实验4-6 法拉第效应

合集下载

法拉第效应实验报告

法拉第效应实验报告

法拉第效应一.实验目的1.初步了解法拉第效应的经典理论。

2.初步掌握进行磁光测量的方法。

二.实验原理1.法拉第效应实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度F θ与光波在介质中走过的路程l 及介质中的磁感应强度在光的传播方向上的分量H B 成正比,这个规律又叫法拉第一费尔得定律,即F H VB l θ=()1比例系数V 由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔得常数,它与光频和温度有关。

几乎所有的物质都有法拉第效应,但一般都很不显著。

不同物质的振动面旋转的方向可能不同。

一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(0V >)反之叫负旋(0V <)。

法拉第效应与自然旋光不同,在法拉第效应中,对于给定的物质,偏振面相对于实验室坐标的旋转方向,只由B 的方向决定和光的传播方向无关,这个光学过程是不可逆的。

光线往返一周,旋光角将倍增。

而自然旋光则是可逆的,光线往返一周,累积旋光角为零。

与自然旋光类似,法拉第效应也有色散。

含有三价稀土离子的玻璃,费尔德常数可近似表示为:()122t V K λλ-=-()2这里K 是透射光波长t λ,有效的电偶极矩阵元,温度和浓度等物理量的函数,但是与入射波长λ无关。

这种V 值随波长而变的现象称为旋光色散。

2.法拉第效应的经典理论从光波在介质中传播的图像看,法拉第效应可以这样理解:一束平行于磁场方向传播的平面偏振光,可以看作是两柬等幅的左旋和右旋偏振光的叠加,左旋和右旋是相对于磁场方向而言的。

介质中受原子核束缚的电子在人射光的两旋转电矢量作用下,作稳态的圆周运动。

在与电子轨道平面相垂直的方向上加一个磁场B ,则在电子上将引起径向力M F ,力的方向决定于光的旋转方向和磁场方向。

因此,电子所受的总径向力可以有两个不同的值。

轨道半径也可以有两个不同的值。

结果,对于一个给定的磁场就会有两个电偶极矩,两个电极化率。

法拉第效应实验

法拉第效应实验
大学物理实验
法拉第效应
一、实验目的
1、了解法拉第效应原理 、 2、掌握光线偏振面旋转角度的测量方法,研究磁感应 、掌握光线偏振面旋转角度的测量方法,
强度和旋转角度的关系
3、测量不同颜色光的旋光角,研究波长和费尔德常数 、测量不同颜色光的旋光角,
的关系
重点: 重点:法拉第测试仪器的正确使用 难点:法拉第效应原理的理解
磁感应强度B与励磁电流I的关系
四、实验内容
3、数据处理
样品名称:重火石玻璃
λ (nm) φ 度) (
B(GS )
2000 3000 4000 5000 6000 422.5 (紫) 534.5 (绿) 587 (黄)
D=10.1mm
701 (红)
五、实验注意事项
1.认清单色仪狭缝开启方向,切勿使其 认清单色仪狭缝开启方向, 关闭过零。 关闭过零。 2.数显表溢出时,可关小单色仪人射狭 数显表溢出时, 缝或调整放大倍率。 缝或调整放大倍率。 3.数显表未与整机相连时,切勿接通电 数显表未与整机相连时, 以免烧坏仪器。 源,以免烧坏仪器。
二、实验原理
法拉第效应
当一束平面偏振光穿过一些原来不具有旋光性的介质, 当一束平面偏振光穿过一些原来不具有旋光性的介质,且给 介质沿光的传播方向加一磁场, 介质沿光的传播方向加一磁场,就会观察到光经过该介质后偏振 面旋转了一个角度,也就是说磁场使介质具有了旋光性。 面旋转了一个角度,也就是说磁场使介质具有了旋光性。这种现 象就是磁光效应, 象就是磁光效应,亦称法拉第效应 在法拉第效应中,光矢量旋转的角度θ 在法拉第效应中,光矢量旋转的角度θ与光在介质中通距离 L及磁感应强度B成正比,即 及磁感应强度B成正比, θ=VBL 式中V是表征物质磁光特性的系数( 式中V是表征物质磁光特性的系数(取决于样品介质的材料 特性和工作波长),称为费尔德 Veraet)常数。 ),称为费尔德( 特性和工作波长),称为费尔德(Veraet)常数。

法拉第效应实验报告

法拉第效应实验报告

法拉第效应实验报告法拉第效应一.实验目的1.初步了解法拉第效应的经典理论。

2.初步掌握进行磁光测量的方法。

二.实验原理1.法拉第效应实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度Fθ与光波在介质中走过的路程l 及介质中的磁感应强度在光的传播方向上的分量HB 成正比,这个规律又叫法拉第一费尔得定律,即FHVB l θ=()1比例系数V 由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔得常数,它与光频和温度有关。

几乎所有的物质都有法拉第效应,但一般都很不显著。

不同物质的振动面旋转的方向可能不同。

一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(0V >)反之叫负旋(0V <)。

法拉第效应与自然旋光不同,在法拉第效应中,对于给定的物质,偏振面相对于实验室坐标的旋转方向,只由B 的方向决定和光的传播方向无关,这个光学过程是不可逆的。

光线往返一周,旋光角将倍增。

而自然旋光则是可逆的,光线往返一周,累积旋光角为零。

与自然旋光类似,法拉第效应也有色散。

含有三价稀土离子的玻璃,费尔德常数可近似表示为:()122tV K λλ-=-()2这里K 是透射光波长tλ,有效的电偶极矩阵元,温度和浓度等物理量的函数,但是与入射波长λ无关。

这种V 值随波长而变的现象称为旋光色散。

2.法拉第效应的经典理论从光波在介质中传播的图像看,法拉第效应可以这样理解:一束平行于磁场方向传播的平面偏振光,可以看作是两柬等幅的左旋和右旋偏振光的叠加,左旋和右旋是相对于磁场方向而言的。

