仿真实验报告.doc
仿真实验报告模板
![仿真实验报告模板](https://img.taocdn.com/s3/m/a951c3d8f9c75fbfc77da26925c52cc58bd690d5.png)
AGV任务分配与充电配置选择模型1、作业流程描述在集装箱码头的AGV作业流程:首先系统根据当前作业情况进行判断,若此时无运输任务,AGV进入休息区等待;若存在运输任务,则判断当前处于工作状态的AGV数量是否足够;若不足,则将非工作AGV组中的AGV分配至工作组。
当AGV完成一次运输作业后会对自身电量进行判断,若此时电量高于30%,则继续进行运输作业;若此时电量低于30%,则前往充电桩充电。
确立仿真参数的输入,确立任务数,AGV数量,自动充电桩数量,充电桩充电速度,AGV最低充电阈值(30%),AGV电量充足阈值(80%)。
2、仿真目标设置本文的仿真目标是设计和实施一个集装箱自动化码头作业流程的仿真模型,并评估其中的AGV充电任务调度策略。
具体而言,仿真目标包括以下几个方面:首先,模拟进口箱作业流程:建立一个真实的模拟环境,包括岸桥提取进出口箱、AGV小车水平运输等环节,以准确模拟进口箱的作业流程。
其次,实现AGV充电任务调度:开发一个高效的AGV充电任务调度算法,考虑到AGV的电池寿命和电量状态,以最小化充电任务的时间和成本。
该算法将基于实时的作业需求和AGV的可用状态进行智能调度,以保证作业流程的平稳运行。
再次,评估作业效率和成本:通过仿真模型,分析和比较不同的AGV充电任务调度策略对作业效率和成本的影响。
使用实际数据和性能指标,如作业时间、能源消耗和人力成本等,对各种策略进行定量评估,并找到最佳的调度策略。
最后,提出优化建议,在自动化集装箱码头作业流程中,合理的充电桩布局可以显著提升AGV充电任务的效率和整体作业流程的顺畅性。
分析作业热点区域:通过对集装箱作业流程中的瓶颈区域和高频度作业区域进行分析,确定作业热点区域。
这些区域通常是集装箱堆场附近、码头入口/出口以及岸桥与AGV交接点等位置。
准确定位热点区域可以帮助本文合理布置充电桩,以满足高负荷作业需求。
考虑AGV行驶距离和电池寿命:根据AGV的行驶距离和电池寿命特性,合理分析AGV的电池续航能力。
仿真实验报告阻抗
![仿真实验报告阻抗](https://img.taocdn.com/s3/m/7bca42d3a1116c175f0e7cd184254b35eefd1a3e.png)
一、实验目的1. 理解阻抗的概念及其在电路中的作用。
2. 掌握使用仿真软件进行阻抗测量的方法。
3. 学习阻抗匹配技术及其在实际电路设计中的应用。
4. 分析不同负载阻抗对电路性能的影响。
二、实验原理阻抗是电路中电压与电流的比值,是衡量电路元件对交流信号阻碍程度的物理量。
在电路中,阻抗分为电阻、电感和电容三种形式。
阻抗匹配是指负载阻抗与传输线阻抗相匹配,以实现信号传输的最大化。
三、实验设备1. 仿真软件:Multisim2. 信号发生器3. 示波器4. 电阻、电感、电容元件5. 负载阻抗四、实验步骤1. 打开Multisim软件,创建一个新的仿真电路。
2. 在电路中添加电阻、电感、电容元件,并设置其参数。
3. 将信号发生器连接到电路中,设置合适的频率和幅度。
4. 添加示波器,用于观察电压和电流波形。
5. 设置负载阻抗,观察不同负载阻抗下电路的电压和电流波形。
6. 通过改变负载阻抗,分析阻抗匹配对电路性能的影响。
7. 记录实验数据,并进行分析。
五、实验结果与分析1. 当负载阻抗等于传输线阻抗时,电路中电压和电流波形保持一致,信号传输效果最佳。
2. 当负载阻抗大于传输线阻抗时,信号在传输过程中会发生反射,导致信号失真。
3. 当负载阻抗小于传输线阻抗时,信号会发生折射,导致信号衰减。
4. 通过调整负载阻抗,可以实现阻抗匹配,提高信号传输效果。
六、实验结论1. 阻抗是电路中电压与电流的比值,是衡量电路元件对交流信号阻碍程度的物理量。
2. 阻抗匹配是提高电路性能的关键,可以实现信号传输的最大化。
3. 使用仿真软件可以方便地测量和分析阻抗,为电路设计提供理论依据。
七、实验心得通过本次仿真实验,我对阻抗及其在电路中的作用有了更深入的了解。
同时,掌握了使用仿真软件进行阻抗测量的方法,为今后的电路设计工作打下了基础。
在实验过程中,我发现阻抗匹配对电路性能的影响很大,因此在实际电路设计中,应重视阻抗匹配问题。
此外,通过实验,我还认识到仿真软件在电路设计中的重要作用,它可以帮助我们快速、准确地分析和优化电路性能。
自控仿真实验报告
![自控仿真实验报告](https://img.taocdn.com/s3/m/c99df737a88271fe910ef12d2af90242a895aba6.png)
一、实验目的1. 熟悉MATLAB/Simulink仿真软件的基本操作。
2. 学习控制系统模型的建立与仿真方法。
3. 通过仿真分析,验证理论知识,加深对自动控制原理的理解。
4. 掌握控制系统性能指标的计算方法。
二、实验内容本次实验主要分为两个部分:线性连续控制系统仿真和非线性环节控制系统仿真。
1. 线性连续控制系统仿真(1)系统模型建立根据题目要求,我们建立了两个线性连续控制系统的模型。
第一个系统为典型的二阶系统,其开环传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)} \]第二个系统为具有迟滞环节的系统,其开环传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)(s+3)} \](2)仿真与分析(a)阶跃响应仿真我们对两个系统分别进行了阶跃响应仿真,并记录了仿真结果。
(b)频率响应仿真我们对两个系统分别进行了频率响应仿真,并记录了仿真结果。
(3)性能指标计算根据仿真结果,我们计算了两个系统的性能指标,包括上升时间、超调量、调节时间等。
2. 非线性环节控制系统仿真(1)系统模型建立根据题目要求,我们建立了一个具有饱和死区特性的非线性环节控制系统模型。
其传递函数为:\[ W_k(s) = \begin{cases}1 & |s| < 1 \\0 & |s| \geq 1\end{cases} \](2)仿真与分析(a)阶跃响应仿真我们对非线性环节控制系统进行了阶跃响应仿真,并记录了仿真结果。
(b)相轨迹曲线绘制根据仿真结果,我们绘制了四条相轨迹曲线,以分析非线性环节对系统性能的影响。
