古典概型说课稿.ppt

合集下载

古典概型说课课件

古典概型说课课件
出现正面朝上的概率与反面朝上的概率相等, 即P(“正面朝上”)=P(“反面朝上”) 由概率的加法公式, 得P(“正面朝上”)+P(“反面朝上”)=P(必然事件)=1 因此 P(“正面朝上”)=P(“反面朝上”)= 1 2
讨论! 讨论!
1 “出现正面朝上”所包含的基本事件的个数 P “出现正面朝上”)= = ( 2 基本事件的总数
教学活动:老师根据实验结果提出2个问题,学生讨论回答问题;师生共 教学活动 同归纳基本时事件的概念;再通过两个练习加深对概念的理解。
问题:1、掷硬币实验结果”正面“、”反面“会同时出现吗? 掷骰子试验结果”1点“、”2点“、……”6点“会同时出现吗? 2、掷骰子试验中,随机试验”)+ (“4点”)+ (“6点”) ( 出现偶数点”)= ( 点 )+P( 点 )+P( 点 1 3 = 1 = + 1+ 1= 6 6 6 6 2 即
3 “出现偶数点”所包含的基本事件的个数 P “出现偶数点”)= = ( 6 基本事件的总数
A所包含的基本事件的个数 P ( 古典概型,任何事件的概率为: 古典概型,任何事件的概率为: A)= 基本事件的总数
思考:
(1)向一圆面内随机投一个点,若该点落在圆内任意一点都是等可能的,是古典模型吗?为什么? (2)射击运动员向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环、……命中1 环和命中0环(即不命中),你认为这是古典概率模型吗?为什么?
设计意图: 设计意图: 设疑“观察类比模拟试验与例1中基本事件有什么共同点?”,通过问题的 决让学 生体验由特殊到一般的数学思想方法的应用,从而引出古典概型的概 念,并设计两 个思考题,加深对古典概型的两个特征的理解。 。
教学过程
三、归纳总结、探究公式 归纳总结、

《古典概型说》课件

《古典概型说》课件
公式
$P(A) = frac{n(A)}{n(S)}$
$n(A)$
事件A包含的基本事件个数。
$n(S)$
样本空间中包含的基本事件个数。
概率计算的应用实例
赌博游戏
概率计算可以帮助玩家了解游戏规则和胜率 ,从而制定合理的策略。
天气预报
通过概率计算,气象学家可以预测未来天气 的可能性,为人们的出行和生活提供参考。
概率图模型
概率图模型是一种基于图结构的概率模型,其基础就是古典概型。通过概率图模型,可以更好地理解和建模复 杂系统的概率分布。
数据挖掘与古典概型
关联规则挖掘
在数据挖掘中,关联规则挖掘是一种常见的方法,它通过寻找数据集中项集之 间的关联关系来发现有价值的模式。在关联规则挖掘中,古典概型可以用来描 述项集出现的概率。
古典概型的特征
01
02
03
等可能性
每个样本点出现的概率是 相等的。
有限性
样本空间是有限的,即样 本点的个数是有限的。
明确性
样本点的出现与否是确定 的,即每个样本点都有确 定的概率值。
古典概型的适用范围
适用于具有有限个样本点的随机试验,如投 掷骰子、抽取扑克牌等。
在实际生活中,古典概型的应用非常广泛, 如彩票中奖概率计算、游戏胜率计算等。
大数定律的数学表述
lim(n→∞) Pn(A) = P(A),其中Pn(A)是相对频率,P(A)是概率 。
大数定律的应用场景
在保险、赌博、统计学等领域用于估计概率和预测结果。
05
古典概型与现代科技的结合
人工智能与古典概型
人工智能算法
人工智能算法中,如决策树、神经网络等,常常需要使用到古典概型来描述问题,以便更好地进行分类、预测 等任务。

高一下学期数学人教A版必修三第三章3.2.1 古典概型 说课课件(共26张PPT)(共26张PPT)

高一下学期数学人教A版必修三第三章3.2.1 古典概型 说课课件(共26张PPT)(共26张PPT)