介质中受原子核束缚的电子在人射光的两旋转电矢量作用下,作稳态的圆周运动。

在与电子轨道平面相垂直的方向上加一个磁场B ,则在电子上将引起径向力MF ,力的方向决定于光的旋转方向和磁场方向。

因此,电子所受的总径向力可以有两个不同的值。

轨道半径也可以有两个不同的值。

结果,对于一个给定的磁场就会有两个电偶极矩,两个电极化率。

实验4 磁旋光效应

实验4  磁旋光效应

实验4 磁旋光效应磁旋光效应(法拉第效应)实验,对不同物质的旋光特性有所认识。

实验发现,磁旋光性物质具有左旋和右旋之分,而且它的旋光方向是由磁场的方向来决定。

根据实验数据分析获得磁场强度与偏振角之关系,观察磁场电流与旋光方向的关系,进一步了解不同介质的旋光特性。

[实验目的]1.观察和了解磁旋光现象及其基本特征。

2.学习测量介质的磁旋光费尔德常数V的数值的方法。

3.思考磁旋光效应的应用。

[实验内容]对给定的两个样品进行下面测量1、在350nm-750nm波长范围内,分散选取5个以上不同波长,对其在不同磁场强度(在50mT-600mT范围内取10个以上点)下测量样品的磁旋光角。

2、对两个样品,做不同波长的磁旋光角-磁场强度关系图,并由图确定相应的费尔德常数值。

3、分析实验所得磁旋光角--磁场强度关系是否符合式(1)线性关系,以及费尔德常数值随光波长变化的色散关系。

[导引问题]1.磁旋光现象具有什么特征?它与天然旋光现象有什么相同和不同的地方?2.如何理解磁旋光效应的物理本质?3、实验中所使用的磁场并非均匀场,这对V值的精确测量有影响吗?如果有,你能提出改进意见吗?4、许多材料除了有法拉第旋光效应外,还有自然旋光、双折射等效应。

它们的存在是否会影响本实验测量的准确度?如果影响,你能提出消除影响的办法吗?[实验原理]1845年由M.法拉第发现。

当线偏振光(见光的偏振)在介质中传播时,若在平行于光的传播方向上加一强磁场,则光振动方向将发生偏转,偏转角图1法拉第效应示意图度ψ与磁感应强度B和光穿越介质的长度l的乘积成正比,即ψ=VBl,比例系数V称为费尔德常数,与介质性质及光波频率有关。

偏转方向取决于介质性质和磁场方向。

这种现象称为法拉第效应或磁致旋光效应当一束平面偏振光穿过某介质时,如果对介质在沿光的传播方向加上磁场,就会观察到光经过样品后偏振面转过一个角度(见图1),亦即磁场使介质具有了旋光性,这种现象就是磁旋光效应,也称为法拉第效应。

法拉第效应

法拉第效应

法拉第效应1845年8月,英国科学家法拉第发现原来没有旋光性的重玻璃在强磁场作用下产生旋光性,使偏振光的偏振面发生偏转。

磁致旋光效应后来称为法拉第效应。

法拉第效应有许多应用,特别是在激光技术中制造光调制器、光隔离器和光频环行器,在半导体物理中测量有效质量、迁移率等。

一、实验目的1. 了解法拉第效应的原理;2. 观察线偏振光在磁场中偏振面旋转的现象,确定维尔德(Verdet )常数;3. 验证偏振面旋转角度、光波波长和磁场强度间的关系。

二、实验器材12v/100w 卤素灯、法拉第效应实验仪、光电器件及平衡指示仪、三、实验原理介质因外加磁场而改变其光学性质的现象称之为磁光效应。

其中,光通过处于磁场中的物质时偏振面发生旋转的效应较为重要,我们称这种偏振面的磁致旋转效应为法拉第效应(Faraday effect )。

它与克尔效应一起揭示了光的电磁本质,是光的电磁理论的实验基础。

法拉第在寻找磁与光现象的联系时首先发现了线偏振光在通过处于磁场当中的各向同性介质时其偏振面发生旋转的现象。

在磁场不是非常强时,偏振面的旋转角度ϕ∆ 与介质的厚度S 及磁感应强度在光的传播方向上的分量B 成正比VBS =∆ϕ (1)比例系数V 成为维尔德(Verdet )常数,它取决于光的波长和色散关系,一般物质的维尔德常数比较小,表1给出了几种材料的维尔德常数V 。

法拉第效应与自然旋光不同。

在法拉第效应中对于给定的物质,光矢量的旋转方向只由磁场的方向决定,而与光的传播方向无关,即当光线经样品物质往返一周时,旋光角将倍增。

线偏振光可看作两个相反偏振量σ+和σ –的圆偏振光的相干叠加,从原子物理知识可知,磁场将使原子中的振荡电荷产生旋进运动,旋进的频率等于拉莫尔频率,即ωL =B me ⋅,这里e 和m 分别为振荡粒子的电荷和质量,B 为磁场强度。

线偏振光的σ+和σ –分量有不同的旋进频率,分别为L ωω- 和L ωω+,相应的折射率n +和n -,相速度v +和v - 都不同,而在表1.几种材料的维尔德常数V光学行为中是等效的,偏振面旋转角由下述等式得到,旋转角由光通过的材料长度S 决定,即S c n n ⋅-=∆-+2)(ωϕ (2)上式中,c 为光速,ω为入射光的频率,上式的推导较为简单,是建立在经典电磁理论的基础之上。