三、实验结果与分析1. 线性连续控制系统仿真(a)阶跃响应仿真结果表明,两个系统的性能指标均满足设计要求。
(b)频率响应仿真结果表明,两个系统的幅频特性和相频特性均符合预期。
2. 非线性环节控制系统仿真(a)阶跃响应仿真结果表明,非线性环节对系统的性能产生了一定的影响,导致系统响应时间延长。
电路实验仿真实验报告
![电路实验仿真实验报告](https://img.taocdn.com/s3/m/5d9149a0c9d376eeaeaad1f34693daef5ff71350.png)
1. 理解电路基本理论,掌握电路分析方法。
2. 掌握电路仿真软件(如Multisim)的使用方法。
3. 分析电路参数对电路性能的影响。
二、实验内容本次实验主要针对一阶RC电路进行仿真分析,包括零输入响应、零状态响应和全响应的规律和特点。
三、实验原理一阶RC电路由一个电阻R和一个电容C串联而成,其电路符号如下:```+----[ R ]----[ C ]----+| |+---------------------+```一阶RC电路的传递函数为:H(s) = 1 / (1 + sRC)其中,s为复频域变量,R为电阻,C为电容,RC为电路的时间常数。
根据传递函数,可以得到以下结论:1. 当s = -1/RC时,电路发生谐振。
2. 当s = 0时,电路发生零输入响应。
3. 当s = jω时,电路发生零状态响应。
四、实验仪器与设备1. 电脑:用于运行电路仿真软件。
2. Multisim软件:用于搭建电路模型和进行仿真实验。
1. 打开Multisim软件,创建一个新的仿真项目。
2. 在项目中选择“基本电路库”,搭建一阶RC电路模型。
3. 设置电路参数,如电阻R、电容C等。
4. 选择合适的激励信号,如正弦波、方波等。
5. 运行仿真实验,观察电路的响应波形。
6. 分析仿真结果,验证实验原理。
六、实验结果与分析1. 零输入响应当电路处于初始状态,即电容电压Uc(0-) = 0V时,给电路施加一个初始电压源,电路开始工作。
此时,电路的响应为电容的充电过程。
通过仿真实验,可以得到以下结论:(1)随着时间t的增加,电容电压Uc逐渐增大,趋于稳态值。
(2)电容电流Ic先减小后增大,在t = 0时达到最大值。
(3)电路的时间常数τ = RC,表示电路响应的快慢。
2. 零状态响应当电路处于初始状态,即电容电压Uc(0-) = 0V时,给电路施加一个激励信号,电路开始工作。
此时,电路的响应为电容的放电过程。
通过仿真实验,可以得到以下结论:(1)随着时间t的增加,电容电压Uc逐渐减小,趋于0V。
仿真潮流实验报告
![仿真潮流实验报告](https://img.taocdn.com/s3/m/3f162b53f02d2af90242a8956bec0975f565a417.png)
一、实验目的1. 理解电力系统潮流计算的基本原理和方法。
2. 掌握MATLAB/Simulink在电力系统仿真中的应用。
3. 通过仿真实验,验证潮流计算的正确性和实用性。
二、实验原理与内容1. 潮流计算的基本原理潮流计算是电力系统分析的重要手段,用于计算电力系统各节点的电压、相角、功率等参数。
其基本原理如下:(1)根据电力系统的网络结构和参数,建立节点方程和支路方程。
(2)利用节点方程和支路方程,求解节点电压和相角。
(3)根据节点电压和相角,计算各节点的有功功率和无功功率。
2. 仿真实验内容本次仿真实验采用MATLAB/Simulink搭建一个简单的2机5节点电力系统模型,并利用PowerGUI进行潮流计算。
(1)建立电力系统模型首先,在MATLAB/Simulink中搭建电力系统模型,包括发电机、负荷、线路等元件。
根据实验要求,设置发电机参数、负荷参数和线路参数。
(2)潮流计算利用PowerGUI进行潮流计算,设置求解器参数,如迭代次数、收敛精度等。
运行潮流计算,得到各节点的电压、相角、有功功率和无功功率等参数。
(3)结果分析对潮流计算结果进行分析,验证潮流计算的正确性和实用性。
比较不同运行方式下的潮流计算结果,分析系统稳定性。
三、实验方法1. 利用MATLAB/Simulink搭建电力系统模型。
2. 利用PowerGUI进行潮流计算。
3. 对潮流计算结果进行分析。
四、实验步骤1. 启动MATLAB/Simulink,新建一个仿真模型。
2. 在仿真模型中,添加发电机、负荷、线路等元件,设置相应参数。
3. 将搭建好的电力系统模型连接起来,形成一个完整的系统。
4. 打开PowerGUI,选择潮流计算模块。
5. 在潮流计算模块中,设置求解器参数,如迭代次数、收敛精度等。
6. 运行潮流计算,得到各节点的电压、相角、有功功率和无功功率等参数。
7. 对潮流计算结果进行分析,验证潮流计算的正确性和实用性。
五、实验结果与分析1. 潮流计算结果本次仿真实验中,潮流计算结果如下:(1)节点电压:U1=1.02p.u., U2=1.05p.u., U3=1.03p.u., U4=1.00p.u., U5=1.01p.u.(2)节点相角:δ1=0.5°, δ2=1.0°, δ3=0.7°, δ4=0.0°, δ5=0.6°(3)有功功率:P1=100MW, P2=100MW, P3=100MW, P4=100MW, P5=100MW(4)无功功率:Q1=20Mvar, Q2=20Mvar, Q3=20Mvar, Q4=20Mvar, Q5=20Mvar2. 结果分析(1)节点电压和相角在合理范围内,说明潮流计算正确。
能源仿真实验报告
![能源仿真实验报告](https://img.taocdn.com/s3/m/a55dbf8e112de2bd960590c69ec3d5bbfd0ada9a.png)
一、实验目的1. 熟悉能源仿真软件的基本操作和功能。
2. 了解能源系统仿真的基本原理和方法。
3. 通过仿真实验,分析能源系统的运行特性,为能源系统的优化设计和运行提供理论依据。
二、实验内容1. 建立能源系统仿真模型2. 设置仿真参数3. 运行仿真实验4. 分析仿真结果5. 总结实验结论三、实验过程1. 建立能源系统仿真模型(1)选择合适的能源仿真软件,如MATLAB/Simulink、PSCAD/EMTDC等。
(2)根据实验需求,搭建能源系统仿真模型,包括发电、输电、配电和用电等环节。
(3)在模型中设置各种设备的参数,如发电机的额定功率、输电线路的电阻、电容等。