行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程:/excel/ PPT课件下载:/kejian/ 试卷下载:/shiti/
行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程:/excel/ PPT课件下载:/kejian/ 试卷下载:/shiti/
目录
01 教材解读
02 基本理念
03 学情分析
04 方法选择
05 目标定位
06
课程设计
PPT模板下载:/moban/ 节日PPT模板:/jieri/ PPT背景图片:/beijing/ 优秀PPT下载:/xiazai/ Word教程: /word/ 资料下载:/ziliao/ 范文下载:/fanwen/ 教案下载:/jiaoan/ 字体下载:/ziti/
行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程:/excel/ PPT课件下载:/kejian/ 试卷下载:/shiti/
三、试验探究 概念形成
通过掷一颗骰子的试验结果得到古典概型的概念:
(1)试验中所有可能出现的基本事件的个数只有有限个; (2)每个基本事件出现的可能性相等。 我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。
PPT模板下载:/moban/ 节日PPT模板:/jieri/ PPT背景图片:/beijing/ 优秀PPT下载:/xiazai/ Word教程: /word/ 资料下载:/ziliao/ 范文下载:/fanwen/ 教案下载:/jiaoan/ 字体下载:/ziti/

古典概型说课课件

古典概型说课课件

5.6 总结概括 提炼精华
问题:
这节课你有什么收获?节课的知识结构,回顾思想 方法,使学生对本节课的知识 有一个系统全面的认识,并把 学过的相关知识有机地串联起 来,结合板书内容,便于学生记 忆,让学生的认知更上一层楼。
教学设计说明 教学设计说明
本节课内容特点:
古典概型是一种古老而特殊的概率模型,可以说没有古典概 型的研 究就没有概率学的产生,它 的引入既能避免大量的重复试验, 又能 得到概率的精确值.学习它有 利于深入理解概率的概念,有利 于厘清学生生活中困惑的概率问 题.同时、古典概型 在概率教学 中有着承上启下的作用.
本节课内容重点:
理解古典概型的概念及利用古典概型求解随机事件的概率.
02 教学目标及解析
通过“掷一枚质地均匀
的硬币的试验”和“掷一
枚质地均匀的骰子的试验”
1
了解基本事件的概念和特
点.
3
会用概率计算公式解决简
单的古典概型问题.用有现实 意义的实例,激发学生的学 习兴趣,善于发现的创新思 想.
通过 实例,理解古典概型
“石头、剪刀、布” 是一种起源于中国,如今 在全世界广泛流传的猜拳 游戏,其规则大家都知道, 那么大家知道玩这个游戏 时我们每次出拳获胜的概 率是多少吗?
设计意图
从“石头、剪刀、布”这一身 边熟悉的游戏入手,激发学生 学习兴趣,让学生感知今天即 将要学习的数学知识就在我们 的身边.
5.2 类比归纳 形成概念
1
事件的概率,了解互斥事件及互斥事件概率
加法公式.
2 学生学习的困难在于,对古典概型的 两个特征理解不够深刻,对基本事件的 总数的计算容易产生重复或遗漏.
3 本节课的教学难点:如何判断一个试 验是否是古典概型,分清在一个古典概 型中某随机事件包含的基本事件的个数 和试验中基本事件的总数.