法拉第效应测量实验报告

法拉第效应测量实验报告

一、实验目的1. 了解和掌握法拉第效应的原理及其在光学和电磁学中的应用。

2. 熟悉法拉第效应实验装置的结构和操作方法。

3. 测量法拉第效应产生的偏振面旋转角度,验证法拉第效应的基本规律。

4. 计算法拉第效应的费尔德常数,了解其与样品材料、磁场强度和光波波长之间的关系。

二、实验原理法拉第效应是指当一束平面偏振光通过含有重金属或稀土离子的光学介质时,在介质中沿光的传播方向加上一个强磁场,偏振面会发生旋转的现象。

这种现象与磁场强度、光波波长和样品材料有关。

法拉第效应的基本原理如下:1. 当光波通过介质时,光波的电场会使介质中的电子发生受迫振动,产生感应电流。

2. 感应电流产生的磁场与外加磁场相互作用,使得光波在介质中的传播速度发生变化。

3. 由于左旋圆偏振光和右旋圆偏振光的传播速度不同,从而导致偏振面发生旋转。

法拉第效应的旋转角度θ与磁场强度B、光波波长λ、介质厚度d和费尔德常数V的关系为:θ = V B d λ三、实验装置1. 光源系统:包括白炽灯、透镜组、单色仪和斩光器。

2. 磁场系统:包括电磁铁、供电电源和特斯拉计。

3. 样品介质:选择含重金属或稀土离子的光学玻璃,制成圆柱状。

4. 旋光角检测系统:包括检偏测角仪、前置放大器、锁相放大器和光电倍增管。

四、实验步骤1. 连接实验装置,确保各部分连接正确。

2. 打开电源,调整光电倍增管电压至650V,观察输出指示,确保不过载。

3. 记录消光角,即法拉第转角的零点。

4. 逐渐增大磁场强度,分别在0、10、20、30、40、50、60、70、80、90、100、110、120、130、140、150、160、170、180、190、200、210、220、230、240、250、260、270、280、290、300、310、320、330、340、350、360、370、380、390、400、410、420、430、440、450、460、470、480、490、500、510、520、530、540、550、560、570、580、590、600、610、620、630、640、650、660、670、680、690、700、710、720、730、740、750、760、770、780、790、800、810、820、830、840、850、860、870、880、890、900、910、920、930、940、950、960、970、980、990、1000Oe时测量检偏角。

法拉第效应实验报告

法拉第效应实验报告

(五)最小偏向角测量系统
1. 2. 白炽光源; 单色仪;
3.
分光仪:用来测量样品介质对应不同波长λ和最小偏向角θ的对应关 系。
三、实验内容
(一)法拉第旋光角的测量 1.旋光角测量方法 (1)平面偏振光偏振方位的测定
消光位置附近,光强变化曲率小,难以直接测量, 需利用对称测量法。
(2)旋光角的测量
(二)法拉第旋光角的计算:
根据量子理论,法拉第旋光角大小为:
或 其中 为费德尔常数
二、实验装置
(一)光源系统
1.白炽光源:用来提供白光; 2.单色仪:用来产生单色光; 3.聚光镜筒:产生平行光; 4.起偏镜:用来产生平面偏振光。
(ቤተ መጻሕፍቲ ባይዱ)磁场系统
1.电磁铁:圆柱型磁头,中心有通光孔; 2.激磁电源:10A,60V,输出连续可调; 3.高斯计:用来测量电磁铁所产生的磁场强度。
计算出电子荷质比来。 (二)计算样品介质费德尔常数:
V

DB
五、参考文献
[1]高立模等. 《近代物理实验》. 南开大学出版社,2006.
(三)样品介质系统 1. 样品介质:选用光学玻璃,做成三棱镜形状,四面抛成光学面; 既可以放在磁场中做旋光样品,也可以放在分光仪上测样品介质 的色散关系λ~dn/dλ; 2. 样品盒和支架:铜材料做成。 (四)旋光角检测系统 1. 检偏测角仪:用来检测偏振光的偏振方位; 2. 光电倍增管:用来接收检偏后出射的光信号,转换成电信号输出 给直流复射式检流计; 3. 直流复射式检流计:用来接收光电倍增管输出的电流信号; 4. 高压电源:用来提供光电倍增管工作电压。
实验4-6 法拉第效应
实验目的和要求
1.了解磁光效应现象和法拉第效应的作用机制;

法拉第效应实验报告(2021年整理)

法拉第效应实验报告(2021年整理)

法拉第效应实验报告(2021年整理)
二极管现象是电流电压特性表明的一种现象,在1905年,德国物理学家布拉班尼斯·法拉第发现了二极管的原理。

法拉第实验的目的是从物理学的角度研究了电子束的限制,当空气中的气体受到高压线圈轴的电离时,电子束就会流动,当这些活动的电子束遇到其他可以加以阻止的障碍时,就会形成二极管现象从而改变电流的流向。

法拉第的实验设备主要由电源、燃料池和电流测量仪组成,电源用来为被试设备提供电源,燃料池用来装配气体放电和离子发射。

实验中,法拉第发现,在一个实验装置内,当普通气体放电中,电压波形是有一个上升后随着电流增加减少到基线的趋势,当电压到达一定水平时,气体就会发出能量例如紫外线,这被称作“离子发生”。

实验结果表明,在无加热的情况下,电流集中在一个方向并抵消了另一个方向的电流。

法拉第的实验结果也为后来电子设计奠定了基础,由于法拉第发现的“离子发生”现象,可以反映整个电路中电流的方向,在电子电路中,用二极管就可以实现开关功能。

同时,这也将对阻抗、容性和电容的应用产生了重大影响。

因此,法拉第的实验结果对我们在电子设计中的使用和理解电子学和电子技术有着至关重要的作用,他在研究电子学方面作出的贡献有力地推动了电子技术的发展,也使我们可以更加深入地理解和研究电子学,从而用于制作999种有用的电子产品。

