《正弦定理》教学设计

合集下载

《正弦定理》教学设计方案

《正弦定理》教学设计方案

《正弦定理》教学设计方案教学目标:1.理解并掌握正弦定理的概念和原理。

2.能够独立地应用正弦定理解决实际问题。

3.培养学生的逻辑思维和分析问题的能力。

4.培养学生的团队合作和沟通表达能力。

教学重点:1.正弦定理的概念和原理2.正弦定理的应用教学难点:1.正弦定理解决实际问题的能力培养2.学生团队合作和沟通表达能力的培养教学准备:1.教师准备正弦定理的相关知识和实例。

2.准备教学案例和习题。

教学过程:Step 1:导入新知识(15分钟)1.教师引导学生回顾三角函数的基本概念,并简要介绍正弦函数。

2.教师出示一个三角形ABC,问学生能否推导出三角形的边长与角度之间的关系。

3.引导学生思考和讨论,最终得出正弦定理的原理。

Step 2:正弦定理的概念和原理(30分钟)1.教师给出正弦定理的定义和公式,并解释每个符号的含义。

2.教师通过几个具体的例子,演示如何应用正弦定理求解三角形的边长和角度。

3.学生跟随教师的指导,完成一些练习题,巩固概念和原理。

Step 3:正弦定理的应用(30分钟)1.教师提供更加复杂的实际问题,并引导学生用正弦定理解决问题。

2.学生分成小组,自主解决问题并进行讨论。

3.学生代表小组报告解题思路和结果,让其他同学参与讨论。

Step 4:归纳总结(15分钟)1.教师和学生一起归纳总结正弦定理的重要概念和应用。

Step 5:延伸拓展(15分钟)1.提供一些更加复杂的问题,让学生挑战运用正弦定理解决。

2.鼓励学生提出自己的问题,并尝试用正弦定理解决。

Step 6:作业布置(5分钟)1.布置一些选择题和应用题,让学生巩固和运用所学的知识。

2.强调作业的重要性,并提醒学生按时完成并及时讨论解答中遇到的问题。

教学反思:通过本节课的教学设计,学生可以在实际问题中运用正弦定理解决问题,培养学生的逻辑思维和分析问题的能力,同时也培养了学生的团队合作和沟通表达能力。

教师可以根据学生的反馈情况和实际教学情况进行适当的调整和改进,以提高教学效果。

正弦定理教案

正弦定理教案

正弦定理教案一、教学目标1.理解正弦定理的概念,掌握计算正弦定理的方法。

2.能够判断已知条件能否求解三角形的某个角或某个边。

3.能够运用正弦定理解决相关的实际问题。

二、教学重点1.正弦定理的公式和应用。

2.正弦定理与其他三角函数定理的关系。

三、教学难点1.运用正弦定理求解实际问题。

2.能够判断已知条件能否求解三角形的某个角或某个边。

四、教学内容1. 正弦定理的概念正弦定理是解决三角形中一个角和它所对的边以及另外两边之间的关系的定理。

在任意三角形ABC中,有如下公式成立:$a/\\sin A = b/\\sin B = c/\\sin C$其中,a,b,c分别为三角形的三条边,A,B,C分别为对应的三个内角。

2. 正弦定理的公式在上述公式中,如果已知三角形的两边和其中一个对角,则可以根据正弦定理求出第三边的长度。

也可以根据已知的三角形的三条边,利用正弦定理求出三个内角的大小。

3. 正弦定理的应用3.1. 求解三角形的边长已知三角形的两边和其中一个角,可以利用正弦定理求出第三边的长度。

具体地,设三角形ABC中,已知AB = 8cm,AC = 9cm,∠BAC = 30°,求BC的长度。

解:根据正弦定理的公式,有$BC/\\sin 30°=9/\\sin 150°$化简得,BC=18因此,BC的长度为18cm。

3.2. 求解三角形的角度已知三角形的三条边,可以根据正弦定理求出三个内角的大小。

具体地,设三角形ABC中,已知AB = 8cm,BC = 10cm,AC = 12cm,求∠A,∠B和∠C的大小。

解:根据正弦定理的公式,有$a/\\sin A = b/\\sin B = c/\\sin C$代入已知条件,得到:$8/\\sin A = 10/\\sin B = 12/\\sin C$化简得到:$\\sin A = 8/10=0.8, \\sin B=10/12=0.83, \\sin C=8/12=0.67$利用反正弦函数,可以求得:$\\angle A=\\arcsin{0.8}\\approx53.1°$$\\angle B=\\arcsin{0.83}\\approx60.4°$$\\angle C=\\arcsin{0.67}\\approx66.5°$因此,$\\angle A\\approx53.1°$,$\\angle B\\approx60.4°$和$\\angleC\\approx66.5°$。

《正弦定理》优秀教案

《正弦定理》优秀教案

《正弦定理》教学设计一、教学目标分析1、知识与技能:通过对锐角三角形中边与角的关系的探索,发现正弦定理;掌握正弦定理的内容及其证明方法;能利用正弦定理解三角形以及利用正弦定理解决简单的实际问题。

2、过程与方法:让学生从实际问题出发,结合以前学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理,使学生体会完全归纳法在定理证明中的应用;让学生在应用定理解决问题的过程中更深入的理解定理及其作用。

3、情感态度与价值观:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,发现并证明正弦定理。

从发现与证明的过程中体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲。

培养学生处理解三角形问题的运算能力和探索数学规律的推理能力,并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。

