解析几何选择填空高考真题练习
高考数学《解析几何》专项训练及答案解析
高考数学《解析几何》专项训练一、单选题1.已知直线l 过点A (a ,0)且斜率为1,若圆224x y +=上恰有3个点到l 的距离为1,则a 的值为( )A .B .±C .2±D .2.已知双曲线2222:1x y C a b-=(0,0)a b >>,过右焦点F 的直线与两条渐近线分别交于A ,B ,且AB BF =uu u r uu u r,则直线AB 的斜率为( ) A .13-或13B .16-或16C .2D .163.已知点P 是圆()()22:3cos sin 1C x y θθ--+-=上任意一点,则点P 到直线1x y +=距离的最大值为( )AB .C 1D 2+4.若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .⎡⎣B .(C .33⎡-⎢⎣⎦D .33⎛⎫- ⎪ ⎪⎝⎭5.已知抛物线C :22x py =的焦点为F ,定点()M ,若直线FM 与抛物线C 相交于A ,B 两点(点B 在F ,M 中间),且与抛物线C 的准线交于点N ,若7BN BF =,则AF 的长为( )A .78B .1C .76D6.已知双曲线2222:1x y C a b-=(0,0)a b >>的两个焦点分别为1F ,2F ,以12F F 为直径的圆交双曲线C 于P ,Q ,M ,N 四点,且四边形PQMN 为正方形,则双曲线C 的离心率为( )A .2-BC .2D7.已知抛物线C :22(0)y px p =>的焦点F ,点00(2p M x x ⎛⎫>⎪⎝⎭是抛物线上一点,以M 为圆心的圆与直线2p x =交于A 、B 两点(A 在B 的上方),若5sin 7MFA ∠=,则抛物线C 的方程为( )A .24y x =B .28y x =C .212y x =D .216y x =8.已知离心率为2的椭圆E :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,过点2F 且斜率为1的直线与椭圆E 在第一象限内的交点为A ,则2F 到直线1F A ,y 轴的距离之比为( )A .5B .35C .2D二、多选题9.已知点A 是直线:0l x y +=上一定点,点P 、Q 是圆221x y +=上的动点,若PAQ ∠的最大值为90o ,则点A 的坐标可以是( )A .(B .()1C .)D .)1,110.已知抛物线2:2C y px =()0p >的焦点为F ,F ,直线l 与抛物线C交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若8AF =,则以下结论正确的是( ) A .4p = B .DF FA =uuu r uu rC .2BD BF = D .4BF =三、填空题11.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________.12.已知圆()2239x y -+=与直线y x m =+交于A 、B 两点,过A 、B 分别作x 轴的垂线,且与x轴分别交于C 、D 两点,若CD =m =_____.13.已知双曲线()2222:10,0x y C a b a b-=>>的焦距为4,()2,3A 为C 上一点,则C 的渐近线方程为__________.14.已知抛物线()220y px p =>,F 为其焦点,l 为其准线,过F 任作一条直线交抛物线于,A B 两点,1A 、1B 分别为A 、B 在l 上的射影,M 为11A B 的中点,给出下列命题: (1)11A F B F ⊥;(2)AM BM ⊥;(3)1//A F BM ;(4)1A F 与AM 的交点的y 轴上;(5)1AB 与1A B 交于原点. 其中真命题的序号为_________.四、解答题15.已知圆22:(2)1M x y ++=,圆22:(2)49N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求曲线C 的方程;(2)设不经过点(0,Q 的直线l 与曲线C 相交于A ,B 两点,直线QA 与直线QB 的斜率均存在且斜率之和为-2,证明:直线l 过定点.16.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为1F 、2F ,点P 在椭圆上运动,求1122PF PF PF PF +⋅u u u r u u u u r的值;(2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB ∆、COD ∆的面积分别为1S 、2S ,求12S S 的取值范围.参考答案1.D 【解析】 【分析】因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,即圆心到直线l 的距离为1,根据点到直线的距离公式即可求出a 的值. 【详解】直线l 的方程为:y x a =-即0x y a --=.因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,而圆的半径为2,即圆心到直线l 的距离为1.1=,解得a =故选:D . 【点睛】本题主要考查直线与圆的位置关系的应用,以及点到直线的距离公式的应用,解题关键是将圆上存在3个点到l 的距离为1转化为两条直线与圆的位置关系,意在考查学生的转化能力与数学运算能力,属于中档题. 2.B 【解析】 【分析】根据双曲线的离心率求出渐近线方程,根据AB BF =u u u r u u u r,得到B 为AF 中点,得到B 与A 的坐标关系,代入到渐近线方程中,求出A 点坐标,从而得到AB 的斜率,得到答案. 【详解】因为双曲线2222:1x y C a b-=(0,0)a b >>,又222c e a =22514b a =+=,所以12b a =,所以双曲线渐近线为12y x =± 当点A 在直线12y x =-上,点B 在直线12y x =上时, 设(),A A Ax y (),B B B x y ,由(c,0)F 及B 是AF 中点可知22A B A B x c x y y +⎧=⎪⎪⎨⎪=⎪⎩,分别代入直线方程,得121222A A A A y x y x c ⎧=-⎪⎪⎨+⎪=⋅⎪⎩,解得24A Ac x c y ⎧=-⎪⎪⎨⎪=⎪⎩,所以,24c c A ⎛⎫-⎪⎝⎭, 所以直线AB 的斜率AB AFk k =42cc c =--16=-,由双曲线的对称性得,16k =也成立. 故选:B. 【点睛】本题考查求双曲线渐近线方程,坐标转化法求点的坐标,属于中档题. 3.D 【解析】 【分析】计算出圆心C 到直线10x y +-=距离的最大值,再加上圆C 的半径可得出点P 到直线10x y +-=的距离的最大值. 【详解】圆C 的圆心坐标为()3cos ,sin θθ+,半径为1,点C 到直线10x y +-=的距离为sin 14d πθ⎛⎫===++≤+ ⎪⎝⎭因此,点P 到直线1x y +=距离的最大值为12122++=+. 故选:D. 【点睛】本题考查圆上一点到直线距离的最值问题,当直线与圆相离时,圆心到直线的距离为d ,圆的半径为r ,则圆上一点到直线的距离的最大值为d r +,最小值为d r -,解题时要熟悉这个结论的应用,属于中等题. 4.D 【解析】设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1x y -+=有公共点,圆心到直线的距离小于等于半径22411k k d k -=≤+,得222141,3k k k ≤+≤,选择C 另外,数形结合画出图形也可以判断C 正确. 5.C 【解析】 【分析】由题意画出图形,求出AB 的斜率,得到AB 的方程,求得p ,可得抛物线方程,联立直线方程与抛物线方程,求解A 的坐标,再由抛物线定义求解AF 的长. 【详解】解:如图,过B 作'BB 垂直于准线,垂足为'B ,则'BF BB =,由7BN BF =,得7'BN BB =,可得1sin 7BNB '∠=, 3cos 7BNB '∴∠=-,tan 43BNB '∠=又()23,0M ,AB ∴的方程为2343y x =-, 取0x =,得12y =,即10,2F ⎛⎫ ⎪⎝⎭,则1p =,∴抛物线方程为22x y =. 联立223432y x x y ⎧=-⎪⎨⎪=⎩,解得23A y =.12172326A AF y ∴=+=+=. 故选:C . 【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,是中档题. 6.D 【解析】 【分析】设P 、Q 、M 、N 分别为第一、二、三、四象限内的点,根据对称性可得出22,22P c ⎛⎫⎪ ⎪⎝⎭,将点P 的坐标代入双曲线C 的方程,即可求出双曲线C 的离心率. 【详解】设双曲线C 的焦距为()20c c >,设P 、Q 、M 、N 分别为第一、二、三、四象限内的点, 由双曲线的对称性可知,点P 、Q 关于y 轴对称,P 、M 关于原点对称,P 、N 关于x 轴对称,由于四边形PQMN 为正方形,则直线PM 的倾斜角为4π,可得,22P c ⎛⎫ ⎪ ⎪⎝⎭, 将点P 的坐标代入双曲线C 的方程得2222122c c a b -=,即()22222122c c a c a -=-, 设该双曲线的离心率为()1e e >,则()2221221e e e -=-,整理得42420e e -+=,解得22e =,因此,双曲线C 故选:D. 【点睛】本题考查双曲线离心率的计算,解题的关键就是求出双曲线上关键点的坐标,考查计算能力,属于中等题. 7.C 【解析】 【分析】根据抛物线的定义,表示出MF ,再表示出MD ,利用5sin 7MFA ∠=,得到0x 和p 之间的关系,将M 点坐标,代入到抛物线中,从而解出p 的值,得到答案.【详解】抛物线C :22(0)y px p =>, 其焦点,02p F ⎛⎫⎪⎝⎭,准线方程2p x =-,因为点(002p M x x ⎛⎫> ⎪⎝⎭是抛物线上一点, 所以02p MF x =+AB所在直线2p x =, 设MD AB ⊥于D ,则02p MD x =-, 因为5sin 7MFA ∠=,所以57 MD MF=,即5272pxpx-=+整理得03x p=所以()3,66M p将M点代入到抛物线方程,得()26623p p=⨯,0p>解得6p=,所以抛物线方程为212y x=故选:C.【点睛】本题考查抛物线的定义,直线与圆的位置关系,求抛物线的标准方程,属于中档题.8.A【解析】【分析】结合椭圆性质,得到a,b,c的关系,设2AF x=,用x表示112,AF F F,结合余弦定理,用c表示x,结合三角形面积公式,即可。
大学解析几何考试题及答案详解
大学解析几何考试题及答案详解一、选择题1. 下列哪个选项不是平面直角坐标系中的点的坐标表示?A. (x, y)B. (y, x)C. (-3, 4)D. (2, -5)答案:B详解:在平面直角坐标系中,点的坐标表示为有序数对 (x, y),其中 x 表示横坐标,y 表示纵坐标。
选项 B 中的表示 (y, x) 与常规的坐标表示不符,因此不是正确的坐标表示。
2. 已知点 A(2, 3) 和点 B(5, 1),线段 AB 的中点 M 的坐标是多少?A. (3, 2)B. (4, 2)C. (3.5, 2)D. (2, 1)答案:B详解:线段的中点坐标可以通过求两个端点坐标的平均值得到。
对于点 A(2, 3) 和点 B(5, 1),中点 M 的坐标为:M(x, y) = ((x1 + x2) / 2, (y1 + y2) / 2) = ((2 + 5) / 2,(3 + 1) / 2) = (3.5, 2)因此,正确答案是 C,但选项 B 也正确,这里可能是题目选项设置的错误。
二、填空题1. 如果一条直线的斜率 k = 2,且通过点 (1, 3),那么这条直线的方程是 ____________。
答案:y - 3 = 2(x - 1)详解:已知直线的斜率 k 和一个点 (x1, y1),可以使用点斜式方程 y - y1 = k(x - x1) 来表示直线。
将已知的斜率 k = 2 和点 (1, 3) 代入,得到直线方程 y - 3 = 2(x - 1)。
2. 椭圆的标准方程是 ________,其中 a 和 b 是椭圆的长半轴和短半轴。
答案:(x^2 / a^2) + (y^2 / b^2) = 1详解:椭圆的标准方程是以椭圆的中心为原点的坐标系中,椭圆的长半轴为 a,短半轴为 b 时的方程。
这个方程描述了所有到椭圆两个焦点距离之和等于常数 2a 的点的集合。
三、解答题1. 已知直线 l1: y = x + 1 与直线 l2: y = -2x + 6 相交于点 P。
2022年高考数学试题分项版—解析几何(解析版)
2022年高考数学试题分项版—解析几何(解析版)一、选择题1.(2022·全国Ⅰ文,10)双曲线C:-=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率为()A.2in40°B.2co40°C.D.答案D解析由题意可得-=tan130°,所以e=====.2.(2022·全国Ⅰ文,12)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1C.+=1答案B解析由题意设椭圆的方程为+=1(a>b>0),连接F1A,令|F2B|=m,则|AF2|=2m,|BF1|=3m.由椭圆的定义知,4m=2a,得m=,故|F2A|=a=|F1A|,则点A为椭圆C的上顶点或B.+=1D.+=1下顶点.令∠OAF2=θ(O为坐标原点),则inθ==.在等腰三角形ABF1中,co2θ==,因为co2θ=1-2in2θ,所以=1-22,得a2=3.又c2=1,所以b2=a2-c2=2,椭圆C的方程为+=1,故选B.3.(2022·全国Ⅱ文,9)若抛物线y2=2p某(p>0)的焦点是椭圆+=1的一个焦点,则p等于()A.2B.3C.4D.8答案D解析由题意知,抛物线的焦点坐标为,椭圆的焦点坐标为(±,0),所以=,解得p=8,故选D.4.(2022·全国Ⅱ文,12)设F为双曲线C:-=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆某2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为()A.B.C.2D.答案A解析如图,由题意知,以OF为直径的圆的方程为2+y2=①,将某2+y2=a2记为②式,①-②得某=,则以OF为直径的圆与圆某2+y2=a2的相交弦所在直线的方程为某=,所以|PQ|=2.由|PQ|=|OF|,得2=c,整理得c4-4a2c2+4a4=0,即e4-4e2+4=0,解得e=,故选A.5.(2022·全国Ⅲ文,10)已知F是双曲线C:-=1的一个焦点,点P在C上,O为坐标原点.若|OP|=|OF|,则△OPF的面积为()A.B.C.D.答案B解析由F是双曲线-=1的一个焦点,知|OF|=3,所以|OP|=|OF|=3.不妨设点P在第一象限,P(某0,y0),某0>0,y0>0,则解得所以P,所以S△OPF=|OF|·y0=某3某=.6.(2022·北京文,5已知双曲线-y2=1(a>0)的离心率是,则a等于()A.B.4C.2D.答案D解析由双曲线方程-y2=1,得b2=1,∴c2=a2+1.∴5=e==2=1+.结合a>0,解得a=.27.(2022·天津文,6)已知抛物线y=4某的焦点为F,准线为l.若l与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为()A.B.C.2D.答案D解析由题意,可得F(1,0),直线l的方程为某=-1,双曲线的渐近线方程为y=±某.将某=-1代入y=±某,得y=±,所以点A,B的纵坐标的绝对值均为.由|AB|=4|OF|可得=4,即b=2a,b2=4a2,故双曲线的离心率e===.8.(2022·浙江,2)渐近线方程为某±y=0的双曲线的离心率是()A.C.答案C解析因为双曲线的渐近线方程为某±y=0,所以无论双曲线的焦点在某轴上还是在y轴上,都满足a=b,所以c=a,所以双曲线的离心率e==.9.(2022·全国Ⅰ理,10)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y=1C.+=1答案B解析由题意设椭圆的方程为+=1(a>b>0),连接F1A,令|F2B|=m,则|AF2|=2m,|BF1|=3m.由椭圆的定义知,4m=2a,得m=,故|F2A|=a=|F1A|,则点A为椭圆C的上顶点或2B.1D.2B.+=1D.+=1下顶点.令∠OAF2=θ(O为坐标原点),则inθ==.在等腰三角形ABF1中,co2θ==,因为co2θ=1-2in2θ,所以=1-22,得a2=3.又c2=1,所以b2=a2-c2=2,椭圆C的方程为+=1,故选B.10.(2022·全国Ⅱ理,8)若抛物线y2=2p某(p>0)的焦点是椭圆+=1的一个焦点,则p等于()A.2B.3C.4D.8答案D解析由题意知,抛物线的焦点坐标为,椭圆的焦点坐标为(±,0),所以=,解得p=8,故选D.11.(2022·全国Ⅱ理,11)设F为双曲线C:-=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆某2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为()A.B.C.2D.答案A解析如图,由题意知,以OF为直径的圆的方程为2+y2=①,将某2+y2=a2记为②式,①-②得某=,则以OF为直径的圆与圆某2+y2=a2的相交弦所在直线的方程为某=,所以|PQ|=2.由|PQ|=|OF|,得2=c,整理得c4-4a2c2+4a4=0,即e4-4e2+4=0,解得e=,故选A.12.(2022·全国Ⅲ理,10)双曲线C:-=1的右焦点为F,点P在C 的一条渐近线上,O为坐标原点.若|PO|=|PF|,则△PFO的面积为()A.B.C.2D.3答案A解析不妨设点P在第一象限,根据题意可知c2=6,所以|OF|=.又tan∠POF==,所以等腰△POF的高h=某=,所以S△PFO=某某=.某2y2113.(2022·北京理,4)已知椭圆221(ab0)的离心率为,则() ab2A.a22b2B.3a24b2C.a2bD.3a4b【思路分析】由椭圆离心率及隐含条件a2b2c2得答案.c21a2b21c1【解析】:由题意,,得2,则,a4a24a24a24b2a2,即3a24b2.故选:B.【归纳与总结】本题考查椭圆的简单性质,熟记隐含条件是关键,是基础题.14.(2022·北京理,8)数学中有许多形状优美、寓意美好的曲线,曲线C:某2y21|某|y就是其中之一(如图).给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过2;③曲线C所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是()A.①B.②C.①②D.①②③【思路分析】将某换成某方程不变,所以图形关于y轴对称,根据对称性讨论y轴右边的图形可得.【解析】:将某换成某方程不变,所以图形关于y轴对称,当某0时,代入得y21,y1,即曲线经过(0,1),(0,1);0,解得某(0,当某0时,方程变为y2某y某210,所以△某24(某21)…23],3所以某只能取整数1,当某1时,y2y0,解得y0或y1,即曲线经过(1,0),(1,1),根据对称性可得曲线还经过(1,0),(1,1),故曲线一共经过6个整点,故①正确.某2y2当某0时,由某y1某y得某y1某y,(当某y时取等),22222某2y22,某2y22,即曲线C上y轴右边的点到原点的距离不超过2,根据对称性可得:曲线C上任意一点到原点的距离都不超过2;故②正确.在某轴上图形面积大于矩形面积122,某轴下方的面积大于等腰直角三角形的面积1211,因此曲线C所围成的“心形”区域的面积大于213,故③错误.2故选:C.【归纳与总结】本题考查了命题的真假判断与应用,属中档题.15.(2022·天津理,5)已知抛物线y2=4某的焦点为F,准线为l.若l与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为()A.B.C.2D.答案D解析由题意,可得F(1,0),直线l的方程为某=-1,双曲线的渐近线方程为y=±某.将某=-1代入y=±某,得y=±,所以点A,B的纵坐标的绝对值均为.由|AB|=4|OF|可得=4,即b=2a,b2=4a2,故双曲线的离心率e==二、填空题=.1.(2022·全国Ⅲ文,15)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.答案(3,)解析不妨令F1,F2分别为椭圆C的左、右焦点,根据题意可知c==4.因为△MF1F2为等腰三角形,所以易知|F1M|=2c=8,所以|F2M|=2a-8=4.设M(某,y),则得所以M的坐标为(3,).2.(2022·北京文,11)设抛物线y2=4某的焦点为F,准线为l.则以F为圆心,且与l相切的圆的方程为________.答案(某-1)2+y2=4解析∵抛物线y2=4某的焦点F的坐标为(1,0),准线l为直线某=-1,∴圆的圆心坐标为(1,0).又∵圆与l相切,∴圆心到l的距离为圆的半径,∴r=2.∴圆的方程为(某-1)2+y2=4.3.(2022·浙江,12)已知圆C的圆心坐标是(0,m),半径长是r.若直线2某-y+3=0与圆C相切于点A(-2,-1),则m=________,r=________.答案-2解析方法一设过点A(-2,-1)且与直线2某-y+3=0垂直的直线方程为l:某+2y+t=0,所以-2-2+t=0,所以t=4,所以l:某+2y+4=0,令某=0,得m=-2,则r==.方法二因为直线2某-y+3=0与以点(0,m)为圆心的圆相切,且切点为A(-2,-1),所以某2=-1,所以m=-2,r==.4.(2022·浙江,15)已知椭圆+=1的左焦点为F,点P在椭圆上且在某轴的上方.若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是________.答案解析依题意,设点P(m,n)(n>0),由题意知F(-2,0),|OF|=2,所以线段FP的中点M在圆某2+y2=4上,所以22+=4,又点P(m,n)在椭圆+=1上,,所所以+=1,所以4m2-36m-63=0,所以m=-或m=(舍去),当m=-时,n=以kPF==.5.(2022·江苏,7)在平面直角坐标系某Oy中,若双曲线某2-=1(b>0)经过点(3,4),则该双曲线的渐近线方程是_________________.答案y=±某解析因为双曲线某2-=1(b>0)经过点(3,4),所以9-=1,得b=,所以该双曲线的渐近线方程是y=±b某=±某.6.(2022·江苏,10)在平面直角坐标系某Oy中,P是曲线y=某+(某>0)上的一个动点,则点P到直线某+y=0的距离的最小值是________.答案4解析设P,某>0,则点P到直线某+y=0的距离d==≥=4,当且仅当2某=,即某=时取等号,故点P到直线某+y=0的距离的最小值是4.7.(2022·全国Ⅰ理,16)已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,=,·过F1的直线与C的两条渐近线分别交于A,B两点.若=0,则C的离心率为________.答案2→→解析因为F1B·F2B=0,所以F1B⊥F2B,如图.=,因为所以点A为F1B的中点,又点O为F1F2的中点,所以OA∥BF2,所以F1B⊥OA,所以|OF1|=|OB|,所以∠BF1O=∠F1BO,所以∠BOF2=2∠BF1O.因为直线OA,OB为双曲线C的两条渐近线,所以tan∠BOF2=,tan∠BF1O=.因为tan∠BOF2=tan(2∠BF1O),所以=,所以b2=3a2,所以c2-a2=3a2,即2a=c,所以双曲线的离心率e==2.8.(2022·全国Ⅲ理,15)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.答案(3,)解析不妨令F1,F2分别为椭圆C的左、右焦点,根据题意可知c==4.因为△MF1F2为等腰三角形,所以易知|F1M|=2c=8,所以|F2M|=2a-8=4.=,=,设M(某,y),则得,,所以M的坐标为(3,).三、解答题1.(2022·全国Ⅰ文,21)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线某+2=0相切.(1)若A在直线某+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|-|MP|为定值?并说明理由.解(1)因为⊙M过点A,B,所以圆心M在AB的垂直平分线上.由已知A在直线某+y=0上,且A,B关于坐标原点O对称,所以M在直线y=某上,故可设M(a,a).因为⊙M与直线某+2=0相切,所以⊙M的半径为r=|a+2|.由已知得|AO|=2.又MO⊥AO,故可得2a2+4=(a+2)2,解得a=0或a=4.故⊙M的半径r=2或r=6.(2)存在定点P(1,0),使得|MA|-|MP|为定值.理由如下:设M(某,y),由已知得⊙M的半径为r=|某+2|,|AO|=2.由于MO⊥AO,故可得某2+y2+4=(某+2)2,化简得M的轨迹方程为y2=4某.因为曲线C:y2=4某是以点P(1,0)为焦点,以直线某=-1为准线的抛物线,所以|MP|=某+1.因为|MA|-|MP|=r-|MP|=某+2-(某+1)=1,所以存在满足条件的定点P.2.(2022·全国Ⅱ文,20)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b 的值和a的取值范围.解(1)连接PF1.由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=c,于是2a=|PF1|+|PF2|=(+1)c,故C的离心率为e==-1.(2)由题意可知,若满足条件的点P(某,y)存在,则|y|·2c=16,·=-1,即c|y|=16,①某2+y2=c2,②又+=1.③由②③及a2=b2+c2得y2=.又由①知y=222,故b=4.22由②③及a=b+c得某=(c2-b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4.当b=4,a≥4时,存在满足条件的点P.所以b=4,a的取值范围为[4,+∞).3.(2022·全国Ⅲ文,21)已知曲线C:y=,D为直线y=-上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.(1)证明设D,A(某1,y1),则=2y1.由于y′=某,所以切线DA的斜率为某1,故=某1,整理得2t某1-2y1+1=0.设B(某2,y2),同理可得2t某2-2y2+1=0.所以直线AB的方程为2t某-2y+1=0.所以直线AB过定点.(2)解由(1)得直线AB的方程为y=t某+.可得某2-2t某-1=0,由于是某1+某2=2t,y1+y2=t(某1+某2)+1=2t2+1.设M为线段AB的中点,则M.,而与向量(1,t)平行,⊥=(t,t2-2),由于所以t+(t2-2)t=0.解得t=0或t=±1.|=2,当t=0时,|所求圆的方程为某2+2=4;|=,当t=±1时,|所求圆的方程为某2+2=2.4.(2022·北京文,19)已知椭圆C:+=1的右焦点为(1,0),且经过点A(0,1).(1)求椭圆C的方程;(2)设O为原点,直线l:y=k某+t(t≠±1)与椭圆C交于两个不同点P,Q,直线AP与某轴交于点M,直线AQ与某轴交于点N.若|OM|·|ON|=2,求证:直线l经过定点.(1)解由题意,得b2=1,c=1,所以a2=b2+c2=2.所以椭圆C的方程为+y2=1.(2)证明设P(某1,y1),Q(某2,y2),则直线AP的方程为y=某+1.令y=0,得点M的横坐标某M=-..又y1=k某1+t,从而|OM|=|某M|=同理,|ON|=.得(1+2k2)某2+4kt某+2t2-2=0,由则某1+某2=-,某1某2=.所以|OM|·|ON|==·==2.又|OM|·|ON|=2,所以2=2.解得t=0,所以直线l经过定点(0,0).5.(2022·天津文,19)设椭圆+=1(a>b>0)的左焦点为F,左顶点为A,上顶点为B.已知|OA|=2|OB|(O为原点).(1)求椭圆的离心率;(2)设经过点F且斜率为的直线l与椭圆在某轴上方的交点为P,圆C同时与某轴和直线l相切,圆心C在直线某=4上,且OC∥AP.求椭圆的方程.解(1)设椭圆的半焦距为c,由已知有a=2b,又由a2=b2+c2,消去b得a2=2+c2,解得=.所以椭圆的离心率为.(2)由(1)知,a=2c,b=c,故椭圆方程为+=1.由题意,F(-c,0),则直线l的方程为y=(某+c).点P的坐标满足消去y并化简,得到7某2+6c某-13c2=0,解得某1=c,某2=-.代入到l的方程,解得y1=c,y2=-c.因为点P在某轴上方,所以P.由圆心C在直线某=4上,可设C(4,t).因为OC∥AP,且由(1)知A(-2c,0),故=,解得t=2.因为圆C与某轴相切,所以圆C的半径为2.又由圆C与l相切,得=2,可得c=2.所以,椭圆的方程为+=1.6.(2022·浙江,21)如图,已知点F(1,0)为抛物线y2=2p某(p>0)的焦点.过点F的直线交抛物线于A,B两点,点C在抛物线上,使得△ABC的重心G在某轴上,直线AC交某轴于点Q,且Q在点F的右侧.记△AFG,△CQG的面积分别为S1,S2.(1)求p的值及抛物线的准线方程;(2)求的最小值及此时点G的坐标.解(1)由题意得=1,即p=2.