法拉第效应实验报告

法拉第效应实验报告

实验报告法拉第效应学号:1010239 姓名:黄万通实验时间:2013年3月19日下午一、实验背景在磁场中,光与物质的电磁作用成为磁光效应,有三种表现:(1)塞曼效应把具有光辐射的原子在磁场中,原子光谱发生分裂的现象;(2)法拉第效应在磁场作用下,平面偏振光沿着磁场方向通过放在此磁场中的透明介质时,光的偏振面发生旋转的现象;(3)弗埃特效应在磁场作用下,平面偏振光沿着垂直磁场方向通过放在此磁场中的透明介质时,光便产生双折射的现象;二、实验目的(1)了解磁光效应现象和法拉第效应的作用机制;(2)掌握旋光角的测量方法,学会使用有关仪器;(3)学会用重要物理量的经典值验证实验原理和实验精度。

三、实验原理把样品(任何透明固体和液体)介质放在均匀磁场中,使一束平面偏振光沿着磁场方向透过该样品,结果其透射光仍为平面偏振光,但偏振角却旋转了一个角度,旋转角度的大小正比于磁场强度。

(1)在磁场作用下的旋光作用在磁场作用下,处于磁场中的介质呈现各向异性,其光轴方向为沿着磁场的方向。

把电矢量E 看成两个圆偏光成分(左旋偏振光E L 和右旋偏振光E R )的矢量合成。

则在磁场作用下通过介质时,由于E R 比E L 慢,通过介质后的E L 和E R 之间将产生位相差θ,合成矢量E 将旋转一个角度φ=θ2,有:()D D =R L R L Dn n V V c ωθω⎛⎫-=-⎪⎝⎭()=2R L Dn n cωϕ-其中D 为介质厚度,n R 为在磁场作用下,右旋偏光通过介质的折射率,n L 为在磁场作用下,左旋偏光通过介质的折射率。

(2)法拉第旋光角的计算介质中原子的轨道电子具有磁偶极矩和势能V 有:平面偏振光通过介质时,光子与轨道电子发生交互作用,使轨道电子发生能级跃迁,势能增加。

介质对光的折射率为:()n n ω=在磁场作用下,具有能量ℏω的左旋光子所遇到的轨道电子能级结构,等价于不加磁场时能量为ℏω−∆U L 的左旋光子所遇到的轨道电子能级结构。

法拉第效应实验报告

法拉第效应实验报告

法拉第效应实验报告法拉第效应是指当导体在磁场中运动时,会在导体两端产生感应电动势的现象。

这一现象是由英国物理学家迈克尔·法拉第在19世纪首次发现并描述的。

在本次实验中,我们将通过简单的实验装置来观察和验证法拉第效应的存在,并对其产生的原理进行分析和探讨。

实验材料和装置:1. 直流电源。

2. 导线。

3. 磁铁。

4. 电压表。

实验步骤:1. 将直流电源连接好,接通电源。

2. 将导线绕制成一个小圈,将磁铁放入圈内。

3. 将电压表连接到导线两端,观察电压表的读数。

实验结果:在实验进行过程中,我们观察到了明显的电压表读数变化。

当磁铁在导线圈内运动时,电压表的读数随之发生变化,表明在导线两端产生了感应电动势。

这一现象正是法拉第效应的典型表现。

实验分析:根据法拉第效应的原理,当导体在磁场中运动时,导体内的自由电子将受到磁场力的作用,从而在导体两端产生感应电动势。

这一感应电动势的大小与导体的速度、磁场的强度以及导体的长度等因素有关。

在本次实验中,磁铁在导线圈内运动,导致导线内的自由电子受到磁场力的作用,从而产生了感应电动势,表现为电压表的读数变化。

结论:通过本次实验,我们验证了法拉第效应的存在,并对其产生的原理进行了分析和探讨。

法拉第效应在现代电磁学中具有重要的理论和实际应用价值,对于理解电磁感应现象和设计电磁设备具有重要意义。

综上所述,法拉第效应是电磁学中的重要现象,通过本次实验,我们对其有了更深入的理解。

希望本次实验能够对大家对法拉第效应有所帮助,也希望大家能够继续对电磁学知识进行深入学习和探索。

近代物理实验报告—法拉第效应

近代物理实验报告—法拉第效应

法拉第效应一、引言1845年英国物理学家法拉第发现原本没有旋光性的铅玻璃在磁场中出现了旋光性,这种磁致旋光现象即法拉第效应。

随后费尔德的研究发现法拉第效应普遍存在于固体、液体、和气体中,只是大部分物质的法拉第效应很弱。

法拉第效应只是磁光效应中的一种。

磁光效应是描述在磁场的作用下,具有固有磁矩的介质中传播的光气无力性质发生变化的现象,比如光的频率,偏振面,相位等性质发生了变化。

法拉第效应的应用领域极其广泛,可用于物质结构的研究、光谱学和电工测量等领域。

此外利用法拉第效应原理制成的各种可快速控制激光参数的元器件也已广泛地应用于激光雷达、激光测距、激光陀螺、光纤通信中。

本实验的目的是通过实验理解法拉第效应的本质,掌握测量旋光角的基本方法,学会计算费尔德常数。

二、实验原理法拉第效应就是,当线偏振光穿过介质时,若在介质中加一平行于光的传播方向的磁场,则光的振动面将发生旋转,振动面转过的角度称为法拉第效应旋光角。

实验发现θ=VBL (1)其中θ为法拉第效应旋光角,L 为介质的厚度,B 为平行与光传播方向的磁感强度分量,V 称为费尔德常数,它由材料本身的性质和工作波长决定的,表征物质的磁光特性。

一般约定,当光的旋转方向与产生磁场的电流的方向一致时,称法拉第旋转是左旋,V>0;反之则叫右旋,V<0。

法拉第效应与自然旋光不同在于:法拉第效应对于给定的物质,偏振面的旋转方向只由磁场的方向决定而与光的传播方向无关,光线往返一周,旋光角将倍增,这叫做法拉第效应的“旋光非互易性”。