《古典概型》ppt课件

《古典概型》ppt课件

有限性
样本空间中包含的基本事件是有 限的。,每个基本
事件都有确定的概率。
这一性质使得古典概型在实际应 用中具有可操作性和实用性。
互斥性
两个或多个基本事件不能同时发 生。
在古典概型中,由于每个基本事 件发生的概率是相等的,因此它 们之间是互斥的,即不可能同时
在统计学中的应用
样本统计
在统计学中,样本统计量是用来描述数据特征的重要工具。 古典概型可用于计算样本统计量的概率分布,如样本均值、 样本方差等。
假设检验
古典概型在假设检验中也有应用,特别是在使用似然比检验 和贝叶斯统计时。通过比较不同假设下的概率,可以判断哪 个假设更合理。
在实际生活中的应用
决策制定
发生。
互斥性是古典概型中一个重要的 性质,它确保了概率计算的正确
性和合理性。
03
古典概型的应用
在概率论中的应用
概率计算
古典概型提供了一种计算概率的简单 方法,特别是对于离散随机事件。通 过列举所有可能的结果和满足条件的 结果,可以直接计算概率。
概率分布
在概率论中,古典概型常用于推导离 散随机变量的概率分布,如二项分布 、泊松分布等。这些分布在实际应用 中具有广泛的应用价值。
古典概型可以帮助人们在不确定的情况下做出决策。例如,在赌博游戏中,玩 家可以使用古典概型来计算获胜的概率。
风险评估
在风险评估中,古典概型可以用来计算风险事件发生的概率。例如,在保险行 业中,保险公司可以使用古典概型来评估不同风险事件的发生概率和损失程度。
04
古典概型与现代概率论的联系
古典概型在现代概率论中的地位
古典概型是现代概率论的基础
古典概型为概率论的发展提供了基本的概念和原理,为后续的概率模型和理论奠 定了基础。

古典概型说课稿(新课标,好)-精PPT共27页

古典概型说课稿(新课标,好)-精PPT共27页
古典概型说课稿(新课标,好)-精
61、辍学如磨刀之石,不见其损,日 有所亏 。 62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。 64、一生复能几,倏如流电惊。 65、少无适俗韵,性本爱丘山。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。

高中数学 人教A版 必修3 第三章 3.2 古典概型说课稿

高中数学 人教A版 必修3 第三章 3.2 古典概型说课稿

古典概型说课稿1.说教材本节内容是选自人民教育出版社出版的普通高中课程标准实验教科书数学必修3 A版第三章第二节第一小节的内容,属于概率部分的知识。

在此之前学生已经学习了统计以及概率的运算和基本性质等,而本节内容是在此基础上延续和拓展。

古典概型是一种数学模型,它的引入避免了大量的重复试验,有利于学生理解概率的概念和概率值的存在。

也为后面学习几何概率作铺垫,同时学习了本节内容,能够帮助学生解决生活中的一些问题,激发学生的学习兴趣,因此本节知识在高中概率论这一块中起着举足轻重的作用。

本节课的重点:掌握古典概型这一模型难点:古典概型中概率值的计算公式2、说目标基于以上对教材的认识,根据数学课程标准发展学生的数学应用意识的基本理念,考虑到学生已有的认知结构与心理特征,制定如下教学目标知识与技能:1、掌握基本事件的,古典概型的概念和特点。

2、会用列举法计算古典概型中任何事件的概率过程与方法:通过模拟实验让学生理解古典概型的特征,观察类比各个实验让学生归纳总结出古典概型概率计算公式,体现了化归的思想,使学生掌握用列举法,分类讨论的方法解决概率计算问题情感态度与价值观:通过古典概率这一数学模型的学习,使学生能对现实生活中的一些数学模式进行思考和判断,发展学生数学应用意识和创新意识,提高学习兴趣,在不同的探究活动中形成锲而不舍的钻研精神和科学态度3、说教法学法为突出重点,突破难点,使学生能达到本节课设定的目标,根据本节课的内容特点我采取了引导探究,讨论交流的教学模式,即通过再次考察前面做过的两个实验引入课题,根据学习情况,在合适的时机提出问题,设置合理有效的教学情境,让每一位学生都参与课堂讨论,提供学生思考讨论的时间与空间,师生一起探讨古典概型的特点以及概率值的求法。

学法上:课前已经安排学生做过两个试验,本节课上学生在教师的引导下对试验结果进行探讨交流,解决问题,完善知识结构。

从根本上理解古典概型这一模型,4、说教学过程一、提出问题引入新课课前,老师已经布置学生完成掷一枚质地均匀的硬币和一枚均匀的骰子是试验,试验一:抛掷一枚质地均匀的硬币,记录“正面朝上”和“反面朝上”的次数,每组同学至少做20次试验二:抛掷一枚质地均匀的骰子,分别记录点数为“1,2,3,4,5,6”出现的次数,每组同学至少完成60次。