所以,抛物线的准线方程为某=-1.(2)设A(某A,yA),B(某B,yB),C(某C,yC),重心G(某G,yG).令yA=2t,t≠0,则某A=t2.由于直线AB过点F,故直线AB的方程为某=y2-y+1,代入y2=4某,得y-4=0,故2tyB=-4,即yB=-,所以B.又由于某G=(某A+某B+某C),yG=(yA+yB+yC)及重心G在某轴上,故2t-+yC=0.即C,G.所以,直线AC的方程为y-2t=2t(某-t2),得Q(t2-1,0).由于Q在焦点F的右侧,故t2>2.从而====2-.令m=t2-2,则m>0,=2-=2-≥2-=1+.当且仅当m=时,取得最小值1+,此时G(2,0).7.(2022·江苏,17)如图,在平面直角坐标系某Oy中,椭圆C:+=1(a>b>0)的焦点为F1(-1,0),F2(1,0).过F2作某轴的垂线l,在某轴的上方,l与圆F2:(某-1)2+y2=4a2交于点A,与椭圆C交于点D.连接AF1并延长交圆F2于点B,连接BF2交椭圆C于点E,连接DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.解(1)设椭圆C的焦距为2c.因为F1(-1,0),F2(1,0),所以F1F2=2,则c=1.又因为DF1=,AF2⊥某轴,所以DF2===.因此2a=DF1+DF2=4,所以a=2.由b2=a2-c2,得b2=3.所以椭圆C的标准方程为+=1.(2)方法一由(1)知,椭圆C:+=1,a=2.因为AF2⊥某轴,所以点A的横坐标为1.将某=1代入圆F2方程(某-1)2+y2=16,解得y=±4.因为点A在某轴上方,所以A(1,4).又F1(-1,0),所以直线AF1:y=2某+2.5某2+6某-11=0,解得某=1或某=-.由得将某=-代入y=2某+2,得y=-.因此B.又F2(1,0),所以直线BF2:y=(某-1).得7某2-6某-13=0,解得某=-1或某=.由又因为E是线段BF2与椭圆的交点,所以某=-1.将某=-1代入y =(某-1),得y=-.因此E.方法二由(1)知,椭圆C:+=1.如图,连接EF1.因为BF2=2a,EF1+EF2=2a,所以EF1=EB,从而∠BF1E=∠B.因为F2A=F2B,所以∠A=∠B.所以∠A=∠BF1E,从而EF1∥F2A.因为AF2⊥某轴,所以EF1⊥某轴.因为F1(-1,0),由得y=±.又因为E是线段BF2与椭圆的交点,所以y=-.因此E.8.(2022·江苏,18)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l 上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于圆O的半径.已知点A,B到直线l 的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P,Q两点间的距离.解方法一(1)过A作AE⊥BD,垂足为E.由已知条件得,四边形ACDE为矩形,DE=BE=AC=6,AE=CD=8.因为PB⊥AB,所以co∠PBD=in∠ABE===.所以PB===15.因此道路PB的长为15(百米).(2)①若P在D处,由(1)可得E在圆上,则线段BE上的点(除B,E)到点O的距离均小于圆O的半径,所以P选在D处不满足规划要求.②若Q在D处,连接AD,由(1)知AD==10,从而co∠BAD==>0,所以∠BAD为锐角.所以线段AD上存在点到点O的距离小于圆O的半径.因此Q选在D 处也不满足规划要求.综上,P和Q均不能选在D处.(3)先讨论点P的位置.当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求;当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.设P1为l上一点,且P1B⊥AB,由(1)知,P1B=15,此时P1D=P1Bin∠P1BD=P1Bco∠E BA=15某=9;当∠OBP>90°时,在△PP1B中,PB>P1B=15.由上可知,d≥15.再讨论点Q的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,CQ===3.此时,线段QA上所有点到点O的距离均不小于圆O的半径.综上,当PB⊥AB,点Q位于点C右侧,且CQ=3时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+3.因此,d最小时,P,Q两点间的距离为17+3(百米).方法二(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立如图所示的平面直角坐标系.因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,-3.因为AB为圆O的直径,AB=10,所以圆O的方程为某2+y2=25.从而A(4,3),B(-4,-3),直线AB的斜率为.因为PB⊥AB,所以直线PB的斜率为-,直线PB的方程为y=-某-.所以P(-13,9),PB==15.所以道路PB的长为15(百米).(2)①若P在D处,取线段BD上一点E(-4,0),则EO=4<5,所以P选在D处不满足规划要求.②若Q在D处,连接AD,由(1)知D(-4,9),又A(4,3),所以线段AD:y=-某+6(-4≤某≤4).在线段AD上取点M,因为OM=<=5,所以线段AD上存在点到点O的距离小于圆O的半径.因此Q选在D处也不满足规划要求.综上,P和Q均不能选在D处.(3)先讨论点P的位置.当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求;当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.设P1为l上一点,且P1B⊥AB,由(1)知,P1B=15,此时P1(-13,9);当∠OBP>90°时,在△PP1B中,PB>P1B=15.由上可知,d≥15.再讨论点Q的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,设Q(a,9),由AQ==15(a>4),得a=4+3,所以Q(4+3,9).此时,线段QA上所有点到点O的距离均不小于圆O的半径.综上,当P(-13,9),Q(4+3,9)时,d最小,此时P,Q两点间的距离PQ=4+3-(-13)=17+3.因此,d最小时,P,Q两点间的距离为17+3(百米).9.(2022·全国Ⅰ理,19)已知抛物线C:y2=3某的焦点为F,斜率为的直线l与C的交点为A,B,与某轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;=3,求|AB|.(2)若解设直线l:y=某+t,A(某1,y1),B(某2,y2).(1)由题设得F,故|AF|+|BF|=某1+某2+,由题设可得某1+某2=.由可得9某2+12(t-1)某+4t2=0,令Δ>0,得t则某1+某2=-从而-.=,得t=-.所以l的方程为y=某-.=3可得y1=-3y2,(2)由由可得y2-2y+2t=0,所以y1+y2=2,从而-3y2+y2=2,故y2=-1,y1=3,代入C的方程得某1=3,某2=,即A(3,3),B,故|AB|=.10.(2022·全国Ⅱ理,21)已知点A(-2,0),B(2,0),动点M(某,y)满足直线AM与BM的斜率之积为-.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥某轴,垂足为E,连接QE并延长交C于点G.(ⅰ)证明:△PQG是直角三角形;(ⅱ)求△PQG面积的最大值.(1)解由题设得·=-,化简得+=1(|某|≠2),所以C为中心在坐标原点,焦点在某轴上的椭圆,不含左右顶点.(2)(ⅰ)证明设直线PQ的斜率为k,则其方程为y=k某(k>0).由得某=±.,则P(u,uk),Q(-u,-uk),E(u,0).记u=于是直线QG的斜率为,方程为y=(某-u).得(2+k2)某2-2uk2某+k2u2-8=0.①由设G(某G,yG),则-u和某G是方程①的解,故某G=,由此得yG=.从而直线PG的斜率为因为kPQ·kPG=-1.=-,所以PQ⊥PG,即△PQG是直角三角形.(ⅱ)解由(ⅰ)得|PQ|=2u,|PG|==.,所以△PQG的面积S=|PQ||PG|=设t=k+,则由k>0得t≥2,当且仅当k=1时取等号.因为S=在[2,+∞)上单调递减,所以当t=2,即k=1时,S取得最大值,最大值为.因此,△PQG面积的最大值为.11.(2022·全国Ⅲ理,21)已知曲线C:y=,D为直线y=-上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.(1)证明设D,A(某1,y1),则=2y1.由y′=某,所以切线DA的斜率为某1,故整理得2t某1-2y1+1=0.=某1.设B(某2,y2),同理可得2t某2-2y2+1=0.故直线AB的方程为2t某-2y+1=0.所以直线AB过定点.(2)解由(1)得直线AB的方程为y=t某+.可得某2-2t某-1=0,Δ=4t2+4>0,由于是某1+某2=2t,某1某2=-1,y1+y2=t(某1+某2)+1=2t2+1,|AB|=|某1-某2|=·=2(t2+1).设d1,d2分别为点D,E到直线AB的距离,则d1=,d2=,因此,四边形ADBE的面积S=|AB|(d1+d2)=(t2+3).设M为线段AB的中点,则M.,而⊥=(t,t2-2),由于与坐标为(1,t)的向量平行,所以t+(t2-2)t=0.解得t=0或t=±1.当t=0时,S=3;当t=±1时,S=4.因此,四边形ADBE的面积为3或4.12.(2022·北京理,18)(14分)已知抛物线C:某22py经过点(2,1).(Ⅰ)求抛物线C的方程及其准线方程;(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.【思路分析】(Ⅰ)代入点(2,1),解方程可得p,求得抛物线的方程和准线方程;(Ⅱ)抛物线某24y的焦点为F(0,1),设直线方程为yk某1,联立抛物线方程,运用韦达定理,以及直线的斜率和方程,求得A,可得AB为直径的圆方程,可令某0,B的坐标,解方程,即可得到所求定点.【解析】:(Ⅰ)抛物线C:某22py经过点(2,1).可得42p,即p2,可得抛物线C的方程为某24y,准线方程为y1;(Ⅱ)证明:抛物线某24y的焦点为F(0,1),设直线方程为yk某1,联立抛物线方程,可得某24k某40,设M(某1,y1),N(某2,y2),可得某1某24k,某1某24,直线OM的方程为y直线ON的方程为y可得A(y1某某,即y1某,某14y2某某,即y2某,某2444,1),B(,1),某1某2114k)22k,某1某24可得AB的中点的横坐标为2(即有AB为直径的圆心为(2k,1),|AB|14416k216||221k2,半径为22某1某24可得圆的方程为(某2k)2(y1)24(1k2),化为某24k某(y1)24,由某0,可得y1或3.则以AB为直径的圆经过y轴上的两个定点(0,1),(0,3).【归纳与总结】本题考查抛物线的定义和方程、性质,以及圆方程的求法,考查直线和抛物线方程联立,运用韦达定理,考查化简整理的运算能力,属于中档题.13.(2022·天津理,18)设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的短轴长为4,离心率为.(1)求椭圆的方程;(2)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PB与某轴的交点,点N在y轴的负半轴上.若|ON|=|OF|(O为原点),且OP⊥MN,求直线PB的斜率.解(1)设椭圆的半焦距为c,依题意,2b=4,=,又a2=b2+c2,可得a=,b=2,c=1.所以椭圆的方程为+=1.(2)由题意,设P(某P,yP)(某P≠0),M(某M,0),直线PB的斜率为k(k≠0),又B(0,2),则直线PB的方程为y=k某+2,与椭圆方程联立得整理得(4+5k2)某2+20k某=0,可得某P=-代入y=k某+2得yP=.所以直线OP的斜率为=.,在y=k某+2中,令y=0,得某M=-.由题意得N(0,-1),所以直线MN的斜率为-.由OP⊥MN,得·=-1,化简得k2=,从解得k=±.或-.所以直线PB的斜率为解(1)设椭圆的半焦距为c,依题意,2b=4,=,又a2=b2+c2,可得a=,b=2,c=1.所以椭圆的方程为+=1.(2)由题意,设P(某P,yP)(某P≠0),M(某M,0),直线PB的斜率为k(k≠0),又B(0,2),则直线PB的方程为y=k某+2,与椭圆方程联立得整理得(4+5k2)某2+20k某=0,可得某P=-代入y=k某+2得yP=.所以直线OP的斜率为=.,在y=k某+2中,令y=0,得某M=-.由题意得N(0,-1),所以直线MN的斜率为-.由OP⊥MN,得·=-1,化简得k2=,从解得k=±.或-.所以直线PB的斜率为。
高考解析几何专题练习(含讲解)
解析几何专题练习一、选择题(每题4分,共32分)1、若椭圆的一个焦点是(-2,0),则a等于()2、若双曲线的焦点到它相对应的准线的距离为2,则k等于()A.1 B. 4 C. 6 D. 83、在椭圆中,短轴的两个端点与一个焦点恰好构成正三角形,若短轴长为2,则两准线间的距离为()4、已知双曲线,则点M到x轴的距离为()5、双曲线的焦点分别为以线段为边长作等边三角形,若双曲线恰好平分正三角形的另外两边,则双曲线的离心率为()6、椭圆长轴上的一个顶点为A,以A为直角顶点作一个内接于椭圆的等腰直角三角形,则该三角形的面积为()7、若椭圆的左、右焦点分别为线段被抛物线的焦点分成5:3两段,则椭圆的离心率为()8、点P(-3,1)在椭圆的左准线上,过点P且方向为的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为()二、填空题(每题5分,共20分)1、若双曲线的渐近线方程为,它的一个焦点是,则双曲线的方程为。
2、若抛物线上一点M与该抛物线的焦点F的距离,则点M到x轴的距离为。
3、抛物线的焦点到准线的距离为。
4、抛物线在点P和Q处的切线斜率分别为1和-1,则。
三、解答题(本大题共有4题,满分48分)1、经过抛物线的焦点的直线l与抛物线交于点A、B,若抛物线的准线上存在一点C,使△ABC为等边三角形,求直线l的斜率的取值范围.2、已知曲线,一条长为8的弦AB的两个端点在H上运动,弦AB的中点为M,求距y轴最近的点M的坐标.3、已知点为椭圆上一定点,过点A作两条直线与椭圆交于B、C两点.若直线AB、AC与x轴围成以点A为顶点的等腰三角形,求直线BC的斜率,并求在什么条件下△ABC的面积最大?最大面积是多少?4、如图,直角三角形PAQ的顶点P(-3,0),点A在y轴上,点Q在x轴正半轴上,∠PAQ=90°.在AQ的延长线上取点M,使.(1)当点A在y轴上移动时,求动点M的轨迹C;(2)设轨迹C的准线为l,焦点为F,过F作直线m交轨迹C于G、H两点,过点G作平行轨迹C的对称轴的直线n且n∩l=E.试问:点E、O、H(O为坐标原点)是否在同一条直线上?说理由.答案与解析:一、选择题1、选B解析:从椭圆的标准方程切入,由题设知,所给方程为椭圆第一标准方程:∴这里有于是可得,应选B.2、选C.解析:双曲线标准方程为∴∴双曲线的焦点到相应准线的距离∴由题设得∴应选C.3、选A.解析:由题设得a=2b又b=1,∴a=2,∴两准线间的距离∴应选A.4、选C.解析:应用双曲线定义.设得,①又②∴由①②得③∴∴∴即点M到x轴的距离为,应选C.5、选A.解析:由题设易知等边三角形的另一顶点P在y轴上,且中线OP的长为设故有由此解得或(舍去)∴应选A.6、选A.解析:椭圆标准方程为取A(-2,0),由题设易知以A为顶点的等腰直角三角形BAC的顶点B、C关于x轴对称.不妨设B点坐标为则由等腰直角三角形ABC得∴将点B坐标代入椭圆方程得∴或于是有∴应选A.7、选D.解析:由题设得①②∴由①②得故应选D.8、选A.解析:从确立反射光线的方程突破.椭圆左准线方程,左焦点由题意得①又过点p方向为点(-3,1)关于直线y=-2的对称点为(-3,-5)∴由光学知识得反射光线斜率为,反射光线经过点(-3,-5)∴反射光线方程为②在②中令y=0得x=-1,即反射光线与x轴的交点为(-1,0),∴椭圆左焦点坐标为(-1,0),即c=1③于是由①③得应选A.二、填空题1、答案:解析:由题意得①②∴将①②代入∴∴双曲线方程为2、答案:解析:这里令则由抛物线定义得∴∴∴点M到x轴的距离为.3、答案:.解析:抛物线方程为∴当a>0时,焦点到准线的距离;当a<0时,焦点到准线的距离;当a≠0时,焦点到准线的距离.4、答案:2p.解析:设过点p的抛物线的切线方程为y=x+b①则由题设知过点Q的抛物线的切线方程为y=-x-b②又设将①代入③∴由直线①与抛物线相切得∴∴由③得由此解得∴因此得点评:根据已知条件与抛物线关于x轴的对称性,两切线经过x轴上的同一点,它们在y轴上的截距互为相反数.由此断定.这是求解本题的关键.三、解答题.1、分析:注意到本题的目标,首选对交点A、B的坐标“既设又解”,对点C坐标“解而不设”.对于△ABC为正三角形的条件,则考虑利用正三角形的性质转化,为此,在循着熟悉的思路奠基之后,从寻求弦AB的垂直平分线方程突破.解:抛物线的焦点F(1,0),准线方程为x=-1.由题意设直线l的方程为y=k(x-1)①把①代入得且②∴即∴弦AB的垂直平分线方程为,∴它与准线x=-1的交点C的坐标为注意到△ABC为正三角形∴③又由抛物线定义得④⑤∴④⑤代入③解得∴所求直线l的斜率的取值范围为.点评:这里对A、B坐标的求解是“半心半意”,解题中途运用常用定理,因此,为避免引入新的参数,我们对点C坐标采取“解而不设”,以便于实现用同一参数k表示△ABC为正三角形的条件的设想.我们的这一设想一旦实现,解题便胜券在握.2、分析:体现点M到y轴的距离的线段MM′平行于双曲线的对称轴.注意到线段MM′与表示A、B到(右)准线的距离的线段之间的密切联系,考虑运用双曲线第二定义,故而对A、B 坐标“设而不解”.解:曲线为双曲线的右支.这里∴e=2右准线l:设作则∴∴①又双曲线右焦点由双曲线第二定义得②∴②代入①得③当且仅当,即AB为焦点弦时等号成立.∴由③当且仅当弦AB通过焦点时等号成立.注意到曲线H过焦点垂直于对称轴的弦长为6<8,故条件可以满足.∴④此时,,,而,于是有⑤因此由④⑤得,距y轴最近的点M的坐标为.点评:(1)解析几何中寻求某量的最值或寻求某量取何最值的有关曲线上的点的坐标,基本解法之一是“先找后解”,即首先利用曲线的性质或平面几何知识寻求该量取得最值时的点(或线段),而后运用代数求解的手段解出这一量或这一点的坐标,本题的求解便是运用了这一手法.(2)这里应用了焦点弦的命题:,同学们不妨给予证明,或寻找解题的另一途径.3、分析:由题设容易确定椭圆的方程.由直线AB、AC与x轴围成以A为顶点的等腰三角形知直线AB与AC的倾斜角互补,因而它们的斜率互为相反数(即两斜率之和为0)这便是我们求解目标的一个等量关系.为便于由这一等量关系求解,我们在第一阶段对B、C坐标“解而不设”.当求出直线BC的斜率之后,进而研究△ABC面积的最大值时再考虑对B、C坐标“既设又解”(半心半意地“解”).解:(1)将点坐标代入椭圆方程得n=6∴椭圆方程为①由题设知等腰三角形ABC的两腰不能与x轴垂直,故设两腰AB、AC所在直线的斜率分别为,,则直线AB的方程为②直线AC的方程为③∴由①②联立解得点B坐标为∴由①③联立解得点C坐标为由题设知∴直线BC的斜率(2)设直线BC的方程为④④代入椭圆方程得∴判别式△>0⑤且∴⑥又点A到直线BC的距离∴△ABC的面积当且仅当时等号成立∴,当且仅当(满足⑤式)时取得.于是可知,当或时,△ABC的面积S取得最大值,此时,直线BC的方程为,即.此时又易知BC∥OA(O为原点),B、C两点恰好分别为长轴、短轴的端点.点评:本题的难点在于求直线BC的斜率.对此,从已知条件中认识到直线AB和AC的倾角互补,进而是解题的关键环节.对于B、C两点坐标,立足于“求解”,虽然计算量大一些,但思路简明,解题的技术含量较低,反而容易寻出目标.对于直线与圆锥曲线相交的问题,在适宜的条件下以“求解”回避审题需要的深刻与细腻,也是解题的基本方略.4、分析:(1)条件的转化,化繁为简的策略之一,是线段向x轴或向y轴的投影转化.注意到这里点A在y轴上,故考虑运用这一策略进行转化.(2)此为常见的直线与抛物线相交的问题,故考虑对点G、H、E的坐标“既设又解”.解:(1)设M(x,y),且过点M作MN⊥OY于N则∴∴点A坐标为由题设得PA⊥AM化简得①注意到当x=0时,点M与点N重合,点Q与原点重合,这与已知条件不符因此,动点M的轨迹方程为,其轨迹是顶点在原点,焦点为F(1,0)的抛物线(不含顶点).(2)由(1)知,轨迹C的焦点F(1,0),准线l:x=-1(ⅰ)当直线m不与x轴垂直时,设直线m的方程为y=k(x-1)(k≠0)①将①与联立,消去x得∴由韦达定理得②又直线n的方程为∴∴∴∴点E、O、H三点共线(ⅱ)当直线m⊥ox时,直线m的方程为x=1,此时易证点E、O、H三点共线.于是,由(ⅰ)(ⅱ)知,题设条件下的点E、O、H一定在同一条直线上.点评:对于(1),已知条件的投影转化促使点M,A的关系明朗,从而为运用“直接法”求轨迹方程奠定基础.对于(2),要证点E、O、H三点共线,重点证也是常用方法.只是不可忽略直线m⊥x轴的情形.“一般”与“特殊”共同组成解题或证明的完整过程.此题的求解也是展示一般与特殊之间辩证关系的一个范例.。
解析几何练习题及答案
解析几何一、选择题1.已知两点A (-3,3),B (3,-1),则直线AB 的斜率是()A.3B.-3C.33D.-33解析:斜率k =-1-33--3=-33,故选D.答案:D2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是()A.1B.-1C.-2或-1D.-2或1解析:①当a =0时,y =2不合题意.②a ≠0,x =0时,y =2+a .y =0时,x =a +2a,则a +2a=a +2,得a =1或a =-2.故选D.答案:D3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为()A.4B.21313C.51326D.71020解析:把3x +y -3=0转化为6x +2y -6=0,由两直线平行知m =2,则d =|1--6|62+22=71020.故选D.4.(2014皖南八校联考)直线2x -y +1=0关于直线x =1对称的直线方程是()A.x +2y -1=0B.2x +y -1=0C.2x +y -5=0D.x +2y -5=0解析:由题意可知,直线2x -y +1=0与直线x =1的交点为(1,3),直线2x -y +1=0的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2x -y +1=0的斜率为2,故所求直线的斜率为-2,所以所求直线的方程是y -3=-2(x -1),即2x +y -5=0.故选C.答案:C5.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值围是()A.π6,D.π3,π2解析:由题意,可作直线2x +3y -6=0的图象,如图所示,则直线与x 轴、y 轴交点分别为A (3,0),B (0,2),又直线l 过定点(0,-3),由题知直线l 与线段AB 相交(交点不含端点),从图中可以看出,直线l B.答案:B6.(2014一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为()A.x -2y +4=0B.2x +y -7=0C.x -2y +3=0D.x -2y +5=0解析:直线2x +y -5=0的斜率为k =-2,∴所求直线的斜率为k ′=12,∴方程为y -3=12(x -2),即x -2y +4=0.答案:A7.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为____________.解析:由题意知截距均不为零.设直线方程为x a +yb =1,b =6,+1b=1,=3=3=4=2.故所求直线方程为x +y -3=0或x +2y -4=0.答案:x +y -3=0或x +2y -4=08.(2014质检)若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m 的值为________.解析:∵过点A ,B 的直线平行于直线2x +y +2=0,∴k AB =4-m m +2=-2,解得m =-8.答案:-89.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值围是________.解析:由直线PQ 的倾斜角为钝角,可知其斜率k <0,即2a -1+a 3-1-a <0,化简得a -1a +2<0,∴-2<a <1.答案:(-2,1)10.已知k ∈R ,则直线kx +(1-k )y +3=0经过的定点坐标是________.解析:令k =0,得y +3=0,令k =1,得x +3=0.+3=0,+3=0,=-3,=-3,所以定点坐标为(-3,-3).答案:(-3,-3)三、解答题11.已知两直线l 1:x +y sin α-1=0和l 2:2x sin α+y +1=0,试求α的值,使(1)l 1∥l 2;(2)l 1⊥l 2.解:(1)法一当sin α=0时,直线l 1的斜率不存在,l 2的斜率为0,显然l 1不平行于l 2.当sin α≠0时,k 1=-1sin α,k 2=-2sin α.要使l 1∥l 2,需-1sin α=-2sin α,即sin α=±22,∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.法二由l 1∥l 22α-1=0,α≠0,∴sin α=±22,∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.(2)∵l 1⊥l 2,∴2sin α+sin α=0,即sin α=0.∴α=k π,k ∈Z .故当α=k π,k ∈Z 时,l 1⊥l 2.12.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0.(1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)假设l 1与l 2不相交,则l 1∥l 2即k 1=k 2,代入k 1k 2+2=0,得k 21+2=0,这与k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)法一=k 1x +1,=k 2x -1解得交点P而2x 2+y 2=8+k 22+k 21+2k 1k 2k 22+k 21-2k 1k 2=k 21+k 22+4k 21+k 22+4=1.即P (x ,y )在椭圆2x 2+y 2=1上.即l 1与l 2的交点在椭圆2x 2+y 2=1上.法二交点P 的坐标(x ,y-1=k 1x ,+1=k 2x ,故知x ≠0.1=y -1x,2=y +1x.代入k 1k 2+2=0,得y -1x ·y +1x+2=0,整理后,得2x 2+y 2=1.所以交点P 在椭圆2x 2+y 2=1上.第八篇第2节一、选择题1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为()A.x 2+(y -2)2=1B.x 2+(y +2)2=1C.(x -1)2+(y -3)2=1D.x 2+(y -3)2=1解析:由题意,设圆心(0,t ),则12+t -22=1,得t =2,所以圆的方程为x 2+(y -2)2=1,故选A.答案:A2.(2014模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为()A.x 2+y 2=32B.x 2+y 2=16C.(x -1)2+y 2=16D.x 2+(y -1)2=16解析:设P (x ,y ),则由题意可得2x -22+y 2=x -82+y 2,化简整理得x 2+y 2=16,故选B.答案:B3.(2012年高考卷)已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则()A.l 与C 相交B.l 与C 相切C.l 与C 相离D.以上三个选项均有可能解析:x 2+y 2-4x =0是以(2,0)为圆心,以2为半径的圆,而点P (3,0)到圆心的距离为d =3-22+0-02=1<2,点P (3,0)恒在圆,过点P (3,0)不管怎么样画直线,都与圆相交.故选A.答案:A4.(2012年高考卷)将圆x 2+y 2-2x -4y +1=0平分的直线是()A.x +y -1=0B.x +y +3=0C.x -y +1=0D.x -y +3=0解析:由题知圆心在直线上,因为圆心是(1,2),所以将圆心坐标代入各选项验证知选项C 符合,故选C.答案:C5.(2013年高考卷)垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是()A.x +y -2=0B.x +y +1=0C.x +y -1=0D.x +y +2=0解析:与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得|b |12+12=1,故b =± 2.因为直线与圆相切于第一象限,故结合图形分析知b =-2,则直线方程为x +y -2=0.故选A.答案:A6.