而自然旋光过程是可逆的。

1、法拉第效应原理的菲涅尔唯象理论一束平面偏振光可以分解为两个不同频率等振幅的左旋和右旋圆偏振光。

在没有外加磁场时,介质对它们具有相同的折射率和传播速度,他们通过距离为 的介质后,他们产生的相位移相同,不发生偏转。

当有外磁场时,由于磁场使物质的光学性质改变,两束光具有不同的折射率和传播速度,产生不同的相位移:2L L n l πϕλ=(2)2R R n l πϕλ=(3)其中,L ϕ、R ϕ分别为左旋、右旋圆偏振光的相位,L n 、R n 分别为其折射率,λ为真空中的波长。

法拉第效应实验

法拉第效应实验

法拉第效应初探(顾从真复旦大学物理系06级)摘要本文简要概括了法拉第效应的历史、原理、步骤以及不同条件下的现象的记录分析和数据处理。

关键词法拉第效应,磁光效应,旋光介质,偏振引言1845年,法拉第(Michael Faraday)在探索电磁现象和光学现象之间的联系时,发现了一种现象:当一束平面偏振光穿过介质时,如果在介质中,沿光的传播方向上加上一个磁场,就会观察到光经过样品后偏振面转过一个角度,即磁场使介质具有了旋光性,这种现象后来就称为法拉第效应。

法拉第效应第一次显示了光和电磁现象之间的联系,促进了对光本性的研究。

之后费尔德(Verdet)对许多介质的磁致旋光进行了研究,发现了法拉第效应在固体、液体和气体中都存在。

实验部分实验目的了解法拉第效应经典理论,初步掌握进行磁光测量的基本方法,对法拉第效应的现象和成因进行分析。

实验原理一束平面波穿过介质,如果介质中沿光的传播方向加一个磁场,会观察到光经过样品后偏振面转过一个角度,符合公式,VBLθ=θ为法拉第效应旋光角;L 为穿过介质的厚度;B 为平行与光传播方向的磁感强度分量;V 是比例系数,由工作物质和波长决定,表征物质磁光特性,称为费尔德(Verdet)常数。

几乎所有物质都有法拉第效应,但一般都不显著,规定V>0为正旋,方向与产生磁场的螺线管中的电流方向一致。

V<0为负旋。

我们可以这样解释法拉第效应。

如图,我们把偏振光分成左旋和右旋部分,通过厚l 的介质会产生不同相位差,1()()2R L R L n n l πθϕϕλ=-=-由量子理论,在B 场作用下,介质轨道电子磁矩具有势能2B eB B L mμψ=-=B L 是轨道角动量在B 方向上的分量。

用能量为ω的左旋圆偏振光子激发电子,电子在磁场中能级结构与用能量为()L ωφ-∆的光子激发电子,电子在无磁场时能级结构相同。

推出,()()L L n n ωωφ=-∆,2L eBmφ∆=进一步可得,()()2L dn eBn n d m ωωω=-⋅()()2R dn eBn n d m ωωω=+⋅带入θ的关系式,有()2e dnV mc d λλλ=-⋅的关系,所以可以由V 和色散关系来验证荷质比的数值。

法拉第效应实验报告

法拉第效应实验报告
(1)平面偏振光偏振方位的测定
消光位置附近,光强变化曲率小,难以直接测量, 需利用对称测量法。
(2)旋光角的测量 φ=φˈ-φ0
2.测量数据-不同磁场强度、不同入射波长下的偏振面旋转角测量:
3.对于不同磁场B,作出λ~φ的关系曲线
(二)样品介质的λ和dn/dλ对应关系的测量 把样品棱镜放在分光仪上,采用单色仪做光源,用最小偏向角
dn/dλ的值,利用公式:
e m
2c
DBdn/d
计算出电子荷质比来。
(二)计算样品介质费德尔常数:
V
DB
五、参考文献
[1]高立模等. 《近代物理实验》. 南开大学出版社,2006.
实验4-6 法拉第效应
实验目的和要求
1.了解磁光效应现象和法拉第效应的作用机制; 2.掌握旋光角的测量方法,学会使用有关仪器; 3.学会用重要物理量的经典值验证实验原理和实验精度;
一、实验原理
(一)在磁场作用下介质的旋光作用
在磁场作用下,介质中左旋偏振光与右旋偏 振光的传播速度不同,造成偏振面的旋转。
(三)样品介质系统 1. 样品介质:选用光学玻璃,做成三棱镜形状,四面抛成光学面;
既可以放在磁场中做旋光样品,也可以放在分光仪上测样品介质 的色散关系λ~dn/dλ; 2. 样品盒和支架:铜材料做成。
(四)旋光角检测系统 1. 检偏测角仪:用来检测偏振光的偏振方位; 2. 光电倍增管:用来接收检偏后出射的光信号,转换成电信号输出
给直流复射式检流计; 3. 直流复射式检流计:用来接收光电倍增管输出的电流信号; 4. 高压电源:用来提供光电倍增管工作电压。 (五)最小偏向角测量系统
1. 白炽光源;
2. 单色仪;
3. 分光仪:用来测量样品介质对应不同波长λ和最小偏向角θ的对应关 系。

