼近给定轨迹,应向+Y方向进给一步,走一步后新的坐标值为
Xm+1=Xm, Ym+1=Ym +1
新的偏差为
Fm+1=Fm+Xe
4. 终点判别法
逐点比较法的终点判断有多种方法,下面主要介绍两种:
直到∑为零时,就到了终点。
2.2
不同象限的直线插补计算
上面讨论的为第一象限的直线插补计算方法,其它三个象
限的直线插补计算法,可以用相同的原理获得,表5-1列出了
四个象限的直线插补时的偏差计算公式和进给脉冲方向,计 算时,公式中Xe,Ye均用绝对值。
表1-1 四个象限的直线插补计算
第5章 数控插补原理
3.时间分割法插补精度 直线插补时,轮廓步长与被加工直线重合,没有插 补误差。
圆弧插补时,轮廓步长作为弦线或割线对圆弧进行 逼近,存在半径误差。
Y A(Xe,Ye) l l △X β O l △Y
α
第5章 数控装置的轨迹控制原理
FT l er 8r 8r
2
2
式中 er——最大径向误差; r——圆弧半径。 圆弧插补时的半径误差er与圆弧半径r成反比,与插补周期T和进 给速度F 的平方成正比。 插补周期是固定的,该误差取决于进给速度和圆弧半径。 当加工圆弧半径确定后,为了使径向误差不超过允许值,对进给 速度有一个限制。 例如:当要求er≤1μ m,插补周期为T=8ms,则进给速度为:
第5章 数控装置的轨迹控制原理
5.2 脉冲增量插补
-------逐点比较法
插补原理:每次仅向一个坐标轴输 出一个进给脉冲,每走一步都要通 过偏差计算,判断偏差点的瞬时坐 标同规定加工轨迹之间的偏差,然 后决定下一步的进给方向。 每个插补循环由四个步骤组成。
Y P1 P2 B
A 0
P0(x,y)
X 终点到?
设刀具由A点移动到B点,A(Xi-1,Yi-1 )为圆弧上一插补 点, B(Xi,Yi)为下一插补点。AP为A点的切线,AB为本次插补的合成 进给量,AB=f。M为AB之中点。 通过计算可以求得下一插补点B点的坐标值
X i X i1 X
Yi Yi 1 Y
第5章 数控装置的轨迹控制原理
∑=5-1=4 ∑=4-1=3 ∑=3-1=2
9
10
F8>0
F9>0
-X
-X
F9=4-2×2+1=1,X9=2-1=1,Y9=5
第三章计算机数控装置的插补原理
第三章计算机数控装置的插补原理3.1 概述3.1.1插补的基本概念是指在轮廓控制系统中,根据给定的进给速度和轮廓线形的要求等“有限信息”,在已知数据点之间插入中间点的方法,这种方法称为插补方法。
插补的实质就是数据点的“密化”。
插补的结果是输出运动轨迹的中间坐标值,机床伺服驱动系统根据这些坐标值控制各坐标轴协调运动,加工出预定的几何形状。
插补有二层意思:一是用小线段逼近产生基本线型(如直线、圆弧等);二是用基本线型拟和其它轮廓曲线。
插补运算具有实时性,直接影响刀具的运动。
插补运算的速度和精度是数控装置的重要指标。
插补原理也叫轨迹控制原理。
五坐标插补加工仍是国外对我国封锁的技术。
下面以直线、圆弧生成为例,论述插补原理。
3.1.2 插补方法的分类完成插补运算的装置或程序称为插补器,包括:硬件插补器:早期NC系统的数字电路装置。
软件插补器:现代CNC系统的计算机程序。
软硬件结合插补器:软件完成粗插补,硬件完成精插补。
由于直线和圆弧是构成零件轮廓的基本线型,因此CNC系统一般都具有直线插补和圆弧插补两种基本类型。
插补运算所采用的原理和方法很多,一般可归纳为基准脉冲插补和数据采样插补两大类型。
1.基准脉冲插补每次插补结束仅向各运动坐标轴输出一个控制脉冲,各坐标仅移动一个脉冲当量或行程的增量。