(2012年高考卷)直线x +3y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长度等于()A.25B.23C.3D.1解析:因为圆心到直线x +3y -2=0的距离d =|0+3×0-2|12+32=1,半径r =2,所以弦长|AB |=222-12=2 3.故选B.答案:B 二、填空题7.(2013年高考卷)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,∴圆心到直线的距离为d =|2×3-4+3|4+1=5,∴弦长为2×25-5=220=4 5.答案:458.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为________.解析:因为圆C 的圆心(1,1)到直线l 的距离为d =|1-1+4|12+-12=22,又圆半径r = 2.所以圆C 上各点到直线l 的距离的最小值为d -r = 2.答案:29.已知圆C 的圆心在直线3x -y =0上,半径为1且与直线4x -3y =0相切,则圆C 的标准方程是________.解析:∵圆C 的圆心在直线3x -y =0上,∴设圆心C (m,3m ).又圆C 的半径为1,且与4x -3y =0相切,∴|4m -9m |5=1,∴m =±1,∴圆C 的标准方程为(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=1.答案:(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=110.圆(x -2)2+(y -3)2=1关于直线l :x +y -3=0对称的圆的方程为________.解析:已知圆的圆心为(2,3),半径为1.则对称圆的圆心与(2,3)关于直线l 对称,由数形结合得,对称圆的圆心为(0,1),半径为1,故方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=1三、解答题11.已知圆C :x 2+(y -2)2=5,直线l :mx -y +1=0.(1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)若圆C 与直线相交于点A 和点B ,求弦AB 的中点M 的轨迹方程.(1)证明:法一直线方程与圆的方程联立,消去y 得(m 2+1)x 2-2mx -4=0,∵Δ=4m 2+16(m 2+1)=20m 2+16>0,∴对m ∈R ,直线l 与圆C 总有两个不同交点.法二直线l :mx -y +1恒过定点(0,1),且点(0,1)在圆C :x 2+(y -2)2=5部,∴对m ∈R ,直线l 与圆C 总有两个不同交点.(2)解:设A (x 1,y 1),B (x 2,y 2),M (x ,y ),由方程(m 2+1)x 2-2mx -4=0,得x 1+x 2=2mm 2+1,∴x =mm 2+1.当x =0时m =0,点M (0,1),当x ≠0时,由mx -y +1=0,得m =y -1x,代入x =m m 2+1,得+1=y -1x,化简得x 2=14.经验证(0,1)也符合,∴弦AB 的中点M 的轨迹方程为x 2=14.12.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且|AB |=22时,求直线l 的方程.解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,|=|4+2a |a 2+1,|2+|DA |2=22,|=12|AB |=2,解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.第八篇第3节一、选择题1.设P 是椭圆x225+y216=1上的点.若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于()A.4B.5C.8D.10解析:由方程知a =5,根据椭圆定义,|PF 1|+|PF 2|=2a =10.故选D.答案:D2.(2014二模)P 为椭圆x24+y23=1上一点,F 1,F 2为该椭圆的两个焦点,若∠F 1PF 2=60°,则PF 1→·PF 2→等于()A.3B.3C.23D.2解析:由椭圆方程知a =2,b =3,c =1,1|+|PF 2|=4,1|2+|PF 2|2-4=2|PF 1||PF 2|cos 60°∴|PF 1||PF 2|=4.∴PF 1→·PF 2→=|PF 1→||PF 2→|cos 60°=4×12=2.答案:D3.(2012年高考卷)椭圆x 2a 2+y2b 2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为()A.14B.55C.12D.5-2解析:本题考查椭圆的性质与等比数列的综合运用.由椭圆的性质可知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c ,又|AF 1|,|F 1F 2|,|F 1B |成等比数列,故(a -c )(a +c )=(2c )2,可得e =c a =55.故应选B.答案:B4.(2013年高考卷)已知椭圆C :x 2a 2+y2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos∠ABF =45,则C 的离心率为()A.35B.57C.45D.67解析:|AF |2=|AB |2+|BF |2-2|AB ||BF |cos∠ABF =100+64-2×10×8×45=36,则|AF |=6,∠AFB =90°,半焦距c =|FO |=12|AB |=5,设椭圆右焦点F 2,连结AF 2,由对称性知|AF 2|=|FB |=8,2a =|AF 2|+|AF |=6+8=14,即a =7,则e =c a =57.故选B.答案:B5.已知椭圆E :x2m +y24=1,对于任意实数k ,下列直线被椭圆E 截得的弦长与l :y =kx+1被椭圆E 截得的弦长不可能相等的是()A.kx +y +k =0B.kx -y -1=0C.kx +y -k =0D.kx +y -2=0解析:取k =1时,l :y =x +1.选项A 中直线:y =-x -1与l 关于x 轴对称,截得弦长相等.选项B 中直线:y =x -1与l 关于原点对称,所截弦长相等.选项C 中直线:y =-x +1与l 关于y 轴对称,截得弦长相等.排除选项A、B、C,故选D.答案:D6.(2014省实验中学第二次诊断)已知椭圆x 2a 2+y2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),若椭圆上存在点P ,使asin∠PF 1F 2=csin∠PF 2F 1,则该椭圆的离心率的取值围为()A.(0,2-1)D.(2-1,1)解析:由题意知点P 不在x 轴上,在△PF 1F 2中,由正弦定理得|PF 2|sin∠PF 1F 2=|PF 1|sin∠PF 2F 1,所以由a sin∠PF 1F 2=csin∠PF 2F 1可得a|PF 2|=c |PF 1|,即|PF 1||PF 2|=c a =e ,所以|PF 1|=e |PF 2|.由椭圆定义可知|PF 1|+|PF 2|=2a ,所以e |PF 2|+|PF 2|=2a ,解得|PF 2|=2a e +1.由于a -c <|PF 2|<a +c ,所以有a -c <2ae +1<a +c ,即1-e <2e +1<1+e ,1-e 1+e<2,1+e2,解得2-1<e .又0<e <1,∴2-1<e <1.故选D.答案:D 二、填空题7.设F 1、F 2分别是椭圆x225+y216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点距离为________.解析:∵|OM |=3,∴|PF 2|=6,又|PF 1|+|PF 2|=10,∴|PF 1|=4.答案:48.椭圆x 2a 2+y2b2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________.解析:不妨设|F 1F 2|=1,∵直线MF 2的倾斜角为120°,∴∠MF 2F 1=60°.∴|MF 2|=2,|MF 1|=3,2a =|MF 1|+|MF 2|=2+3,2c =|F 1F 2|=1.∴e =ca=2- 3.答案:2-39.(2014模拟)过点(3,-5),且与椭圆y225+x29=1有相同焦点的椭圆的标准方程为________________.解析:由题意可设椭圆方程为y225-m+x29-m=1(m <9),代入点(3,-5),得525-m +39-m=1,解得m =5或m =21(舍去),∴椭圆的标准方程为y220+x24=1.答案:y220+x24=110.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.解析:1|+|PF 2|=2a ,1|2+|PF 2|2=4c 2,∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2,即4a 2-2|PF 1||PF 2|=4c 2,∴|PF 1||PF 2|=2b 2,∴S △PF 1F 2=12|PF 1||PF 2|=b 2=9,∴b =3.答案:3三、解答题11.(2012年高考卷)在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y2b2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.解:(1)由椭圆C 1的左焦点为F 1(-1,0),且点P (0,1)在C 12-b 2=1,=1,2=2,2=1.故椭圆C 1的方程为x22+y 2=1.(2)由题意分析,直线l 斜率存在且不为0,设其方程为y =kx +b ,由直线l 与抛物线C 2=kx +b ,2=4x ,消y 得k 2x 2+(2bk -4)x +b 2=0,Δ1=(2bk -4)2-4k 2b 2=0,化简得kb =1.①由直线l 与椭圆C 1kx +b ,y 2=1,消y 得(2k 2+1)x 2+4bkx +2b 2-2=0,Δ2=(4bk )2-4(2k 2+1)(2b 2-2)=0,化简得2k 2=b 2-1.②=1,k 2=b 2-1,解得b 4-b 2-2=0,∴b 2=2或b 2=-1(舍去),∴b =2时,k =22,b =-2时,k =-22.即直线l 的方程为y =22x +2或y =-22x - 2.12.(2014海淀三模)已知椭圆C :x2a 2+y2b 2=1(a >b >0)的四个顶点恰好是一边长为2,一角为60°的菱形的四个顶点.(1)求椭圆C 的方程;(2)若直线y =kx 交椭圆C 于A ,B 两点,在直线l :x +y -3=0上存在点P ,使得△PAB 为等边三角形,求k 的值.解:(1)因为椭圆C :x 2a 2+y2b2=1(a >b >0)的四个顶点恰好是一边长为2,一角为60°的菱形的四个顶点.所以a =3,b =1,椭圆C 的方程为x23+y 2=1.(2)设A (x 1,y 1),则B (-x 1,-y 1),当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线l :x +y -3=0的交点为P (0,3),又因为|AB |=23,|PO |=3,所以∠PAO =60°,所以△PAB 是等边三角形,所以直线AB 的方程为y =0,当直线AB 的斜率存在且不为0时,则直线AB 的方程为y =kx ,y 2=1,kx ,化简得(3k 2+1)x 2=3,所以|x 1|=33k 2+1,则|AO |=1+k233k 2+1=3k 2+33k 2+1.设AB 的垂直平分线为y =-1kx ,它与直线l :x +y -3=0的交点记为P (x 0,y 0),=-x +3,=-1k x ,0=3k k -1,0=-3k -1.则|PO |=9k 2+9k -12,因为△PAB 为等边三角形,所以应有|PO |=3|AO |,代入得9k 2+9k -12=33k 2+33k 2+1,解得k =0(舍去),k =-1.综上,k =0或k =-1.第八篇第4节一、选择题1.设P 是双曲线x216-y220=1上一点,F 1,F 2分别是双曲线左右两个焦点,若|PF 1|=9,则|PF 2|等于()A.1B.17C.1或17D.以上答案均不对解析:由双曲线定义||PF 1|-|PF 2||=8,又|PF 1|=9,∴|PF 2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1,∴|PF 2|=17.故选B.答案:B2.(2013年高考卷)已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y 2cos 2θ-x2sin 2θ=1的()A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等解析:双曲线C 1的半焦距c 1=sin 2θ+cos 2θ=1,双曲线C 2的半焦距c 2=cos 2θ+sin 2θ=1,故选D.答案:D3.(2012年高考卷)已知双曲线C :x 2a 2-y2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为()A.x220-y25=1B.x25-y220=1C.x280-y220=1D.x220-y280=1解析:由焦距为10,知2c =10,c =5.将P (2,1)代入y =bax 得a =2b .a 2+b 2=c 2,5b 2=25,b 2=5,a 2=4b 2=20,所以方程为x220-y25=1.故选A.答案:A4.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于()A.14B.35C.34D.45解析:∵c 2=2+2=4,∴c =2,2c =|F 1F 2|=4,由题可知|PF 1|-|PF 2|=2a =22,|PF 1|=2|PF 2|,∴|PF 2|=22,|PF 1|=42,由余弦定理可知cos∠F 1PF 2=422+222-422×42×22=34.故选C.答案:C5.设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为()A.x242-y232=1B.x2132-y252=1C.x232-y242=1D.x2132-y2122=1解析:在椭圆C 1中,因为e =513,2a =26,即a =13,所以椭圆的焦距2c =10,则椭圆两焦点为(-5,0),(5,0),根据题意,可知曲线C 2为双曲线,根据双曲线的定义可知,双曲线C 2中的2a 2=8,焦距与椭圆的焦距相同,即2c 2=10,可知b 2=3,所以双曲线的标准方程为x242-y232=1.故选A.答案:A6.(2014八中模拟)若双曲线x29-y216=1渐近线上的一个动点P 总在平面区域(x -m )2+y 2≥16,则实数m 的取值围是()A.[-3,3]B.(-∞,-3]∪[3,+∞)C.[-5,5]D.(-∞,-5]∪[5,+∞)解析:因为双曲线x 29-y 216=1渐近线4x ±3y =0上的一个动点P 总在平面区域(x -m )2+y 2≥16,即直线与圆相离或相切,所以d =|4m |5≥4,解得m ≥5或m ≤-5,故实数m 的取值围是(-∞,-5]∪[5,+∞).选D.答案:D 二、填空题7.(2013年高考卷)已知F 为双曲线C :x29-y216=1的左焦点,P ,Q 为C 上的点.若PQ的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题知,双曲线中a =3,b =4,c =5,则|PQ |=16,又因为|PF |-|PA |=6,|QF |-|QA |=6,所以|PF |+|QF |-|PQ |=12,|PF |+|QF |=28,则△PQF 的周长为44.答案:448.已知双曲线C :x 2a 2-y2b2=1(a >0,b >0)的离心率e =2,且它的一个顶点到较近焦点的距离为1,则双曲线C 的方程为________.解析:双曲线中,顶点与较近焦点距离为c -a =1,又e =ca=2,两式联立得a =1,c =2,∴b 2=c 2-a 2=4-1=3,∴方程为x 2-y23=1.答案:x 2-y23=19.(2014市第三次质检)已知点P 是双曲线x2a 2-y2b2=1(a >0,b >0)和圆x 2+y 2=a 2+b 2的一个交点,F 1,F 2是该双曲线的两个焦点,∠PF 2F 1=2∠PF 1F 2,则该双曲线的离心率为________.解析:依题意得,线段F 1F 2是圆x 2+y 2=a 2+b 2的一条直径,故∠F 1PF 2=90°,∠PF 1F 2=30°,设|PF 2|=m ,则有|F 1F 2|=2m ,|PF 1|=3m ,该双曲线的离心率等于|F 1F 2|||PF 1|-|PF 2||=2m3m -m =3+1.答案:3+110.(2013年高考卷)设F 1,F 2是双曲线C :x2a 2-y2b 2=1(a >0,b >0)的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为________.解析:设点P 在双曲线右支上,由题意,在Rt△F 1PF 2中,|F 1F 2|=2c ,∠PF 1F 2=30°,得|PF 2|=c ,|PF 1|=3c ,根据双曲线的定义:|PF 1|-|PF 2|=2a ,(3-1)c =2a ,e =ca =23-1=3+1.答案:3+1三、解答题11.已知双曲线x 2-y22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,且点P 是线段AB 的中点?解:法一设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0),若直线l 的斜率不存在,显然不符合题意.设经过点P 的直线l 的方程为y -1=k (x -1),即y =kx +1-k .=kx+1-k,2-y22=1,得(2-k2)x2-2k(1-k)x-(1-k)2-2=0(2-k2≠0).①∴x=x1+x22=k1-k2-k2.由题意,得k1-k2-k2=1,解得k=2.当k=2时,方程①成为2x2-4x+3=0.Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l与双曲线交于A,B两点,且点P(1,1)是线段AB的中点.法二设A(x1,y1),B(x2,y2),若直线l的斜率不存在,即x1=x2不符合题意,所以由题得x21-y212=1,x22-y222=1,两式相减得(x1+x2)(x1-x2)-y1+y2y1-y22=0,即2-y1-y2x1-x2=0,即直线l斜率k=2,得直线l方程y-1=2(x-1),即y=2x-1,=2x-1,2-y22=1得2x2-4x+3=0,Δ=16-24=-8<0,即直线y=2x-1与双曲线无交点,即所求直线不合题意,所以过点P(1,1)的直线l不存在.12.(2014质检)中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos∠F 1PF 2的值.解:(1)由已知c =13,设椭圆长、短半轴长分别为a 、b ,双曲线实半轴、虚半轴长分别为m 、n ,-m =4,·13a=3·13m,解得a =7,m =3.∴b =6,n =2.∴椭圆方程为x249+y236=1,双曲线方程为x29-y24=1.(2)不妨设F 1、F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,∴|PF 1|=10,|PF 2|=4.又|F 1F 2|=213,∴cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=102+42-21322×10×4=45.第八篇第5节一、选择题1.(2014模拟)抛物线y =2x 2的焦点坐标为()B.(1,0)解析:抛物线y =2x 2,即其标准方程为x 2=12y C.答案:C2.抛物线的焦点为椭圆x24+y29=1的下焦点,顶点在椭圆中心,则抛物线方程为()A.x 2=-45y B.y 2=-45x C.x 2=-413yD.y 2=-413x解析:由椭圆方程知,a 2=9,b 2=4,焦点在y 轴上,下焦点坐标为(0,-c ),其中c =a 2-b 2=5,∴抛物线焦点坐标为(0,-5),∴抛物线方程为x 2=-45y .故选A.答案:A3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是()A.相离B.相交C.相切D.不确定解析:如图所示,设抛物线焦点弦为AB ,中点为M ,准线为l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =12(|AA 1|+|BB 1|)=12(|AF |+|BF |)=12|AB |,故圆与抛物线准线相切.故选C.答案:C4.(2014高三统一考试)已知F 是抛物线y 2=4x 的焦点,过点F 的直线与抛物线交于A ,B 两点,且|AF |=3|BF |,则线段AB 的中点到该抛物线准线的距离为()A.53B.83C.103D.10解析:设点A (x 1,y 1),B (x 2,y 2),其中x 1>0,x 2>0,过A ,B 两点的直线方程为x =my +1,将x =my +1与y 2=4x 联立得y 2-4my -4=0,y 1y 2=-4,1+1=3x 2+1,1x 2=y 214·y 224=y 1y 2216=1,解得x 1=3,x 2=13,故线段AB 的中点到该抛物线的准线x =-1的距离等于x 1+x 22+1=83.故选B.答案:B5.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为()A.34B.1C.54D.74解析:∵|AF |+|BF |=x A +x B +12=3,∴x A +x B =52.∴线段AB 的中点到y 轴的距离为x A +x B 2=54.故选C.答案:C6.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值围是()A.(0,2)B.[0,2]C.(2,+∞)D.[2,+∞)解析:∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.以F 为圆心、|FM |为半径的圆的标准方程为x 2+(y -2)2=(y 0+2)2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.故选C.答案:C 二、填空题7.动直线l 的倾斜角为60°,且与抛物线x 2=2py (p >0)交于A ,B 两点,若A ,B 两点的横坐标之和为3,则抛物线的方程为________.解析:设直线l 的方程为y =3x +b ,=3x +b ,2=2py消去y ,得x 2=2p (3x +b ),即x 2-23px -2pb =0,∴x 1+x 2=23p =3,∴p =32,则抛物线的方程为x 2=3y .答案:x 2=3y8.以抛物线x 2=16y 的焦点为圆心,且与抛物线的准线相切的圆的方程为________.解析:抛物线的焦点为F (0,4),准线为y =-4,则圆心为(0,4),半径r =8.所以,圆的方程为x 2+(y -4)2=64.答案:x 2+(y -4)2=649.(2012年高考卷)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:∵抛物线y 2=4x ,∴焦点F 的坐标为(1,0).又∵直线l 倾斜角为60°,∴直线斜率为3,∴直线方程为y =3(x -1).联立方程y =3x -1,y 2=4x ,解得x 1=13,y 1=-233,或x 2=3,y 2=23,由已知得A 的坐标为(3,23),∴S △OAF =12|OF |·|y A |=12×1×23= 3.答案:310.已知点P 是抛物线y 2=2x 上的动点,点P 在y 轴上的射影是M ,点A 72,4,则|PA |+|PM |的最小值是________.解析:设点M 在抛物线的准线上的射影为M ′.由已知可得抛物线的准线方程为x =-12,焦点F 坐标为12,0.求|PA |+|PM |的最小值,可先求|PA |+|PM ′|的最小值.由抛物线的定义可知,|PM ′|=|PF |,所以|PA |+|PF |=|PA |+|PM ′|,当点A 、P 、F 在一条直线上时,|PA |+|PF |有最小值|AF |=5,所以|PA |+|PM ′|≥5,又因为|PM ′|=|PM |+12,所以|PA |+|PM |≥5-12=92.答案:92三、解答题11.若抛物线y =2x 2上的两点A (x 1,y 1)、B (x 2,y 2)关于直线l :y =x +m 对称,且x 1x 2=-12,数m 的值.解:法一如图所示,连接AB ,∵A 、B 两点关于直线l 对称,∴AB ⊥l ,且AB 中点M (x 0,y 0)在直线l 上.可设l AB :y =-x +n ,=-x +n ,=2x 2,得2x 2+x -n =0,∴x 1+x 2=-12,x 1x 2=-n2由x 1x 2=-12,得n =1.又x 0=x 1+x 22=-14,y 0=-x 0+n =14+1=54,即点M -14,由点M 在直线l 上,得54=-14+m ,∴m =32.法二∵A 、B 两点在抛物线y =2x 2上.1=2x 21,2=2x 22,∴y 1-y 2=2(x 1+x 2)(x 1-x 2).设AB 中点M (x 0,y 0),则x 1+x 2=2x 0,k AB =y 1-y 2x 1-x 2=4x 0.又AB ⊥l ,∴k AB =-1,从而x 0=-14.又点M 在l 上,∴y 0=x 0+m =m -14,即-14,m∴AB 的方程是y 即y =-x +m -12,代入y =2x 2,得2x 2+x x 1x 2=-m -122=-12,∴m =3212.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.解:(1)直线AB 的方程是y y 2=2px 联立,从而有4x 2-5px +p 2=0,所以x 1+x 2=5p4.由抛物线定义得|AB |=x 1+x 2+p =9,所以p =4,从而抛物线方程是y 2=8x .(2)由p =4知4x 2-5px +p 2=0可化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42).设OC →=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),即C (4λ+1,42λ-22),所以[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.。
高考数学复习解析几何习题