二、教学重点、难点分析重点:通过对锐角三角形边与角关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。

难点:①正弦定理的发现与证明过程;②已知两边以及其中一边的对角解三角形时解的个数的判断。

三、教法与学法分析本节课是教材第一章《解三角形》的第一节,所需主要基础知识有直角三角形的边角关系,三角函数相关知识。

在教法上,根据教材的内容和编排的特点,为更有效的突出重点,突破难点,教学中采用探究式课堂教学模式,首先从学生熟悉的锐角三角形情形入手,设计恰当的问题情境,将新知识与学生已有的知识建立起密切的联系,通过学生自己的亲身体验,使学生经历正弦定理的发现过程,激发学生的求知欲,调动学生主动参与的积极性,引导学生尝试运用新知识解决新问题,即在教学过程中,让学生的思维由问题开始,通过猜想的得出、猜想的探究、定理的推导等环节逐步得到深化。

教学过程中鼓励学生合作交流、动手实践,通过对定理的推导、解读、应用,引导学生主动思考、总结、归纳解答过程中的内在规律,形成一般结论。

正弦定理教案职中

正弦定理教案职中

正弦定理教案职中
一、教学目标
1. 理解正弦定理的概念和公式
2. 能够运用正弦定理解决实际问题
3. 培养学生的逻辑思维和数学推理能力
二、教学重点和难点
1. 重点:正弦定理的概念和公式
2. 难点:运用正弦定理解决实际问题的能力
三、教学内容
1. 正弦定理的概念和公式
2. 正弦定理的证明
3. 正弦定理在三角形中的应用
四、教学过程
1. 导入:通过一个实际问题引入正弦定理的概念,激发学生的学习兴趣
2. 讲解:介绍正弦定理的定义和公式,并进行相关的证明,让学生理解其原理和推导过程
3. 练习:设计一些相关的练习题,让学生通过计算和推理来巩固所学内容
4. 拓展:引导学生思考正弦定理在实际问题中的应用,培养他们的数学建模能力
5. 总结:对本节课所学内容进行总结,并强调正弦定理的重要性和实际应用价值
五、教学手段
1. 多媒体课件:用于展示相关的图形和计算过程
2. 板书:整理和归纳相关的公式和推理过程
3. 实物模型:通过三角形模型让学生直观地理解正弦定理的原理
4. 计算工具:让学生通过计算工具进行实际计算和验证
六、教学评价
1. 课堂练习:通过课堂练习来检验学生对正弦定理的掌握程度
2. 作业布置:设计相关的作业题目,让学生在课后进行巩固和拓展
3. 学习反馈:及时对学生的学习情况进行反馈和指导,帮助他们更好地掌握正弦定理的应用
七、教学反思
1. 对本节课的教学效果进行总结和评估
2. 总结学生的学习情况和问题反馈,为下一节课的教学提供参考
3. 不断完善教学内容和方法,提高教学效果。

正弦定理数学教案优秀5篇

正弦定理数学教案优秀5篇

正弦定理数学教案优秀5篇《正弦定理》教案篇一《正弦定理》教案一、教学内容分析本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。

本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。

因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。

二、学情分析对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。

根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。

三、设计思想:培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。

如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。

”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。

本节“正弦定理”的教学,将遵循这个原则而进行设计。

四、教学目标:1、在创设的问题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,探索和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性。

《正弦定理》教案(含答案)

《正弦定理》教案(含答案)

《正弦定理》教案(含答案)章节一:正弦定理的引入教学目标:1. 让学生理解正弦定理的概念和意义。

2. 让学生掌握正弦定理的数学表达式。

3. 让学生了解正弦定理的应用场景。

教学内容:1. 引入正弦定理的背景和意义。

2. 介绍正弦定理的数学表达式:a/sinA = b/sinB = c/sinC。

3. 解释正弦定理的证明过程。

教学活动:1. 通过实际例子引入正弦定理的概念。

2. 引导学生推导正弦定理的数学表达式。

3. 让学生进行小组讨论,探索正弦定理的应用场景。

练习题:1. 解释正弦定理的概念。

2. 给出一个三角形,让学生计算其各边的比例。

章节二:正弦定理的应用教学目标:1. 让学生掌握正弦定理在三角形中的应用。

2. 让学生能够解决实际问题中涉及的三角形问题。

教学内容:1. 介绍正弦定理在三角形中的应用方法。

2. 讲解正弦定理在实际问题中的应用示例。

教学活动:1. 通过示例讲解正弦定理在三角形中的应用方法。

2. 让学生进行小组讨论,探讨正弦定理在实际问题中的应用。

练习题:1. 使用正弦定理计算一个三角形的面积。

2. 给出一个实际问题,让学生应用正弦定理解决问题。

章节三:正弦定理的证明教学目标:1. 让学生理解正弦定理的证明过程。

2. 让学生掌握正弦定理的证明方法。

教学内容:1. 介绍正弦定理的证明过程。

2. 解释正弦定理的证明方法。

教学活动:1. 通过几何图形的分析,引导学生推导正弦定理的证明过程。

2. 让学生进行小组讨论,理解正弦定理的证明方法。

练习题:1. 解释正弦定理的证明过程。

2. 给出一个三角形,让学生使用正弦定理进行证明。

章节四:正弦定理在实际问题中的应用教学目标:1. 让学生掌握正弦定理在实际问题中的应用。

2. 让学生能够解决实际问题中涉及的三角形问题。

教学内容:1. 介绍正弦定理在实际问题中的应用方法。

2. 讲解正弦定理在实际问题中的应用示例。

教学活动:1. 通过示例讲解正弦定理在实际问题中的应用方法。

正弦定理教学设计最新5篇

正弦定理教学设计最新5篇

正弦定理教学设计最新5篇正弦定理教学设计篇一《正弦定理》教学设计茂名市实验中学张卫兵一、教学目标分析1、知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理解决一些简单的三角形度量问题。