脉冲序列的频率代表坐标运动的速度,而脉冲的数量代表运动位移的大小。
这类插补运算简单,主要用于步进电机驱动的开环数控系统的中等精度和中等速度要求的经济型计算机数控系统。
也有的数控系统将其用做数据采样插补中的精插补。
基准脉冲插补也叫脉冲增量插补,其插补的方法很多,如逐点比较法、数字积分法、脉冲乘法器等。
2.数据采样插补采用时间分割思想,根据编程的进给速度将轮廓曲线分割为每个插补周期的进给直线段(又称轮廓步长)进行数据密化,以此来逼近轮廓曲线。
然后再将轮廓步长分解为各个坐标轴的进给量(一个插补周期的进给量),作为指令发给伺服驱动装置。
什么是插补
什么是插补一、插补的概念在数控机床中,刀具不能严格地按照要求加工的曲线运动,只能用折线轨迹逼近所要加工的曲线。
插补(interpolation)定义:机床数控系统依照一定方法确定刀具运动轨迹的过程。
也可以说,已知曲线上的某些数据,按照某种算法计算已知点之间的中间点的方法,也称为“数据点的密化”。
数控装置向各坐标提供相互协调的进给脉冲,伺服系统根据进给脉冲驱动机床各坐标轴运动。
数控装置的关键问题:根据控制指令和数据进行脉冲数目分配的运算(即插补计算),产生机床各坐标的进给脉冲。
插补计算就是数控装置根据输入的基本数据,通过计算,把工件轮廓的形状描述出来,边计算边根据计算结果向各坐标发出进给脉冲,对应每个脉冲,机床在响应的坐标方向上移动一个脉冲当量的距离,从而将工件加工出所需要轮廓的形状。
插补的实质:在一个线段的起点和终点之间进行数据点的密化。
插补工作可由硬件逻辑电路或执行软件程序来完成,在CNC系统中,插补工作一般由软件完成,软件插补结构简单、灵活易变、可靠性好。
二、插补方法的分类目前普遍应用的两类插补方法为基准脉冲插补和数据采样插补。
1.基准脉冲插补(行程标量插补或脉冲增量插补)特点:每次插补结束,数控装置向每个运动坐标输出基准脉冲序列,每插补运算一次,最多给每一轴一个进给脉冲。
每个脉冲代表了最小位移,脉冲序列的频率代表了坐标运动速度,而脉冲的数量表示移动量。
每发出一个脉冲,工作台移动一个基本长度单位,也叫脉冲当量,脉冲当量是脉冲分配的基本单位。
该方法仅适用于一些中等精度或中等速度要求的计算机数控系统主要的脉冲增量插补方法:数字脉冲乘法器插补法逐点比较法数字积分法矢量判别法比较积分法最小偏差法目标点跟踪法单步追踪法直接函数法加密判别和双判别插补法2. 数字采样插补(数据增量插补)数据采样插补又称时间增量插补,这类算法插补结果输出的不是脉冲,而是标准二进制数。
根据程编进给速度,把轮廓曲线按插补周期将其分割为一系列微小直线段,然后将这些微小直线段对应的位置增量数据进行输出,以控制伺服系统实现坐标轴的进给。
数据采样插补
在CNC系统中较广泛采用的另一种插补计算方法即所谓数据采样插补法,或称为时间分割法。
它尤其适合于闭环和半闭环以直流或交流电机为执行机构的位置采样控制系统。
这种方法是把加工一段直线或圆弧的整段时间细分为许多相等的时间间隔,称为单位时间间隔(或插补周期)。
每经过一个单位时间间隔就进行一次插补计算,算出在这一时间间隔内各坐标轴的进给量,边计算,边加工,直至加工终点。
与基准脉冲插补法不同,采用数据采样法插补时,在加工某一直线段或圆弧段的加工指令中必须给出加工进给速度v,先通过速度计算,将进给速度分割成单位时间间隔的插补进给量(或称为轮廓步长),又称为一次插补进给量。