古典概型说课课件

古典概型说课课件

1 “出现正面朝上”所包含的基本事件的个数 P “出现正面朝上”)= = ( 2 基本事件的总数
提出问题 引入新课
思考交流 形成概念
观察类比 推导公式
例题分析 推广应用
探究思考 巩固深化
总结概括 加深理解
在古典概型下, 在古典概型下,基本事件出现的概率是 多少?随机事件出现的概率如何计算? 多少?随机事件出现的概率如何计算?
2
提出问题 引入新课
思考交流 形成概念
观察类比 推导公式
例题分析 推广应用
探究思考 巩固深化
总结概括 加深理解
从字母a, , , 中任意取出两个不同字母的试验中 中任意取出两个不同字母的试验中, 例1 从字母 ,b,c,d中任意取出两个不同字母的试验中,有哪些基 本事件? 本事件? 分析:为了解基本事件,我们可以按照字典排序的顺序, 分析:为了解基本事件,我们可以按照字典排序的顺序,把所有可能的 结果都列出来。 结果都列出来。
教学目标
1、知识与技能 、
教 材 分 析
(1)理解古典概型及其概率计算公式, 理解古典概型及其概率计算公式, 理解古典概型及其概率计算公式 (2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。 会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。 会用列举法计算一些随机事件所含的基本事件数及事件发生的概率
6 总 结 概 括 加 深 理 解
教 学 过 程
提 出 问 题 引 入 新 课
提出问题 引入新课
思考交流 形成概念
观察类比 推导公式
例题分析 推广应用
探究思考 巩固深化
总结概括 加深理解
课前布置任务,以数学小组为单位,完成下面两个模拟试验: 课前布置任务,以数学小组为单位,完成下面两个模拟试验:

古典概型课件共23张PPT

古典概型课件共23张PPT
思想方法
列举法、类比、归纳和动手尝试相结合
二.知识储备
掷一枚质地均匀的硬币
A {正面向上}, B {反面向上}
抛掷一枚均匀的骰子
A {出现1点}, B {出现2点},C={出现3点} D {出现4点}, E {出现5点},F={出现6点}
像上面的“正面朝上”、 “正面朝 下”;出现“1点”、 “2点”、 “3点”、 “4点”、 “5点”、 “6点”这些随机事 件叫做构成试验结果的基本事件。
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
(2)在上面的结果中,向上的点数之和为5的结 果有4种,分别为(:1,4),(2,3),(3,2),(4,1)
(3)由于所有36种结果是等可能的,其中向上点数之 和为5的结果(记为事件A)有4种,因此,
3
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
从表中可以看出同时掷两个骰子的结果共有36种。
注:有序地写出所有基本事件及某一事件A所包含的基 本事件是解题的关键!
五.练习巩固
1、单选题是标准化考试中常用的题型, 一般是从A,B,C,D四个选项中选择一 个正确答案。如果考生掌握了考察的内 容,他可以选择唯一正确的答案。假设 考生不会做,他随机的选择一个答案, 问他答对的概率是多少?
分析:这个问题可以看成古典概型吗?

古典概型优秀PPT讲义

古典概型优秀PPT讲义

5
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
从表中可以看出同时掷两个骰子的结果共有三六种
2号骰子 1号骰子
1
2
3
4
5
6
1
(1,1)(1,2) (1,3)((1,1,44)) (1,5) (1,6)
2
2号骰子 1号骰子
1
2
3
4
5
6
1
(1,1)(1,2) (1,3)((1,1,44)) (1,5) (1,6)
2
(2,1) (2,2)((22,,33)) (2,4)(2,5) (2,6)
3
(3,1)((33,,22)) (3,3) (3,4) (3,5) (3,6)
4
((44,,11)) (4,2) (4,3) (4,4)(4,5) (4,6)
有限性
等可能性
问题五:某同学随机地向一靶心进行射击这一试验的
结果有:命中一0环、命中九环、命中八环、命中七
环、命中六环、命中五环和不中环
你认为这是古典概型吗
5
为什么
6
7
有限性
8 9
等可能性
5 6 7 8 9109 8 7 6 5 9 8 7 6
5
问题六:在古典概率模型中如何求随机事件出现的概 率
基本事件有什么特点:
一点
二点
三点
四点 五点
六点
问题:一 在一次试验中,会同时出现 “1点”与 “2点”
这两个基本事件吗?不会 任何两个基本事件是互斥的
二 事件出现偶数点包含哪几个基本事件