2、过程与方法:让学生从实际问题出发,结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;让学生在应用定理解决问题的过程中更深入地理解定理及其作用。

3、情感、态度与价值观:通过正弦定理的发现与证明过程体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。

二、教学重点、难点分析重点:通过对任意三角形边长和角度关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。

难点:正弦定理的发现并证明过程以及已知两边以及其中一边的对角解三角形时解的个数的判断。

三、教学基本流程1、创设问题情境,引出问题:在三角形中,已知两角以及一边,如何求出另外一边;2、结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;3、分析正弦定理的特征及利用正弦定理可解的三角形的类型;4、应用正弦定理解三角形。

四、教学情境设计五、教学研究1、新课标倡导积极主动、勇于探索的学习方式,使学生在自主探究的过程中提高数学思维能力。

本设计从生活中的实际问题出发创设了一系列数学问题情境来引导学生质疑、思考,让学生在“疑问”、“好奇”、“解难”中探究学习,激发了学生的学习兴趣,调动了学生自主学习的积极性,从而有效地培养学生了的数学创新思维。

2、新课标强调数学教学要注重“过程”,要使学生学习数学的过程成为在教师的引导下进行“再创造”过程。

本设计展示了一个先从特殊的直角三角形中正弦的定义出发探索A的正弦与B的正弦的关系从而发现正弦定理,再将一般的三角形与直角三角形联系起来(在一般的三角形中构造直角三角形)进而在一般的三角形发现正弦定理的过程,使学生不但体会到探索新知的方法而且体验到了发现的乐趣,起到了良好的教学效果。

正弦定理教学设计

正弦定理教学设计
设计:整堂课围绕“一切为了学生发展”的教学原则,突出:①动——师生互动、共同探索;②导——教师指导、循序渐进。
(1)新课引入——提出问题,激发学生的求知欲。
(2)掌握正弦定理的推导证明——分类讨论,数形结合,动脑思考,由特殊到一般,组织学生自主探索,获得正弦定理及证明过程。
(3)例题处理——始终从问题出发,层层设疑,让他们在探索中自得知识。
八、帮助和总结
帮助学生学习正弦定理,以及运用正弦定理解决实际问题,为学习下节的余弦定理做准备。
引导学生理清题意,研究设计方案,并画出图形,探索解决问题的方法.
启发学生发现问题实质是:已知△ABC中∠B、∠C和BC长度,求AB距离.即:已知三角形中两角及其夹边,求其它边.
创设情境,提出问题,激发学生兴趣引出课题,探究三角形的边(三边)、角(三角)关系
探寻特例
提出猜想
回顾直角三角形中边角关系.如图:
引导学生寻求联系,发现规律深化学生对直角三角形边角关系的理解.
利用c边相同,寻求形式的和谐统一,即:
在Rt△ABC中
思考:在斜三角中,上式关系是否成立?
引导学生经历经历由特殊到一般的发现过程
逻辑推理
证明猜想
正弦定理及其推导在锐角三角形中 Nhomakorabea作CD AB于D,有
在钝角三角形中
引导学生自主探究对于一般的三角形 是否仍然成立
三、学习者特征分析
本节授课对象是高一学生,是在学生学习了必修④基本初等函数Ⅱ和三角恒等变换的基础上,由实际问题出发探索研究三角形边角关系,得出正弦定理。高一学生对生产生活问题比较感兴趣,由实际问题出发可以激起学生的学习兴趣,使学生产生探索研究的愿望。
四、教学策略选择与设计
策略:运用“发现问题—自主探究—尝试指导—合作交流”的教学模式

正弦定理教案

正弦定理教案

正弦定理教案【教学目标】1. 掌握正弦定理的概念和使用方法。

2. 通过实际问题的训练,培养学生运用正弦定理解决实际问题的能力。

3. 培养学生的合作能力和解决问题的思维能力。

【教学重点】1. 正弦定理的概念和使用方法。

2. 实际问题的训练。

【教学难点】1. 正确理解和运用正弦定理。

2. 解决实际问题。

【教学准备】教师:黑板、粉笔、投影仪学生:教材、习题册【教学过程】Step 1 引入新知识(5分钟)教师通过投影仪展示一张三角形ABC和一些已知的角度和边长,问学生能否求出其他未知的角度和边长。