例如,在FANUC 7M系统中,取插补周期为8 ms,若v的单位取mm/min,f的单位取mμ/8 ms,则一次插补进给量可用下列数值方程计算:10008260100015vf v⨯⨯==⨯按上式计算出一次插补进给量f后,根据刀具运动轨迹与各坐标轴的几何关系,就可求出各轴在一个插补周期内的插补进给量,按时间间隔(如8 ms)以增量形式给各轴送出一个一个插补增量,通过驱动部分使机床完成预定轨迹的加工。
由上述分析可知,这类算法的核心问题是如何计算各坐标轴的增长数x∆或y∆(而不是单个脉冲),有了前一插补周期末的动点位置值和本次插补周期内的坐标增长段,就很容易计算出本插补周期末的动点命令位置坐标值。
对于直线插补来讲,插补所形成的轮廓步长子线段(即增长段)与给定的直线重合,不会造成轨迹误差。
而在圆弧插补中,因要用切线或弦线来逼近圆弧,因而不可避免地会带来轮廓误差。
其中切线近似具有较大的轮廓误差而不大采用,常用的是弦线逼近法。
有时,数据采样插补是分两步完成的,即粗插补和精插补。
第一步为粗插补,它是在给定起点和终点的曲线之间插入若干个点,即用若干条微小直线段来逼近给定曲线,粗插补在每个插补计算周期中计算一次。
第二步为精插补,它是在粗插补计算出的每一条微小直线段上再做“数据点的密化”工作,这一步相当于对直线的脉冲增量插补。
插补原理概述
2.1 插 补 原 理
2. 逐点比较法圆弧插补
在圆弧加工过程中,要描述刀具位置与被加工圆弧之间关系,可用动
点到圆心距离大小来反映。见图2-8,设圆弧圆心在坐标原点,己知圆弧
起点 A(X,a ,终Ya )点 ,B(X圆b,弧Yb )半径为R。加工点可能在三种情况出现,圆弧 上、圆弧外、圆弧内。
①当动点 P(X位,Y)于圆弧上时有
②若 F ,0 表明动点在圆内,应向+X向进给,计算出新一点的偏差。
如此走一步,算一步,直至终点。
由于偏差计算公式中有平方值计算,下面采用递推公式给予简化。对
第(一Xi象1,Y且i限1) 顺圆,X,i+1 =FXi,,i ³Yi动则+01 =点新Yi点-1的Pi偏应( X差向i , 值-YYi )为向进给,新的动点坐标为
②若点在直线上,则有 X eY - XYe > 0
③若点在直线下方,则有 X eY - XYe = 0
X
Y
e
-
XY e
<
0
因此,可以构造函数偏差为
F = X Y - XY
(2-2)
e
e
2.1 插 补 原 理
对于第一象限直线,其偏差符号与进给方向之间的关系为:
①F=0时,表示动点在OE上,如点P,可向+X向进给,也可向+Y方向进
7
F6 0
+X
F7 F6 Ye 0 0
由直线插补例子看出,在起点和终点处,刀具都在直线上。通过逐点比较法,控
制刀具走出一条尽量接近零件轮廓直线的轨迹,当脉冲当量很小时,刀具走出的折
线非常接近直线轨迹,逼近误差的大小与脉Байду номын сангаас当量的大小直接相关。
1--插补的基本概念、脉冲增量插补与数据采样插补的特点和区别、逐点比较法的基本原理、直线插补和圆弧插补
数据采样插补算法 根据数控加工程序所要求的进给速度 按照插补周期的大小, 数控加工程序所要求的进给速度, 插补周期的大小 根据数控加工程序所要求的进给速度,按照插补周期的大小,先将零件轮 廓曲线分割为一系列首尾相接的微小直线段 首尾相接的微小直线段, 廓曲线分割为一系列首尾相接的微小直线段,然后输出这些微小直线段所对应 位置增量数据,控制伺服系统实现坐标轴进给。 的位置增量数据,控制伺服系统实现坐标轴进给。 采用数据采样插补算法时,每调用一次插补程序,数控系统就计算出本插 采用数据采样插补算法时,每调用一次插补程序,数控系统就计算出本插 补周期内各个坐标轴的位置增量以及各个坐标轴的目标位置 以及各个坐标轴的目标位置。 