超声波探伤与测厚
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声波探伤与测厚实验
【实验目的】
1、通过实验了解超声波探伤的基本原理,并掌握超声波探伤仪的使用及基本探伤方法。
2、探测不同样块的厚度及不同材料中超声波的传播速度。
【实验原理】
一、超声波探伤原理
1.超声波的传播特性
声波是由物体的机械振动所发出的波动,它在均匀弹性介质中匀速传播,其传播距离与时间成正比。当声波的频率超过20000赫时,人耳已不能感受,即为超声波。声波的频率、波长和声速间的关系
是:
f c =λ (1)
式中 λ——波长;c ——波速;f ——频率。
由公式可见,声波的波长与频率成反比,超声波则具有很短的波长。
超声波探伤技术,就是利用超声波的高频率和短波长所决定的传播特性。即:
(1)具有束射性(又叫指向性),如同一束光在介质中是直线传播的,可以定向控制。
(2)具有穿透性,频率越高,波长越短,穿透能力越强,因此可以探测很深(尺寸大)的零件。穿透的介质超致密,能量衰减越小,所以可用于探测金属零件的缺陷。
(3)具有界面反射性、折射性,对质量稀疏的空气将发生全反射。声波频率越高,它的传播特性越和光的传播特性接近。如超声波的反射、折射规律完全符合光的反射、折射规律。
利用超声波在零件中的匀速传播以及在传播中遇到界面时发生反射、折射等特性,即可以发现工件中的缺陷。因为缺陷处介质不再连续,缺陷与金属的界面就要发生反射等。如图1所示超声波在工件中传播,没有伤时,如图1a ,声波直达工件底面,遇界面全反射回来。当工件中有垂直于声波传播方向的伤,声波遇到伤界面也反射回来,如图1b 。当伤的形状和位置决定界面与声波传播方向有角度时,将按光的反射规律产生声波的反射传播。
2.超声波探伤仪的工作原理
图1 超声波在工件中的传播
超声波探伤仪首先是个超声波发生器,它利用交流电源和振荡电路,产生高频电脉冲,并可根据探伤要求调节脉冲的频率及发射能量。超声波探伤仪还具有将接受到的电脉冲依其能量的大小、时间的先后通过荧光显示屏显示出来的功能。其工作原理示于图2。发生器使示波管产生水平扫描线(一条亮线,代表时间轴),接收放大器使接受到的脉冲信号作用于示波管的垂直偏转板,并按信号收到的时间先后将水平扫描线的相应部位拉起脉冲值。始脉冲是仪器发射出去的原始脉冲信号,伤脉冲是超声波自工件内缺陷处返回的脉冲信号,底脉冲则是超声波自工件底部返回来的脉冲信号。由于超声波在工件内是匀速传播的,因此在工件内走过的路程越长,返回的时间越晚,所以底脉冲要比伤脉冲出现的晚,它们在荧光屏上的水平距离反应了超声波在工件内走过的距离。因此有:
a b b I d = 则 I b b d a
⋅= (2)
式中:d ——工件表面至缺陷的距离。
I ——沿探测方向的工件厚度。
b ——伤脉冲到始脉冲的扫描刻度。
a b ——底脉冲到始脉冲的扫描刻度。
超声波在介质中传播是有能量衰减的。走过的距离越长,反射回来的能量也越小,表现在接收回来的脉冲高度要减少。如果伤较小,少量超声波自伤处反射回来,将有一个矮的伤脉冲,此时大部分能量抵达工件底面,底脉冲仍较高。如果伤面积很大,则伤脉冲就会高,相应的底脉冲就会很小。如遇到伤很大,或其界面又不垂直于超声波入射的方向(如图1c ),则伤脉冲没有(反射波收不到),底脉冲也可能没有。
超声波探头是超声波探伤仪的重要附件,工程上所用的探头分为直探头和斜探头两种。探头又叫做换能器,探伤仪发射出来的是高频电脉冲,利用探头上的压电晶体(常用锆钛酸图2 探伤仪工作原理示意图
铅)将电脉冲转换成机械振动——超声波。探头又可以将由工件上接收到的超声波转换成电脉冲,输给接收放大电路,再加于示波管上。
直探头表面向工件发射的是垂直于工件表面的超声波。斜探头是在压电晶体表面上嵌有具一定倾角的有机玻璃块而构成。斜探头向工件表面发射的是倾斜入射的超声波,探头上均应标明其倾角数值,以便于计算其在工件内的折射角。但在工程上不需要计算,它可以通过试验显示出来。如对于焊缝的检验,多利用斜探头探伤,如图3所示。探头在位置I 处,声波恰传播到钢板(焊缝)底部, 1L 叫一次声程。探头在位置II 处,声波经一次反射后抵达钢板(焊缝)顶部,2L 为二次声程。对于壁厚为b 的钢板,1L 、2L 为:
βcos 1b
L = (3)
βcos 22b
L =
(4)
式中 1L ——一次声程;
2L ——二次声程;
b ——钢板厚度; β——与斜探头的角度有关,此处视为在钢板内的折射角。
实际上, 1L 与2L 的数值不需要操作者计算,它可以借助一个具有β为顶角的三角标准样块来确定。当将斜探头自钢板边缘向后移动到I 位置时,荧光屏上出现一个底脉冲,记住它的扫描刻度。再将斜探头沿三角标准样块的斜边自上而下移动时,底脉冲沿荧光屏的扫描线自左向右移动。当移至刚才的扫描刻度上时,测读该处样块的长度即可得知1L (或2L )的实际值。
图3 二次声程法
当钢板或焊缝内有缺陷时,如图4所示,必在荧光屏 (见图3) I 及II 之间有伤脉冲出现,根据伤脉冲的扫描刻度,按比例可计算出S 值,并可依下式确定伤的位置,
βcos 2⋅-=S d h
(5)
βsin ⋅=S l
(6)
二、超声波测厚原理
超声波测量厚度的原理与光波测量原理相似。探头发射的超声波脉冲到达被测物体并在物体中传播,到达材料分界面时被反射回探头,通过精确测量超声波在材料中传播的时间来确定被测材料的厚度。
【实验内容与步骤】
一、超声波探伤实验内容:
1.探测一块无缺陷的试块,分别从试块的两个不同厚度方向进行探测,观察其始脉冲与底脉冲扫描刻度值的差异,建立起扫描时间与超声波传播距离成正比的概念。见图6。由于l >l 1则:t 必大于t 1,且11t t l l =。如果不成比例,应查找原因。
根据同一原理(又称图象比例法)测定人工试样内平底孔到探测面的距离,如图7。
图4 利用二次声程法探伤
图5 探测一个样块的两个不同厚度方向
图6 图象比例法