《古典概型》课件

《古典概型》课件

古典概型的实例
1
抛硬币实验

通过抛硬币实验,我们可以计算出正面和反面的概率,并探索硬币投掷的随机性。
2
掷骰子实验
掷骰子实验可以用来研究骰子的点数分布情况,以及各个点数出现的概率。
3
抽彩票实验
参与抽彩票实验可以帮助我们了解中奖的概率和预测我们是否能够中奖。
古典概型的计算方法
排列与组合的基本概念
排列和组合是计算古典概型 概率的基础,它们描述了对 象选择和排序的不同方式。
全排列、有重复的排列
全排列是指从一组对象中选 择所有可能的排列方式,而 有重复的排列则允许重复选 择同一个对象。
组合、有重复的组合
组合是指从一组对象中选择 不同对象的所有可能的组合 方式,而有重复的组合则允 许多次选择同一个对象。
古典概型的误区
1 容斥原理
容斥原理是用于处理 古典概型中的重叠事 件的概率计算方法。
古典概型的未来
古典概型仍然是概率论研 究的重要基础,将继续为 我们理解概率世界提供有 用的工具。
古典概型的应用场景
古典概型可应用于投资 决策、天气预测、赌博 和物理实验等领域。
古典概型的公式
事件的概率公式
古典概型中,事件的概率 等于事件发生的次数除以 实验总次数。
随机事件的定义
随机事件指的是在实验中 可能出现的多种不同结果 之一。
独立事件的概率
对于多个独立事件的古典 概型,事件的概率等于各 个事件概率的乘积。
《古典概型》PPT课件
欢迎来到《古典概型》PPT课件!通过这个课件,你将了解什么是古典概型, 其特点和应用场景。准备好获取关于概率和实验的知识了吗?让我们开始吧!
概述
什么是古典概型?

古典概型ppt课件

古典概型ppt课件

2.概率的加法公式是什么对立事件的概
率有什么关系
若事件A与事件B互斥,则
P A+B =P A +P B . 若事件A与事件B相互对立,则 P
A +P B =1. 3.通过试验和观察的方法,可以得到1些事 件的概率估计,但这种方法耗时多,操作不 方便,并且有些事件是难以组织试验的.因 此,我们希望在某些特殊条件下,有1个计 算事件概率的通用方法.
3.2 古典概型 3.2.1 古典概型
问题提出
1.两个事件之间的关系包括包含事件、 相等事件、互斥事件、对立事件,事件之 间的运算包括和事件、积事件,这些概念 的含义分别如何
若事件A发生时事件B一定发生,则A B. 若事件A发生时事件B一定发生,反之亦 然,则A=B.若事件A与事件B不同时发 生,则A与B互斥.若事件A与事件B有且 只有一个发生,则A与B相互对立.
知识探究 1 :基本事件
思考1:抛掷两枚质地均匀的硬币,有哪 几种可能结果连续抛掷3枚质地均匀的硬 币,有哪几种可能结果
正,正 , 正,反 ,
反,正 ,
反,反 ;
正,正,正 , 正,正,反 , 正,反,正 , 反,正, 正, 正,反,反 , 反,正,反 , 反,反,正 , 反,反, 反.
思考2:上述试验中的每1个结果都是随 机事件,我们把这类事件称为基本事件. 在1次试验中,任何两个基本事件是什么 关系
A=a,b,B=a,c,C=a,d,D=b,c,E=b,d ,F=c,d;
A+B+C.
知识探究 2 :古典概型
思考1:抛掷1枚质地均匀的骰子有哪些 基本事件每个基本事件出现的可能性相 等吗
思考2:抛掷1枚质地不均匀的硬币有哪 些基本事件每个基本事件出现的可能性 相等吗