补周期内各个坐标轴的位置增量以及各个坐标轴的目标位置。 伺服位置控制软件将把插补计算求得的坐标轴位置与采样获得的坐标 随后伺服位置控制软件 随后伺服位置控制软件将把插补计算求得的坐标轴位置与采样获得的坐标 轴实际位置进行比较求得位置跟踪误差,然后根据当前位置误差计算出坐标轴 轴实际位置进行比较求得位置跟踪误差,然后根据当前位置误差计算出坐标轴 当前位置误差 的进给速度并输出给驱动装置,从而驱动移动部件向减小误差的方向运动。 的进给速度并输出给驱动装置,从而驱动移动部件向减小误差的方向运动。
(2)数控机床的运动特点 在数控机床中,刀具的基本运动单位 脉冲当量, 基本运动单位是 ① 在数控机床中,刀具的基本运动单位是脉冲当量,刀具沿各个坐标轴方 向的位移的大小只能是脉冲当量的整数倍 脉冲当量的整数倍。 向的位移的大小只能是脉冲当量的整数倍。 因此,数控机床的运动空间被被离散化为一个网格区域 网格区域, 因此,数控机床的运动空间被被离散化为一个网格区域,网格大小为一个 脉冲当量,刀具只能运动到网格节点的位置。 脉冲当量,刀具只能运动到网格节点的位置。 如下图所示。 如下图所示。
数控技术 第三章 插补
3.逐点比较法圆弧插补 3.逐点比较法圆弧插补
(1)偏差函数 任意加工点P ),偏差函数 偏差函数F 任意加工点Pi(Xi,Yi),偏差函数Fi可表示为
Fi = X i2 + Yi 2 − R 2
=0,表示加工点位于圆上; 若Fi=0,表示加工点位于圆上; Y >0,表示加工点位于圆外; 若Fi>0,表示加工点位于圆外; <0, 若Fi<0,表示加工点位于圆内
Y Ae (Xe,Ye) F>0 Pi (Xi,Yi) F<0 X
为便于计算机计算) (2)偏差函数字的递推计算 (为便于计算机计算 为便于计算机计算 >=0,规定向+ 方向走一步(若坐标单位用脉冲当量表示) 若Fi>=0,规定向+X方向走一步(若坐标单位用脉冲当量表示)
Xi+1 = Xi +1 Fi+1 = XeYi −Ye (Xi +1) = Fi −Ye
2.逐点比较法直线插补 2.逐点比较法直线插补
(1)偏差函数构造 对于第一象限直线OA上任一点( OA上任一点 对于第一象限直线OA上任一点(X,Y) YX e − XYe = 0 若刀具加工点为Pi( ),则该点的偏差 若刀具加工点为Pi(Xi,Yi),则该点的偏差 Pi 函数F 函数Fi可表示为 Fi = Yi X e − X i Ye 若Fi=0,表示加工点位于直线上; 表示加工点位于直线上; 表示加工点位于直线上方; 若Fi>0,表示加工点位于直线上方; 表示加工点位于直线下方。 若Fi<0,表示加工点位于直线下方。
F=0 F<0 F>0 F<0 F>0 F=0 F<0 F>0 F<0 F>0
插补原理文档
数控原理与应用姓名:闫超学号:20092427班级:数控09-2插补原理插补的基本概念数控系统根据零件轮廓线型的有限信息,计算出刀具的一系列加工点、完成所谓的数据“密化”工作。
插补有二层意思:一是用小线段逼近产生基本线型<如直线、圆弧等);二是用基本线型拟和其它轮廓曲线。
插补运算具有实时性,直接影响刀具的运动。
插补运算的速度和精度是数控装置的重要指标。
插补原理也叫轨迹控制原理。
五坐标插补加工仍是国外对我国封锁的技术。
下面以基本线型直线、圆弧生成为例,论述插补原理插补方法的分类硬件插补器完成插补运算的装置或程序称为插补器软件插补器软硬件结合插补器1.基准脉冲插补每次插补结束仅向各运动坐标轴输出一个控制脉冲,各坐标仅产生一个脉冲当量或行程的增量。