高考数学解析几何试题含答案一、选择题(本大题共12小题,每小题5分,共60分.)1、(2017年高考山东数学(理))过点(3,1)作圆22(1)1x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=2、(2017年高考新课标Ⅱ卷数学(理))已知点(1,0),(1,0),(0,1)A B C -,直线(0)yax b a =+>将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A .(0,1)B.1(1)2( C) 1(1]3 D . 11[,)323、【贵州省六校联盟2017届高三第一次联考理】 若点(1,1)P 为圆2260x y x +-=的弦MN的中点,则弦MN 所在直线方程为( )A .230x y +-=B .210x y -+=C .230x y +-=D .210x y --=4.(2017年高考新课标1(理))已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y += 5 .【2017厦门期末质检理】直线x +y -1=0被圆(x +1)2+y 2=3截得的弦长等于( )A .2 B . 2 C .22 D . 46、(广东省惠州市2017届高三4月模拟考试)设抛物线的顶点在原点,准线方程为-2,x =则抛物线的方程是( ) A .28y x =B .28y x =-C .24y x =-D .24y x =7、(上海青浦区2017届高三一模)15.设双曲线)0,0(12222>>=-b a by a x 的虚轴长为2,焦距为32,则双曲线的渐近线方程为………………………………………………( ).A . x y 2±= .B x y 2±=C . x y 21±=D . x y 22±=8、【北京市朝阳区2017届高三上学期期末理】已知双曲线的中心在原点,一个焦点为)0,5(1-F ,点P 在双曲线上,且线段PF 1的中点坐标为(0,2),则此双曲线的方程是A .1422=-y x B .1422=-y x C .13222=-y x D .12322=-y x 9、(2017年高考四川卷(理))抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是 ( )A .12B .2C .1D 10、【云南师大附中2017届高三高考适应性月考卷(四)理】设F 是双曲线22221(0,0)x y a b a b-=>>的右焦点,双曲线两条渐近线分别为12,l l ,过F 作直线1l 的垂线,分别交12,l l 于A 、B 两点,且向量BF 与FA同向.若||,||,||OA AB OB 成等差数列,则双曲线离心率e 的大小为A .2B C D 11、【山东省枣庄三中2017届高三上学期1月阶段测试理】抛物线212y x =-的准线与双曲线22193x y -=的两渐近线围成的三角形的面积为12、(2017年高考重庆数学(理)试题)已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为( )A .4B 1C .6-D二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.【北京市丰台区2017届高三上学期期末理】12,l l 是分别经过A(1,1),B(0,-1)两点的两条平行直线,当12,l l 间的距离最大时,直线1l 的方程是 .14、(2017年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))双曲线191622=-y x 的两条渐近线的方程为_____________. 15、(2017年高考湖南卷(理))设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30,则C 的离心率为___. 16、(2017年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分) .(2017年普通高等学校招生全国统一招生考试江苏卷)本小题满分14分.如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l ,设圆C 的半径为,圆心在上.(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围.18. (本小题满分12分) (2017广东理)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线:20x y --=.设P 为直线上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点.(Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线上的定点时,求直线AB 的方程; (Ⅲ) 当点P 在直线上移动时,求AF BF ⋅的最小值.19.(本小题满分12分) 【山东省青岛一中2017届高三1月调研理】(本大题满分13分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线0x y -=相切,过点P (4,0)且不垂直于x 轴直线l 与椭圆C 相交于A 、B 两点。
2024年高考真题分类专项(解析几何)(学生版)
2024年高考真题分类专项(解析几何)一、单选题1.(2024年北京高考数学真题)圆22260x y x y +-+=的圆心到直线20x y -+=的距离为( )A B .2C .3D .2.(2024年天津高考数学真题)双曲线22221()00a x y a b b >-=>,的左、右焦点分别为12.F F P、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -=3.(2024年新课标全国Ⅱ卷数学真题)已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( ) A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)4.(2024年高考全国甲卷数学(文)真题)已知直线20ax by a b +-+=与圆2241=0C x y y ++-:交于,A B 两点,则AB 的最小值为( )A .2B .3C .4D .65.(2024年高考全国甲卷数学(理)真题)已知双曲线的两个焦点分别为()()0,4,0,4-,点()6,4-在该双曲线上,则该双曲线的离心率为( )A.4 B .3C .2D6.(2024年高考全国甲卷数学(理)真题)已知b 是,a c 的等差中项,直线0ax by c 与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( ) A .1B .2C .4D.二、多选题7.(2024年新课标全国Ⅱ卷数学真题)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( ) A .l 与A 相切B .当P ,A ,B三点共线时,||PQ = C .当||2PB =时,PA AB ⊥D .满足||||PA PB =的点P 有且仅有2个8.(2024年新课标全国Ⅱ卷数学真题)设计一条美丽的丝带,其造型可以看作图中的曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足:横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A .2a =- B.点在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+三、填空题9.(2024年上海夏季高考数学真题)已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为 .10.(2024年北京高考数学真题)抛物线216y x =的焦点坐标为 .11.(2024年北京高考数学真题)若直线()3y k x =-与双曲线2214x y -=只有一个公共点,则k 的一个取值为 .12.(2024年天津高考数学真题)圆22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为 .13.(2024年新课标全国Ⅱ卷数学真题)设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为 .四、解答题14.(2024年上海夏季高考数学真题(网络回忆版))已知双曲线222Γ:1,(0),y x b b-=>左右顶点分别为12,A A ,过点()2,0M -的直线l 交双曲线Γ于,P Q 两点. (1)若离心率2e =时,求b 的值.(2)若2b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标. (3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ⋅=,求b 的取值范围.15.(2024年北京高考数学真题)已知椭圆E :()222210x y a b a b +=>>,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D . (1)求椭圆E 的方程及离心率; (2)若直线BD 的斜率为0,求t 的值.16.(2024年天津高考数学真题)已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △. (1)求椭圆方程.(2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.17.(2024年新课标全国Ⅱ卷数学真题)已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.18.(2024年高考全国甲卷数学(理)真题)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.。
高三数学解析几何练习及答案解析
高三数学解析几何练习及答案解析高三数学解析几何练习及答案解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知圆x2+y2+Dx+Ey=0的圆心在直线x+y=1上,则D 与E的关系是()A.D+E=2 B.D+E=1C.D+E=-1 D.D+E=-2[来X k b 1 . c o m解析D 依题意得,圆心-D2,-E2在直线x+y=1上,因此有-D2-E2=1,即D+E=-2.2.以线段AB:x+y-2=0(02)为直径的圆的方程为()A.(x+1)2+(y+1)2=2 B.(x-1)2+(y-1)2=2C.(x+1)2+(y+1)2=8 D.(x-1)2+(y-1)2=8解析B 直径的两端点为(0,2),(2,0),圆心为(1,1),半径为2,圆的方程为(x-1)2+(y-1)2=2.3.已知F1、F2是椭圆x24+y2=1的两个焦点,P为椭圆上一动点,则使|PF1||PF2|取最大值的点P为()A.(-2,0) B.(0,1) C.(2,0) D.(0,1)和(0,-1)解析D 由椭圆定义,|PF1|+|PF2|=2a=4,|PF1||PF2||PF1|+|PF2|22=4,当且仅当|PF1|=|PF2|,即P(0,-1)或(0,1)时,取“=”.4.已知椭圆x216 +y225=1的焦点分别是F1、F2,P是椭圆上一点,若连接F1、F2、P三点恰好能构成直角三角形,则点P到y轴的距离是()A.165 B.3 C.163 D.253解析A 椭圆x216+y225=1的焦点分别为F1(0,-3)、F2(0,3),易得F1PF22,PF1F2=2或PF2F1=2,点P到y轴的距离d= |xp|,又|yp|=3,x2p16+y2p25=1,解得|xP|=165,故选A.5.若曲线y=x2的一条切线l与直线x+4y-8=0垂直,则l的方程为()A.4x+y+4=0 B.x-4y-4=0C.4x-y-12=0 D.4x-y-4=0解析 D 设切点为(x0,y0),则y|x=x0=2x0, 2x0=4,即x0=2,切点为(2,4),方程为y-4=4(x-2),即4x-y-4=0.6.“m0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析 C 方程可化为x21m+y21n=1,若焦点在y轴上,则1n0,即m0.7.设双曲线x2a2-y2b2=1的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为()A.54 B.5 C.52 D.5解析 D 双曲线的渐近线为y=bax,由对称性,只要与一条渐近线有一个公共点即可由y=x2+1,y=bax,得x2-bax+1=0.=b2a2-4=0,即b2=4a2,e=5.8.P为椭圆x24+y23=1上一点,F1、F2为该椭圆的两个焦点,若F1PF2=60,则PF1PF2=()A.3 B.3C.23 D.2解析D ∵S△PF1F2=b2tan602=3tan 30=3=12|PF1||PF2|sin 60,|PF1||PF2|=4,PF1PF2=412=2.9.设椭圆x2m2+y2n2=1(m0,n0)的右焦点与抛物线y2=8x 的焦点相同,离心率为12,则此椭圆的方程为()A.x212+y216=1B.x216+y212=1C.x248+y264=1D.x264+y248=1解析 B 抛物线的焦点为(2,0),由题意得c=2,cm=12,m=4,n2=12,方程为x216+y212=1.10.设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为()A.2B.3C.2 D.3解析B 设双曲线C的方程为x2a2-y2b2=1,焦点F(-c,0),将x=-c代入x2a2-y2b2=1可得y2=b4a2,|AB|=2b2a=22a,b2=2a2,c2=a2+b2=3a2,e=ca=3.11.已知抛物线y2=4x的准线过双曲线x2a2-y2b2=1(a0,b0)的左顶点,且此双曲线的一条渐近线方程为y=2x,则双曲线的焦距为()A.5 B.25C.3 D.23解析B ∵抛物线y2=4x的准线x=-1过双曲线x2a2-y2b2=1(a0,b0)的左顶点,a=1,双曲线的渐近线方程为y=bax=bx.∵双曲线的一条渐近线方程为y=2x,b=2,c=a2+b2=5,双曲线的焦距为25.12.已知抛物线y2=2px(p0)上一点M(1,m)(m0)到其焦点的距离为5,双曲线x2a-y2=1的`左顶点为 A,若双曲线的一条渐近线与直线AM平行,则实数a的值为()A.19B.14C.13D.12解析 A 由于M(1,m)在抛物线上,m2=2p,而M到抛物线的焦点的距离为5,根据抛物线的定义知点M到抛物线的准线x=-p2的距离也为5,1+p2=5,p=8,由此可以求得m=4,双曲线的左顶点为A(-a,0),kAM=41+a,而双曲线的渐近线方程为y=xa,根据题意得,41+a=1a,a=19.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知直线l1:ax-y+2a+1=0和l2:2x-(a-1)y+2=0(aR),则l1l2的充要条件是a=________.解析 l1l2a2a-1=-1,解得a=13.【答案】 1314.直线l:y=k(x+3)与圆O:x2+y2=4交于A,B两点,|AB|=22,则实数k=________.解析∵|AB|=22,圆O半径为2,O到l的距离d=22-2=2.即|3k|k2+1=2,解得k= 147.【答案】 14715.过原点O作圆x2+y2-6x-8y+20=0的两条切线,设切点分别为P、Q,则线段PQ的长为________.解析如图,圆的方程可化为(x-3)2+(y-4)2=5,|OM|=5,|OQ|=25-5=25.在△OQM中,12|QA||OM|=12|OQ||QM|,|AQ|=2555=2,|PQ|=4.【答案】 416.在△ABC中,|BC|=4,△ABC的内切圆切BC于D点,且|BD|-|CD|=22,则顶点A的轨迹方程为________.解析以BC的中点为原点,中垂线为y轴建立如图所示的坐标系,E、F分别为两个切点.则|BE|=|BD|,|CD|=|CF|,|AE|=|AF|.|AB|-|AC|=22,点A的轨迹为以B,C为焦点的双曲线的右支(y0),且a=2,c=2,b=2,方程为x22-y22=1(x2).【答案】 x22-y22=1(x2)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)在平面直角坐标系中,已知圆心在直线y=x+4上,半径为22的圆C经过原点O.(1)求圆C的方程;(2)求经过点(0,2)且被圆C所截得弦长为4的直线方程.解析 (1)设圆心为(a,b),则b=a+4,a2+b2=22,解得a=-2,b=2,故圆的方程为(x+2)2+(y-2)2=8.(2)当斜率不存在时,x=0,与圆的两个交点为(0,4),(0,0),则弦长为4,符合题意;当斜率存在时,设直线为y-2=kx,则由题意得,8=4+-2k1+k22,无解.综上,直线方程为x=0.18.(12分)(2011合肥一模)椭圆的两个焦点坐标分别为F1(-3,0)和F2(3,0),且椭圆过点1,-32.(1)求椭圆方程;(2)过点-65,0作不与y轴垂直的直线l交该椭圆于M,N两点,A为椭圆的左顶点.试判断MAN的大小是否为定值,并说明理由.解析 (1)设椭圆方程为x2a2+y2b2=1(a0),由c=3,椭圆过点1,-32可得a2-b2=3,1a2+34b2=1,解得a2=4,b2=1,所以可得椭圆方程为x24+y2=1.(2)由题意可设直线MN的方程为:x=ky-65,联立直线MN和椭圆的方程:x=ky-65,x24+y2=1,化简得(k2+4)y2-125ky-6425=0.设M(x1,y1),N(x2,y2),则y1y2=-6425k2+4,y1+y2=12k5k2+4,又A(-2,0),则AMAN=(x1+2,y1)(x2+2,y2)=(k2+1)y1y2+45k(y1+y2)+1625=0,所以MAN=2.19.(12分)已知椭圆C的中心为直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别为7和1.(1)求椭圆C的方程;(2)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,|OP||OM|=e(e为椭圆离心率),求点M的轨迹方程,并说明轨迹是曲线.解析 (1)设椭圆长半轴长及半焦距分别为a,c,由已知,得a-c=1,a+c=7,解得a=4,c=3.椭圆方程为x216+y27=1.(2)设M(x,y),P(x,y1),其中x[-4,4],由已知得x2+y21x2+y2=e2,而e=34,故16(x2+y21)=9(x2+y2),①由点P在椭圆C上,得y21=112-7x216,代入①式并化简,得9y2=112.点M的轨迹方程为y=473(-44),轨迹是两条平行于x轴的线段.20.(12分)给定抛物线y2=2x,设A(a,0),a0,P是抛物线上的一点,且|PA|=d,试求d的最小值.解析设P(x0,y0)(x00),则y20=2x0,d=|PA|=x0-a2+y20=x0-a2+2x0=[x0+1-a]2+2a-1.∵a0,x00,(1)当01时,1-a0,此时有x0=0时,dmin=1-a2+2a-1=a;(2)当a1时,1-a0,此时有x0=a-1时,dmin=2a-1.21.(12分)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为2,且过点(4,-10),点M(3,m)在双曲线上.(1)求双曲线方程;(2)求证:点M在以F1F2为直径的圆上;(3)求△F1MF2的面积.解析(1)∵双曲线离心率e=2,设所求双曲线方程为x2-y2=(0),则由点(4,-10)在双曲线上,知=42-(-10)2=6,双曲线方程为x2-y2=6.(2)若点M(3,m)在双曲线上,则32-m2=6,m2=3,由双曲线x2-y2=6知F1(23,0),F2(-23,0),MF1MF2=(23-3,-m)(-23- 3,-m)=m2-3=0,MF1MF2,故点M在以F1F2为直径的圆上.(3)S△F1MF2=12|F1F2||m|=233=6.22.(12分)已知实数m1,定点A(-m,0),B(m,0),S为一动点,点 S与A,B两点连线斜率之积为-1m2.(1)求动点S的轨迹C的方程,并指出它是哪一种曲线;(2)当m=2时,问t取何值时,直线l:2x-y+t=0(t0)与曲线C 有且只有一个交点?(3)在(2)的条件下,证明:直线l上横坐标小于2的点P到点(1,0)的距离与到直线x=2的距离之比的最小值等于曲线C的离心率.解析 (1)设S(x,y),则kSA=y-0x+m,kSB=y-0x-m.由题意,得y2x2-m2=-1m2,即x2m2+y2=1(xm).∵m1,轨迹C是中心在坐标原点,焦点在x轴上的椭圆(除去x轴上的两顶点),其中长轴长为2m,短轴长为2.(2)当m=2时,曲线C的方程为x22+y2=1(x2).由2x-y+t=0,x22+y2=1,消去y,得9x2+8tx+2t2-2=0.令=64t2-362(t2-1)=0,得t=3.∵t0,t=3.此时直线l与曲线C有且只有一个公共点.(3)由(2)知直线l的方程为2x-y+3=0,设点P(a,2a+3)(a2),d1表示P到点(1,0)的距离,d2表示P到直线x=2的距离,则d1=a-12+2a+32=5a2+10a+10,d2=2-a,d1d2=5a2+10a+102-a=5a2+2a+2a-22.令f(a)=a2+2a+2a-22,则f(a)=2a+2a-22-2a2+2a+2a-2a-24=-6a+8a-23.令f(a)=0,得a=-43.∵当a-43时,f(a)0;当-432时,f(a)0.f(a)在a=-43时取得最小值,即d1d2取得最小值,d1d2min=5f-43=22,又椭圆的离心率为22,d1d2的最小值等于椭圆的离心率.【高三数学解析几何练习及答案解析】。
(完整)上海高考解析几何试题.doc
1近四年上海高考解析几何试题一.填空题 :1、双曲线9x2 16y 2 1的焦距是.2、直角坐标平面xoy 中,定点A(1,2) 与动点 P(x, y) 满足 OP ? OA 4 ,则点P轨迹方程___。
3、若双曲线的渐近线方程为y 3x ,它的一个焦点是10 ,0 ,则双曲线的方程是__________。
4、将参数方程x 1 2 cos(为参数)化为普通方程,所得方程是__________。
y 2sin5、已知圆C :( x 5) 2 y 2 r 2 ( r 0) 和直线 l : 3x y 5 0 .若圆 C 与直线 l 没有公共点,则 r 的取值范围是.6、已知直线l过点P( 2, 1) ,且与 x 轴、y轴的正半轴分别交于A、 B 两点, O 为坐标原点,则三角形 OAB 面积的最小值为.7、已知圆x2- 4 x- 4+y2= 0 的圆心是点 P,则点 P 到直线x-y- 1=0 的距离是;8、已知椭圆中心在原点,一个焦点为F(- 2 3 ,0),且长轴长是短轴长的 2 倍,则该椭圆的标准方程是;10、曲线y |x| 1与直线y=kx+b没有公共点,则k、b分别应满足的条是.2 =+11、在平面直角坐标系xOy 中,若抛物线 y 2 4x 上的点P到该抛物线的焦点的距离为6,则点 P 的横坐标 x .12、在平面直角坐标系xOy 中,若曲线 x 4 y2与直线 x m 有且只有一个公共点,则实数 m .13、若直线 l1: 2x my 1 0 与直线 l2: y 3x 1 平行,则 m .14x2 y21的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程是.、以双曲线4 516 、已知 P 是双曲线x2 y21 右支上的一点,双曲线的一条渐近线方程为3x y 0 .设a2 9F1、 F2分别为双曲线的左、右焦点. 若 PF2 3 ,则 PF117 、已知A(1, 2), B(3, 4) ,直线 l1: x 0, l 2 : y 0 和 l3 : x 3y 1 0 . 设 P i是l i ( i 1, 2, 3) 上与A、B 两点距离平方和最小的点,则△PP12 P3的面积是二.选择题 :218、过抛物线 y 2 4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线()A .有且仅有一条B .有且仅有两条C.有无穷多条D .不存在19、抛物线 y 24x 的焦点坐标为( )(A ) ( 0, 1) .( B ) ( 1, 0 ) . (C ) ( 0, 2 ) .( D ) ( 2, 0 ) .20、若 k R ,则“ k3 ”是“方程x 2y 21 表示双曲线”的()k3 k 3( A )充分不必要条件 . ( B )必要不充分条件 .(C )充要条件 .(D )既不充分也不必要条件 .21 、已知椭圆x 2y 2 1,长轴在 y 轴上 . 若焦距为 4 ,则 m 等于 ()10 mm2( A ) 4 .( B ) 5 .( C ) 7 .( D ) 8 .三.解答题22 ( 本题满分 18 分) ( 1)求右焦点坐标是 ( 2 , 0 ) ,且经过点 (2 , 2 ) 的椭圆的标准方程;( 2)已知椭圆 C 的方程是x 2 y 2 1 ( a b 0 ) . 设斜率为 k的直线 l ,交椭圆 C 于 A Ba 2b 2、 两点,AB 的中点为 M . 证明:当直线 l 平行移动时,动点M 在一条过原点的定直线上;( 3)利用( 2)所揭示的椭圆几何性质,用作图方法找出下面给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心 .23、(本题满分 x 2y 2 14 分)如图, 点 A 、 B 分别是椭圆1长3620轴的左、 右端点, 点 F 是椭圆的右焦点, 点 P 在椭圆上, 且位于 x 轴上方, PA PF .( 1)求点 P 的坐标;( 2)设 M 是椭圆长轴 AB 上的一点, M 到直线 AP 的距离等于MB ,求椭圆上的点到点 M 的距离 d 的最小值.3 24 ( 本题满分14 分 ) 学校科技小组在计算机上模拟航天器变轨返回试验. 设计方案如图:航天器运行(按顺时针方向)的轨迹方程为x 2 y 2100 1 ,变轨(即航天器运行轨迹由椭圆变为抛物线)25后返回的轨迹是以y 轴为对称轴、M 0, 64 为顶点的抛物线的实线7部分,降落点为D( 8, 0 ) .观测点 A( 4, 0 )、 B( 6, 0 ) 同时跟踪航天器. (1)求航天器变轨后的运行轨迹所在的曲线方程;(2)试问:当航天器在 x 轴上方时,观测点A、B测得离航天器的距离分别为多少时,应向航天器发出变轨指令?25 、(本题满分14分)在平面直角坐标系xO y中,直线l与抛物线y2=2x 相交于、两点.A B(1)求证:“如果直线l过点 T( 3, 0),那么OA OB= 3”是真命题;(2)写出( 1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.26、(14 分 ) 求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.例如,原来问题是“若正四棱锥底面边长为4,侧棱长为 3,求该正四棱锥的体积” . 求出体积 16后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为16 ,求侧棱长”;3 3也可以是“若正四棱锥的体积为16,求所有侧面面积之和的最小值”. 3试给出问题“在平面直角坐标系xOy 中,求点 P( 2, 1) 到直线 3x 4y0 的距离有意义的“逆向”问题,并解答你所给出的“逆向”问题.评分说明:(ⅰ ) 在本题的解答过程中,如果考生所给问题的意义不大,那么在评分标准的第二阶段所列中,应只给 2 分,但第三阶段所列 4 分由考生对自己所给问题的解答正确与否而定. .”的一个6 分(ⅱ ) 当考生所给出的“逆向”问题与所列解答不同,可参照所列评分标准的精神进行评分.427 ( 14 分 ) 如图,在直角坐标系xOy 中,设椭圆yx 2 y 2C :a 2b 21 (a b 0) 的左右两个焦点分别为 F 1、F 2 . 过右焦点 F 2 且与 x 轴垂直的直线l 与椭x圆 C 相交,其中一个交点为M 2, 1 .(1) 求椭圆 C 的方程;(2) 设椭圆 C 的一个顶点为B( 0, b ) ,直线 BF 2 交椭圆 C 于另一点 N ,求△ F 1 BN 的面积 .我们把由半椭圆 x2y 2 1 ( x ≥ 0) 与半椭圆 y2x 2 1 ( x ≤ 0) 合成28(本题满分 18 分) a 2 b 2 b 2c 2的曲线称作“果圆”,其中a 2b 2c 2 , a0 , b c 0.如图,点 F 0 , F 1 , F 2 是相应椭圆的焦点, A 1 , A 2 和 B 1 , B 2 分别是“果圆”与 x , y 轴的交点.y(1)若 △ F 0 F 1F 2 是边长为 1 的等边三角形,求B 2“果圆”的方程;.F2b(2)当 A 1 A 2B 1 B 2的取值范围;.时,求 aO.xA 1F 0A 2F 1B 15 29 在平面直角坐标系xOy 中,A、B分别为直线x y 2 与x、 y 轴的交点,C为AB 的中点 . 若抛物线y2 2 px ( p 0) 过点C ,求焦点 F 到直线AB 的距离.30 、已知z是实系数方程x22bx c0 的虚根,记它在直角坐标平面上的对应点为P z ( Re z, Im z ) .( 1)若( b, c )在直线2x y 0 上,求证:P z在圆C1:(x 1)2 y2 1上;( 2)给定圆 C :( x m) 2 y2 r 2(m、r R , r 0 ),则存在唯一的线段s 满足:①若P z 在圆C 上,则( b, c )在线段s 上;②若( b, c )是线段s 上一点(非端点),则P z在圆C上. 写出线段s 的表达式,并说明理由;6近四年上海高考解析几何试题一.填空题 : 只要求直接填写结果,每题填对得4 分,否则一律得零分 .1、双曲线 9x 2 16y 21的焦距是. 562、直角坐标平面xoy 中,定点 A(1,2) 与动点 P(x, y) 满足 OP ? OA 4 ,则点 P 轨迹方程 ___。
高三数学解析几何习题及答案
数学试卷〔解析几何综合卷〕时间:90分钟,满分:120分一、选择题〔共60分,每小题5分,说明:选做题3选2〕1. 从集合{1,2,3…,11}中任选两个元素作为椭圆方程22221x y m n +=中的m 和n,则能组成落在矩形区域{(,)|||11,||9}B x y x y =<<且内的椭圆个数为A.43B. 72C. 86D. 902. 若抛物线px y 22=的焦点与椭圆12622=+y x 的右焦点重合,则p 的值为 A .2- B .2 C .4- D .43. 短轴长为5,离心率32=e 的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为〕A .3B .6C .12D .244. 以双曲线1322=-x y 的一个焦点为圆心,离心率为半径的圆的方程是A .4)2(22=+-y xB .2)2(22=-+y xC .2)2(22=+-y xD .4)2(22=-+y x5. 抛物线241x y =的焦点坐标是 A .〔161,0〕B .〔0,161〕C .〔0,1〕D .〔1,0〕6. 已知双曲线的中心在原点,焦点在x 轴上,它的一条渐近线与x 轴的夹角为α,且34παπ<<,则双曲线的离心率的取值X 围是A .)2,1(B .)2,2(C .〔1,2〕D .)2,1(7.〔选作〕设21,F F 分别是双曲线1922=-y x 的左右焦点.若点P 在双曲线上,且021=•PF PF =+A .10B .102C .5D .528. 已知直线422=+=+y x a y x 与圆交于A 、B 两点,O 是坐标原点,向量OA 、OB 满足||||OB OA OB OA -=+,则实数a 的值是A .2B .-2C .6或-6D .2或-29. 直角坐标平面内,过点P 〔2,1〕且与圆 224x y +=相切的直线 A .有两条 B .有且仅有一条 C .不存在 D .不能确定10. 双曲线24x -212y =1的焦点到渐近线的距离为A .23B .2C .3D .111. 〔选作〕点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且|||PA AB =,则称点P 为“点〞,那么下列结论中正确的是 A .直线l 上的所有点都是“点〞 B .直线l 上仅有有限个点是“点〞 C .直线l 上的所有点都不是“点〞D .直线l 上有无穷多个点〔点不是所有的点〕是“点〞12. 6A .22124x y -=B .22142x y -=C .22146x y -=D .221410x y -= 13. 经过圆:C 22(1)(2)4x y ++-=的圆心且斜率为1的直线方程为 A .30x y -+=B .30x y --= C .10x y +-=D .30x y ++=二、填空题〔共30分,每小题5分,说明:选作题4选2,注明所选题号。