引导学生思考并观察。

Step 2 正弦定理的推导(10分钟)通过引导学生的思考和讨论,教师引出正弦定理的概念。

然后,教师介绍正弦定理的公式并推导公式的过程。

Step 3 正弦定理的运用(25分钟)教师给出一些简单的三角形问题,引导学生运用正弦定理进行求解。

例如:已知一个三角形的两个边长和它们对应的角度,求第三边的长度;已知一个三角形的两个角度和它们对应的边长,求第三角的角度。

Step 4 巩固练习(25分钟)教师让学生分小组进行练习,运用正弦定理解决各种实际问题。

例如:一个高度为h的杆子倾斜在地面上,角度为α,杆子的投影长度为d,求杆子的实际长度;已知一座塔的高度h,角度α和β,求塔底到塔顶的距离。

Step 5 拓展应用(15分钟)教师给出一些更复杂的问题,让学生进行思考和讨论,运用正弦定理解决问题。

例如:已知一个三角形的两个角度和一边长,求其他两个边长。

Step 6 小结(5分钟)教师对本节课的重点内容进行总结和归纳,确保学生对正弦定理的掌握。

【课后作业】1. 完成课后习题册中的练习题。

2. 预习下节课的内容。

【教学反思】本堂课通过引入实际问题和合作学习的方式,成功地引导学生正确理解和运用正弦定理。

通过举一反三的方法,培养了学生解决实际问题的思维能力。

同时,本节课的重点是正弦定理的概念和使用方法,学生对此部分掌握良好。

《正弦定理》教学设计

《正弦定理》教学设计

《正弦定理》教学设计教学目标:1.理解正弦定理的概念及其应用领域;2.掌握正弦定理的公式及其推导过程;3.能够灵活运用正弦定理解决三角形的边长、角度等问题。

教学重点:1.正弦定理的概念及其应用领域;2.正弦定理的公式及其推导过程。

教学难点:1.正弦定理推导过程的理解与应用;2.正弦定理在实际问题中的应用。

教学准备:教学课件、白板、多边形模型(如棋盘、积木等)。

教学过程:Step 1 引入1.准备多边形模型,并让学生观察、讨论其特点。

引导学生思考如何通过测量边长和角度来确定未知边长或角度。

2.提问:在三角形中是否存在一种关系能够通过已知边长和角度来确定未知边长或角度?引出正弦定理的问题。

Step 2 理解1. 通过展示由对边、对角所形成的三角形及其关系,引出正弦定理的概念。

并将其定义为“在任意三角形ABC中,设a、b、c分别为与之对应的边长,A、B、C分别为与之对应的角度,则有a/sinA = b/sinB =c/sinC。

”2.在白板上写下正弦定理的公式,并解释公式中各个量的含义,帮助学生理解公式的用途和意义。

Step 3 推导1.根据在多边形模型上得出的直观性结论,引导学生思考如何通过已知边长和角度推导出正弦定理的公式。

2.分组讨论,每组根据现有的已知量(如三角形的两个边长和一个对角)进行推导,然后汇报给全班。

Step 4 操练1.针对不同情况,设计一些能够通过正弦定理解决的实际问题。

例如:已知一幢高楼的高度、观察角和距离,求观察角对应的距离。

2.引导学生使用正弦定理解决问题,并给予必要的指导和讲解。

Step 5 总结1.通过回顾整个学习过程,总结正弦定理的概念、公式及其推导过程。

2.强调正弦定理在解决实际问题中的应用,并提醒学生关注使用条件和注意事项。

Step 6 拓展/应用1.将正弦定理与三角函数的关系进行对比,引导学生进一步理解正弦定理的特点和应用范围。

2.设计一些拓展练习,让学生更加熟练地运用正弦定理解决问题。

高中数学《正弦定理》教案4篇

高中数学《正弦定理》教案4篇

高中数学《正弦定理》教案4篇高中数学《正弦定理》教案1教材地位与作用:本节学问是必修五第一章《解三角形》的第一节内容,与学校学习的三角形的边和角的基本关系有亲密的联系与判定三角形的全等也有亲密联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。

因此,正弦定理的学问特别重要。

学情分析:作为高一同学,同学们已经把握了基本的三角函数,特殊是在一些特别三角形中,而同学们在解决任意三角形的边与角问题,就比较困难。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探究及证明,已知两边和其中一边的对角解三角形时推断解的个数。

(依据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)教学目标分析:学问目标:理解并把握正弦定理的证明,运用正弦定理解三角形。

力量目标:探究正弦定理的证明过程,用归纳法得出结论。

情感目标:通过推导得出正弦定理,让同学感受数学公式的干净对称美和数学的实际应用价值。

教法学法分析:教法:采纳探究式课堂教学模式,在老师的启发引导下,以同学自主和合作沟通为前提,以“正弦定理的发觉”为基本探究内容,以生活实际为参照对象,让同学的思维由问题开头,到猜测的得出,猜测的探究,定理的推导,并逐步得到深化。

学法:指导同学把握“观看——猜测——证明——应用”这一思维方法,实行个人、小组、集体等多种解难释疑的尝试活动,将自己所学学问应用于对任意三角形性质的探究。

让同学在问题情景中学习,观看,类比,思索,探究,动手尝试相结合,增添同学由特别到一般的数学思维力量,锲而不舍的求学精神。

教学过程(一)创设情境,布疑激趣“爱好是最好的老师”,假如一节课有个好的开头,那就意味着胜利了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠a=47°,∠b=53°,ab 长为1m,想修好这个零件,但他不知道ac和bc的长度是多少好去截料,你能帮师傅这个忙吗?”激发同学关心别人的热忱和学习的爱好,从而进入今日的学习课题。

正弦定理教案

正弦定理教案

正弦定理教案正弦定理教案「篇一」教学目标:1.让学生从已有的几何知识出发,通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题。