法拉第效应实验报告总结

法拉第效应实验报告总结

一、实验背景法拉第效应是电磁学和光学领域中的一个重要现象,由英国物理学家迈克尔·法拉第于1845年发现。

当一束平面偏振光通过一个介质,并在此介质中加上一个沿光传播方向的磁场时,光的偏振面会发生旋转,这种现象称为法拉第效应。

本实验旨在通过实验验证法拉第效应,并探究其影响因素。

二、实验目的1. 了解法拉第效应的原理和实验装置。

2. 通过实验验证法拉第效应的存在。

3. 探究法拉第效应的影响因素,如磁场强度、光波波长、介质材料等。

4. 熟悉实验数据处理方法,提高实验技能。

三、实验原理法拉第效应的实验原理基于法拉第旋光定律,即当一束平面偏振光通过介质时,如果沿光传播方向加上一个磁场,光的偏振面将发生旋转。

旋转角度与磁场强度、光波波长、介质材料等因素有关。

法拉第旋光定律可表示为:θ = V B l其中,θ为偏振面的旋转角度,V为法拉第常数,B为磁场强度,l为光在介质中传播的距离。

四、实验装置与步骤1. 实验装置:实验装置主要包括光源系统、磁场系统、样品介质、旋光角检测系统等。

2. 实验步骤:(1)将光源发出的光经过透镜聚焦后,通过单色仪选出特定波长的光。

(2)将选出的光通过起偏器成为平面偏振光。

(3)将平面偏振光通过电磁铁产生的磁场区域,观察偏振面旋转情况。

(4)调节磁场强度,记录不同磁场强度下偏振面的旋转角度。

(5)改变光波波长,重复步骤(3)和(4)。

(6)改变样品介质,重复步骤(3)和(4)。

五、实验结果与分析1. 实验结果表明,当一束平面偏振光通过介质并在此介质中加上一个沿光传播方向的磁场时,光的偏振面会发生旋转,验证了法拉第效应的存在。

2. 实验结果表明,法拉第效应的旋转角度与磁场强度成正比,符合法拉第旋光定律。

3. 实验结果表明,法拉第效应的旋转角度与光波波长成反比,即光波波长越长,旋转角度越小。

4. 实验结果表明,法拉第效应的旋转角度与样品介质材料有关,不同材料具有不同的法拉第常数。

法拉第效应实验报告完整版法拉效应实验报告

法拉第效应实验报告完整版法拉效应实验报告

法拉第效应实验报告引言法拉第效应是指材料中存在自发磁化现象的一种物理现象。

它是由英国物理学家迈克尔·法拉第于1845年首次研究得出的,因此被命名为法拉第效应。

本实验旨在通过构建一个简单的法拉第效应实验装置,观察和测量不同温度和磁场条件下材料的磁化程度,以及研究法拉第效应对磁性材料的影响。

实验装置与方法实验所需的主要装置和材料有:热电偶、磁铁、直流电源、毫伏表、铁片等。

实验分为以下几个步骤:1. 准备工作:将毫伏表连接到合适的测量范围,并将直流电源连接到实验装置上。

2. 温度控制:使用热电偶测量温度,并通过调节热源的加热或降温来控制温度。

3. 施加磁场:将磁铁放置在材料附近,并调节磁铁的位置和朝向,以施加合适的磁场强度。

4. 测量磁场强度:使用毫伏表测量磁场强度,记录在不同位置和磁场强度下的数值。

5. 测量磁化程度:使用毫伏表测量材料的磁化程度,记录在不同温度和磁场条件下的数值。

实验结果与讨论通过上述实验方法,我们获得了一系列在不同温度和磁场条件下的实验数据。

根据实验数据,我们可以得出以下结论:1. 磁场强度对材料磁化程度的影响:实验结果显示,随着磁场强度的增加,材料的磁化程度也增加。

这与法拉第效应的基本原理相吻合,即磁场会导致材料中的磁性微区域重新排列,从而增强整体的磁化程度。

2. 温度对材料磁化程度的影响:实验结果显示,在相同的磁场强度下,随着温度的增加,材料的磁化程度减小。

这是因为高温会破坏材料中的磁性微区域,使得整体的磁化程度降低。

3. 法拉第效应的应用:法拉第效应广泛应用于磁性材料的磁化控制和传感器等领域。

通过控制磁场和温度条件,可以实现对材料磁化程度和磁性特性的精确控制,从而实现一系列应用需求。

结论通过本实验,我们成功观察和测量了法拉第效应在磁性材料中的表现,并研究了不同温度和磁场强度对材料磁化程度的影响。

实验结果验证了法拉第效应的基本原理,并揭示了其在磁性材料的应用中的重要作用。

实验六 法拉第效应实验 - 电气工程学院

实验六 法拉第效应实验 - 电气工程学院

δ =
2π d ( n r − nl ) λ δ π = d ( n r − nl ) 2 λ
(14)
当光从介质另一端出射时,振动面旋转角度为
θ= 【实验内容】
1.观察光的偏振现象,研究光的波动性。 2.观察并理解法拉第磁光偏转现象,研究偏转角度与磁感应强度、介质厚度以及材料本身特性 之间的关系,计算材料的费尔德常数(冕玻璃的费尔德常为 4. 36~7.27rad·T-1·m-1),深层次理 解光的电磁波特性。
这两个方程式分别是电子右旋和左旋的运动方程。 设入射光在进入磁光材料前是线偏振光, 在z = 0, 即材料端点的光振动
15
E x = E0 cos ωt E y = 0
进入磁光物质后分解成右旋圆偏振光和左旋圆偏振光
E E r = 0 e i (ωt − k r z ) 2 E = E 0 e i (ωt − kl z ) l 2
合并整理, (3) + i ( 4) 得(5), (3) − i ( 4) 得(6)
(3)
(4)
d2 e d e 2 ( x + iy ) + i B ( x + iy ) + ω 0 ( x + iy ) = ( E x + iE y ) 2 m dt m dt d2 e d e 2 ( x − iy ) − i B ( x − iy ) + ω 0 ( x − iy ) = ( E x − iE y ) 2 m dt m dt
rr = x + iy rl = x − iy
代入(5)和(6)两式,得到
d2 e e dr 2 r + i B r + ω 0 rr = E r 2 r dt m dt m 2 d r − i e B drl + ω 2 r = e E l 0 l l m dt m dt 2

法拉第效应实验报告(2021年整理)

法拉第效应实验报告(2021年整理)

法拉第效应实验报告(2021年整理)一、实验目的通过对法拉第效应实验的学习与探究,了解电磁感应现象,理解电磁感应定律,掌握用示波器观察电磁感应现象的方法。

二、实验原理法拉第效应是指磁场变化所产生的电动势,即电磁感应现象。

电磁感应定律指出,磁通量的变化率与由此产生的电动势成正比,即$$ε= -\frac{\DeltaΦ}{\Delta t}$$其中,ε表示电动势,ΔΦ表示磁通量的变化量,Δt表示变化的时间。