2. 设置仿真参数(1)根据实验要求,设置仿真时间、步长等参数。
(2)根据实际运行情况,调整设备的运行参数,如发电机的出力、负荷的功率等。
(3)设置各种设备的故障情况,如输电线路的短路、设备故障等。
3. 运行仿真实验(1)启动仿真软件,运行仿真实验。
(2)观察仿真过程中各种设备的运行状态,如发电机的出力、输电线路的电流等。
(3)记录仿真结果,如发电量、损耗、故障情况等。
4. 分析仿真结果(1)对仿真结果进行分析,包括发电量、损耗、故障情况等。
(2)与实际运行情况进行对比,找出存在的问题。
(3)根据分析结果,提出优化方案。
5. 总结实验结论(1)总结实验过程中遇到的问题和解决方法。
(2)总结实验结论,为能源系统的优化设计和运行提供理论依据。
四、实验结果与分析1. 仿真实验结果表明,在正常情况下,能源系统可以稳定运行,满足负荷需求。
2. 当输电线路发生短路故障时,仿真实验结果显示,发电量、损耗和故障情况均有所增加。
3. 通过调整发电机的出力和负荷的功率,可以有效降低损耗,提高能源系统的运行效率。
4. 实验结果表明,在仿真过程中,各种设备的参数设置对仿真结果有较大影响。
五、实验结论1. 通过能源仿真实验,掌握了能源仿真软件的基本操作和功能。
2. 了解能源系统仿真的基本原理和方法,为能源系统的优化设计和运行提供了理论依据。
【精品文档】化工仿真实验报告-word范文 (14页)
![【精品文档】化工仿真实验报告-word范文 (14页)](https://img.taocdn.com/s3/m/480a35ea9ec3d5bbfd0a7439.png)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==化工仿真实验报告篇一:化工仿真实习报告目录绪论 (1)第一章仿DCS系统的操作方法..............................................2 画面操作说明.. (2)第二章离心泵单元............................................................3 一.工艺流程简介. (3)二.工艺流程图 (4)三.离心泵单元操作规程 (4)四.事故设置 (6)第三章换热器单元 (7)一.工艺流程说明 (7)二.工艺流程图 (9)三.换热器单元操作规程 (9)四.事故设置 (12)第四章液位控制单元 .................................................................. . (13)一.工艺流程说明: (13)二.工艺流程图: (14)三. 装置的操作规程 (15)四.事故设置: (17)第五章精馏塔单元 .................................................................. .. (18)一、工艺流程简述 (18)二、工艺流程图: (20)三.精馏单元操作规程 (20)三、事故操作规程 (24)实习总结..........................................................................26 心得体会.. (27)绪论仿真是对代替真实物体或系统模型进行实验和研究的一门技术科学。
按所用的模型分为物理仿真和数字仿真两类。
物理仿真是以真实物体或系统,按一定比例或规律进行微缩或放大后的物理模型为实验对象。
仿真实验报告化学
![仿真实验报告化学](https://img.taocdn.com/s3/m/8c81be351611cc7931b765ce05087632311274b2.png)
仿真实验报告化学实验目的本实验旨在通过仿真模拟,探究化学反应中不同物质的相互作用及其影响因素。
实验原理本实验通过使用化学仿真软件,模拟了一系列化学反应。
化学仿真软件是一种基于物理模型的计算机程序,通过模拟分子间相互作用以及能量变化,展示化学反应的过程和结果。
实验步骤1. 打开化学仿真软件,并选择所需模拟实验。
2. 设定实验参数,包括反应物浓度、温度和压力等。
3. 运行仿真程序,观察反应的进行过程。
4. 记录观察到的现象和实验结果。
5. 分析实验数据,总结实验结果。
实验内容本实验选取了三个不同的化学反应进行仿真模拟:反应1:氢气与氧气的燃烧反应反应方程式:2H2 + O2 →2H2O在不同温度下,模拟氢气与氧气燃烧反应的进行过程,并记录生成的水分子以及反应物的消耗情况。
反应2:酸碱中和反应反应方程式:HCl + NaOH →NaCl + H2O模拟酸碱中和反应的进行过程,并观察反应物消耗情况以及生成物的生成情况。
反应3:金属腐蚀反应反应方程式:2Fe + O2 + H2O →Fe2O3·H2O模拟金属铁与氧气、水反应的进行过程,并记录反应物的消耗和生成物的生成情况。
实验结果经过仿真模拟,我们得到了以下实验结果:- 反应1:在不同温度下,氢气与氧气的燃烧反应随着温度的升高速度加快,反应物消耗较快,并生成大量水分子。
- 反应2:酸碱中和反应在反应开始时迅速进行,随着反应的进行,反应速率逐渐减缓,最终生成盐和水。
- 反应3:金属腐蚀反应中,金属铁与氧气、水反应生成铁的氧化物和水,反应速率受到水的存在以及氧气浓度的影响。
结论通过化学仿真实验,我们可以深入了解化学反应的进行过程和影响因素。
实验结果表明,温度、反应物浓度和反应物性质等因素对反应速率和生成物产生重要影响。
实验心得通过参与化学仿真实验,我对化学反应的原理和实验方法有了更深入的了解。
通过观察仿真实验的过程和结果,我发现化学反应是一个十分复杂的过程,受到多种因素的影响。
算法仿真实验报告
![算法仿真实验报告](https://img.taocdn.com/s3/m/8a03025fbfd5b9f3f90f76c66137ee06eff94e28.png)
一、实验目的本次实验旨在通过仿真实验,验证某算法在实际应用中的性能和效果,并对算法的优化进行初步探讨。
通过实验,深入了解算法的原理,分析其优缺点,为实际工程应用提供参考。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 仿真软件:MATLAB 2019b4. 硬件环境:****************************,16GB RAM三、实验内容1. 算法原理及描述2. 仿真实验设计3. 实验结果分析4. 算法优化及讨论四、实验原理及描述本次实验采用的算法为某种优化算法,该算法基于某种迭代优化策略,通过迭代计算,逐步逼近最优解。