高中数学古典概型说课稿 新人教A版必修1

高中数学古典概型说课稿 新人教A版必修1









在试验一中随机事件只有两个,即“正面朝上”和“反面朝上”,并且他们都是互斥的,由于硬币质地是均匀的,因此出现两种随机事件的可能性相等,即它们的概率都是 ;
在试验二中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,并且他们都是互斥的,由于骰子质地是均匀的,因此出现六种随机事件的可能性相等,即它们的概率都是 。
(树状图)
解:所求的基本事件共有6个:
, , ,
, ,
观察对比,发现两个模拟试验和例1的共同特点:
试验一中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是 ;
试验二中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是 ;
试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由科代表汇总。
在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受。
教师最后汇总方法、结果和感受,并提出问题?
1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?
项目
内容
师生活动
理论依据或意图






二思考交源自流形成概

例1从字母 中任意取出两个不同字母的试验中,有哪些基本事件?
分析:为了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来。利用树状图可以将它们之间的关系列出来。
我们一般用列举法列出所有基本事件的结果,画树状图是列举法的基本方法,一般分布完成的结果(两步以上)可以用树状图进行列举。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有 哪些基本事件?
设计意图:
因学生没有学习排列组合,因此要用列举法 (包括树状图、列表法,按规律列举等)求出基本 事件总数,将数形结合和分类讨论思想渗透到具体 问题中来,不仅让学生直观地感受基本事件总数, 而且还能使学生在列举时不重不漏,解决了本节课 的教学难点。
2.思考与交流
(1)向一个圆面内随机地投一个点,如 果该点落在圆内任意一点都是等可能的,你 认为这是古典概型吗?为什么?(如下图)
2.教材的内容
本节课主要是学习古典概型,教学安排是2课 时,本节是第一课时。教学中首先是让学生通过 生活中的实例与数学模型理解古典概型的两个特 征,通过具体的实例来推导古典概型下的概率公 式,并通过典型例题加以引申,让学生初步学会 把一些实际问题转化为古典概型问题。这节课在 解决概率的计算上,教师通过鼓励学生尝试列表 和画出树状图等方法,让学生感受求基本事件个 数的一般方法,从而化解由于没有学习排列组合 而学习概率这一教学困惑,也符合培养学生的数学 应用意识的新课程理念 。
经概括总结后得到: 1)试验的所有可能出现的可能结果只有
有限个,每次试验只出现其中的一种结果; (有限性) 2)每一个试验结果出现的可能性相等。 (等可能性)
问题:什么是基本事件?什么是等可能基本事件? 我们又是如何去定义古典概型?
在一次试验中可能出现的每一基本结果称为基本事件
若在一次试验中,每个基本事件发生的可能性都相同, 则称这些基本事件为等可能事件
三.教学目标
1.知识与技能
(1)正确理解古典概型的两个特征,掌握古典概 型的概率计算公式;
(2)会用列举法计算一些随机事件所含的基本事 件数及其事件发生的概率,学会运用数形结合、分 类讨论的思想解决概率的计算问题。
2.过程与方法
进一步发展学生类比、归纳、猜想等合情推理能 力;通过对各种不同的实际情况的分析、判断、探 索,培养学生的应用能力。
设计意图:
两个问题的设计是为了让学生更加准确的把握 古典概型的两个特征。突破了如何判断一个试验是
否是古典概型这一教学难点。
1 2
3.抽象概括
问题:掷一粒均匀的骰子,骰子落地时 向上的点数为偶数的概率是多少? 解:用A表示事件“向上的点数是偶数”。 因为本实验的所有可能结果共有6个,且是等 可能出现的,事件A的发生,是指向上的点数 是2,4,6这三种情形之一出现。
《古典概型的特征和概率的计算公式》
数学计算机科学学院
毕强
一 .教材分析
1.教材的地位与作用 本节课是高中数学北师大版必修3第三章概
率3.2节的内容。古典概型一种最基本的概率模型, 他的引入避免了大量的重复试验,而且得到的是 概率准确值,同时古典概型也为后面学习几何概 型奠定了基础。通过对本节课的学习,不仅使学 生掌握了一种新的概率模型,而且有利于解释生 活中的一些实际问题,所以它在概率论中占有相 当重要的地位。
(2)射击运动员向一靶心进行射击,这一实验 的结果只有有限个:命中10环,命中9环……命中0 环。你认为这是古典概型吗?为什么?(如下图)
(1)答:不是古典概型,因为试验的所有可能 结果是圆面内所有的点,试验的所有可能结果数是 无限的,虽然每一个试验结果出现的“可能性相同” 但这个试验不满足古典概型的第一个条件。 (2)答:不是古典概型,因为试验的所有可能 结果有11个,而命中10环、命中9环……命中0环的 出现不是等可能的,即不满足古典概型的第二个条 件。
二.学情分析
1.学生已经了解了概率的意义,掌握了概率
的基本性质。但学生并没有学习排列组合,计算概 率仍有一定的困惑;
2.学生已经具备了一定的归纳、猜想能力 ,
但在数学的应用意识与应用能力方面尚需进一步培 养;
3.多数学生对数学学习有一定的兴趣,能够
积极参与研究,但在合作交流意识方面,发展不够 均衡,有待加强。
3.情感态度与价值观
用有现实意义的实例,激发学生的学习兴趣, 培养学生勇于探索,善于发现的创新思想;培养学 生掌握“理论来源于实践,并把理论应用于实践”