磁通量Φ与磁场的强度B、磁场的面积S和夹角θ有关。

因此,当磁场强度B、面积S或夹角θ发生变化时,磁通量Φ也随之变化,从而产生电动势。

三、实验器材与实验步骤实验器材:磁铁、线圈、计时器、示波器等。

实验步骤:1. 将磁铁放置在线圈的中心位置,使线圈与磁铁的距离为5厘米左右。

2. 将线圈接在示波器上,并调整示波器的触发方式和时间基准。

3. 移动磁铁,使磁铁的南、北极分别靠近线圈的两端,然后再将磁铁移回原来的位置,重复多次。

4. 观察示波器上的波形变化,并记录相关数据。

四、实验结果与分析在进行实验时,根据电磁感应定律,移动磁铁会产生磁通量的变化,从而产生电动势。

由于磁场的变化是周期性的,因此我们可以通过示波器观察到周期性的电动势波形。

根据实验记录的数据分析发现,当移动磁铁时,示波器上的波形会出现变化,其周期和幅值也会随着移动磁铁的快慢而变化。

当磁铁靠近线圈时,电动势波形呈现出正半周;当磁铁远离线圈时,电动势波形呈现出负半周。

这是因为磁通量在增加时,电动势为正,而在减少时,电动势为负。

此外,实验还发现,在磁铁靠近线圈的瞬间,电动势波形发生了突变,这是因为磁场强度的变化导致电动势的剧烈变化。

五、实验结论通过对法拉第效应实验的学习与探究,我们深刻认识了电磁感应现象的本质,理解了电磁感应定律的原理,掌握了用示波器观察电磁感应现象的方法。

通过实验的结果分析,我们确认了磁场的变化会导致磁通量的变化,进而引起电动势的产生。

法拉第效应实验报告完整版

法拉第效应实验报告完整版

南昌大学物理实验报告学生姓名:学号:39 专业班级:应物101班实验时间:教师编号:T017成绩:法拉第效应一、实验目的1.了解和掌握法拉第效应的原理;2.了解和掌握法拉第效应的实验装置结构及实验原理;3.测量法拉第效应偏振面旋转角 与外加磁场电流I的关系曲线二、实验仪器本实验采用FD-FZ-I型法拉第-塞满效应综合试验仪,仪器结构示意图如下:三、实验原理1.法拉第效应1845年法拉第发现磁场会引起磁性介质折射率变化而产生旋光现象,即加在介质上的磁场引起了平行于磁场方向传播的线偏振光偏振面的旋转,且光波偏振面偏转角(磁致旋光角)与光在介质中通过的长度D及介质中磁感应强度在光传播方向上的分量B成正比。

此即为法拉第效应。

法拉第效应在固体、液体和气体中都存在。

大部分物质的法拉第效应很弱,掺稀土离子玻璃的法拉第效应稍明显些,而有些晶体如YIG等的法拉第效应较强。

同时,由于法拉第效应弛豫时间极短,对温度稳定性要求低。

故法拉第效应有许多重用的应用,如光纤通讯中的磁光隔离器、单通器,激光通讯,激光雷达等技术中的光频环行器、调制器等,以及磁场测量的磁强计等。

磁光隔离器可减少光纤中器件表面反射光对光源的干扰;磁光隔离器也被广泛用于激光多级放大技术和高分辨的激光光谱技术,激光选模等技术中。

在磁场测量和电流方面,可测量脉冲强磁场、交变强磁场、等离子体中强磁场、低温超导磁场、几千-几千KV的高压电流等。

此外,利用法拉第效应还可研究物质结构、载流子有效质量、能带等。

不同物质偏振面旋转方向可能不同。

通常规定:振动面的旋转方向和产生磁南昌大学物理实验报告学生姓名:刘惠文学号:39 专业班级:应物101班实验时间:教师编号:T017成绩:场的螺旋线圈中电流方向一致,称为正旋(V>0);反之,叫做负旋(V<0)。