大学解析几何考试题及答案
大学解析几何考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是解析几何的研究对象?A. 平面曲线B. 空间曲线C. 空间曲面D. 质点运动答案:D2. 在平面直角坐标系中,点P(x, y)关于原点的对称点的坐标是:A. (-x, -y)B. (x, -y)C. (-x, y)D. (y, x)答案:A3. 如果直线l的方程为2x - 3y + 6 = 0,那么它的斜率k等于:A. 2/3B. -2/3C. 3/2D. -3/2答案:B4. 椭圆的标准方程是:A. (x/a)^2 + (y/b)^2 = 1B. (x/a)^2 - (y/b)^2 = 1C. (x/a)^2 + (y/b)^2 = 0D. (x/a)^2 - (y/b)^2 = 0答案:A5. 一个圆的圆心在原点,半径为1,那么它的方程是:A. x^2 + y^2 = 1B. x^2 + y^2 = 0C. x^2 + y^2 = 2D. x^2 + y^2 = -1答案:A6. 如果两条直线的方程分别为y = mx + b1和y = mx + b2,那么这两条直线:A. 相交B. 平行C. 重合D. 垂直答案:B7. 抛物线y^2 = 4ax的准线方程是:A. x = -aB. x = aC. y = -aD. y = a答案:A8. 双曲线x^2/a^2 - y^2/b^2 = 1的渐近线方程是:A. y = ±(b/a)xB. y = ±(a/b)xC. y = ±(a/b)xD. y = ±(b/a)x答案:D9. 点A(3, 4)关于直线y = x的对称点B的坐标是:A. (4, 3)B. (2, 3)C. (3, 2)D. (4, 5)答案:A10. 直线x = 2y + 3与圆x^2 + y^2 = 25相交于两点,这两点的距离是:A. 2√5B. 4√5C. 5√2D. 10答案:C二、填空题(每题4分,共20分)11. 在平面直角坐标系中,点P(2, -1)到原点的距离是_________。
解析几何选择填空(附详解)
1.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点Q 、P 的距离之比||||MQ MP λ=(0,1)λλ>≠,那么点M 的轨迹就是阿波罗尼斯圆.已知动点M 的轨迹是阿波罗尼斯圆,其方程为221x y +=,定点Q 为x 轴上一点,1,02P ⎛⎫- ⎪⎝⎭且2λ=,若点(1,1)B ,则2||||MP MB +的最小值为( )ABC D 2.在平面直角坐标系xOy 中,已知两圆221:12C x y +=和222:14C x y +=,又点A 坐标为()3,1,M -、N 是1C 上的动点,Q 为2C 上的动点,则四边形AMQN 能构成矩形的个数为A .0个B .2个C .4个D .无数个3.如图,60POQ ∠=︒,等边ABC 的边长为2,M 为BC 中点,G 为ABC 的重心,B ,C 分别在射线OP ,OQ 上运动,记M 的轨迹为1C ,G 的轨迹为2C ,则( )A .1C 为部分圆,2C 为部分椭圆B .1C 为部分圆,2C 为线段 C .1C 为部分椭圆,2C 为线段D .1C 为部分椭圆,2C 也为部分椭圆4. 已知双曲线C :22221(0,0)x y a b a b-=>>与直线y kx =交于A ,B 两点,点P 为C 上一动点,记直线PA ,PB 的斜率分别为PA k ,PB k ,C 的左、右焦点分别为1F ,2F .若14P PA B k k ⋅=,且C 的焦点到渐近线的距离为1,则( )A .4a =B .C 的离心率为2C .若12PF PF ⊥,则12PF F △的面积为2D .若12PF F △的面积为12PF F △为钝角三角形5. 已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为1F ,2F ,过1F 的直线交双曲线C 的左支于P ,Q 两点,若2222PF PF QF =⋅,且2PQF 的周长为12a ,则双曲线C 的离心率为( )A B C D .6. 已知双曲线C :22221x y a b-=(0a >,0b >)的左右焦点分别为1F 、2F 、A 为双曲线的左顶点,以12F F 为直径的圆交双曲线的一条渐近线于P 、Q 两点,且23PAQ π∠=,则该双曲线的离心率为( )AB C D 7. 已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为1F ,2F ,过点1F 且斜率为247-的直线与双曲线在第二象限的交点为A ,若1212()0F F F A F A +⋅=,则双曲线C 的渐近线方程是( )A .43y x =±B .34yx C .y = D .y = 8. 一个工业凹槽的轴截面是双曲线的一部分,它的方程是[]221,1,10y x y -=∈,在凹槽内放入一个清洁钢球(规则的球体),要求清洁钢球能擦净凹槽的最底部,则清洁钢球的最大半径为( )A .1B .2C .3D .2.59. 有一凸透镜其剖面图(如图)是由椭圆22221x y a b+=和双曲线22221(0)x y a m m n -=>>的实线部分组成,已知两曲线有共同焦点M 、N ;A 、B 分别在左右两部分实线上运动,则周长的最小值为:A .2()a m -B .()a m -C .2()b n -D .2()a m +二.多选题12. 已知点F 为椭圆2222:1x y C a b +=(0a b >>)的左焦点,过原点O 的直线l 交椭圆于P ,Q 两点,点M 是椭圆上异于P ,Q 的一点,直线MP ,MQ 分别为1k ,2k ,椭圆的离心率为e ,若3PF QF =,23PFQ π∠=,则( )A .e =B .e =C .12916k k =-D .12916k k =13. 已知曲线C 上的点(),P x y 满足方程110x x y y -+-=,则下列结论中正确的是( )A .当[]1,2x ∈-时,曲线C 的长度为B .当[]1,2x ∈-时,12y x -+的最大值为1,最小值为12-C .曲线C 与x 轴、y 轴所围成的封闭图形的面积和为142π- D .若平行于x 轴的直线与曲线C 交于A ,B ,C 三个不同的点,其横坐标分别为1x ,2x ,3x ,则123x x x ++的取值范围是32,22⎛+ ⎝⎭14. 已知圆22:5,,O x y A B +=为圆O 上的两个动点,且2,AB M =为弦AB 的中点()C a ,()2D a +.当,A B 在圆O 上运动时,始终有CMD ∠为锐角,则实数a 的可能取值为( )A .-3B .-2C .0D .115. 在正方体1AC 中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 与平面1D AE 的垂线垂直,如图所示,下列说法正确的是( )A .点F 的轨迹是一条线段B .1A F 与BE 是异面直线C .1A F 与1DE 不可能平行D .三棱锥1F ABD -的体积为定值16. 已知双曲线222:1(0)5x y C a a -=>的左、右焦点分别为1F ,2F ,O 为坐标原点,圆222:5O x y a +=+,P 是双曲线C 与圆O 的一个交点,且21tan 3PF F ∠=,则下列结论中正确的有( )A .双曲线CB .点1FC .21PF F 的面积为D .双曲线C 上任意一点到两条渐近线的距离之积为2 三、双空题18. 已知正四面体A BCD -O 中,在平面BCD 内有一动点P ,且满足AP =||BP 的最小值是___________;直线AP 与直线BC 所成角的取值范围为___________.19. Cassini 卵形线是由法国天文家Jean -DominiqueCassini(1625-1712)引入的.卵形线的定义是:线上的任何点到两个固定点1S ,2S 的距离的乘积等于常数2b .b 是正常数,设1S ,2S 的距离为2a ,如果a b <,就得到一个没有自交点的卵形线;如果a b =,就得到一个双纽线;如果a b >,就得到两个卵形线.若()11,0S -,()21,0S .动点P 满足121PS PS ⋅=.则动点P 的轨迹C 的方程为___________;若'A 和A 是轨迹C 与x 轴交点中距离最远的两点,则'APA △面积的最大值为___________.四、填空题22. 2020年11月,我国用长征五号遥五运载火箭成功发射探月工程嫦娥五号探测器,探测器在进入近圆形的环月轨道后,将实施着陆器和上升器组合体与轨道器和返回器组合体分离.我们模拟以下情景:如图,假设月心位于坐标原点O ,探测器在()A 处以12km /s 的速度匀速直线飞向距月心2000km 的圆形轨道上的某一点P ,在点P 处分离出着陆器和上升器组合体后,轨道器和返回器组合体立即以18km /s 的速度匀速直线飞至()0,3000B ,这一过程最少用时_______________s.23.点M 是ABC ∆内部或边界上的点,若M 到ABC ∆三个顶点距离之和最小,则称点M 是ABC ∆的费马点(该问题是十七世纪法国数学家费马提出).若()0,2A ,()1,0B -,()1,0C 时,点0M 是ABC ∆的费马点,且已知0M 在y 轴上,则000AM BM CM ++的大小等于______.28.已知点P (0,2),圆O ∶x 2 +y 2=16上两点11(,)M x y ,22(,)N x y 满足 (R)MP PN λλ→→=∈,则1122|3425||3425|x y x y +++++的最小值为___________.30.(2021·江苏·盐城市伍佑中学高二月考)已知圆22:1C x y +=,点(,2)M t ,若C 上存在两点,A B 满足2MA AB =,则实数t 的取值范围___________31. 在平面直角坐标系xOy 中,A ,B 为x 轴正半轴上的两个动点,P (异于原点O )为y 轴上的一个定点.若以AB 为直径的圆与圆x 2+(y -2)2=1相外切,且∶APB 的大小恒为定值,则线段OP 的长为_____.32. 设正四面体ABCD 的棱长是1,E 、F 分别是棱AD 、BC 的中点,P 是平面ABC 内的动点.当直线EF 、DP 所成的角恒为θ时,点P 的轨迹是抛物线,此时AP 的最小值是______.33已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,斜率大于0的直线l 经过点2F 与C 的右支交于A ,B 两点,若12AF F △与12BF F △的内切圆面积之比为9,则直线l 的斜率为______.34. 已知ABP △的顶点A ,B 分别为双曲线22:1169x y C -=左、右焦点,顶点P 在双曲线C 上,则sin sin sin A BP-的值等于__________.35. 双曲线Γ:()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 的直线与Γ的左、右两支分别交于A ,B 两点,点M 在x 轴上,213AF BM =,2BF 平分1F BM ∠,则Γ的渐近线方程为______.36. 已知双曲线()2222:10,0x y C a b a b-=>>的左顶点为A ,右焦点为 F ,离心率为e .若动点B 在双曲线C 的右支上且不与右顶点重合,满足BFAe BAF∠∠=恒成立,则双曲线C 的渐近线的方程为_________.37. 过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点作直线l ,使l 垂直于x 轴且交C 于M 、N 两点,双曲线C 虚轴的一个端点为A ,若AMN 是锐角三角形,则双曲线C 的离心率的取值范围___________.38. 已知过抛物线2y x =焦点F 的直线与抛物线交于A ,B 两点,过坐标原点O 的直线与双曲线22221(0,0)x y a b a b-=>>交于M ,N 两点,点P 是双曲线上一点,且直线PM ,PN 的斜率分别为1k ,2k ,若不等式()124(||||)||||k k AF BF AF BF +⋅≥+恒成立,则双曲线的离心率为________.答案及解析1.C 【分析】设(),0Q a ,(),M x y ,根据||||MQ MP λ=和221x y +=求出a 的值,由2||||||||+=+MP MB MQ MB ,两点之间直线最短,可得2||||MP MB +的最小值为BQ ,根据坐标求出BQ 即 【详解】设(),0Q a ,(),M x y ,所以=MQ 由1,02P ⎛⎫- ⎪⎝⎭,所以=PQ 因为||||MQ MP λ=且2λ=2=,整理可得22242133+-++=a a x y x ,又动点M 的轨迹是221x y +=,所以24203113aa +⎧=⎪⎪⎨-⎪=⎪⎩,解得2a =-,所以()2,0Q -,又=2||MQ MP 所以2||||||||+=+MP MB MQ MB ,因为(1,1)B ,所以2||||MP MB +的最小值为=BQ .故选:C 【点睛】本题主要考查圆上动点问题,考查两点间直线最短. 2.D 【分析】根据题意画出图形,通过计算得出公共弦MN 也是以AQ 为直径的圆的直径,结合图形得出满足条件的四边形AMQN 能构成矩形的个数为无数个. 【详解】解:如图所示,任取圆2C 上一点Q ,以AQ 为直径画圆,交圆1C 与,M N 两点,设(),Q m n ,则AQ 中点坐标31,22m n +-⎛⎫⎪⎝⎭, 有2214m n +=,以AQ 为直径的圆的方程为()(3)()(1)0x m x y n y --+-+=, 即22(3)(1)3x m x y n y n m -++--=-,用1C 的方程减去以AQ 为直径的圆的方程,可得公共弦MN 所在的直线方程, 即(3)(1)123m x n y n m ++-=-+,将AQ 中点坐标31,22m n +-⎛⎫⎪⎝⎭代入上式得: 左边=22316921(3)(1)222m n m m n n m n +-+++-+⎛⎫++-⋅= ⎪⎝⎭62243122m n m n -+==-+=右边,所以公共弦MN 也是以AQ 为直径的圆的直径, 则MN AQ =,根据对角线互相平分且相等的四边形是矩形即可得出四边形AMQN 是矩形, 由Q 的任意性知,四边形AMQN 能构成无数个矩形,故选D . 【点睛】本题考查两圆的位置关系应用问题,是难题 3.C 【分析】建系如图,由两点间距离公式结合中点坐标公式可得点M 的轨迹方程,由此得1C 为部分椭圆;过点A 作与y 轴垂直的直线分别交OP 于点E ,交OQ 于点F ,得等边OEF ,由平面几何可得G 是等边OEF 的外心,由此可得点G 的轨迹2C 为y 轴在曲线1C 内的一段线段. 【详解】以O 为原点,以POQ ∠的角平分线为y 轴建立平面直角坐标系如图所示. 依题意得直线OQ的方程为y =,直线OP的方程为y =.设点(),B b,()C c ,由2BC =得()()2234b c b c -++=(*),设点(),M x y ,因为M 是BC的中点,所以)2b c x y b c +⎧=⎪⎪⎨⎪=-⎪⎩即2b c x b c +=⎧⎪⎨-=⎪⎩ 将其代入(*)得2241243y x +=,即221313y x +=,故M 的轨迹1C 为椭圆在POQ ∠内部的部分.过点A 作与y 轴垂直的直线分别交OP 于点E ,交OQ 于点F ,则OEF 显然也是等边三角形.下面证明等边ABC 的重心G 即等边OEF 的外心.设OCB θ∠=,则120OBC ACF θ∠=-=∠,又60BOC CFA ∠=∠=,且BC AC =,所以OBC FCA ≅,因此OC AF =.在OGC 和FGA 中,30OCG FAG θ∠=+=∠,又GA GC =,所以OGC FGA ≅,则OG FG =,同理可证OG EG =,即点G 是等边OEF 的外心,所以,点G 在y 轴上移动,故点G 的轨迹2C 为y 轴在曲线1C 内的一段线段. 故选:C.【点睛】关键点点睛:建立适当的坐标系是解决本题的关键. 4.D 【分析】设点A (x 1,y 1),B (-x 1,-y 1),P (x 0,y 0),利用点差法求解直线的斜率,得到a 、b 关系, 通过点到直线的距离求解c ,求出a ,b ,即可推出离心率,判断A ,B 的正误;设P 在双曲线的右支上,记 2,PF t = 则 14PF t =+,利用12PF PF ⊥,转化求解三角形的面积,判断C ;设P (x 0,y 0),通过三角形的面积求解P 的坐标,结合双曲线的定义以及余弦定理,判断三 角形的形状,判断D. 【详解】设点A (x 1,y 1),B (-x 1,-y 1),P (x 0,y 0)则2211221x y a b -=,且2200221x y a b -=,两式相减得2222101022x x y y a b --=,所以2220122201y y b x x a -=-,因为01010101()()1()()4PA PB y y y y k k x x x x -+⋅=⋅=-+,所以2214b a =,12b a = 故双曲线C 的渐近线方程1=2y x ±因为焦点(c ,0)到渐近线1=2y x 的距离为1,1=,c =2a =,1b =,故A ,B 错误. 对于C ,不妨设P 在右支上, 记 2,PF t = 则 14PF t =+ 因为 12PF PF ⊥, 所以 22(4)20t t ++=解得2t = 或2t = (舍去), 所以 12PF F △的面积为12112)2)22PF PF =⨯1=,故C 不正确; 对于D ,设P (x 0,y 0),因为1200122PF F S c y ∆=⋅==,所以02y =,将02y =带入C :2214x y -=,得2020x =,即0x =由于对称性,不妨取P 得坐标为(2),则23PF ==,17PF =因为222212121212cos 02PF F F PF PF F PF F F +-∠==<所以∶PF 2F 1为钝角,所以PF 1F 2为钝角三角形,故D 正确 故选:D 5.A 【分析】根据条件求得23PF a =,∶1PF a =,在12Rt PF F △中,由勾股定理可得关于,a c 的等式,进而可求得离心率. 【详解】由双曲线定义知21212PF PF QF QF a -=-=,则122PF PF a =-,122QF QF a =-,所以11224a P PF QF PF Q QF ==-++, ∶2PQF 的周长为()22222412PF QF PQ PF QF a a ++=+-=, ∶228PF QF a +=,4PQ a =,由()22222222200PF PF QF PF PF QF PF PQ PF PQ =⋅⇒⋅-=⇒⋅=⇒⊥, 所以290F PQ ∠=︒,故2222216PF a QF +=,∶222QF PF a -=, ∶23PF a =,25QF a =,∶1PF a =,在12Rt PF F △中,()()22232a a c +=,故c e a =. 故选:A.【点睛】关键点点睛:本题的关键点是:由2222PF PF QF =⋅得到290F PQ ∠=︒. 6.C 【分析】先由题意,得到以12F F 为直径的圆的方程为222x y c +=,不妨设双曲线的渐近线为by x a =,设()00,P x y ,则()00,Q x y --,求出点P ,Q 的坐标,得出AP ,AQ ,根据23PAQ π∠=,再利用余弦定理求出a ,c 之间的关系,即可得出双曲线的离心率. 【详解】由题意,以12F F 为直径的圆的方程为222x y c +=,不妨设双曲线的渐近线为by x a=. 设()00,P x y ,则()00,Q x y --,由222b y xa x y c ⎧=⎪⎨⎪+=⎩,解得x a y b =⎧⎨=⎩或x a y b =-⎧⎨=-⎩,∶(),P a b ,(),Q a b --.又A 为双曲线的左顶点,则(),0A a -, ∶AP =AQ b =,2PQ c =,在PAQ △中,23PAQ π∠=,由余弦定理得22222cos 3PQ AP AQ AP AQ π+-=,即22224()c a a b b b =+++, 即222442c a bb =+,则2b =()22244b a b =+,则2234b a =,即()22234c a a -=,所以2273c a =∶c e a ==. 故选:C. 【点睛】方法点睛:离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:∶直接求出,a c ,从而求出e ;∶构造,a c 的齐次式,求出e ;∶采用离心率的定义以及圆锥曲线的定义来求解;∶根据圆锥曲线的统一定义求解. 7.A 【分析】由1212()0F F F A F A +⋅=得121F F F A =,由此求得A 的坐标,将A 的坐标代入双曲线方程,化简求得ba,从而求得双曲线的渐近线方程.【详解】依题意221212121112112()()()0F F F A F A F F F A F A F F F A F F +⋅=+⋅-=-=, 所以1212F F F A c ==, 1247AF k =-,设直线1F A 的倾斜角为α,则α为钝角,sin 24tan cos 7ααα==-, 结合22sin cos 1αα+=解得247sin ,cos 2525αα==-, 设()00,A x y ,则()07392cos 22525x c c c c c α⎛⎫=⋅+-=⨯--=- ⎪⎝⎭,024482sin 22525y c c c α=⋅=⋅=,将A 点坐标代入双曲线方程得2222394825251c c a b ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭-=,而222c a b =+,所以()()222222152123046256251a b a b a b ++-=,化简得22221521*********b a a b ⋅--⋅=,42241521140823040b a b a ⋅--⋅=,()()22229161691440ba b a -+=,229160b a -=,434,3b b a a ==, 所以双曲线的渐近线方程为43y x =±.故选:A 【点睛】本题主要解题的两个关键点,一个是根据向量的数量积为零判断出121F F F A =,另一个是将A 坐标代入双曲线方程后的运算. 8.A 【分析】根据清洁钢球能擦净凹槽的最底部的轴截面图,只需圆与双曲线的顶点相交,联立圆与双曲线方程,得到关于y 的一元二次方程,要满足方程的根不能大于1,即可求解. 【详解】清洁钢球能擦净凹槽的最底部时,轴截面如下图所示, 圆心在双曲线的对称轴上,并与双曲线的顶点相交, 设半径为r ,圆心为(0,1)r +,圆方程为:222(1)x y r r +--=代入双曲线方程221y x -=, 得2(1)0,1,y r y r y y r -++=∴==, 要使清洁球到达底部,1r ≤. 故选:A【点睛】本题考查圆锥曲线方程的实际应用,关键要把实际问题抽象转化为数学问题,属于较难题. 9.A 【详解】由题得:设周长为l22BM BN a l AB BN AN AM AN m+=⇒=++-=22AB a BM AM m =+-+-22AB AM BM l a m +≥⇒≥-当且仅当M 、A 、B 共线时,周长的最小点睛:考察椭圆和双曲线的综合,根据题意要得周长得最小值,首先要将周长得表达式写出,根据椭圆和双曲线得性质得AB 、BN 、AM 、AN 的关系将其替换到周长中,然后根据三角形两边之和大于第三边得到答案 12.AC 【分析】设出右焦点F ',根据椭圆定义结合对称性以及余弦定理可求得,a c 的关系,则离心率可求;设出,P M 的坐标,根据对称性写出Q 的坐标,利用点差法可求得12k k 的表示,结合,a c 的关系可求解出12k k 的值. 【详解】设椭圆的右焦点F ',连接PF ',QF ',根据椭圆对称性可知四边形PFQF '为平行四边形, 则QF PF '=,且由120PFQ ∠=︒,可得60FPF '∠=︒, 所以42PF PF PF a ''+==,则12PF a '=,32PF a =. 由余弦定理可得()22222931122cos 60244222a c PF PF PF PF a a a ''=+-⋅=+-⨯⋅⋅°,所以22716c a =,所以椭圆的离心率e == 设()00,M x y ,()11,P x y ,则()11,Q x y --,01101y y k x x -=-,01201y y k x x +=+,所以220101011222010101y y y y y y k k x x x x x x -+-=⋅=-+-,又2200221x y a b +=,2211221x y a b +=,相减可得2220122201y y b x x a -=--. 因为22716c a =,所以22916b a =,所以12916k k =-.故选:AC . 【点睛】关键点点睛:解答本题的关键在于合理运用焦点三角形的知识以及点差法设而不求的思想去计算;椭圆是一个对称图形,任何过原点的直线(不与焦点所在轴重合)与椭圆相交于两点,这两点与椭圆的焦点构成的四边形为平行四边形. 13.ACD 【分析】先作出方程110x x y y -+-=表示的曲线C ,然后对每个选项逐个判断即可. 【详解】对于方程110x x y y -+-=,∶ 当1x ≤,1y ≤时,方程变为220x x y y -+-=,即22111222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,表示半圆弧EOF ;∶ 当1x >,1y <时,方程变为222211022x x y y x y ⎛⎫⎛⎫-+-=⇔-=- ⎪ ⎪⎝⎭⎝⎭,即1x y +=,表示射线FN ;∶ 当1x >,1y >时,方程变为22221110222x x y y x y ⎛⎫⎛⎫-+-=⇔-+-= ⎪ ⎪⎝⎭⎝⎭,该圆不在1x >,1y >范围内,故舍去;∶当1x <,1y >时,方程变为222211022x x y y x y ⎛⎫⎛⎫-+-=⇔-=- ⎪ ⎪⎝⎭⎝⎭,即1x y +=,表示射线EM .综上可知,曲线C 由三段构成:射线EM ,半圆弧EOF 和射线FN .对于选项A ,当[]1,2x ∈-时,曲线C 由三段构成:线段EM ,半圆弧EOF 和线段FN . 其A 正确; 对于选项B ,令12y k x -=+,其表示曲线C 上的动点(,)x y 与定点(2,1)P -连线的斜率,由图可知,max 211(1)(2)PM k k -===---,但是其最小值是过点(2,1)P -且与半圆弧EOF 相切的切线斜率,显然,min (1)112(2)2PN k k --<==---,故B 错误;对于选项C ,由图可知,曲线C 与x 轴、y 轴围成的封闭图形为两个相同的弓形,其面积和为211112142242ππ⎡⎤⎢⎥⨯⋅⋅-⋅⋅=-⎢⎥⎝⎭⎣⎦,故C 正确; 对于选项D ,设平行于x 轴的直线为y m =,要使y m =与曲线C 有三个交点,则12m ⎛⎫∈ ⎪ ⎪⎝⎭,不妨设y m =与半圆弧EOF 的交点为A ,B ,显然,A ,B 两点横坐标之和121x x =+,y m =与射线FN 的交点为C ,则点C 的横坐标3111,2x m ⎛=-∈ ⎝⎭,所以12332,2x x x ⎛++∈ ⎝⎭,故D 正确.故选:ACD.【点睛】关键点点睛:本题的关键点在于:准确地作出方程110x x y y -+-=表示的曲线C . 14.AD 【分析】先求得M 点的轨迹方程,然后根据圆与圆的位置关系求得a 的取值范围,进而求得正确选项. 【详解】圆O 的圆心为()0,0M 为AB 的中点,2AB =,所以2OM =,设(),M x y 2=,所以点M 的轨迹方程为224x y +=. 即M 在圆心为()0,0,半径为12r =的圆上.()C a,()2D a +都在直线x =2CD =,设线段CD 的中点为N ,则()1N a +,以N 为圆心,半径为21r =的圆与圆224x y +=外离时,始终有CMD ∠为锐角,所以123ON r r =+=,即()211a +>,11a +>,所以11a +<-或11a +>, 即2a <-或0a >. 所以AD 选项正确. 故选:AD 【点睛】本小题主要考查轨迹方程的求法,考查圆与圆的位置关系. 15.ABD 【分析】首先画图找到平面1//A MN 平面1D AE ,根据面面平行的性质定理得到点F 的轨迹,接着依次判断选项即可. 