2.通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。

3.通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。

4.培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

教学重点与难点教学重点:正弦定理的发现与证明;正弦定理的简单应用。

教学难点:正弦定理的猜想提出过程。

教学准备:制作多媒体,学生准备计算器,直尺,量角器。

教学过程:(一)结合实例,激发动机师生活动:师:每天我们都在科技楼里学习,对科技楼熟悉吗?生:当然熟悉。

师:那大家知道科技楼有多高吗?学生不知道。

激起学生兴趣!师:给大家一个皮尺和测角仪,你能测出楼的高度吗?学生思考片刻,教师引导。

生1:在楼的旁边取一个观测点C,再用一个标杆,利用三角形相似。

师:方法可行吗?生2:B点位置在楼内不确定,故BC长度无法测量,一次测量不行。

师:你有什么想法?生2:可以再取一个观测点D。

师:多次测量取得数据,为了能与上次数据联系,我们应把D点取在什么位置?生2:向前或向后师:好,模型如图(2):我们设正弦定理教学设计,正弦定理教学设计 ,CD=10,那么我们能计算出AB吗?生3:由正弦定理教学设计求出AB。

师:很好,我们可否换个角度,在正弦定理教学设计中,能求出AD,也就求出了AB。

正弦定理教案

正弦定理教案

正弦定理教案一、教案概述本教案旨在介绍高中数学中的正弦定理,帮助学生理解和掌握正弦定理的概念和应用。

通过本节课的学习,学生将了解到正弦定理在三角形中的应用,并能够正确地运用它来解决相关问题。

二、教学目标1. 了解正弦定理的概念和公式;2. 掌握正弦定理的推导过程;3. 能够灵活运用正弦定理解决相关问题;4. 培养学生的逻辑思维和解决问题的能力。

三、教学内容1. 正弦定理的概念介绍;2. 正弦定理的公式推导;3. 正弦定理的应用实例。

四、教学步骤1. 引入新知识通过一个生活场景引入正弦定理的概念,例如:在实际测量中,我们如何确定高楼的高度或是河流的宽度等等。

2. 学习正弦定理的公式推导a. 引导学生对三角形中的角和边进行编号,并介绍正弦定理的公式:$\\frac{a}{\\sin A}=\\frac{b}{\\sin B}=\\frac{c}{\\sin C}$;b. 利用几何图形和三角函数的知识,推导正弦定理的公式。

3. 练习应用a. 提供一些实际问题,并要求学生运用正弦定理解决;b. 引导学生分析问题,确定需要使用的公式和计算步骤;c. 让学生在小组内进行讨论和解决问题。

4. 总结与展示a. 总结正弦定理的概念和公式;b. 引导学生思考:正弦定理的应用范围和注意事项。

五、教学资源1. 教学板书:正弦定理的公式推导过程、实例问题和解决步骤;2. 视频或图片素材,用于引入新知识。

六、教学评估1. 对学生的学习态度和参与度进行评估;2. 对学生解决问题的能力进行评估;3. 对学生对正弦定理的理解和应用能力进行评估。

七、教学延伸1. 可以引入余弦定理的概念和公式,与正弦定理进行比较和应用;2. 可以安排学生进行实际测量,应用正弦定理求解一些实际问题;3. 可以组织学生进行小组讨论和展示,分享他们对正弦定理的理解和应用经验。

八、教学反思通过本节课的教学,学生对正弦定理有了更深入的了解,并能够熟练地运用它解决实际问题。

关于正弦定理数学教案5篇

关于正弦定理数学教案5篇

关于正弦定理数学教案5篇关于正弦定理数学教案5篇本节内容是正弦定理教学的第一节课,其主要任务是引入并证明正弦定理.做好正弦定理的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识。

下面给大家分享正弦定理数学教案,欢迎阅读!正弦定理数学教案【篇1】一、教材分析《正弦定理》是人教版教材必修五第一章《解三角形》的第一节内容,也是三角形理论中的一个重要内容,与初中学习的三角形的边和角的基本关系有密切的联系。

在此之前,学生已经学习过了正弦函数和余弦函数,知识储备已足够。

它是后续课程中解三角形的理论依据,也是解决实际生活中许多测量问题的工具。

因此熟练掌握正弦定理能为接下来学习解三角形打下坚实基础,并能在实际应用中灵活变通。

二、教学目标根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。

能力目标:探索正弦定理的证明过程,用归纳法得出结论,并能掌握多种证明方法。

情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。

三、教学重难点教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

四、教法分析依据本节课内容的特点,学生的认识规律,本节知识遵循以教师为主导,以学生为主体的指导思想,采用与学生共同探索的教学方法,命题教学的发生型模式,以问题实际为参照对象,激发学生学习数学的好奇心和求知欲,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化,并且运用例题和习题来强化内容的掌握,突破重难点。