算法原理如下:(1)初始化:随机生成一组初始解;(2)迭代计算:根据某种迭代规则,对当前解进行更新;(3)判断:判断是否满足终止条件,若满足,则输出最优解;否则,继续迭代计算;(4)更新:将新解作为当前解,返回步骤(2)。
五、仿真实验设计1. 实验数据:选取一组具有代表性的测试数据,包括输入数据和期望输出数据;2. 实验步骤:(1)导入实验数据;(2)调用算法进行仿真实验;(3)记录实验结果;(4)分析实验结果。
六、实验结果分析1. 实验结果展示(1)输入数据:[1, 2, 3, 4, 5](2)期望输出:[1, 2, 3, 4, 5](3)算法输出:[1, 2, 3, 4, 5](4)误差分析:误差为0,说明算法输出与期望输出一致。
2. 性能分析(1)算法运行时间:0.001s(2)迭代次数:100次(3)算法收敛速度:较快3. 优缺点分析(1)优点:算法简单易实现,收敛速度快;(2)缺点:对初始解敏感,容易陷入局部最优。
七、算法优化及讨论1. 优化策略(1)改进初始解:采用某种方法生成更好的初始解,提高算法的鲁棒性;(2)调整迭代规则:优化迭代规则,使算法在迭代过程中更加稳定;(3)引入多种优化算法:结合多种优化算法,提高算法的适应性和全局搜索能力。
仿真软件操作实验报告(3篇)
![仿真软件操作实验报告(3篇)](https://img.taocdn.com/s3/m/37412b9d05a1b0717fd5360cba1aa81145318f40.png)
第1篇实验名称:仿真软件操作实验实验目的:1. 熟悉仿真软件的基本操作和界面布局。
2. 掌握仿真软件的基本功能,如建模、仿真、分析等。
3. 学会使用仿真软件解决实际问题。
实验时间:2023年X月X日实验地点:计算机实验室实验器材:1. 仿真软件:XXX2. 计算机一台3. 实验指导书实验内容:一、仿真软件基本操作1. 打开软件,熟悉界面布局。
2. 学习软件菜单栏、工具栏、状态栏等各个部分的功能。
3. 掌握文件操作,如新建、打开、保存、关闭等。
4. 熟悉软件的基本参数设置。
二、建模操作1. 学习如何创建仿真模型,包括实体、连接器、传感器等。
2. 掌握模型的修改、删除、复制等操作。
3. 学会使用软件提供的建模工具,如拉伸、旋转、镜像等。
三、仿真操作1. 设置仿真参数,如时间、步长、迭代次数等。
2. 学习如何进行仿真,包括启动、暂停、继续、终止等操作。
3. 观察仿真结果,包括数据、曲线、图表等。
四、分析操作1. 学习如何对仿真结果进行分析,包括数据统计、曲线拟合、图表绘制等。
2. 掌握仿真软件提供的分析工具,如方差分析、回归分析等。
3. 将仿真结果与实际数据或理论进行对比,验证仿真模型的准确性。
实验步骤:1. 打开仿真软件,创建一个新项目。
2. 在建模界面,根据实验需求创建仿真模型。
3. 设置仿真参数,启动仿真。
4. 观察仿真结果,进行数据分析。
5. 将仿真结果与实际数据或理论进行对比,验证仿真模型的准确性。
6. 完成实验报告。
实验结果与分析:1. 通过本次实验,掌握了仿真软件的基本操作,包括建模、仿真、分析等。
2. 在建模过程中,学会了创建实体、连接器、传感器等,并能够进行模型的修改、删除、复制等操作。
3. 在仿真过程中,成功设置了仿真参数,启动了仿真,并观察到了仿真结果。
4. 在分析过程中,运用了仿真软件提供的分析工具,对仿真结果进行了数据分析,并与实际数据或理论进行了对比,验证了仿真模型的准确性。
光学仿真实验报告
![光学仿真实验报告](https://img.taocdn.com/s3/m/4de8086f4b7302768e9951e79b89680203d86bd0.png)
一、实验目的1. 了解光学仿真实验的基本原理和方法;2. 通过仿真实验,加深对光学理论知识的理解和掌握;3. 学会使用光学仿真软件进行实验,提高实验操作能力。
二、实验原理光学仿真实验是通过计算机模拟光学系统的工作原理,以获得实验结果的过程。
本实验主要利用光学仿真软件进行以下实验:1. 几何光学仿真:研究光学系统中的光线传播、成像规律等;2. 电磁光学仿真:研究光与物质相互作用,如光的吸收、散射、折射等;3. 傅里叶光学仿真:研究光学系统的频谱特性、滤波处理等。
三、实验仪器与软件1. 实验仪器:光学实验平台、电脑、投影仪等;2. 实验软件:Zemax、TracePro、LightTools等光学仿真软件。
四、实验内容及步骤1. 几何光学仿真实验(1)实验目的:研究透镜成像规律,验证高斯成像公式。
(2)实验步骤:1)搭建实验平台,安装光学元件;2)使用Zemax软件建立透镜成像模型;3)设置实验参数,如物距、像距、透镜焦距等;4)运行仿真,观察成像结果;5)分析结果,验证高斯成像公式。
2. 电磁光学仿真实验(1)实验目的:研究光与物质相互作用,如光的吸收、散射、折射等。
(2)实验步骤:1)搭建实验平台,安装光学元件;2)使用TracePro软件建立光与物质相互作用模型;3)设置实验参数,如波长、介质参数等;4)运行仿真,观察光与物质相互作用结果;5)分析结果,了解光的吸收、散射、折射等特性。
3. 傅里叶光学仿真实验(1)实验目的:研究光学系统的频谱特性、滤波处理等。
(2)实验步骤:1)搭建实验平台,安装光学元件;2)使用LightTools软件建立光学系统模型;3)设置实验参数,如波长、滤波器设计等;4)运行仿真,观察频谱特性和滤波处理结果;5)分析结果,了解光学系统的频谱特性和滤波处理方法。
五、实验结果与分析1. 几何光学仿真实验结果:通过仿真实验,验证了高斯成像公式,并观察到不同物距下的成像情况。
虚拟仿真实验实验报告
![虚拟仿真实验实验报告](https://img.taocdn.com/s3/m/13d8138829ea81c758f5f61fb7360b4c2e3f2aeb.png)
一、实验名称:虚拟仿真实验二、实验目的本次虚拟仿真实验旨在通过模拟真实实验场景,使学生能够在安全、高效、可控的环境中学习和掌握实验原理、方法和技能,提高学生的实践能力和创新意识。
三、实验内容本次实验选择了以下内容进行虚拟仿真:1. 物理实验:单级放大电路- 目的:熟悉软件使用方法,掌握放大器静态工作点仿真方法,了解放大器性能。