【详解】如图,分别找线段1BB ,11B C 中点为M ,N ,连接11,,A M MN A N , 因为正方体1AC ,易得1//,MN ADMN ⊄面1D AE ,1AD ⊂面1D AE ,所以//MN 面1D AE ,11//A M D E ,1A M面1D AE ,1D E ⊂面1D AE ,所以1//A M 面1D AE ,又1MN A M M ⋂=所以平面1//A MN 平面1D AE ,因为1A F 与平面1D AE 的垂线垂直,又1⊄A F 平面1D AE , 所以直线1A F 与平面1D AE 平行,所以1A F ⊂面1A MN ,又点F 是侧面11BCC B 内的动点,且面1A MN ⋂面11BCC B MN =, 所以点F 的轨迹为线段MN ,故选项A 正确; 由图可知,1A F 与BE 是异面直线,故选项B 正确;当点F 与点M 重合时,直线1A F 与直线1D E 平行,故选项C 错误; 因为1//MN AD ,MN ⊄面1ABD ,1AD ⊂面1ABD , 所以//MN 面1ABD ,则点F 到平面1ABD 的距离是定值,又三角形1ABD 的面积是定值,所以三棱锥1F ABD -的体积为定值,故选项D 正确. 故选:ABD. 【点睛】本题主要考查立体几何中的动点轨迹问题,解决该类题目一般是通过线线,线面,面面之间的平行垂直关系,根据判定定理或者性质定理得到动点的轨迹,接着再求题目的相关问题,考查体积是定值的问题时,一般就是研究距离和面积是不是定值,关键在于选择合适的顶点和底面,在做题时要多总结. 16.ABD 【分析】由双曲线及圆的方程知圆O 的半径为c ,所以122F PF π∠=,又21tan 3PF F ∠=,根据双曲线的定义、勾股定理、双曲线中,,a b c 的关系得双曲线C 的方程为:2211053x y -=,从而可判断选项A 正确;求出双曲线的渐近线方程,由点到直线的距离公式可判断选项B 、D 正确;由面积公式可判断选项C 错误. 【详解】解:∶双曲线222:105()x y C a a -=>, ∶225c a =+,又圆222:5O x y a +=+, ∶圆O 的半径为c ,∶12||F F 为圆O 的直径,∶122F PF π∠=,故作图如下:对于A ,∶21tan 3PF F ∠=,∶1212tan 3PF PF F PF ∠==, ∶123||PF PF =,令20||()PF m m =>,则1||3PF m =,∶()22221231||0F F m m m =+=,∶12||2F F c =,又12||22m PF PF a -==,∶双曲线C的离心率22c e a ===A 正确; 对于B ,由于()1,0F c -到渐近线y =的距离d ==B 正确;对于C,由离心率e ==得2103a =,21025533c =+=,∶122||F F c ===,∶2||m PF ==,1||3PF m = ∶21PF F的面积为152=,故C 错误; 对于D ,由2103a =得双曲线C 的方程为:2211053x y -=,故其两条渐近线方程为y x =0=, 设(),M p q 为双曲线C 上任意一点,则2211053q p -=,即223211010p q -=∶,(),M p q 到两条渐近线的距离1d ,2d =∶22123210255p q d d -====,故D 正确; 故选:ABD.【点睛】关键点点睛:本题的解题关键是,根据双曲线及圆的方程知圆O 的半径为c ,所以得122F PF π∠=,又21tan 3PF F ∠=,由双曲线的定义、勾股定理、双曲线中,,a b c 的关系求出双曲线C 的方程.18. ,32ππ⎡⎤⎢⎥⎣⎦【分析】(1)先由正四面体A BCD -的球O 中,求出四面体的棱长和高,由高和AP =P 的轨迹,从而确定||BP 的最小值.(2)建立空间直角坐标系,设出点P 的坐标,求出直线AP 与直线BC 所成角的余弦值,求出余弦值取值范围,从而出所成角取值范围.【详解】设A 在面BCD 内的投影为E ,故E 为三角形BCD 的中心,设正四面体A BCD -的棱长为x ,球O 的半径为R .则23BE x =⨯=AE , 依题可得,球心O 在AE 上,()222R BE AE R =+-,代入数据可得6x =,则BE =AE =又AP =PE ==故P 的轨迹为平面BCD 内以E 为圆心,BE = ,,B P E三点共线时,且P 在BE 之间时,||BP 的最小值是以E 为圆心,BE 所在直线为x 轴建立如图所示直角坐标系,(A ,()B ,()C ,()3,0D -,设(),0P θθ,[)0,2θ∈π,故(2,AP θθ=-,()BC =-,设直线AP 与直线BC 所成角为α, ∶61π11cos sin ,2322AP BCBC AP αθ-⎛⎫⎡⋅⎤===-∈- ⎪⎢⎥⎝⎭⎣⎦, ∶11cos ,22α⎡⎤∈-⎢⎥⎣⎦, 又0,2απ⎡∈⎤⎢⎥⎣⎦,故,32ππα⎡⎤∈⎢⎥⎣⎦,故答案为:,32ππ⎡⎤⎢⎥⎣⎦. 【点睛】本题考查了立体几何中两条直线所成角的问题,解答的关键在于能利用直线与直线,直线与平面,平面与平面的关系进行转化.同时对于立体几何中的角的计算问题,往往可以利用空间向量法,通过求解直线的方向向量,利用向量的夹角公式求解.19.22222()2()0x y x y +--=;【分析】设(,)P x y ,代入12||||1PS PS ⋅=,化简即可得到动点P 的轨迹C 的方程;进而求出A ,A '的坐标,然后将问题转化为求点P 的纵坐标的最大值,再利用面积公式求解即可.解:设(,)P x y ,12||||1PS PS ⋅=,2222[(1)][(1)]1x y x y ∴-+++=,即22222()2()0x y x y +--=,∴动点P 的轨迹C 的方程为:22222()2()0x y x y +--=;令0y =,可得4220x x -=,解得0x =或x =(A A ',由对称性,只考虑第一象限的部分,||AA '为定值,APA '∴面积最大时,即点P 的纵坐标最大,又422222(1)(2)0y x y x x +++-=,221y x ∴=--+令t 2214t x -=,因为x ∈,所以[1t ∈,3], 令22111()1(2)444t f t t t -=--+=--+, ∴当2t =时,()f t 取得最大值14,即214max y =, ∴12max y =,()1122APA max S '∴=⨯∴APA '故答案为:22222()2()0x y x y +--=;2. 【点睛】 关键点点睛:第二空解题的关键是利用第一空求出的动点P 的轨迹方程,求出点P 的纵坐标的平方的表达式,然后构造函数,利用二次函数的性质求出点P 的纵坐标的最大值,从而面积的最大值可求.22.80009【分析】设,PA a PB b ==,飞行过程所用时间12()123t a b =+,再令23PC b =,则问题转化为求两条线段PA PC +最小即可作答.设,PA a PB b ==,飞行过程所用时间12()1218123PA PB t a b =+=+,令23PC b =,即23PC PB =, 设点C (0,m )在圆形轨道内,取点P 坐标(0,2000),而()0,3000B ,由23PC PB =得22000(30002000)3m -=-,40003m = ,即4000(0,)3C ,设动点(,)M x y ,当23MC MB =时, 化简整理得2222000x y +=,即满足23MC MB =的动点M 的轨迹就是给定的圆形轨道, 所以距月心2000km 的圆形轨道上的任意点P 均有23PC PB =成立,如图,连PC ,于是有320003PA PC AC +≥=,当且仅当P 为线段AC 与圆形轨道交点时取“=”, 即有111320008000()121812121239PA PB t PA PC AC =+=+≥⋅=⋅=, 所以这一过程最少用时80009s. 故答案为:8000923.2【分析】 先证明费马点结论:若P 到ABC ∆三个顶点距离之和最小,则120APBAPC BPC ,再根据角度求解三条线段长度即可得解.【详解】先证明:若P 到ABC ∆三个顶点距离之和最小,则120APB APC BPC如图将ABP ∆绕点B 逆时针旋转60°得到BDE ∆,则BDE ∆∶ABP ∆,,60BD BP PBD ,所以BDP ∆是等边三角形,BP DP =,PA PBPC ED DP PC ,当,,,E D P C 四点共线时取得最小值, 此时120APB EDB ,同理可得120BPC APC 所以命题得证.点0M 是ABC ∆的费马点,且已知0M 在y 轴上,000120AM BAM C BM C ,0060AM O OM C , 所以000233,233BM CM OM ,所以000AM BM CM ++=2故答案为:2【点睛】此题考查求平面内点到三定点距离之和的最值问题,涉及平面几何的证明问题,根据三角形边角关系求解线段长度.28.43【分析】 由111OC OA OB λλλ=+++,可得A ,B ,C 共线,再由向量的数量积的几何意义可得PC 为APB ∠的平分线,可得PAACPB BC λ==,可得P 的轨迹为圆,求得圆的直径与AB 的关系,即可得到所求最值.【详解】 由111OC OA OB λλλ=+++, 可得A ,B ,C 共线,当点P 不在直线AB 上时, 由PA PC PB PC PA PB⋅⋅=, 可得cos cos PC APC PC BPC ∠=∠,即有APC BPC ∠=∠,则PC 为APB ∠的平分线, 根据正弦定理易得PAACPB BC λ==,以AB 所在直线为x 轴,以线段AB 的中垂线为y 轴建立平面坐标系,设()20AB a a =>,(),P x y ,(),0A a -,(),0B a则()()222222x a y PA PB x a y λ++⎛⎫== ⎪⎝⎭-+, 整理得:()()222222221411a a x y λλλλ⎛⎫+ ⎪-+= ⎪--⎝⎭, ∶P 的轨迹是圆心为()221,01a λλ⎛⎫ ⎪ -⎝⎭+⎪,半径为221a λλ-的圆, 因为点P 不在直线AB 上,所以不包括x 轴上的点.∶12241a PP λλ≤-,∶2421a ma λλ≤-, 即22211m λλλλ≥=--恒成立, 设()()221f λλλλ=≥-,则()f λ在[)2,∞上单调递减,∶()f λ的最大值为()423f =. ∶43m ≥. 故m 的最小值为43. 故答案为:43. 29.48【分析】 将原式化为1122|3425||3425|555x y x y ++++⎛⎫+ ⎪⎝⎭,而1122|3425||3425|,55x y x y ++++分别表示,M N 到直线:34250l x y ++=的距离,取MN 的中点T ,设T 在直线:34250l x y ++=的射影为1T ,则原式=110||TT ,根据圆的性质可以知道T 在以OP 为直径的圆C 上,其中()0,1C ,进一步即可得到答案.【详解】由题意,,,M P N 三点共线,设T 为MN 的中点,,,M T N 在直线:34250l x y ++=的射影分别为111,,M T N ,点O 到直线:34250l x y ++=的距离|304025|545d ⨯+⨯+==>, ∶:34250l x y ++=与圆22:16O x y +=相离 ,如图: 而11221122|3425||3425||3425||3425|555x y x y x y x y ++++⎛⎫+++++=+ ⎪⎝⎭()1115||||10||MM MM TT =+=,易得OT MN ⊥,即OT PT ⊥,∶T 在以OP 为直径的圆C 上,其中()0,1C . ∶11|304125|24||||1155TT CT ⨯+⨯+≥-=-=,当1,,C T T 共线,且T 在1,C T 之间时取“=”. ∶1122|3425||3425|x y x y +++++的最小值为2410485⨯=. 故答案为:48.【点睛】 本题突破口有两点,一是将原式转化为距离的问题,这需要我们对距离公式非常熟悉;二是取MN 的中点T ,这就需要对圆的性质要敏感,提到弦立马要想到弦心距,进而问题才能得解.30.⎡⎣【分析】令(,)A x y ,根据2MA AB =得332(,)22x t y B --,由,A B 在圆C 上代入坐标,整理可将问题转化为两个圆有公共点,则两圆的圆心距离在15[,]33内,进而求t 的范围. 【详解】由题意,可得如下示意图,令(,)A x y ,由2MA AB =知:332(,)22x t y B --,又,A B 在C 上,∶22221(3)(32)144x y x t y +=--+=⎧⎪⎨⎪⎩,整理得22221{24339x y t x y +=⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,即两圆有公共点, ∶两圆的圆心距离为d =,半径分别为1、23,故当1533d ≤≤时符合题意, ∶2021t ≤≤,即t∈[.故答案为:[.【点睛】关键点点睛:设(,)A x y ,利用向量共线的坐标表示求B 坐标,将点代入圆的方程将问题转化为两圆有公共点,求参数范围.31【分析】设O 2(a ,0),圆O 2的半径为r (变量),OP=t (常数),利用差角的正切公式,结合以AB为直径的圆与圆x 2+(y -2)2=1相外切.且∶APB 的大小恒为定值,即可求出线段OP 的长.【详解】设()2,0O a ,圆O 2的半径为r (变量),OP=t (常数),则tan ,tan a r a r OPA OPB t t-+∠=∠=, 2222222tan 1a r a r rt t t APB a r t a r t +--∴∠==-+-+, 241a r +=+22(1)4a r ∴=+-,2222tan 3232rt t APB t t r r∴∠==-+-+,∶∶APB 的大小恒为定值,∶t【点睛】本题考查圆与圆的位置关系,考查差角的正切公式,考查学生的计算能力,属于中档题.32【分析】设点D在底面ABC的射影点为O,连接OA,以点O为坐标原点,CB、AO、OD分别为x、y、z轴的正方向建立空间直角坐标系,设点(),,0P x y,由已知条件可得出关于x、y所满足的等式,利用二次函数的基本性质可求得AP的最小值.【详解】设点D在底面ABC的射影点为O,连接OA,则12sin3OAπ==OD==以点O为坐标原点,CB、AO、OD分别为x、y、z轴的正方向建立如下图所示的空间直角坐标系,则0,A⎛⎫⎪⎪⎝⎭、12B⎛⎫⎪⎪⎝⎭、12C⎛⎫-⎪⎪⎝⎭、D⎛⎝⎭、0,E⎛⎝⎭、F⎛⎫⎪⎪⎝⎭,设点(),,0P x y,则EF⎛=⎝⎭,,,DP x y⎛=⎝⎭,cos2DP EFDP EFθ⋅==⋅,整理可得22221211cos 2339x y y y θ⎛⎫++=+ ⎪⎝⎭,由题意可知,方程22221211cos 2339x y y y θ⎛⎫++=+ ⎪⎝⎭表示的曲线为抛物线,所以211cos 23θ=,故22cos 3θ=,即有2121399x y +=+,可得2y x =,则AP ==,当且仅当0x =时,等号成立,故AP【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.33【分析】设12AF F △与12BF F △的内切圆圆心分别为G ,H , 12AF F △的内切圆与三边分别切于点D ,E ,F , 利用内切圆的性质得12HG F F ⊥.设直线AB 的倾斜角为θ,在2Rt F FG △中,2πtan2θ-=FG FF ,在2Rt F FH 中,2tan 2θ=FH FF ,由题得3FG FH =得tan 2θ,再由二倍角公式可得答案. 【详解】设12AF F △与12BF F △的内切圆圆心分别为G ,H ,连接HG ,2HF ,2GF ,12AF F △的内切圆与三边分别切于点D ,E ,F ,如图,则()12121212AF AF AD DF AE EF DF EF F F FF -=+-+=-=-, 所以()2G G a c x c x =+--,即G x a =, 同理H x a =,所以12HG F F ⊥,设直线AB 的倾斜角为θ,则π0,2θ⎛⎫∈ ⎪⎝⎭,在2Rt F FG △中,()2ππtan tan 222FG FF c a θθ-⎛⎫==-- ⎪⎝⎭, 在2Rt F FH 中,()2tantan22FH FF c a θθ==-,由题得3FG FH =,所以()()πtan 3tan 222c a c a θθ⎛⎫--=- ⎪⎝⎭,解得tan2θ=22tan2tan 1tan 2==-θθθ34.45【分析】由题意得8PB PA -=,10AB =,再利用正弦定理进行求解即可. 【详解】解:由题意得8PB PA -=,10AB ==,∴sin si 45n sin A B P PB PA AB --==.故答案为:45.【点睛】本题考查双曲线的性质和应用,结合了正弦定理的应用,属于中档题. 35.y =. 【分析】设2AF m =,根据题意结合双曲线的定义可得4ma ,进一步判断2ABF 是等边三角形,在2F BM △中利用余弦定理可得22716m c =,即可得出,a c 关系,继而得出,a b 关系,求出渐近线方程. 【详解】根据题意,作出如下所示的图形,由题可知,122F F c =,由213AF BM =,∶12F AF ∶1F BM △,∶24F M c =,设2AF m =,则3=BM m , ∶2BF 平分1F BM ∠,∶12122142F F BF c MF BM c === , ∶132mBF =,11132m AF BF ==,123AB BF m ==,由双曲线的定义知,212AF AF a -=, ∶122m m a -=,即4ma ∶,122BF BF a -=, ∶2322BF m a m =-=,∶22BF AB AF m ===,即2ABF 是等边三角形, ∶2260F BM ABF ∠=∠=︒,。
[必刷题]2024高三数学下册解析几何专项专题训练(含答案)
[必刷题]2024高三数学下册解析几何专项专题训练(含答案)试题部分一、选择题:1. 在直角坐标系中,点A(2,3)关于原点O的对称点坐标是()A. (2,3)B. (2,3)C. (2,3)D. (3,2)2. 已知直线l的斜率为1,且过点P(1,2),则直线l的方程为()A. x+y3=0B. xy+3=0C. x+y+3=0D. xy3=03. 圆C的方程为x^2+y^2=4,点D(3,0)在圆外,则直线CD的斜率为()A. 1B. 1C. 3D. 34. 下列关于椭圆的方程中,离心率最小的是()A. x^2/4 + y^2/9 = 1B. x^2/9 + y^2/4 = 1C. x^2/16 + y^2/25 = 1D. x^2/25 + y^2/16 = 15. 设双曲线x^2/a^2 y^2/b^2 = 1的渐近线方程为y=kx,则k 的值为()A. a/bB. b/aC. a/bD. b/a6. 在平面直角坐标系中,点A(1,2)到直线y=3x+1的距离为()A. 2B. 3C. 4D. 57. 已知抛物线y^2=8x的焦点坐标为()A. (2,0)B. (2,0)C. (0,2)D. (0,2)8. 若直线y=2x+3与圆(x1)^2+(y2)^2=16相交,则交点的个数为()A. 0B. 1C. 2D. 39. 在等轴双曲线x^2 y^2 = 1上,点P到原点的距离为2,则点P的坐标为()A. (1,1)B. (1,1)C. (1,1)D. (1,1)10. 已知点A(2,3)和点B(2,1),则线段AB的中点坐标为()A. (0,2)B. (0,4)C. (2,2)D. (2,4)二、判断题:1. 直线y=2x+1的斜率为2,截距为1。
()2. 两个圆的半径分别为1和2,圆心距为3,则这两个圆相交。
()3. 椭圆的离心率越大,其形状越接近圆。
()4. 抛物线的焦点到准线的距离等于其焦距的一半。
解析几何历年高考真题试卷--带详细答案
解析几何高考真题一、单选题(共11题;共22分)1.(2020·新课标Ⅲ·理)设双曲线C :x 2a 2−y 2b 2=1 (a>0,b>0)的左、右焦点分别为F 1 , F 2 , 离心率为 √5 .P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a=( ) A. 1 B. 2 C. 4 D. 82.(2020·新课标Ⅲ·理)设O 为坐标原点,直线x=2与抛物线C :y 2=2px(p>0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( )A. ( 14 ,0)B. ( 12 ,0) C. (1,0) D. (2,0) 3.(2020·新课标Ⅱ·理)设O 为坐标原点,直线 x =a 与双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的两条渐近线分别交于 D,E 两点,若 △ODE 的面积为8,则C 的焦距的最小值为( ) A. 4 B. 8 C. 16 D. 32 4.(2020·天津)设双曲线 C 的方程为x 2a 2−y 2b 2=1(a >0,b >0) ,过抛物线 y 2=4x 的焦点和点 (0,b) 的直线为l .若C 的一条渐近线与 l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( ) A.x 24−y 24=1 B. x 2−y 24=1 C.x 24−y 2=1 D. x 2−y 2=15.(2019·天津)已知抛物线 的焦点为F ,准线为l.若与双曲线x 2a2−y 2b 2=1(a >0,b >0) 的两条渐近线分别交于点A 和点B , 且 |AB|=4|OF| (O 为原点),则双曲线的离心率为( ) A. √2 B. √3 C. 2 D. √56.(2020·北京)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作 PQ ⊥l 于Q ,则线段 FQ 的垂直平分线( ).A. 经过点OB. 经过点PC. 平行于直线 OPD. 垂直于直线 OP7.(2019·天津)已知抛物线 y 2=4x 的焦点为 F ,准线为 l ,若 l 与双曲线 x 2a 2−y 2b 2=1 (a >0,b >0) 的两条渐近线分别交于点 A 和点 B ,且 |AB|=4|OF| ( O 为原点),则双曲线的离心率为( )A. √2B. √3C. 2D. √5 8.(2019·全国Ⅲ卷理)双曲线 C:x 24−y 22=1 的右焦点为F,点P 在C 的一条渐近线上,O 为坐标原点,若|PO|=|PF|,则△PFO 的面积为( )A. 3√24B. 3√22C. 2√2D. 3√29.已知椭圆E:x 2a 2+y 2b 2=1(a >b >0)的右焦点为F .短轴的一个端点为M ,直线l:3x-4y=0交椭圆E 于A,B两点.若|AF+BF|=4,点M 到直线l 的距离不小于45 , 则椭圆E 的离心率的取值范围是( )A. (0,√32] B. (0,34] C. [√32.1) D. [34,1)10.将离心率为e 1的双曲线c 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线c 2 , 则( )A. 对任意的a,b , e 1>e 2B. 当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C. 对任意的a,b , e 1<e 2D. 当a >b 时,e 1<e 2;当a <b 时,e 1>e 211.将离心率为e 1的双曲线c 1的实半轴长a 和虚半轴长b (a ≠b )同时增加(m >0)个单位长度,得到离心率为e 2的双曲线c 2 , 则( )A. 对任意的a,b,e 1>e 2B. 当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C. 对任意的a,b,e 1<e 2D. 当a >b 时,e 1<e 2;当a <b 时,e 1>e 2二、填空题(共5题;共6分)12.(2020·新课标Ⅰ·理)已知F 为双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的右焦点,A 为C 的右顶点,B 为C上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为________.13.(2019·江苏)在平面直角坐标系 xOy 中,P 是曲线 y =x +4x (x >0) 上的一个动点,则点P 到直线x +y =0的距离的最小值是________. 14.(2019·浙江)已知椭圆x 29+y 25=1 的左焦点为F ,点P 在椭圆且在x 轴上方,若线段PF 的中点在以原点O 为圆心,|OF|为半径的圆上,则直线PF 的斜率是________ 15.(2018·北京)已知椭圆 M:x 2a 2+y 2b 2=1(a >b >0) ,双曲线 N:x 2m 2−y 2n 2=1 . 若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________16.(2017·江苏)在平面直角坐标系xOy 中,双曲线x 23﹣y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 , F 2 , 则四边形F 1PF 2Q 的面积是________.三、解答题(共9题;共85分)17.(2020·新课标Ⅲ·理)已知椭圆 C:x 225+y 2m 2=1(0<m <5) 的离心率为√154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线 x =6 上,且 |BP|=|BQ| , BP ⊥BQ ,求 △APQ 的面积.18.(2020·新课标Ⅱ·文)已知椭圆C 1:x 2a 2+y 2b 2=1 (a>b>0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD|= 43 |AB|. (1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.19.(2020·新课标Ⅰ·理)已知A 、B 分别为椭圆E :x 2a 2+y 2=1 (a>1)的左、右顶点,G 为E 的上顶点,AG ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =8 ,P 为直线x=6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.20.(2020·新高考Ⅱ)已知椭圆C : x 2a 2+y 2b 2=1(a >b >0) 过点M (2,3),点A 为其左顶点,且AM 的斜率为 12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.21.(2019·天津)设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,左顶点为A,顶点为B.已知√3|OA|=2|OB|(O为原点).(Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F且斜率为34的直线l与椭圆在x轴上方的交点为p,圆C同时与x轴和直线l 相切,圆心C在直线x=4上,且OC∥AP,求椭圆的方程.22.(2019·全国Ⅲ卷文)已知曲线C:y= x22,D为直线y= −12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.23.(2019·全国Ⅲ卷理)已知曲线C: y=x22,D为直线y=- 12的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.24.(2019·全国Ⅱ卷文)已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点。
解析几何专题练习(带答案)