即指导学生掌握“观察——猜想——证明——应用”这一思维方法。

学生采用自主式、合作式、探讨式的学习方法,这样能使学生积极参与数学学习活动,培养学生的合作意识和探究精神。

五、教学过程本节知识教学采用发生型模式:1、问题情境有一个旅游景点,为了吸引更多的游客,想在风景区两座相邻的山之间搭建一条观光索道。

《正弦定理》教学设计

《正弦定理》教学设计

《正弦定理》教学设计1. 教学目标:- 理解正弦定理的概念;- 掌握应用正弦定理解决三角形中的问题。

2. 教学准备:- 教师准备白板、黑板笔、教学课件和投影仪;- 学生准备纸笔和计算器。

3. 教学过程:步骤一:导入问题- 引入问题:现在,我们来解决一个关于三角形的问题。

假设有一座高山,你站在山脚,直线距离山顶为a米,你抬头仰望山顶,角度为A度;然后,你行走到山腰位置,此时山腰高度为b米,抬头仰望山顶的角度为B度。

问:山顶的高度是多少?(学生可以思考一下)步骤二:引入正弦定理- 引导学生对于问题的解决思路,提出使用正弦定理求解。

并介绍正弦定理的基本概念:在任意三角形ABC中,边a对应的角度为A,边b对应的角度为B,边c对应的角度为C,则有正弦定理:- 强调正弦定理的应用前提:三角形为普通三角形(即无特殊角度)。

步骤三:示例分析- 通过一个实际的三角形示例来进行分析。

例如:已知三角形ABC,边a=10cm,边b=15cm,角A=30°,求边c和角C的值。

- 根据正弦定理,我们可以得到:sinA/a = sinC/c,代入已知数据,解方程即可得到结果。

步骤四:练习- 让学生独立完成若干道练习题。

例如:1. 已知三角形ABC,边a=8.5cm,边b=6.2cm,角A=40°,求边c和角C的值。

2. 已知三角形ABC,边a=12cm,边b=9cm,角A=65°,求边c和角C的值。

3. 已知三角形ABC,边a=7.3cm,边b=5cm,角C=75°,求边c和角A的值。

步骤五:总结- 总结正弦定理的应用方法和注意事项,强调需要注意角度的单位是度。

- 结合实际问题,让学生思考正弦定理在日常生活和实际应用中的使用场景。

4. 拓展练习:- 综合运用正弦定理与其他三角函数定理解决更为复杂的三角形问题,增加难度和深度,培养解决问题的能力。

5. 课堂小结:- 收集学生的练习题答案和解题思路;- 强调正弦定理的重要性和实际应用价值;- 鼓励学生在日常生活中多运用正弦定理进行实际问题求解。

人教版数学正弦定理优秀教案及教学设计

人教版数学正弦定理优秀教案及教学设计

人教版数学正弦定理优秀教案及教学设计人教版数学正弦定理优秀教案及教学设计一、教学目标:1.知识与技能:通过创设问题情境,引导学生发现正弦定理,并推证正弦定理。

会初步运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

2.过程与方法:引导学生从已有的知识出发,共同探究在任意三角形中,边与其对角正弦的比值之间的关系,培养学生通过观察,猜想,由特殊到一般归纳得出结论的能力和化未知为已知的解决问题的能力。

3.情感、态度与价值观:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。

二、教学重点与难点:1.重点:正弦定理的探索发现及其初步应用。

2.难点:①正弦定理的证明;②了解已知两边和其中一边的对角解三角形时,解的情况不唯一。

三、教学过程:㈠创设情境:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?1671年两个法国天文学家首次测出了地月之间的距离大约为385400km,你们想知道他们当时是怎样测出这个距离的吗?学习了__《解三角形》的内容之后,这个问题就会迎刃而解。

㈡新课学习:⒈提出问题:我们知道,在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角关系的准确量化的表示呢?⒉解决问题:回忆直角三角形中的边角关系:根据正弦函数的定义有:,sinC=1。

经过学生思考、交流、讨论得出:,问题1:这个结论在任意三角形中还成立吗?(引导学生首先分为两种情况,锐角三角形和钝角三角形,然后按照化未知为已知的思路,构造直角三角形完成证明。

)①当ABC是锐角三角形时,设边AB上的高是CD,根据锐角三角函数的定义,有,。

由此,得,同理可得,故有.从而这个结论在锐角三角形中成立.②当ABC是钝角三角形时,过点C作AB边上的高,交AB的延长线于点D,根据锐角三角函数的定义,有,。

《正弦定理》教案(含答案)

《正弦定理》教案(含答案)

《正弦定理》教案(含答案)第一章:正弦定理的引入1.1 实物的直观引入利用直角三角形和平行四边形模型,引导学生直观感受正弦定理的概念。

让学生通过观察和实验,发现正弦定理在几何图形中的普遍性。

1.2 数学定义与公式给出正弦定理的数学表达式:a/sinA = b/sinB = c/sinC,其中a, b, c分别为三角形的边长,A, B, C分别为对应的角度。