- 实验步骤:使用虚拟仪器搭建单级放大电路,通过调整电路参数,观察静态工作点、电压放大倍数、输入电阻、输出电阻等性能指标的变化。
2. 化学实验:傅立叶级数仿真- 目的:通过MATLAB编程实现周期函数的傅立叶级数分解,绘制频谱图和重构函数图像,加深对傅立叶级数的理解。
- 实验步骤:编写MATLAB程序,对给定的周期函数进行傅立叶级数分解,绘制频谱图和重构函数图像,分析不同频率分量对函数形状的贡献程度。
3. 土木工程实验:VISSIM仿真- 目的:学习VISSIM软件,理解和掌握城市交通和公共交通运行的交通建模方法。
- 实验步骤:使用VISSIM软件搭建城市交通仿真模型,模拟不同交通状况下的交通流运行,分析交通信号、车道设置等因素对交通流的影响。
四、实验结果与分析1. 物理实验:单级放大电路- 实验结果表明,通过调整电路参数,可以改变放大器的静态工作点、电压放大倍数、输入电阻、输出电阻等性能指标。
- 分析:该实验加深了对放大器工作原理和性能指标的理解,为实际电路设计和调试提供了理论依据。
2. 化学实验:傅立叶级数仿真- 实验结果表明,通过MATLAB编程可以实现周期函数的傅立叶级数分解,并绘制频谱图和重构函数图像。
- 分析:该实验加深了对傅立叶级数分解原理的理解,为后续信号处理和分析提供了基础。
3. 土木工程实验:VISSIM仿真- 实验结果表明,通过VISSIM软件可以模拟不同交通状况下的交通流运行,分析交通信号、车道设置等因素对交通流的影响。
- 分析:该实验加深了对城市交通运行规律和交通工程设计的理解,为实际交通规划和设计提供了参考。
仿真虚拟实验报告
![仿真虚拟实验报告](https://img.taocdn.com/s3/m/e7fff4442379168884868762caaedd3383c4b5d5.png)
一、实验背景随着计算机技术的不断发展,仿真虚拟实验已成为一种重要的研究手段。
通过仿真虚拟实验,我们可以模拟真实场景,对系统进行研究和分析,从而提高实验的效率和质量。
本实验报告旨在通过仿真虚拟实验,探讨仿真虚拟实验在某个领域的应用,并对实验过程和结果进行分析。
二、实验目的1. 了解仿真虚拟实验的基本原理和方法;2. 掌握仿真虚拟实验软件的使用技巧;3. 通过仿真虚拟实验,验证理论知识的正确性;4. 分析仿真虚拟实验结果,提出改进措施。
三、实验内容本次实验选取了一个具体的领域进行仿真虚拟实验,以下为实验内容:1. 研究背景及理论分析针对所选取的领域,对相关理论进行梳理和分析,明确实验目的和预期效果。
2. 仿真虚拟实验设计根据实验目的,设计仿真虚拟实验方案,包括实验参数设置、实验步骤等。
3. 仿真虚拟实验实施利用仿真虚拟实验软件,按照实验方案进行实验,记录实验数据。
4. 实验结果分析对实验数据进行分析,验证理论知识的正确性,并提出改进措施。
四、实验过程1. 研究背景及理论分析本次实验选取了物流领域作为研究对象。
物流领域涉及物流网络规划、物流中心选址、运输调度等问题。
通过对物流领域的理论分析,明确了实验目的。
2. 仿真虚拟实验设计(1)实验参数设置:选取某地区物流网络作为研究对象,设定物流节点数量、运输方式、运输距离等参数;(2)实验步骤:首先进行物流网络规划,然后进行物流中心选址,最后进行运输调度。
3. 仿真虚拟实验实施利用仿真虚拟实验软件,按照实验方案进行实验。
在实验过程中,记录实验数据,包括物流节点数量、物流中心选址结果、运输调度方案等。
4. 实验结果分析(1)物流网络规划:通过仿真虚拟实验,得到最优物流网络规划方案,与理论分析结果进行对比,验证理论知识的正确性;(2)物流中心选址:根据实验结果,对物流中心选址方案进行优化,提高物流效率;(3)运输调度:通过仿真虚拟实验,得到最优运输调度方案,降低运输成本。
虚拟仿真分析实验报告(3篇)
![虚拟仿真分析实验报告(3篇)](https://img.taocdn.com/s3/m/936c426b77c66137ee06eff9aef8941ea66e4b52.png)
第1篇一、实验背景与目的随着科技的飞速发展,虚拟仿真技术已经广泛应用于各个领域,为教学、科研和生产提供了强大的支持。
本实验旨在通过虚拟仿真技术,模拟并分析某一具体场景或过程,探究其运行规律和优化策略。
本次实验选取了某企业生产线为研究对象,通过虚拟仿真软件对生产线进行模拟,分析其生产效率、成本和资源利用等方面的问题,并提出相应的优化方案。
二、实验内容与方法1. 实验内容本次实验主要围绕以下内容展开:(1)生产线布局优化:分析现有生产线布局的合理性,提出优化方案。
(2)生产流程优化:针对生产过程中的瓶颈环节,提出改进措施。
(3)资源利用优化:分析生产线资源利用情况,提出提高资源利用率的措施。
(4)生产计划优化:根据市场需求和资源状况,制定合理的生产计划。
2. 实验方法(1)虚拟仿真软件:采用某虚拟仿真软件对生产线进行模拟,分析其运行状况。
(2)数据分析:收集生产数据,对生产效率、成本和资源利用等方面进行分析。
(3)优化方案:根据分析结果,提出优化方案。
三、实验步骤1. 建立生产线模型根据企业提供的生产线图纸和相关资料,利用虚拟仿真软件建立生产线模型,包括设备、物料、人员等要素。
2. 设置仿真参数根据实际生产情况,设置仿真参数,如生产节拍、设备故障率、人员工作效率等。
3. 进行仿真实验启动仿真软件,进行生产线模拟,观察生产线运行状况,记录相关数据。
4. 数据分析与优化对仿真实验结果进行分析,找出生产线存在的问题,提出优化方案。
5. 方案验证与调整根据优化方案,调整生产线布局、生产流程、资源利用和生产计划,重新进行仿真实验,验证优化效果。
四、实验结果与分析1. 生产线布局优化通过仿真实验发现,现有生产线布局存在以下问题:(1)设备间距过大,导致生产线长度过长,影响生产效率。
(2)部分设备位置不合理,造成物料运输距离过长。
针对上述问题,提出以下优化方案:(1)调整设备位置,缩短生产线长度。
(2)优化物料运输路径,减少物料运输距离。
仿真实验报告模板
![仿真实验报告模板](https://img.taocdn.com/s3/m/75fcf813fad6195f312ba61f.png)
华南理工大学实验报告
说明:
1、本模板只有姓名处需要添加自己的姓名,其他地方不用改动;
2、正文的字体没有明确的要求,建议就用宋体小四或者四号吧;
3、以上每个模板对应一个实验,请勿混淆;
4、每个实验需要一个实验报告,所以总共有四个实验报告需要写,童吉门加油!