辨证思想。
四.教学重难点
1.重点 理解古典概型的概念及利用古典概型求
解随机事件的概率。 2.难点
1)如何判断一个试验是否是古典概型; 2)分清在一个古典概型中某随机事件 包含的基本事件的个数和试验中基本事件 的总数。
2.学法分析
教学中鼓励学生提出问题,引导学生通过分 析、探索、尝试找到问题的答案,培养学生发现 问题,提出问题,解决问题和应用的能力。
1 2
六.教学过程
1.提出问题,引入新课
实验一:抛掷一枚质地均匀的硬币,出现“正
面朝上”和“反面朝上”的概率1为 ;
2
实验二:抛掷一枚质地均匀的骰子,出现“向
上的点数是6”的转盘,出现“箭
头指向4”的概率为 1 。
提出问题
4
1).用模拟试验的方法来求某一随机事
件的概率好不好?为什么?
2).分别说出上述实验的所有可能的
实验结果是什么?每个结果之间都有什么
关系?
设计意图:
1.模拟实验的目的是创建与新课内容相关 的实验模型,把问题具体化,过渡到新课时 自然有序,同时也培养了学生的动手能力和 与人合作的能力; 2.通过对这三个试验归纳出古典概型的两个 基本特征。
五.教学方法与学法分析
1.教学方法分析
1).为了充分调动学生的积极性和主动性, 在
教学中主要采取引导发现法,结合问题式教学, 构 建数学模型,引导学生进行观察讨论、归纳总结, 鼓励学生自做自评。 2).为了增大课堂容量,提高课堂效率,我 将利用多媒体辅助教学,将抽象的概念生动的展 示出来,从而激发学生的学习兴趣。
满足以下两个特点的随机试验的概率模型称为古典概型: ⑴所有的基本事件只有有限个; ⑵每个基本事件的发生都是等可能的。
练习:
(1)在掷骰子的试验中,事件“出现偶数点 ”有 哪
些基本事件? (2)从字母a,b,c,d中任意选出两个不同字母的试 验中,有哪些基本事件? (3)先后抛掷两枚均匀的硬币的试验中,有哪些基 本事件? (4)两人在玩“石头”、剪刀、布”这个游戏时,
相关文档
最新文档