解释正弦定理的内涵,让学生理解各个参数之间的关系。

1.3 例题讲解选择具有代表性的例题,讲解正弦定理的应用方法。

引导学生通过正弦定理解决问题,培养学生的解题能力。

第二章:正弦定理的应用2.1 三角形内角和定理的推导利用正弦定理推导三角形内角和定理:A + B + C = 180°。

解释推导过程,让学生理解正弦定理与三角形内角和定理之间的关系。

2.2 三角形形状的判断利用正弦定理判断三角形的形状(直角三角形、锐角三角形、钝角三角形)。

引导学生通过正弦定理判断给定三角形的形状。

2.3 实际问题应用选择与生活实际相关的问题,引导学生利用正弦定理解决问题。

培养学生的实际问题解决能力,提高学生对正弦定理的应用意识。

第三章:正弦定理在测量中的运用3.1 角度测量讲解利用正弦定理进行角度测量的方法。

引导学生通过正弦定理进行角度测量,提高学生的实际操作能力。

3.2 距离测量讲解利用正弦定理进行距离测量的方法。

引导学生通过正弦定理进行距离测量,提高学生的实际操作能力。

3.3 实际测量案例提供实际测量案例,让学生利用正弦定理进行测量。

培养学生的实际测量能力,提高学生对正弦定理在测量中应用的理解。

第四章:正弦定理在三角函数中的应用4.1 三角函数的定义与关系讲解正弦定理与三角函数之间的关系。

引导学生理解正弦定理在三角函数中的应用。

4.2 三角函数图像的绘制利用正弦定理绘制三角函数图像。

培养学生的图像绘制能力,提高学生对正弦定理在三角函数中应用的理解。

4.3 三角函数问题的解决利用正弦定理解决三角函数问题。

正弦定理的教学设计方案

正弦定理的教学设计方案

1. 知识与技能:理解正弦定理的概念,掌握正弦定理的推导过程,能够运用正弦定理解决实际问题。

2. 过程与方法:通过观察、分析、归纳等数学思维方法,培养学生的逻辑推理能力和空间想象能力。

3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生严谨、求实的科学态度。

二、教学重点与难点1. 教学重点:正弦定理的概念、推导过程及运用。

2. 教学难点:正弦定理的推导过程及运用。

三、教学过程1. 导入新课(1)复习三角函数的定义,引导学生回顾三角函数的基本性质。

(2)通过实际问题,引出正弦定理的概念。

2. 新课讲授(1)正弦定理的概念:在任意三角形中,各边的长度与其对应角的正弦值之比相等。

(2)正弦定理的推导过程:① 画一个等腰三角形,设顶角为A,底角为B、C,边长分别为a、b、c。

② 在等腰三角形中,作高AE,使得AE⊥BC。

③ 由勾股定理,得到AE=√(a^2-b^2)。

④ 在直角三角形ABE中,根据正弦定义,得到sinB=AE/a。

⑤ 在直角三角形ACE中,根据正弦定义,得到sinC=AE/c。

⑥ 由①②③④⑤可得,sinB/a=sinC/c。

(3)正弦定理的应用:① 求解三角形中的未知边长或角度。

② 解决实际问题,如测量、建筑设计等。

3. 课堂练习(1)完成教材中的例题,巩固正弦定理的应用。

(2)布置课后作业,让学生独立完成。

4. 课堂小结(1)回顾正弦定理的概念、推导过程及运用。

(2)总结本节课的收获。

5. 课后作业(1)完成教材中的课后习题。

(2)查阅资料,了解正弦定理在实际生活中的应用。

四、教学评价1. 课堂表现:观察学生在课堂上的参与度、思考能力及解决问题的能力。

2. 作业完成情况:检查学生的作业完成情况,了解学生对正弦定理的掌握程度。

3. 实践应用:鼓励学生在生活中运用正弦定理解决实际问题,提高学生的综合素质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《正弦定理》教学设计一、教材分析正弦定理是高中新教材人教A版必修⑤第一章1.1.1的内容,是使学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形中的边与角之间的数量关系。

通过创设问题情景,从而引导学生产生探索愿望,激发学生学习的兴趣,并指出解决问题的关键在于研究三角形中的边、角关系。

在教学过程中,要引导学生自主探究三角形的边角关系,先由特殊情况发现结论,再对一般三角形进行推导证明,并引导学生分析正弦定理可以解决两类关于解三角形的问题:(1)已知两角和一边,解三角形;(2)已知两边和其中一边的对角,解三角形。

二、学情分析本节授课对象是高一学生,是在学生学习了必修④基本初等函数Ⅱ和三角恒等变换的基础上,由实际问题出发探索研究三角形边角关系,得出正弦定理。

高一学生对生产生活问题比较感兴趣,由实际问题出发可以激起学生的学习兴趣,使学生产生探索研究的愿望。

根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点。

三、教学目标:1.知识与技能:通过创设问题情境,引导学生发现正弦定理,并推证正弦定理。

会初步运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

2.过程与方法:引导学生从已有的知识出发,共同探究在任意三角形中,边与其对角正弦的比值之间的关系,培养学生通过观察,猜想,由特殊到一般归纳得出结论的能力和化未知为已知的解决问题的能力。

3.情感、态度与价值观:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。

四、教学重点与难点:重点:正弦定理的探索和证明及其基本应用。

难点:①正弦定理的证明;②了解已知两边和其中一边的对角解三角形时,解的情况不唯一。

五、学法与教法学法:引导学生首先从直角三角形中揭示边角关系:sin sin sin abcA B C==,接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖,培养学生“会观察”、 “会类比”、“会分析”、“会论证”的能力。

教法:运用“发现问题—自主探究—尝试指导—合作交流”的教学模式 (1)新课引入——提出问题, 激发学生的求知欲。

(2)掌握正弦定理的推导证明——分类讨论,数形结合,动脑思考,由特殊到一般,组织学生自主探索,获得正弦定理及证明过程。

(3)例题处理——始终从问题出发,层层设疑,让他们在探索中自得知识。

(4)巩固练习——深化对正弦定理的理解。

六、教学过程创设问题情境:如图,设A 、B 两点在河的两岸,要测量两点之间的距离。

测量者在A 的同侧,在所在的河岸边选定一点C ,测出两点间A 、C 的距离55m ,∠ACB=600,∠BAC=450求A 、B 两点间的距离。

引导学生理清题意,研究设计方案,并画出图形,探索解决问题的方法. 启发学生发现问题实质是:已知△ABC 中∠A 、∠C 和AC 长度,求AB 距离.即:已知三角形中两角及其夹边,求其它边.B新知探究1.提出问题:我们知道,在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角关系的准确量化的表示呢?2.解决问题:回忆直角三角形中的边角关系: 根据正弦函数的定义有:sin ,sin a bA B c c==,sinC=1。