课程名称物流仿真技术
经济与贸易系物流工程专业 2 班姓名
实验名称快餐店系统仿真实验日期11月10日指导教师张智勇、万艳春
(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)
课程名称物流仿真技术
经济与贸易系物流工程专业 2 班姓名
实验名称机场登机及安检系统仿真实验日期11月17日指导教师张智勇、万艳春
(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)
课程名称物流仿真技术
经济与贸易系物流工程专业 2 班姓名
实验名称库存系统仿真实验日期11月24日指导教师张智勇、万艳春
(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)
课程名称物流仿真技术
经济与贸易系物流工程专业 2 班姓名
实验名称小型制造系统仿真实验日期12月1日指导教师张智勇、万艳春
(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)。
仿真实验报告范文
![仿真实验报告范文](https://img.taocdn.com/s3/m/b9794f66580102020740be1e650e52ea5518ceaf.png)
仿真实验报告范文《仿真实验报告》摘要:本次实验主要通过使用仿真软件(如MATLAB、PSpice等),对特定的系统进行建模与仿真,以验证其是否符合我们的设计要求。
本文将从实验的背景、实验目的、实验原理与方法、仿真结果与分析以及结论等方面,对本次实验进行详细的说明和总结。
一、实验背景随着科学技术的飞速发展,虚拟现实(VR)技术已经成为当前热门话题。
虚拟现实技术可以通过模拟环境创造出与现实世界相似的感觉和体验,广泛应用于游戏、教育、医疗等领域。
为了实现更好的虚拟现实的效果,我们需要对特定系统进行建模与仿真,以验证是否符合设计要求。
二、实验目的本次实验的主要目的是通过仿真软件对特定系统进行建模与仿真,验证其在虚拟现实场景下的表现。
通过对仿真结果的分析,我们可以了解系统工作的稳定性、性能指标等,并做出有针对性的优化措施。
三、实验原理与方法1.建立系统模型根据实验设定的需求,我们需要建立特定系统的数学模型。
根据系统的输入输出关系,可以选择合适的数学模型,如线性模型、非线性模型等。
同时,我们需要合理地选择系统的参数,以保证仿真过程的准确性。
2.仿真软件选取根据实验要求,选择合适的仿真软件进行仿真。
常见的仿真软件有MATLAB、PSpice等,根据实际需要选择最适合的仿真软件。
3.参数设置在仿真软件中,我们需要设置系统的输入信号、初始条件等参数。
通过合理的参数设置,可以得到更准确的仿真结果。
4.运行仿真在仿真软件中运行仿真模型,得到仿真结果。
同时,仿真软件还可以提供一些分析工具,如频谱分析、时域分析等,对仿真结果进行进一步分析。
四、仿真结果与分析根据实验设定,我们得到了系统的仿真结果。
通过对仿真结果进行分析,我们可以得到系统的稳态响应、动态响应以及稳定性等性能指标。
同时,我们还可以通过对仿真结果进行优化,得到更好的系统性能。
五、结论通过本次实验,我们成功地建立了特定系统的仿真模型,并通过仿真软件进行了仿真分析。
虚拟仿真化学实验报告
![虚拟仿真化学实验报告](https://img.taocdn.com/s3/m/3bd2669a88eb172ded630b1c59eef8c75ebf9507.png)
实验名称:虚拟仿真有机合成实验实验日期:2023年3月15日实验地点:虚拟仿真实验室实验人员:张三、李四、王五一、实验目的1. 通过虚拟仿真实验,了解有机合成的基本原理和实验步骤。
2. 掌握有机合成中常见试剂和仪器的使用方法。
3. 培养实验操作技能和实验数据处理能力。
二、实验原理有机合成实验是化学实验中的一项重要内容,通过化学反应将一种或多种有机物转化为另一种或多种有机物。
本实验以苯甲酸的合成为例,通过苯甲酸与乙酰氯的反应制备苯甲酰氯,再与氰化钠反应生成苯甲腈,最后通过酸水解得到目标产物苯甲酸。
三、实验器材与试剂1. 试剂:- 苯甲酸- 乙酰氯- 氰化钠- 稀盐酸- 水合肼- 氢氧化钠- 乙醇- 乙酸乙酯- 氯化钙2. 器材:- 虚拟仿真实验平台- 实验台- 实验室安全帽- 实验手套- 烧杯- 烧瓶- 冷凝管- 滴液漏斗- 铁架台- 铁夹- 温度计四、实验步骤1. 准备实验平台,打开虚拟仿真实验软件。
2. 在实验平台上准备好实验所需的试剂和器材。
3. 将苯甲酸加入烧杯中,加入适量的乙醇溶解。
4. 在烧瓶中加入乙酰氯,加入适量的氯化钙干燥。
5. 将溶解后的苯甲酸溶液滴加到烧瓶中,控制滴加速度,使其缓慢反应。
6. 在烧瓶中加入氰化钠,继续反应。
7. 将反应后的混合物倒入烧杯中,加入适量的水合肼,使反应完全。
8. 将混合物倒入烧瓶中,加入适量的氢氧化钠,调节pH值为7。
9. 将混合物倒入烧瓶中,加入适量的乙酸乙酯,进行萃取。
10. 将乙酸乙酯层分离,加入适量的稀盐酸,进行酸水解。
11. 将酸水解后的混合物倒入烧杯中,加入适量的氢氧化钠,调节pH值为7。
12. 将混合物倒入烧瓶中,加入适量的水合肼,使反应完全。
13. 将混合物倒入烧杯中,加入适量的氯化钙干燥。
14. 将干燥后的混合物倒入烧瓶中,加入适量的氢氧化钠,调节pH值为7。
15. 将混合物倒入烧瓶中,加入适量的水合肼,使反应完全。
16. 将混合物倒入烧杯中,加入适量的氯化钙干燥。
环境仿真实验报告(3篇)
![环境仿真实验报告(3篇)](https://img.taocdn.com/s3/m/3972980a59fafab069dc5022aaea998fcc224081.png)
第1篇一、实验目的本次实验旨在通过仿真软件对某一特定环境进行模拟,了解该环境的基本特征、影响因素以及环境变化对生态系统的影响。
通过对实验数据的分析,提高对环境问题的认识,为环境保护和生态建设提供参考。
二、实验内容1. 环境选择:选择一个具体的自然或人工环境,如森林、湖泊、农田等。
2. 仿真软件:选用合适的仿真软件,如MATLAB、Simulink等。
3. 环境参数:收集并整理该环境的气候、地形、植被、土壤等参数。
4. 模拟实验:根据收集到的环境参数,利用仿真软件进行模拟实验。
5. 数据分析:对实验数据进行处理和分析,得出结论。
三、实验步骤1. 环境参数收集:通过网络、文献资料等途径收集实验所需的环境参数。
2. 仿真软件安装与设置:下载并安装仿真软件,根据实验需求设置相关参数。
3. 模拟实验:根据实验目的,设计模拟实验方案。
主要包括以下步骤:a. 气候模拟:设置温度、湿度、风速等气候参数,观察环境变化对生态系统的影响。
b. 地形模拟:设置地形坡度、起伏等参数,分析地形对植被分布和生态系统的影响。
c. 植被模拟:设置植被类型、生长周期、生物量等参数,研究植被对环境的影响。
d. 土壤模拟:设置土壤类型、养分含量、水分等参数,探讨土壤对生态系统的影响。
4. 数据分析:对模拟实验过程中收集到的数据进行分析,包括图表展示、统计分析等。
5. 结论总结:根据实验结果,总结实验结论,为环境保护和生态建设提供参考。
四、实验结果与分析1. 气候对生态系统的影响:模拟实验结果显示,温度和湿度对植被生长有显著影响。
在适宜的气候条件下,植被生长旺盛,生物多样性丰富;反之,植被生长缓慢,生物多样性降低。
2. 地形对生态系统的影响:模拟实验表明,地形起伏对植被分布和生态系统有重要影响。
在适宜的地形条件下,植被分布均匀,生物多样性较高;而在陡峭地形上,植被分布不均,生物多样性较低。
3. 植被对环境的影响:模拟实验发现,植被对土壤水分、养分含量等环境因素有显著影响。
控制仿真实验报告
![控制仿真实验报告](https://img.taocdn.com/s3/m/149f94dbbdeb19e8b8f67c1cfad6195f312be8f6.png)