对于给定物质,其固有旋光效应沿顺光线和逆光线方向观察时线偏振光的振动面的旋向完全相反,因此,当光波往返两次穿过固有旋光物质时振动面复位。

法拉第磁旋光效应实验报告

法拉第磁旋光效应实验报告

法拉第磁旋光效应实验报告一、引言法拉第磁旋光效应是指在磁场中通过偏振光,使得光线振动方向沿着磁场方向旋转的现象。

这一现象在物理学领域具有重要的意义,也被广泛应用于光学仪器中。

本文将对法拉第磁旋光效应实验进行详细介绍。

二、实验原理1. 法拉第效应法拉第效应是指在电场或磁场中,通过介质传播的偏振光线的振动方向发生改变的现象。

其中,在磁场中产生的现象被称为法拉第磁旋光效应。

2. 法拉第磁旋光效应当偏振方向与磁场垂直时,入射线偏振为线性偏振;当偏振方向与磁场平行时,入射线偏振为圆偏振。

在这种情况下,通过介质的光线会发生沿着磁场方向旋转的现象。

3. 实验装置本实验所需装置包括:He-Ne激光器、铜管、电源、反射镜、透镜等。

4. 实验步骤(1)将铜管置于强磁场中,使得通过铜管的光线方向与磁场垂直。

(2)调整透镜和反射镜的位置,确保激光器发出的光线经过铜管后能够被反射回来。

(3)分别测量磁场强度和通过铜管前后的偏振角度差,计算出法拉第旋转角度。

三、实验结果在实验过程中,我们测得了通过铜管前后的偏振角度差为20°,磁场强度为1.5T。

根据计算公式,我们得到了法拉第旋转角度为0.03°。

四、误差分析在实验过程中,存在一些误差因素会对实验结果产生影响。

例如,在调整透镜和反射镜位置时可能存在误差;测量偏振角度时也可能存在读数误差等。

五、结论本实验成功地验证了法拉第磁旋光效应,并且得到了较为准确的法拉第旋转角度。

同时,在实验过程中也发现了一些可能会影响实验结果的误差因素。

这些都为今后进一步深入研究提供了参考依据。

法拉第效应实验报告完整版

法拉第效应实验报告完整版

南昌大学物理实验报告学生姓名:学号:39 专业班级:应物101班实验时间:教师编号:T017成绩:法拉第效应一、实验目的1.了解和掌握法拉第效应的原理;2.了解和掌握法拉第效应的实验装置结构及实验原理;3.测量法拉第效应偏振面旋转角 与外加磁场电流I的关系曲线二、实验仪器本实验采用FD-FZ-I型法拉第-塞满效应综合试验仪,仪器结构示意图如下:三、实验原理1.法拉第效应1845年法拉第发现磁场会引起磁性介质折射率变化而产生旋光现象,即加在介质上的磁场引起了平行于磁场方向传播的线偏振光偏振面的旋转,且光波偏振面偏转角(磁致旋光角)与光在介质中通过的长度D及介质中磁感应强度在光传播方向上的分量B成正比。

此即为法拉第效应。

法拉第效应在固体、液体和气体中都存在。

大部分物质的法拉第效应很弱,掺稀土离子玻璃的法拉第效应稍明显些,而有些晶体如YIG等的法拉第效应较强。

同时,由于法拉第效应弛豫时间极短,对温度稳定性要求低。

故法拉第效应有许多重用的应用,如光纤通讯中的磁光隔离器、单通器,激光通讯,激光雷达等技术中的光频环行器、调制器等,以及磁场测量的磁强计等。

磁光隔离器可减少光纤中器件表面反射光对光源的干扰;磁光隔离器也被广泛用于激光多级放大技术和高分辨的激光光谱技术,激光选模等技术中。

在磁场测量和电流方面,可测量脉冲强磁场、交变强磁场、等离子体中强磁场、低温超导磁场、几千-几千KV的高压电流等。

此外,利用法拉第效应还可研究物质结构、载流子有效质量、能带等。

不同物质偏振面旋转方向可能不同。

通常规定:振动面的旋转方向和产生磁南昌大学物理实验报告学生姓名:刘惠文学号:39 专业班级:应物101班实验时间:教师编号:T017成绩:场的螺旋线圈中电流方向一致,称为正旋(V>0);反之,叫做负旋(V<0)。

对于给定物质,其固有旋光效应沿顺光线和逆光线方向观察时线偏振光的振动面的旋向完全相反,因此,当光波往返两次穿过固有旋光物质时振动面复位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结果处理
(一)实验精度检验——计算电子荷质比: 在实验测量各对应关系的范围内,适当选择相对应的φ、B、λ及 dn/dλ的值,利用公式:
e −2cϕ = m DBλ ( dn / d λ )
计算出电子荷质比来。 (二)计算样品介质费德尔常数:
思考题: 思考题:
1. 对于本实验来说,引起误差的主要来源有哪几个因素? 这些因素在实验过程中如何处理得好以减小实验误差 提高实验精度。 2. 试设计一个测量法拉第效应特性的实验方案,并画出 实验光路图。
在磁场作用下,介质中左旋偏振光与右旋偏 振光的传播速度不同,造成偏振面的旋转。
实验原理
(二)法拉第旋光角的计算: 法拉第旋光角的计算:
根据量子理论,法拉第旋光角大小为:
或 其中 为费德尔常数
实验装置
一、光源系统
1.白炽光源:用来提供白光; 2.单色仪:用来产生单色光; 3.聚光镜筒:产生平行光; 4.起偏镜:用来产生平面偏振光。
实验装置
五、最小偏向角测量系统 1.白炽光源 2.单色仪 3.分光仪:用来测量样品介质对应不同波长λ和最 小偏向角θ的对应关系。
实验方法
法拉第旋光角的测量——对称测量法:
消光位置附近,光强变化曲率小,难以直接测量, 需利用对称测量法。
(一)初始偏振方位φ0的测量 :
无法拉第效应时的偏振方向
(二)不同磁场强度、不同入射波长下的偏振面旋转角测量:
二、磁场系统
1.电磁铁:圆柱型磁头,中心有通光孔; 2.激磁电源:10A,60V,输出连续可调; 3.高斯计:用来测量电磁铁所产生的磁场强度。
实验装置
三、样品介质系统 1. 样品介质:选用光学玻璃,做成三棱镜形状,四面抛成光学面。 既可以放在磁场中做旋光样品,也可以放在分光仪上测样品介质 的色散关系λ~dn/dλ; 2. 样品盒和支架:铜材料做成。 四、旋光角检测系统 1. 检偏测角仪:用来检测偏振光的偏振方位; 2. 光电倍增管:用来接收检偏后出射的光信号,转换成电信号输出 给直流复射式检流计; 3. 直流复射式检流计:用来接收光电倍增管输出的电流信号; 4. 高压电源:用来提供光电倍增管工作电压。
实验内容
实验内容
(三)样品介质的λ和dn/dλ对应关系的测量 把样品棱镜放在分光仪上,采用单色仪做光源,用最小偏向角 测量法,测出波长λ和最小偏向角θ的对应关系,然后利用公式:
n = sin
θ +α
2
sin
α
2
求出样品介质的波长λ和折射率n的对应关系。最后再由λ ~ n的关系进 一步求出样品介质的波长λ和dn/dλ的对应关系。
实验4-6 法拉第效应 实验
南开大学基础物理实验教学中心 近代物理实验室
大 纲
实验目的 实验原理 实验装置 实验内容与方法 结果处理 思考题
实验目的
了解磁光效应现象和法拉第效应的作用机制 掌握旋光角的测量方法,学会使用有关仪器 学会用重要物理量的经典值验证实验原理和实验精度
实验原理
(一)在磁场作用下介质的旋光作用
相关文档
最新文档