脉冲序列的频率代表坐标运动的速度,而脉冲的数量代表运动位移的大小。
基准脉冲插补的方法很多,如逐点比较法、数字积分法、脉冲乘法器等。
2.数据采样插补采用时间分割思想,根据编程的进给速度将轮廓曲线分割为每个插补周期的进给直线段<又称轮廓步长)进行数据密化,以此来逼近轮廓曲线。
然后再将轮廓步长分解为各个坐标轴的进给量<一个插补周期的近给量),作为指令发给伺服驱动装置。
该装置按伺服检测采样周期采集实际位移,并反馈给插补器与指令比较,有误差运动,误差为零停止,从而完成闭环控制。
数据采样插补方法有:直线函数法、扩展DDA、二阶递归算法等逐点比较法早期数控机床广泛采用的方法,又称代数法,适用于开环系统。
1.插补原理及特点原理:每次仅向一个坐标轴输出一个进给脉冲,而每走一步都要通过偏差函数计算,判断偏差点的瞬时坐标同规定加工轨迹之间的偏差,然后决定下一步的进给方向。
每个插补循环由偏差判别、进给、偏差函数计算和终点判别四个步骤组成。
逐点比较法可以实现直线插补、圆弧插补及其它曲安插补。
特点:运算直观,插补误差不大于一个脉冲当量,脉冲输出均匀,调节方便。
逐点比较法直线插补<1)偏差函数构造对于第一象限直线OA上任一点(X,Y>:X/Y = Xe/Ye 若刀具加工点为Pi<Xi,Yi),则该点的偏差函数Fi可表示为若Fi= 0,表示加工点位于直线上;若Fi> 0,表示加工点位于直线上方;若Fi< 0,表示加工点位于直线下方。
第三章-计算机数控装置的插补原理 PPT课件
5
34
6
O 12
偏差计算
F0=0(坐标原点)
10 A
8 9 步进电机
7
的运动轨
迹
X
终点判别
(计数器)
∑=10
3.1 概述 3.2 脉冲增量 插补
3.3 数据采样 插补
1
F0=0
+X(一个脉冲) F1=F0-ye=0-4=-4
∑=10-1=9
2
F1<0
+Y
F2=F1+xe=-4+6=2
∑=9-1=8
3
数控系统中完成插补运算的装置或程序称为 插补器,有三类:1)硬件插补器;2)软件插 补器;3)软硬件结合插补器。 现代数控中,由软件完成粗插补,硬件完成精插补。
5
3.1 概述 3.2 脉冲增量 插补 3.3 数据采样 插补
目录页
第5页共87页 返回 退出
数控技术 第三章 计算机数控装置的插补原理
如:零件程序 (直线插补)
3.1 概述 3.2 脉冲增量 插补 3.3 数据采样 插补
目录页
第11页共87页
11
返回
退出
数控技术 第三章 计算机数控装置的插补原理
2.逐点比较法直线插补
• 1)偏差函数构造
• 对于第一象限直线OE上任一点(X,Y):X/Y = Xe/Ye
• 若刀具加工点为Pi(Xi,Yi),
3.1 概述
• 则该点的偏差函数Fi可表示为
F2>0
4
F3<0
+X
F3=F2-ye=2-4=-2
∑=8-1=7
+Y
F4=F3+xe=-2+6=4
1--插补的基本概念、脉冲增量插补与数据采样插补的特点和区别、逐点比较法的基本原理、直线插补和圆弧插补
F<0
O X
综合上述讨论,有如下结论。 ① 偏差值 Fi = XeYi - XiYe ② 当 Fi ≥ 0 时,动点在直线上,或在直线上方区域,应该向 +X 方向进 给一步; ③ 当 Fi < 0 时,动点在直线下方区域,应该向 +Y 方向进给一步。
据此可设计出逐点比较法直线插补的计算流程如下。
插补模块
目标 位置
当前 位置 误差 实际 位置
调整运算
进给 速度
驱动装置 测量元件
工作台
位置控制软件