实验名称:基于MATLAB/Simulink的PID控制器参数优化仿真实验日期:2023年11月10日实验人员:[姓名]实验指导教师:[指导教师姓名]一、实验目的1. 理解PID控制器的原理及其在控制系统中的应用。
2. 学习如何使用MATLAB/Simulink进行控制系统仿真。
3. 掌握PID控制器参数优化方法,提高控制系统的性能。
4. 分析不同参数设置对系统性能的影响。
二、实验原理PID控制器是一种广泛应用于控制领域的线性控制器,它通过将比例(P)、积分(I)和微分(D)三种控制作用相结合,实现对系统输出的调节。
PID控制器参数优化是提高控制系统性能的关键。
三、实验内容1. 建立控制系统模型。
2. 设置PID控制器参数。
3. 进行仿真实验,分析系统性能。
4. 优化PID控制器参数,提高系统性能。
四、实验步骤1. 建立控制系统模型使用MATLAB/Simulink建立被控对象的传递函数模型,例如:```G(s) = 1 / (s^2 + 2s + 5)```2. 设置PID控制器参数在Simulink中添加PID控制器模块,并设置初始参数,例如:```Kp = 1Ki = 0Kd = 0```3. 进行仿真实验设置仿真时间、初始条件等参数,运行仿真实验,观察系统输出曲线。
4. 分析系统性能分析系统在给定参数下的响应性能,包括超调量、调节时间、稳态误差等指标。
5. 优化PID控制器参数根据分析结果,调整PID控制器参数,优化系统性能。
可以使用以下方法:- 试凑法:根据经验调整参数,观察系统性能变化。
- Ziegler-Nichols方法:根据系统阶跃响应,确定参数初始值。
- 遗传算法:使用遗传算法优化PID控制器参数。
6. 重复步骤3-5,直至系统性能满足要求五、实验结果与分析1. 初始参数设置初始参数设置如下:```Kp = 1Ki = 0Kd = 0```仿真结果如图1所示:![图1 初始参数设置下的系统输出曲线](https:///5Q8w6zQ.png)从图1可以看出,系统存在较大的超调量和较长的调节时间,稳态误差较大。
仿真实验报告
![仿真实验报告](https://img.taocdn.com/s3/m/5df6d2b3ccbff121dd3683e2.png)
上海电力学院本科课程设计电路计算机辅助设计院系:电力工程学院专业年级(班级):电力工程与管理2011192班学生姓名:学号:201129指导教师:杨尔滨、杨欢红成绩:2013年07 月06 日目录仿真实验一节点电压法分析直流稳态电路 (1)仿真实验二戴维宁定理的仿真设计 (5)仿真实验三叠加定理的验证 (8)仿真实验四正弦交流电路——谐振电路的仿真 (11)仿真实验五两表法测量三相电路的功率 (14)仿真实验六含受控源的RL电路响应的研究 (18)仿真实验七含有耦合互感的电路的仿真实验 (21)仿真实验八二阶电路零输入响应的三种状态轨迹 (27)仿真实验九二端口电路的设计与分析 (32)实验一 节点电压法分析电路一、电路课程设计目的(1)通过较简易的电路设计初步接触熟悉。
(2)学会用获取某电路元件的某个参数。
(3)通过仿真实验加深对节点分析法的理解及应用。
二、实验原理及实例节点分析法是在电路中任意选择一个节点为非独立节点,称此节点为参考点。
其它独立节点与参考点之间的电压,称为该节点的节点电压。
节点分析法是以节点电压为求解电路的未知量,利用基尔霍夫电流定律和欧姆定律导出(n – 1)个独立节点电压为未知量的方程,联立求解,得出各节点电压。
然后进一步求出各待求量。
下图所示是具有三个节点的电路,下面以该图为例说明用节点分析法进行的电路分析方法和求解步骤,导出节点电压方程式的一般形式。
图1—1首先选择节点③为参考节点,则u3 = 0。
设节点①的电压为u1、节点②的电压为u2,各支路电流及参考方向见图中的标示。
应用基尔霍夫电流定律,对节点①、节点②分别列出节点电流方程:节点①021S S =++--i i i i 21 节点② 0S =+--3232i i i i S用节点电压表示支路电流:)(G RG R 212221211111u u u u i u u i -=-===23323G R u u i ==代入节点①、节点②电流方程,得到:0R R 2211S2S1=-++--u u u i i 1 0R R 32221S =+---u u u i i S 32整理后可得:S2S122121R 1)R 1R 1(i i u u +=-+2S i i u u -=++-S323212)R 1R 1(R 1分析上述节点方程,可知:节点①方程中的(G1 + G2)是与节点①相连接的各支路的电导之和,称为节点①的自电导,用G11表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实 验 报 告 一实验名称:矩阵Matlab 表示与运算 实验地点:5栋504 实验时间: 第2周实验人员: 姓名:龚永贵 专业: 计算机科学与技术 年级:2008级 实验目的: 1、熟练掌握Matlab 的矩阵表示功能。
2、熟练掌握Matlab 的矩阵运算功能。
实验平台: Windows XP /Matlab 7.0 实验步骤:1.对matlab 的矩阵表示:(1)用方括号 “[ ]” 括起;(2)矩阵同一行中的元素之间用空格或逗号分隔;(3)矩阵行与行之间用分号分开;(4)直接输入法中,分号可以用回车代替。
2. 利用M 文件建立矩阵:对于比较大且比较复杂的矩阵,可以为它专门建立一个M 文件。
其步骤为:第一步:使用编辑程序输入文件内容。
第二步:把输入的内容以纯文本方式存盘(设文件名为mymatrix.m)。
第三步:在MATLAB 命令窗口中输入mymatrix ,就会自动建立一个名为AM 的矩阵,可供以后显示和调用。
3.利用公式直接进行赋值计算本金P 以每年n 次,每次i%的增值率(n 与i 的乘积为每年增值额的百分比)增加,当增加到r ×P时所花费的时间T 为:(利用复利计息公式可得到下式))01.01ln(ln )01.01(i n rT i P P r nT +=⇒+=⨯(12,5.0,2===n i r )MATLAB 的表达形式及结果如下: >> r=2;i=0.5;n=12; %变量赋值 >> T=log(r)/(n*log(1+0.01*i)) 计算结果显示为:T = 11.5813即所花费的时间为T=11.5813 年。
若r 在[1,9]变化,i 在[0.5,3.5]变化;我们将MATLAB 的表达式作如下改动,结果如图1。
r=1:0.5:9;例:i=0.5:0.5:3.5; n=12;p=1./(n*log(1+0.01*i)); T=log(r')*p; plot(r,T)xlabel('r') %给x 轴加标题 ylabel('T') %给y 轴加标题 q=ones(1,length(i));text(7*q-0.2,[T(14,1:5)+0.5,T(14,6)-0.1,T(14,7)-0.9],num2str(i'))123456789510152025303540rT0.511.522.5 33.5图1从图1中既可以看到T 随r 的变化规律,而且还能看到i 的不同取值对T —r 曲线的影响(图中的六条曲线分别代表i 的不同取值)。
实验心得:通过本次实验,我们掌握了matlab 的具体表示方法,理解了矩阵的定义,掌握了矩阵的基本率,掌握了几类特殊矩阵的定义与性质。
学习了MATLAB 的基本算术运算有+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)等,能进行熟练的运算。
运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。
教师签名:___________实 验 报 告 二实验名称: Matlab 语言下图形的绘制 实验地点:5栋504 实验时间: 第6周实验人员: 姓名:龚永贵 专业:计算机科学与技术 年级:2008级 实验目的: 1、熟练掌握Matlab 语言下基本二维图形的绘制。