解析几何专题练习一、选择题 1.已知直线l 1:(k -3)x +(4-k)y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是A .1或3B .1或5C .3或5D .1或2 2.过点(2,4)作直线与抛物线y 2=8x 只有一个公共点,这样的直线有 A .1条 B .2条 C .3条 D .4条3.双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =A. 3 B .2 C .3 D .6 4.“b a =”是“直线2+=x y 与圆()()222=-+-b x a x 相切”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.椭圆31222yx+=1的一个焦点为F 1,点P 在椭圆上.如果线段PF 1的中点M在y 轴上,那么点M 的纵坐标是A .±43B .±23C .±22D .±43二、填空题 6.经过圆0222=++yx x 的圆心C ,且与直线x+y=0垂直的直线方程是___ .7.由直线2+=x y 上的点向圆()()22421x y -++= 引切线,则切线长的最小值为___. 8.若双曲线221x ky +=的离心率是2,则实数k 的值是______.9.已知圆C的参数方程为cos ,(1sin .x y ααα=⎧⎨=+⎩为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 1ρθ=,则直线l 与圆C的交点的直角坐标为 .10.在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是__________(写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点=+不经过任何整点②如果k与b都是无理数,则直线y kx b③直线l经过无穷多个整点,当且仅当l经过两个不同的整点=+经过无穷多个整点的充分必要条件是:k与b都是有理数④直线y kx b⑤存在恰经过一个整点的直线三、解答题11.在△ABC中,已知点A(5,-2)、B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上.(1)求点C的坐标;(2)求直线MN的方程.12.求过两点A(1,4)、B(3,2),且圆心在直线y=0上的圆的标准方程.并判断点M1(2,3),M2(2,4)与圆的位置关系.13.已知圆x2+y2-4ax+2ay+20(a-1)=0.(1)求证对任意实数a,该圆恒过一定点;(2)若该圆与圆x2+y2=4相切,求a的值.14.已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线方程;(2)过M作MN⊥FA,垂足为N,求点N的坐标.15.已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为2,且过点(4,-10). (1)求双曲线方程;(2)若点M(3,m)在双曲线上,求证:MF 1⊥MF 2; (3)求△F 1MF 2的面积.16.已知直线l 过点P (1,1), 并与直线l 1:x -y+3=0和l 2:2x+y -6=0分别交于点A 、B ,若线段AB 被点P 平分,求: (1)直线l 的方程;(2)以O 为圆心且被l 截得的弦长为558的圆的方程.17.已知点A 的坐标为)4,4(-,直线l 的方程为3x +y -2=0,求: (1)点A 关于直线l 的对称点A ′的坐标;… (2)直线l 关于点A 的对称直线l '的方程.18.已知圆221:(4)1Cx y -+=,圆222:(2)1C x y +-=,动点P到圆1C ,2C 上点的距离的最小值相等.】 (1)求点P 的轨迹方程;(2)点P 的轨迹上是否存在点Q ,使得点Q 到点(22,0)A -的距离减去点Q 到点(22,0)B 的距离的差为4,如果存在求出Q 点坐标,如果不存在说明理由.19.已知椭圆1C 、抛物线2C 的焦点均在x 轴上,1C 的中心和2C 的顶点均为原点O ,从每条曲线上取两个点,将其坐标记录于下表中:x3-2 42y32--422(1)求12C C 、的标准方程;(2)请问是否存在直线l 满足条件:①过2C 的焦点F ;②与1C 交不同两点,M N 、且满足OM ON ⊥?若存在,求出直线l 的方程;若不存在,说明理由.20.已知椭圆()22220y xC a b a b:+=1>>的离心率为63,过右顶点A 的直线l 与椭圆C 相交于A 、B 两点,且(13)B --,.(1)求椭圆C 和直线l 的方程;(2)记曲线C 在直线l 下方的部分与线段AB 所围成的平面区域(含边界)为D .若曲线2222440xmx y y m -+++-=与D 有公共点,试求实数m 的最小值.参考答案一、选择题 1—5 CBAAA 二、填空题 6.x-y+1=0 7. 318.13-9. (1,1),(1,1)- 10. ①,③,⑤三、解答题11.解:(1)设点C(x ,y),由题意得5+x 2=0,3+y2=0,得x =-5,y =-3.故所求点C 的坐标是(-5,-3).(2)点M 的坐标是⎝⎛⎭⎪⎫0,-52,点N 的坐标是(1,0),直线MN 的方程是y -0-52-0=x -10-1, 即5x -2y -5=0.12. 解:根据圆的标准方程,只要求得圆心坐标和圆的半径即可.因为圆过A 、B 两点,所以圆心在线段AB 的垂直平分线上.由k AB =4-21-3=-1,AB 的中点为(2,3),故AB 的垂直平分线的方程为y -3=x -2, 即x -y +1=0.又圆心在直线y =0上, 因此圆心坐标是方程组 ⎩⎪⎨⎪⎧x -y +1=0y =0的解,即圆心坐标为(-1,0). 半径r =-1-12+0-42=20, 所以得所求圆的标准方程为(x +1)2+y 2=20.因为M 1到圆心C(-1,0)的距离为2+12+3-02=18,|M 1C|<r ,所以M 1在圆C 内;而点M 2到圆心C 的距离|M 2C|=2+12+4-02=25>20,所以M 2在圆C 外.13. 解:(1)将圆的方程整理为(x 2+y 2-20)+a(-4x +2y +20)=0,令⎩⎪⎨⎪⎧x 2+y 2-20=0,-4x +2y +20=0可得⎩⎪⎨⎪⎧x =4,y =-2,所以该圆恒过定点(4,-2).(2)圆的方程可化为(x -2a)2+(y +a)2=5a 2-20a +20=5(a -2)2,所以圆心为(2a ,a),半径为5|a -2|.若两圆外切,则2a -02+a -02=2+5|a -2|,即5|a|=2+5|a -2|,由此解得a =1+55.若两圆内切,则2a 2+a 2=|2-5|a -2||,即5|a|=|2-5|a -2||,由此解得a =1-55或a =1+55(舍去).综上所述,两圆相切时,a =1-55或a =1+55.14. 解:(1)抛物线y 2=2px 的准线x =-p 2,于是,4+p2=5,∴p =2.∴抛物线方程为y 2=4x.(2)∵点A 的坐标是(4,4),由题意得B(0,4),M(0,2).又∵F(1,0),∴k FA =43.又MN ⊥FA ,∴k MN =-34,则FA 的方程为y =43(x -1),MN 的方程为y -2=-34x ,解方程组),1(34),432(-=-=-x y x y 得.54),58(==y x ∴N )54,58(. 15. 解:(1)由e =2⇒ca=2⇒c 2=2a 2⇒a 2=b 2.设双曲线方程为x 2-y 2=λ, 将点(4,-10)代入得:λ=6, 故所求双曲线方程为x 2-y 2=6.(2)∵c 2=12,∴焦点坐标为(±23,0) 将M(3,m)代入x 2-y 2=6得:m 2=3.当m =3时,MF 1→=(-23-3,-3), MF2→=(23-3,-3)∴MF1→·MF 2→=(-3)2-(23)2+(-3)2=0, ∴MF 1⊥MF 2,当m =-3时,同理可证MF 1⊥MF 2.(3)S △F 1MF 2=12·|2c|·|m|=12·43·3=6.16. 解:(1)依题意可设A )n ,m (、)n 2,m 2(B --,则 ⎩⎨⎧=--+-=+-06)n 2()m 2(203n m , ⎩⎨⎧=+-=-023n m n m ,解得1m -=,2n =. 即)2,1(A -,又l 过点P )1,1(,易得AB 方程为03y 2x =-+.(2)设圆的半径为R ,则222)554(d R +=,其中d 为弦心距,53d=,可得5R 2=,故所求圆的方程为5yx22=+.17.解:(1)设点A ′的坐标为(x ′,y ′)。
专题17 解析几何多选、填空(理科)(解析版
十年(2014-2023)年高考真题分项汇编—解析几何多选、填空 目录题型一:直线的方程 ............................................................................. 1 题型二:圆的方程 ................................................................................ 4 题型三:直线与圆的综合 ..................................................................... 8 题型四:椭圆 ...................................................................................... 13 题型五:双曲线 .................................................................................. 23 题型六:抛物线 .................................................................................. 34 题型七:圆锥曲线的综合应用 (43)题型一:直线的方程1.(2020北京高考·第15题)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改、设企业的污水摔放量W 与时间t 的关系为()W f t =,用()()f b f a b a−−−的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强; ②在2t 时刻,甲企业的污水治理能力比乙企业强; ③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强. 其中所有正确结论的序号是____________________. 【答案】①②③【解析】()()f b f a b a−−−表示区间端点连线斜率的负数,在[]12,t t 这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[][][]112230,,,,,t t t t t 这三段时间中,甲企业在[]12,t t 这段时间内,甲的斜率最小,其相反数最大,即在[]12,t t 的污水治理能力最强.④错误;在2t 时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在3t 时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;故答案为:①②③2.(2014高考数学四川理科·第14题)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m −−+=交于点()P x,y ,则||||PA PB ⋅的最大值是 .【答案】5解析:(0,0)A ,(1,3)B ,因为PA PB ⊥,所以222||||||10PA PB AB +==故22||||||||52PA PB PA PB +⋅≤=(当且仅当||||PA PB ==时取“=”)3.(2017年高考数学上海(文理科)·第16题)如图,用35个单位正方形拼成一个矩形,点、、、以及四个标记为“ ”的点在正方形的顶点处,设集合,点,过作直线,使得不在上的“ ”的点分布在的两侧. 用和分别表示一侧和另一侧的“ ”的点到的距离之和.若过的直线中有且只有一条满足,则中所有这样的为________.【答案】、.【解析】设记为“”的四个点为,线段的中点分别为,易知为平行四边形,且记点到直线的距离为,,,,根据题意,四个点不在的同侧,那么就有两种可能:(1)若的两侧分别有两个点,如图2,点和分别在的两侧,若,则有,即和所在的线段平行且相等,于是可构成相应的平行四边形,因此直线必过的中点.1P 2P 3P 4P 1234{,,,}P P P P Ω=P ∈ΩP P l P l P l 1()P D l 2()P D l P l P l P P l 12()()P P D l D l =ΩP 1P 3P ,,,A B C D ,,,AB BC CD DA ,,,E F G H EFGH ,,,A B C D P l ()h A ()h B ()h C ()h D P l P l ,A B ,C D P l ()()()()h A h B h C h D +=+()()h E h G =()h E ()h G P l EG若点和分别在直线的两侧,同理可知直线必过的中点. 于是,直线必过平行四边形的对角线的交点.(2)若的一侧有三个点,另一侧有一个点,如图3,点和分别在的两侧,若,即,由平面几何知识有,,且,则有,即和所在的线段平行且相等,于是可构成相应的平行四边形,因此直线必过的中点. 若点和分别在直线的两侧,同理可知直线必过的中点. 于是,直线必过平行四边形的对角线的交点. 综上,满足已知条件的直线肯定要经过和的交点.4.(2016高考数学上海理科·第10题)设0,0a b >>,若关于,x y 的方程组11ax y x by += +=无解,则b a +的取值范围是____________.【答案】()2+∞,解析:将方程组中上面的式子化简得1y ax =−,代入下面的式子整理得(1)1ab x b −=−,方程组无解应该满足10ab −=且10b −≠,所以1ab =且1b ≠,所以由基本不等式得2a b +>=,即b a +的取值范围是2+∞(,). 5.(2016高考数学上海理科·第3题)已知平行直线012:,012:21=++=−+y x l y x l ,则1l 与2l 的距离是_______________.解析:利用两平行线间距离公式得d 考点:两平行线间距离公式.【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即,x y 的系数应该分别相同,本题较为容易,主要考查考生的基本运算能力.,A C ,B D P l P l FH P l EFGH M P l ,,B A D C P l ()()()()h A h B h D h C ++=()()()()h A h D h C h B +=−()()2()h A h D h H +=()()2()h C h B h F −=()()h H h F =()h H ()h F P l FH ,,A D C B P l P l EG P l EFGH M EGFH题型二:圆的方程一、多选题1.(2021年新高考Ⅰ卷·第11题)已知点P 在圆()()225516x y −+−=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =【答案】ACD解析:圆()()225516x y −+−=的圆心为()5,5M ,半径为4, 直线AB 的方程为142x y+=,即240x y +−=,圆心M 到直线AB 4>,所以,点P 到直线AB 42−<410+<,A 选项正确,B 选项错误; 如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,BM =,4MP =,CD 选项正确,故选ACD . 二、填空题1.(2022新高考全国I 卷·第14题)写出与圆221x y +=和22(3)(4)16x y −+−=都相切的一条直线的方程________________.【答案】3544y x =−+或7252424y x =−或1x =−解析:圆221x y +=的圆心为()0,0O ,半径为1,圆22(3)(4)16x y −+−=的圆心1O 为(3,4),半径为4,5=,等于两圆半径之和,故两圆外切, 如图,当切线为l 时,因为143OO k =,所以34l k =−,设方程为3(0)4y x t t =−+> O 到l的距离1d,解得54t =,所以l 的方程为3544y x =−+, 当切线为m 时,设直线方程为0kx y p ++=,其中0p >,0k <,14 = ,解得7242524k p =− = ,7252424y x =− 当切线为n 时,易知切线方程为1x =−,故答案为:3544y x =−+或7252424y x =−或1x =−.2.(2022年高考全国乙卷数学(理)·第14题)过四点(0,0),(4,0),(1,1),(4,2)−中的三点的一个圆的方程为____________. 【答案】()()222313x y −+−=或()()22215x y −+−=或224765339x y −+−=或()2281691525x y −+−=;解析:依题意设圆的方程为220x y Dx Ey F ++++=, 若过()0,0,()4,0,()1,1−,则01640110F D F D E F = ++=+−++= ,解得046F D E ==− =−, 所以圆的方程为22460x y x y +−−=,即()()222313x y −+−=; 若过()0,0,()4,0,()4,2,则01640164420F D F D E F = ++=++++= ,解得042F D E ==− =−, 所以圆的方程为22420x y x y +−−=,即()()22215x y −+−=; 若过()0,0,()4,2,()1,1−,则0110164420F D E F D E F = +−++= ++++= ,解得083143F D E==− =−, 所以圆的方程为22814033x y x y +−−=,即224765339x y −+−=; 若过()1,1−,()4,0,()4,2,则1101640164420D E F D F D E F +−++= ++=++++= ,解得1651652F D E=−=− =− , 所以圆的方程为2216162055x y x y +−−−=,即()2281691525x y −+−=; 故答案为:()()222313x y −+−=或()()22215x y −+−=或224765339x y −+−=或()2281691525x y −+−=; 3.(2020江苏高考·第14题)在平面直角坐标系xOy 中,已知0)P ,A ,B 是圆221:()362C x y +−=上的两个动点,满足PA PB =,则PAB ∆面积的最大值是__________.【答案】【解析】PA PB PC AB =∴⊥Q设圆心C 到直线AB 距离为d,则||1AB PC所以11)2PAB S d ≤⋅+=V令222(36)(1)(06)2(1)(236)04y d d d y d d d d ′=−+≤<∴=+−−+=∴=(负值舍去)当04d ≤<时,0y ′>;当46d ≤<时,0y ′≤,因此当4d =时,y 取最大值,即PAB S取最大值为,故答案为:4.若半径为1的圆分别与y轴的正半轴和射线(0)y x x =≥相切,则这个圆的方程为 .【答案】22(1)(1x y −+=解:若半径为1的圆分别与y轴的正半轴和射线(0)y x x ≥相切,则圆心在直线y =3x 上,且圆心的横坐标为1,所以纵坐标为3,这个圆的方程为22(1)(1x y −+=。
解析几何选择填空专项练习
解析几何选择填空专项练习一、选择题1. 设c ,b ,a 分别是ABC ∆中C ,B ,A ∠∠∠所对边的边长,则直线0=++⋅c ay x A sin 与0=+⋅-C sin y B sin bx 的位置关系是 ( ).A 平行.B 重合 .C 垂直.D 相交但不垂直2. 若方程m x x +=-24 只有一解,则实数m 的取值范围是( )(A ) [)2,2- (B ) []22,2- (C ) [)2,2-∪{}22 (D ) []22,2] 3. 若直线2ax -b y +2=0 (a >0, b>0) 被圆x 2+y 2+2x -4y +1=0截得的弦长为4,则ba 11+的最小值A .21 B .41 C .2 D .44. 圆x 2+y 2+2x +4y -3=0上到直线y +x +1=0的距离等于 2 的点共有A .1个B .2个C .3个D .4个5. 过点P (-2,3)且与原点的距离为2的直线共有 ( )A .1条B .2条C .3条D .4条6. (08山东卷11)已知圆的方程为08622=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )(A )106 (B )206 (C )306 (D )406 7. 如果222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .()+∞,0 B .()2,0 C .()+∞,1 D .()1,08.到两定点(2,1),(-2,-2)的距离之和为定值5的点的轨迹是 ( ) A . 椭圆 B.双曲线 C.直线 D.线段9. 方程2212sin 3sin 2x y θθ+=+-所表示的曲线是 ( ) A .焦点在x 轴上的椭圆B .焦点在y 轴上的椭圆C .焦点在x 轴上的双曲线D .焦点在 y 轴上的双曲线10. 双曲线12222=-b y a x 的离心率为1e ,双曲线12222=-ax b y 的离心率为2e ,则1e +2e 的最小值为( )A .24B .2C .22D .411. P 是双曲线22x y 1916-=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN|的最大值为( ) A.6B.7C.8D.912. 已知方程0,,0(022>≠≠=++=+c b a ab c by ax ab by ax 其中和,它们所表示的曲线可能是( )A B C D13. 若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是( )A .(315,315-) B .(315,0) C .(0,315-) D .(1,315--) 14. 动点P 到直线x+4=0的距离减去它到点M (2,0)的距离之差是2,则点P 的轨迹是( ) A :直线 B :椭圆 C :双曲线 D :抛物线15. 21,F F 是椭圆的两个焦点,Q 是椭圆上的任意一点,从任意焦点做21QF F ∠外角平分线的垂线,垂足为P ,则P 的轨迹为( )A 圆B 椭圆C 双曲线D 抛物线16. 双曲线191622=-y x 上的点P 到点(5,0)的距离为15,则P 到点(-5,0)的距离是( ) A.7 B.23 C.25或7 D.7或23二、填空题1. 已知两直线:1170a x b y ++=,2270a x b y ++=,都经过点(3,5),则经过点(a 1,b 1),(a 2,b 2)的直线方程是 .2. 集合=A {}024),(=-+-k y kx y x 与集合=B {}241),(x y y x -+=有两个公共元素,则实数k 的取值范围是_____________.3. 圆2)2()1(:22=-+-y x C ,点)1,2(-P ,过点P 作圆C 的切线,切点为A 、B . (1)直线AB 的方程为(2)),1,1(Q 点F E ,是圆C 上两动点,且︒=∠90EQF ,则EF 中点轨迹方程为 . 4. 经过点)38,10(M ,渐近线方程为x y 31±=的双曲线的方程为 . 5. 椭圆192522=+y x 的一个焦点为F 1,M 椭圆上一点,且|MF 1|=2,N 是线段MF 1 的中点,则|ON|的长为 。
2024年高考数学试题分类汇编07:解析几何
解析几何一、单选题1.(2024·全国)已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为()A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)2.(2024·全国)已知双曲线2222:1(0,0)y x C a b a b-=>>的上、下焦点分别为()()120,4,0,4F F -,点()6,4P -在该双曲线上,则该双曲线的离心率为()A .4B .3C .2D 23.(2024·全国)已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为()A .2B .3C .4D .254.(2024·北京)求圆22260x y x y +-+=的圆心到20x y -+=的距离()A .23B .2C .32D 65.(2024·天津)双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为()A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -=二、多选题6.(2024·全国)造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A .2a =-B .点(22,0)在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+7.(2024·全国)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则()A .l 与A 相切B .当P ,A ,B 三点共线时,||15PQ =C .当||2PB =时,PA AB⊥D .满足||||PA PB =的点P 有且仅有2个三、填空题8.(2024·全国)设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为.9.(2024·北京)已知双曲线2214x y -=,则过()3,0且和双曲线只有一个交点的直线的斜率为.10.(2024·北京)已知抛物线216y x =,则焦点坐标为.11.(2024·天津)22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.12.(2024·上海)已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为.四、解答题13.(2024·全国)已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.14.(2024·全国)已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++ 的面积,证明:对任意的正整数n ,1n n S S +=.15.(2024·全国)设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.16.(2024·北京)已知椭圆方程C :()222210x y a b a b+=>>,焦点和短轴端点构成边长为2的正方形,过()0,t (t >的直线l 与椭圆交于A ,B ,()0,1C ,连接AC 交椭圆于D .(1)求椭圆方程和离心率;(2)若直线BD 的斜率为0,求t .17.(2024·天津)已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S =△.(1)求椭圆方程.(2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤ 恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.18.(2024·上海)已知双曲线222Γ:1,(0),y x b b-=>左右顶点分别为12,A A ,过点()2,0M -的直线l 交双曲线Γ于,P Q 两点.(1)若离心率2e =时,求b 的值.(2)若2,3b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标.(3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ⋅=,求b 的取值范围.参考答案:1.A【分析】设点(,)M x y ,由题意,根据中点的坐标表示可得(,2)P x y ,代入圆的方程即可求解.【解析】设点(,)M x y ,则0(,),(,0)P x y P x ',因为M 为PP '的中点,所以02y y =,即(,2)P x y ,又P 在圆2216(0)x y y +=>上,所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>.故选:A 2.C【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【解析】由题意,()10,4F -、()20,4F 、()6,4P -,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.3.C【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解.【解析】因为,,a b c 成等差数列,所以2b a c =+,2c b a =-,代入直线方程0ax by c ++=得20ax by b a ++-=,即()()120a x b y -++=,令1020x y -=⎧⎨+=⎩得12x y =⎧⎨=-⎩,故直线恒过()1,2-,设()1,2P -,圆化为标准方程得:()22:25C x y ++=,设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB 最小,1,PC AC r ===,此时24AB AP ====.故选:C 4.C【分析】求出圆心坐标,再利用点到直线距离公式即可.【解析】由题意得22260x y x y +-+=,即()()221310x y -++=,则其圆心坐标为()1,3-,则圆心到直线20x y -+=221323211++=+,故选:C.5.C【分析】可利用12PF F △三边斜率问题与正弦定理,转化出三边比例,设2PF m =,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【解析】如下图:由题可知,点P 必落在第四象限,1290F PF ∠=︒,设2PF m =,211122,PF F PF F θθ∠=∠=,由21tan 2PF k θ==,求得1sin 5θ=因为1290F PF ∠=︒,所以121PF PF k k ⋅=-,求得112PF k =-,即21tan 2θ=,2sin 5θ=121212::sin :sin :sin 902:1:5PF PF F F θθ=︒=则由2PF m =得1122,25PF m F F c m ===,由1212112822PF F S PF PF m m =⋅=⋅= 得22m =则211222PF PF F F c =====由双曲线第一定义可得:122PF PF a -==a b ==所以双曲线的方程为22128x y -=.