经过学生思考、交流、讨论得出:sin sin sin a b c A B C==, 问题1:这个结论在任意三角形中还成立吗?(引导学生首先分为两种情况,锐角三角形和钝角三角形,然后按照化未知为已知的思路,构造直角三角形完成证明。

)①当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。

由此,得 sin sin abAB =,同理可得 sin sin cbCB=, 故有sin sin abAB=sin cC =.从而这个结论在锐角三角形中成立.②当∆ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。

由此,得 =∠sin sin abAABC ,同理可得 =∠sin sin cbCABC故有=∠sin sin abAABCsin cC =.CBAcbaab DAB CAB CDba由①②可知,在∆ABC 中,sin sin abAB=sin cC=成立.从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即sin sin abAB=sin cC =.这就是我们今天要研究的—— 正弦定理思考:你还有其它方法证明正弦定理吗?(由学生讨论、分析)证明一:(等积法)在任意斜△ABC 当中 S △ABC =A bc B ac C ab sin 21sin 21sin 21==两边同除以abc 21即得:A a sin =B b sin =Cc sin证明二:(外接圆法)如图所示,∠A=∠D ∴R CD Da Aa 2sin sin ===同理B b sin =2R ,Ccsin =2R 证明三:(向量法)过A 作单位向量j 垂直于AC 由 AC +CB =AB两边同乘以单位向量j 得 j •(AC +CB )=j •AB 则j •AC +j •CB =j •AB∴|j ||AC |cos90︒+|j ||CB |cos(90︒-C)=|j ||AB |cos(90︒-A) ∴A c C a sin sin = ∴A a sin =Ccsin 同理,若过C 作j 垂直于CB 得: C c sin =Bbsin ∴A a sin =B b sin =Ccsin 。

正弦定理:A a sin =B b sin =Ccsin =2R (R 是ABC ∆外接圆的半径) a bcOCAD变形:::sin :sin :sin a b c A B C =。

接着给出解三角形的概念:一般地,把三角形的三个角A 、B 、C 和它们的对边a 、b 、c 叫做三角形的元素,已知三角形的几个元素求其它元素的过程叫做解三角形.问题2:你能否从方程的角度分析一下,解三角形需要已知三角形中的几个元素?问题 3:我们利用正弦定理可以解决一些怎样的解三角形问题呢? (1)已知三角形的任意两个角与一边,求其他两边和另一角。

(2)已知三角形的两边与其中一边的对角,计算另一边的对角,进而计算出其他的边和角。

3. 应用定理:例1. 应用正弦定理解决提出的求河岸两侧两点间距离问题. 题目见创设问题情境, 引导学生给出解决方法例2.(1)在C A a c B b ABC ,,1,60,30和求中,===∆.(2) 在C B b a A c ABC ,,2,45,60和求中,===∆.解:(1)∵21360sin 1sin sin ,sin sin 0=⨯==∴=b B c C C c B b , C B C B c b ,,60,0<∴=> 为锐角, 0090,30==∴B C ∴222=+=c b a(0030150C C ∴==或,而00210180C B +=>)(2)23245sin 6sin sin ,sin sin 0=⨯==∴=a A c C C c A a0012060,sin 或=∴<<C c a A c1360sin 75sin 6sin sin ,756000+=====∴C B c b B C 时,当,1360sin 15sin 6sin sin ,151200000-=====∴C B c b B C 时,当或0060,75,13==+=∴C B b 00120,15,13==-=C B b变式训练:根据已知条件,求解三角形七、课堂小结:(学生发言,互相补充,老师评价.) 1.用三种方法证明了正弦定理: (1)转化为直角三角形中的边角关系; (2)利用向量的数量积. (3)外接圆法2.理论上正弦定理可解决两类问题: (1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. 八、布置作业:1.思考:已知两边和其中一边的对角,解三角形时,解的情况可能有几种?试从理论上说明.2.P 10.习题1.1.A 组:1,2. 九、教学反思:本设计通过解斜三角形的一个实际问题引导学生发现三角形的边角关系,将斜三角形的边角关系转化为直角三角形的边角关系导出正弦定理,思路自然,学生乐于接受。

通过引导学生发现直角三角形中的正弦定理,进而探究在任意三角形中是否还成立?将学生带入探索新知的氛围,学生从已有的知识经验出发,探索得出新结论,体验了成功的乐趣,对如何运用定理解决问题也是跃跃欲试,在课堂小结教学中,给学生一个畅所欲言的机会,互相评价,最终得到完善的答案.这样做,可以锻炼学生的语言表达能力,这也体现了一个人成长、发展所必须经历的过程,对于培养意志品质起到了重要作用.本节课采用探究式课堂教学模式,即在教师的启发引导下,以问题为导向设计教学情境,以“正弦定理的发现和证明”为基本探究内容,为学生提供表达、质疑、探究问题的机会,让学生在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力。

一点感悟:新课标下的课堂是学生和教师共同成长的舞台!。

相关文档
最新文档