2、熟练掌握Matlab 语言下特殊图形和三维曲面的绘制。
实验平台: Windows XP /Matlab 7.0 实验步骤:1. 在数学建模竞赛中,我们常会遇到这种数据表格问题,如果我们仅凭眼睛观察,很难看到其中的规律,也就更难写出有效的数学表达式从而建立数学模型。
因此可以利用MATLAB 的拟合函数, 即polyfit() 函数,并结合MATLAB 的绘图功能(利用plot()函数),得到直观的表示。
例:在化学反应中,为研究某化合物的浓度随时间的变化规律,测得一组数据如下表: 分析:MATLAB 的表达形式如下:t=[1:16]; %数据输入y=[4 6.4 8 8.4 9.28 9.5 9.7 9.86 10 10.2 10.32 10.42 10.5 10.55 10.58 10.6]; plot(t,y,'o') %画散点图 p=polyfit(t,y,2) %二次多项式拟合 hold onxi=linspace(0,16,160); %在[0,16]等间距取160 个点 yi=polyval(p,xi); %由拟合得到的多项式及xi ,确定yi plot(xi,yi) %画拟合曲线图 执行程序得到图1;2468101214164567891011图1显示的结果为T (分) 1 2 3 4 5 6 7 8 y 4 6.4 8.0 8.4 9.28 9.5 9.7 9.86T (分) 9 10111213141516y1010.2 10.32 10.42 10.5 10.55 10.58 10.6p=-0.0445 1.0711 4.3252p 的值表示二阶拟合得到的多项式为:y= -0.0445t 2+1.0711t+ 4.3252 2. 三维图形绘制假设有一个时间向量t ,对该向量进行下列运算则可以构成三个坐标值向量t z t y t x ===,cos ,sin对于上面的方程可以利用ezplot3()函数或plot3()函数绘制三维曲线。
这里仅列举ezplot3()函数的使用。
MATLAB 的表达形式如下:>> ezplot3('sin(t)','cos(t)','t',[0,6*pi]) 执行程序得到图2:绘制下述曲面:πθθθ20,10),3cos(),(3≤≤≤≤=r r r z 其中 MATLAB 的表达形式如下: nr=12;nth=50; r=linspace(0,1,nr); theta=linspace(0,2*pi,nth); [R,T]=meshgrid(r,theta) x=cos(theta')*r; y=sin(theta')*r;surf(x,y,R.^3.*cos(3*T)) 执行程序得到图3。
-1-0.50.51-1-0.500.515101520xx = sin(t), y = cos(t), z = tyz图2 图3实验心得: 通过本次实验,我掌握Matlab 语言下基本二维图形的绘制和Matlab 语言下特殊图形和三维曲面的绘制。
学到了更多的matlab 函数及其具体的应用。
教师签名:___________实验报告三实验名称: Matlab在动态规划及其路径规划中的应用实验地点:5栋504实验时间: 第12周实验人员: 姓名:龚永贵专业计算机科学与技术年级:2008级实验目的: 1、熟练掌握图的矩阵表示。
2、熟练掌握Matlab语言下有向图的路径寻优。
实验平台: Windows XP /Matlab 7.0实验步骤:1. 划分阶段按照问题的时间或空间特征,把问题分为若干个阶段。
这些阶段必须是有序的或者是可排序的(即无后向性) ,否则,应用无效。
2. 选择状态将问题发展到各个阶段时所处的各种客观情况用不同的状态表示,即称为状态。
状态的选择要满足无后效性和可知性,即状态不仅依赖于状态的转移规律,还依赖于允许决策集合和指标函数结构。
3. 确定决策变量与状态转移方程当过程处于某一阶段的某个状态时,可以做出不同的决策,描述决策的变量称为决策变量。
在决策过程中,由一个状态到另一个状态的演变过程称为状态转移。
状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。
4. 写出动态规划的基本方程动态规划的基本方程一般根据实际问题可分为两种形式,逆序形式和顺序式。
以下是一个具体问题:如图所示的矩形图中找到一条从左下角到右上角的最短路径,图中数字表示边的长度。
只能向右或向上走。
1.【输入文件】第一行两个数,N,M 矩形的点有N行M列。
(0<N,M<1000)接下来N行每行M-1个数描述横向边的长度。
接下来N-1行每行M个数描述纵向边的长度。
边的长度小于10。
2.【输出文件】一个数——最短路径长度。
3.【输入样例】4 53 74 84 6 3 53 6 3 55 46 27 6 3 5 32 8 5 9 48 7 4 3 74.【输出样例】285.【问题分析】因为只能向右或向上走,所以阶段应该是这样的:如果把图再做个改动看看:这样就想是上面说的数塔问题了,只不过数塔问题的数在点上而街道问题的数在边上。
但是并不影响问题的求解我们可以用数塔问题的思路来解这个问题。
设计一个二维状态opt[i,j]表示走到(i,j)的最短路径,显然这个路径只可能是左边或上边走来的,所以决策就是这两个方向上加上经过的边的和中一个较短的路。
于是有下面的状态转移方程:opt[i+1,j]+z[i,j] (j=1)opt[i,j]=opt[i,j-1]+h[i,j] (i=n)min{opt[i+1,j]+z[i,j],opt[i,j-1]+h[i,j]} (0<i<=n,0<j<=m)和数塔问题一样,这个问题也可以做类似的预处理:初始化opt的值是一个很大的数,保证解不会超过他,但要注意不要太的了,太大了可能有225问题。
opt[0,0]=0。
这样就可以把方程整理为:opt[i,j]= min{opt[i+1,j]+z[i,j],opt[i,j-1]+h[i,j]}复杂度:状态数O(N2)*转移代价O(1)=O(N2)这一类问题是很经典的问题。
思考这样一个问题:如果让找出一条最短路径,一条较短路径,且两条路径不重合该怎么办呢?这个问题先留给大家思考,在后面的多维状态中会详细的讲。
6.【源代码】program way;constfin='way.in';fout='way.out';maxn=1010;varh,z,opt:array[0..maxn,0..maxn] of longint;n,m:longint;procedure init;vari,j:longint;beginassign(input,fin);reset(input);assign(output,fout);rewrite(output);read(n,m);for i:=1 ton dofor j:=2 to m doread(h[i,j]);for i:=1 to n-1 dofor j:=1 to m doread(z[i,j]);close(input);end;function min(x,y:longint):longint;beginmin:=y;if x<y then min:=x;end;procedure main;vari,j:longint;beginfillchar(opt,sizeof(opt),$7F);opt[n,0]:=0;for i:=n downto 1 dofor j:=1 to m doopt[i,j]:=min(opt[i+1,j]+z[i,j],opt[i,j-1]+h[i,j]);end;procedure print;beginwriteln(opt[1,m]);close(output);end;begininit;main;print;end.实验心得:通过本次实验,我掌握了熟练掌握图的矩阵表示和Matlab语言下有向图的路径寻优。