综上所述,各类插补算法都存在着速度与精度之间的矛盾。为解决这个 问题,人们提出了以下几种方案。 ① 软件/硬件相配合的两级插补方案 在这种方案中,插补任务分成两步完成: 首先,使用插补软件(采用数据采样法)将零件轮廓按插补周期(10~ 20ms)分割成若干个微小直线段,这个过程称为粗插补。 随后,使用硬件插补器对粗插补输出的微小直线段做进一步的细分插补, 形成一簇单位脉冲输出,这个过程称为精插补。 ② 多个CPU的分布式处理方案 首先,将数控系统的全部功能划分为几个子功能模块,每个子功能模块 配置一个独立的CPU来完成其相应功能,然后通过系统软件来协调各个CPU之 间的工作。
开始 偏差计算 Y F>0 E(Xe,Ye)
偏差判别
坐标进给
到达终点? Y 结束 N O
F<0
X
偏差值的迭代计算公式 通过以上讨论,逐点比较法直线插补的偏差值计算公式为 Fi = XeYi – XiYe
该式有一个缺点:需要做乘法运算。对于硬件插补器或者使用汇编语言的 软件插补器,这将产生一定的困难。
② 投影法 在插补处理开始之前,先确定直线轮廓终点坐标绝对值中较大的那根轴, 并求出该轴运动的总步数,然后存放在总步长计数器∑ 中。 ∑=max(|Xe|, |Ye|) 在插补过程中,每进行一次插补计算,如果终点坐标绝对值较大的那根坐 标轴进给一步,则计数器∑做减1操作。当计数器∑内容减到零时,表示刀具 在终点坐标绝对值较大的那根坐标轴方向上已经走了规定的步数,应该已经抵 达直线轮廓的终点,系统停止插补计算。 ③ 终点坐标法 在插补处理开始之前,先设置两个步长计数器∑1 和∑2 ,分别用来存放 刀具在两个坐标轴方向上应该走的总步数: ∑1 = |Xe|, ∑2 = |Ye| 在插补过程中,每进行一次插补计算,如果X方向进给一步,则计数器∑1 做减1操作;如果Y方向进给一步,则计数器∑2做减1操作。当两个步长计数器 都为零时,表示刀具已经抵达直线轮廓的终点,系统停止插补计算。
数控插补
数控插补.txt 插补方法可以如此分类:一次插补器、二次插补器和高次插补器这是根据数学模型来划分的,如直线插补就是一次插补,圆或抛物线插补是二次插补等。
硬件插补和软件插补一般,硬件数控的插补模块由数字电路组成,速度较快,但升级不易,柔性较差,称为硬件插补。
CNC数控的插补模块由软件来实现,速度虽然没有硬件插补快,但容易升级,成本也较低廉,称为软件插补。
基准脉冲插补和数据采样插补基准脉冲插补(又:行程标量插补、脉冲增量插补):特点是数控装置在每次插补结束后,向相应的运动坐标输出基准脉冲序列,每个脉冲代表了最小位移,脉冲序列的频率代表了坐标运动速度,脉冲的数量代表运动速度。
本方法因为只涉及加法和移位计算,实现起来比较简单,容易用硬件实现。
比较常用的有:数字脉冲乘法器(又:二进制比例乘法器BinaryRateMultiplier,简称BRM)逐点比较法(又称区域判别法)数字积分法(简称DDA法)矢量判别法比较积分法最小偏差法目标点跟踪法单步追踪法直接函数法加密判别和双判别法...数据采样插补(又:时间标量插补、数字增量插补)特点是数控装置产生的不是单个脉冲而是二进制字,适用于闭环、半闭环交直流伺服电机驱动的控制系统。
它可以划分两个阶段:粗插补:用微小的直线段逼近给定的轮廓,该微小的直线段与指令给定的速度有关,常用软件实现。
精插补:在上述微小的直线段上进行“数据点的密化”,这一阶段其实就是对直线的脉冲增量插补,计算简单,可以用硬件或软件实现。
下面是常用的数据采样插补方法:直线函数法扩展DDA法二阶递归扩展DDA法双数字DDA法角度逼近圆弧插补法改进吐斯丁法山随平野尽,江入大荒流。
外举不弃仇,内举不失亲。