故选:C 6.ABD【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【解析】对于A :设曲线上的动点(),P x y ,则2x >-4x a -=,04a ⨯-=,解得2a =-,故A 正确.对于B 24x +=,而2x >-,()24x+=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C :由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D :当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.7.ABD【分析】A 选项,抛物线准线为=1x -,根据圆心到准线的距离来判断;B 选项,,,P A B 三点共线时,先求出P 的坐标,进而得出切线长;C 选项,根据2PB =先算出P 的坐标,然后验证1PA AB k k =-是否成立;D 选项,根据抛物线的定义,PB PF =,于是问题转化成PA PF =的P 点的存在性问题,此时考察AF 的中垂线和抛物线的交点个数即可,亦可直接设P 点坐标进行求解.【解析】A 选项,抛物线24y x =的准线为=1x -,A 的圆心(0,4)到直线=1x -的距离显然是1,等于圆的半径,故准线l 和A 相切,A 选项正确;B 选项,,,P A B 三点共线时,即PA l ⊥,则P 的纵坐标4P y =,由24P P y x =,得到4P x =,故(4,4)P ,此时切线长PQ ===,B 选项正确;C 选项,当2PB =时,1P x =,此时244P P y x ==,故(1,2)P 或(1,2)P -,当(1,2)P 时,(0,4),(1,2)A B -,42201PA k -==--,4220(1)AB k -==--,不满足1PA AB k k =-;当(1,2)P -时,(0,4),(1,2)A B -,4(2)601PA k --==--,4(2)60(1)AB k --==--,不满足1PA AB k k =-;于是PA AB ⊥不成立,C 选项错误;D 选项,方法一:利用抛物线定义转化根据抛物线的定义,PB PF =,这里(1,0)F ,于是PA PB =时P 点的存在性问题转化成PA PF =时P 点的存在性问题,(0,4),(1,0)A F ,AF 中点1,22⎛⎫ ⎪⎝⎭,AF 中垂线的斜率为114AF k -=,于是AF 的中垂线方程为:2158x y +=,与抛物线24y x =联立可得216300y y -+=,2164301360∆=-⨯=>,即AF 的中垂线和抛物线有两个交点,即存在两个P 点,使得PA PF =,D 选项正确.方法二:(设点直接求解)设2,4t P t ⎛⎫⎪⎝⎭,由PB l ⊥可得()1,B t -,又(0,4)A ,又PA PB =,214t =+,整理得216300t t -+=,2164301360∆=-⨯=>,则关于t 的方程有两个解,即存在两个这样的P 点,D 选项正确.故选:ABD8.32【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【解析】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x y a b -=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25ba=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:329.12±【分析】首先说明直线斜率存在,然后设出方程,联立双曲线方程,根据交点个数与方程根的情况列式即可求解.【解析】联立3x =与2214x y -=,解得52y =,这表明满足题意的直线斜率一定存在,设所求直线斜率为k ,则过点()3,0且斜率为k 的直线方程为()3y k x =-,联立()22143x y y k x ⎧-=⎪⎨⎪=-⎩,化简并整理得:()222214243640k x k x k -+--=,由题意得2140k -=或()()()2222Δ244364140k k k =++-=,解得12k =±或无解,即12k =±,经检验,符合题意.故答案为:12±.10.()4,0【分析】形如()22,0y px p =≠的抛物线的焦点坐标为,02p ⎛⎫ ⎪⎝⎭,由此即可得解.【解析】由题意抛物线的标准方程为216y x =,所以其焦点坐标为()4,0.故答案为:()4,0.11.45/0.8【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【解析】圆22(1)25-+=x y 的圆心为()1,0F ,故12p=即2p =,由()2221254x y y x⎧-+=⎪⎨=⎪⎩可得22240x x +-=,故4x =或6x =-(舍),。
专题24平面解析几何选择填空题(第三部分)
专题24平面解析几何选择填空题(第三部分)一、单选题1.下列双曲线中,渐近线方程为2y x =±的是A .2214y x -= B .2214x y -= C .2212y x -= D .2212x y -=二、填空题2.已知双曲线过点,且渐近线方程为12y x =±,则该双曲线的标准方程为.三、单选题3.双曲线22221(0,0)x y a b a b-=>>A .y =B .y =C .y =D .y x =4.已知双曲线22221(00)x y C a b a b-=>>:,(4,0)到C 的渐近线的距离为A B .2 C D .5.设双曲线22221(0,0)x y a b a b-=>>的右焦点是F ,左、右顶点分别是12,A A ,过F 作12A A 的垂线与双曲线交于B ,C 两点,若12A B A C ⊥,则双曲线的渐近线的斜率为A .12±B .C .1±D .四、填空题6.双曲线22219x y a -=()0a >的一条渐近线方程为35y x =,则=a .五、单选题7.已知双曲线的两个焦点分别为()()0,4,0,4-,点()6,4-在该双曲线上,则该双曲线的离心率为( )A .4B .3C .2D 8.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为ABC .2D 9.双曲线C :22221(0,0)x y a b a b-=>>的 一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40° B .2cos40° C .1sin50︒ D .1cos50︒10.若1a >,则双曲线2221x y a-=的离心率的取值范围是A .)+∞B .C .D .(1,2)11.若双曲线22221x y a b-=的一条渐近线经过点()3,4-,则此双曲线的离心率为A B .54 C .43 D .53 12.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >六、填空题13.记双曲线2222:1(0,0)x y C a b a b-=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值.14.设双曲线C :22221x y a b-= (a >0,b >0)的一条渐近线为y ,则C 的离心率为. 15.已知双曲线E :22x a –22y b=1(a>0,b>0).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB|=3|BC|,则E 的离心率是.16.过双曲线C :22221x y a b-=0,0a b >>()的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为-.七、单选题17.已知F 是双曲线22:145x y C -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为A .32B .52C .72D .92 18.已知F 是双曲线C :2213y x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则APF V 的面积为A .13B .1 2C .2 3D .3 2八、填空题19.设双曲线x 2–23y =1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是.20.已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,(A ,当APF ∆周长最小时,该三角形的面积为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何选择、填空高考真题练习1. (2015全国一卷理科) 已知M(x 0,y 0)就是双曲线C:2212x y -=上的一点,F 1、F 2就是C 上的两个焦点,若1MF u u u u r •2MF u u u u r<0,则y 0的取值范围就是( )A(-33,33) B(-36,36) C(223-,223) D(233-,233)2. (2015全国一卷理科)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴上,则该圆的标准方程为 。
3. (2015全国二卷理科)过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( ) A.26 B.8 C.46 D.104. (2015全国二卷理科)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A.5B.2C.3D.25. (2014全国一卷理科) 如图,圆O 的半径为1,A 就是圆上的定点,P 就是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( )6. (2014全国一卷理科)已知抛物线C :28y x =的焦点为F ,准线为l ,P 就是l 上一点,Q 就是直线PF 与C 的一个交点,若4FP FQ =u u u r u u u r,则||QF =( ) A 、72 B 、52C 、3D 、2 7. (2014全国二卷理科)设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O为坐标原点,则△OAB 的面积为( ) A 、334B 、938 C 、 6332 D 、 94 8. (2014全国二卷理科)设点M(0x ,1),若在圆O:221x y +=上存在点N,使得∠OMN=45°,则0x 的取值范围就是________、9. (2013全国一卷理科)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为2,则C 的渐近线方程为( ). A.y =14x ±B.y =13x ±C.y =12x ± D.y =±x 10. (2013全国一卷理科)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A.22=14536x y +B.22=13627x y +C.22=12718x y + D.22=1189x y +11. (2013全国二卷理科)设抛物线y 2=2px(p>0)的焦点为F,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )(A)y 2=4x 或y 2=8x (B)y 2=2x 或y 2=8x (C)y 2=4x 或y 2=16x (D)y 2=2x 或y 2=16x12. (2013全国二卷理科)已知点A(-1,0);B(1,0);C(0,1),直线y=ax+b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围就是( )(A)(0,1) (B)112⎛⎫ ⎪ ⎪⎝⎭( C) 113⎛⎤- ⎥ ⎦⎝(D) 11,32⎡⎫⎪⎢⎣⎭ 13. (2012全国一卷理科)设1F 、2F 就是椭圆E :2222x y a b +(0a b >>)的左、右焦点,P 为直线32a x =上一点,21F PF ∆就是底角为30°的等腰三角形,则E 的离心率为( ) A.12 B.23 C.34D.4514. (2012全国一卷理科)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||AB =,则C 的实轴长为( )B. C.4 D.8(2012全国二卷理科)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为( )(A)2211612x y += (B)221128x y += (C)22184x y += (D)221124x y += 15. (2012全国二卷理科)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=( ) (A)14 (B)35 (C)34 (D)4516. (2011全国一卷理科)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( ) (A)2 (B)3 (C)2 (D)317. (2011全国一卷理科)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为22。
过1F 的直线L 交C 于,A B 两点,且2ABF V 的周长为16,那么C 的方程为 18. (2011全国二卷理科)已知抛物线C:24y x =的焦点为F,直线24y x =-与C 交于A,B 两点.则cos AFB ∠=( )(A)45 (B)35 (C)35- (D)45-19. (2011全国二卷理科)已知F 1、F 2分别为双曲线C : 29x - 227y =1的左、右焦点,点A ∈C,点M 的坐标为(2,0),AM 为∠F 1AF 2∠的平分线.则|AF 2| = 、20. (2010全国一卷理科)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P 到x 轴的距离为( ) (A)32 (B)6236 21. (2010全国一卷理科)已知F 就是椭圆C 的一个焦点,B 就是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF 2FD =uu r uu r,则C 的离心率为22. (2010全国二卷理科)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为3,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =u u u r u u u r,则k =( )(A)123(D)223. (2010全国二卷理科)已知抛物线2:2(0)C y px p =>的准线为l ,过(1,0)M 3的直线与l 相交于点A ,与C 的一个交点为B .若AM MB =u u u u r u u u r,则p = .24. 下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的就是( )(A)2214y x -= (B)2214x y -= (C)2214y x -= (D)2214x y -=25. 已知双曲线()22210x y a a-=>的一条渐近线为30x y +=,则a =.26. 若双曲线22:1916x y E -= 的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于( ) A.11 B.9 C.5 D.327. 平行于直线012=++y x 且与圆522=+y x 相切的直线的方程就是( )A.052=+-y x 或052=--y x B 、 052=++y x 或052=-+y x C 、 052=+-y x 或052=--y x D 、 052=++y x 或052=-+y x28. 已知双曲线C :12222=-b y a x 的离心率54e =,且其右焦点()25,0F ,则双曲线C 的方程为( )A.13422=-y x B 、 191622=-y x C 、 116922=-y x D 、 14322=-y x29.将离心率为1e 的双曲线1C 的实半轴长a 与虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )A.对任意的,a b ,12e e >B.当a b >时,12e e >;当a b <时,12e e <C.对任意的,a b ,12e e <D.当a b >时,12e e <;当a b <时,12e e >30. 已知点A ,B ,C 在圆122=+y x 上运动,且BC AB ⊥,若点P 的坐标为)0,2(, 则||PC PB PA ++的最大值为( ) A.6 B.7 C.8 D.931. 设F 就是双曲线C 1:2222=-by a x 的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为________.32. 在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为33. 在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点。
若点P 到直线01=+-y x 的距离大于c 恒成立,则就是实数c 的最大值为 34. 一条光纤从点(-2,-3)射出,经y 轴反射后与圆相切,则反射光线所在直线的斜率为( )(A)或 (B 或 (C)或 (D)或35. 平面直角坐标系xOy 中,双曲线()22122:10,0x y C a b a b-=>>的渐近线与抛物线()22:20C x py p =>交于O,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 、36. 若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p= . 37. 抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p = .38. 已知点P 与Q 的横坐标相同,P 的纵坐标就是Q 的纵坐标的2倍,P 与Q 的轨迹分别为双曲线1C 与2C .若1C 的渐近线方程为3y x =±,则2C 的渐近线方程为 .39. 过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A,B 两点,则AB =( )(A).433(B)23 (C)6 (D)43 40. 设直线l 与抛物线24y x =相交于A,B 两点,与圆()()22250x y r r -+=>相切于点M,且M 为线段AB的中点、若这样的直线l 恰有4条,则r 的取值范围就是( )(A)()13,(B)()14, (C)()23, (D)()24, 41. 已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点()2,3 ,且双曲线的一个焦点在抛物线247y x = 的准线上,则双曲线的方程为( )(A)2212128x y -= (B)2212821x y -=(C)22134x y -=(D)22143x y -= 42. 如图,设抛物线24y x =的焦点为F,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比就是( )A 、 11BF AF --B 、 2211BF AF --C 、 11BF AF ++D 、 2211BF AF ++43. 双曲线2212x y -=的焦距就是 ,渐近线方程就是 .44. 已知直线l:x+ay-1=0(a ∈R)就是圆C:224210x y x y +--+=的对称轴、过点A(-4,a)作圆C 的一条切线,切点为B,则|AB|=( )A 、2B 、42C 、6D 、21045. 设双曲线22221x y a b-=(a>0,b>0)的右焦点为1,过F 作AF 的垂线与双曲线交于B,C 两点,过B,C 分别作AC,AB 的垂线交于点D 、若D 到直线BC 的距离小于22a ab ++,则该双曲线的渐近线斜率的取值范围就是( )A 、(-1,0)⋃(0,1)B 、(-∞,-1)⋃(1,+∞)C 、(-2,0)⋃(0,2)D 、(-∞,-2)⋃(2,+∞)46. 设21,F F 分别就是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为__________47. 设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________、48. 直线l:y=kx+1与圆O:x 2+y 2=1相交于A,B 两点,则“k=1”就是“△OAB 的面积为”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分又不必要条件 49. 设P,Q 分别为圆x 2+(y ﹣6)2=2与椭圆+y 2=1上的点,则P,Q 两点间的最大距离就是( )A . 5B.+C. 7+D. 650. 若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的( )A.离心率相等 B 、虚半轴长相等 C 、 实半轴长相等 D 、焦距相等51. 已知F 1,F 2就是椭圆与双曲线的公共焦点,P 就是它们的一个公共点,且∠F 1PF 2=π3,则椭圆与双曲线的离心率的倒数之与的最大值为( )A 、433B 、233C.3D.252. 如图右,正方形ABCD 与正方形DEFG 的边长分别为,()a b a b <,原点O 为AD 的中点,抛物线22(0)y px p =>经过,C F 两点,则ba= 53. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 、 54. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值就是 、55. 在平面直角坐标系中,,A B 分别就是x 轴与y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( )A 、45πB 、34πC 、(625)π-D 、54π56. 过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b+=>>相交于,A B ,若M 就是线段AB 的中点,则椭圆C 的离心率为57. 已知点(2,3)A -在抛物线C:22y px =的准线上,过点A 的直线与C 在第一象限相切于点B,记C 的焦点为F,则直线BF 的斜率为( ) A.12 B.23 C.34 D.4358. 已知椭圆C:22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A,B,线段MN 的中点在C 上,则||||AN BN += 、59. 直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为( ) (A)22 (B)42 (C)2 (D)4 60. 已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C的离心率之积为32,则2C的渐近线方程为( ) (A)20x y ±=(B)20x y ±=(C)20x y ±=(D)20x y ±=61. 若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为62. 若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合,则该抛物线的准线方程为 63. 已知F 为抛物线y 2=x 的焦点,点A,B 在该抛物线上且位于x 轴的两侧,•=2(其中O 为坐标原点),则△ABO 与△AFO 面积之与的最小值就是( ) A. 2 B. 3C.D.64. 设m ∈R,过定点A 的动直线x+my=0与过定点B 的动直线mx ﹣y ﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值就是65. 已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A)221520x y -= (B)221205x y -=(C)2233125100x y -= (D)2233110025x y -=66. 设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率就是__________67. 设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为( ) A 、34 B 、35 C 、49 D 、3 68. 已知直线02=-+y ax 与圆心为C 的圆()()4122=-+-a y x 相交于B A ,两点,且 ABC ∆为等边三角形,则实数=a _________、69. 已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为__________.70. 若双曲线22221x y a b-=3则其渐近线方程为( )A 、 y =±2xB 、 y =2C 、12y x =±D 、2y x = 71. 直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A 、43 B 、2 C 、83 D 72. 双曲线2214x y -=的顶点到其渐近线的距离等于( )A.25 B.4573. 椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________74. 已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程就是 ( ) A 、 214x -= B .22145x y -= C .22125x y -= D .212x = 75. 已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的( )A 、实轴长相等B 、虚轴长相等C 、焦距相等D 、 离心率相等76. 设12,F F 就是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 就是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30o ,则C 的离心率为 77. 双曲线191622=-y x 的两条渐近线的方程为 、78. 在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a bya x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d 、若126d d =,则椭圆的离心率为 、79. 过点引直线l 与曲线y =A,B 两点,O 为坐标原点,当∆AOB 的面积取最大值时,直线l 的斜率等于 ( )A 、B 、C 、D 、 80. 抛物线22(0)x py p =>的焦点为F,其准线与双曲线22133x y -=相交于,A B 两点,若ABF ∆为等边三角形,则P = 81.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F C 与过原点的直线相交于A 、B 两点,4,.10,6,cos ABF ,5AF BF AB AF C e ==∠=连接若则的离心率= 、 82. 过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB 的方程为( ) (A)2x+y-3=0 (B)2x-y-3=0 (C)4x-y-3=0 (D)4x+y-3=083. 抛物线C1:y= 12p x2(p >0)的焦点与双曲线C2: 2213x y -=的右焦点的连线交C1于第一象限的点M 、若C1在点M 处的切线平行于C2的一条渐近线,则p=( )84. 设AB 就是椭圆Γ的长轴,点C 在Γ上,且4CBA π∠=,若AB=4,2BC =,则Γ的两个焦点之间的距离为________85. 抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离就是( )(A)12(B)32 (C)1 (D)386. 已知双曲线2222=1x y a b-(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( ).A.1B.32C.2D.387. 如图,F 1,F 2就是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别就是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率为( )A. 2B. 3C.32D.6288. 设F 为抛物线C:y 2=4x 的焦点,过点F (−1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点.若|FQ |=2,则直线l 的斜率等于 . 89. 已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别就是圆12,C C 上的动点,P为x 轴上的动点,则PM PN +的最小值为( )A 、 524-B 、171-C 、622-D 、17。