微分方程模型(全)

合集下载

微分方程模型(全)

微分方程模型(全)

第四步:了解问题中所涉及的原则或物理定律。
第五步:依据 第二、第三、第四步 建立微分 方程。 还有已知的对应某个 t 的 y 的值(可 能还有 y 的导数的值)就是求解微分方程所 需要的初始值。
第六步:求微分方程的解并给出问题的答案。 下面我们从易到难给出微分方程模型之应 用案例
例1 火车启动
例 1:火车启动
y ce .
kt
(2)
y( 24) 400.
初始值:
y(0) 100,
代入(2)求得: 因此:
c 100, k (ln 4) / 24.
t ln 4 / 24
y 100e
.
我们要求的是:
y(12) 100e
(12 / 24) ln 溶液浓度
如果有一个实际问题,要找一个量 y , 与另一个量 t(时间或其他变量)的关系, 这种关系涉及量 y 在每个 t 时的瞬时变化率, 而且这个瞬时变化率与量 y 与 t 的关系可以 确定,那么这样的问题通常可以通过微分 方程来解决。 利用微分方程解决这样的问题的一般 步骤如下: (分为六步)
第一步:
题目:一列火车从静止开始启动,均匀地加速,
五分钟时速度达到 300 千米。问:这段时间内 该火车行进了多少路程?
例1 火车启动
解 这个问题相对比较简单,问题与“加速”、 “速度”有关,所以与导数有关; 涉及的量为: “时间”(小时),“路程”(千米),“速 度”(千米/小时),“加速度”(常数 a );
例2 细菌增长
解 这个问题也比较简单。 问题与“增长率”有关,所以与导数有关;
涉及的量为: “时间”(小时),“细菌总数”(个), “速度”(个/小时); 有(待定)函数关系的两个量定为: 细菌总数 y ,时间 t ; 涉及的原则或物理定律: 导数=增长率.

微分方程(组)模型

微分方程(组)模型


(2) 方程③是一阶线性微分方程,通解为②当n>0时,有特解y=0.
求微分方程(组)的解析解命令: dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自 变量’) 符号说明:在表达微分方程时,用字母D表示求微分, D2、D3等表示求2阶、3阶等微分。任何D后所跟的 字母为因变量,自变量可以指定或由系统规则选定为 确省。 d2y
方法:
• 规律分析法:根据相关学科的定理或定律、规律(这些涉及 到某些函数变化率)建立微分方程模型,如曲线的切线性质. • 微元分析法:应用一些已知规律和定律寻求微元之间的关系式. • 近似模拟法:在社会科学、生物学、医学、经济学等学科的 实际问题中,许多现象的规律性不清楚,常常用近似模拟的 方法建立微分方程模型.
4.符号说明
• • • • • • • a---某人每天在食物中摄取的热量 b---某人每天用于新陈代谢(及自动消耗)的热量 α ---某人每天从事工作、生活每千克体重必需消耗的热量 β---某人每天从事体育锻炼每千克体重消耗的热量 w---体重(单位:千克) w0---体重的初始值 t---时间(单位:天)
若Q(x)≡0,则称为一阶线性齐次方程,一阶线性微分方程通解为 P ( x ) dx P ( x ) dx ② y ( x) e ( Q( x)e dx C )
从而可得
dz (1 n) P ( x) z (1 n)Q ( x) dx
dz dy (1 n) y n dx dx
一、微分方程模型 二、微分方程的数学形式 三、微分方程(组)的MATLAB解法 四、减肥的数学模型 五、人口增长数学模型 六、兰彻斯特(Lanchester)作战模型 七、硫磺岛战役案例

微分方程模型

微分方程模型

微分模型课程安排一、微分模型简介二、微分静态模型1、血管分支模型2、最正确存贮模型三、微分动态模型1、水流出的时间2、CO2的吸收3、浓度变化问题4、服药问题5、人口模型四、香烟过滤嘴问题一、微分模型简介微分模型是数学模型中的最主要模型,也是应用最为广泛的数学模型。

通常微分模型可分为两类,静态模型与动态模型。

微分静态模型主要出现在解决一些简单的优化问题中。

此类问题通常可将所要解决的实际问题化简为一个一元或多元的目标函数的最值问题,只要对目标函数求导数或偏导数就可求得驻点,从而讨论问题的最优解决方案。

这种解决实际问题的方法在《高数》书中就有一定的讨论只不过当时不是学习的重点而已。

而微分动态模型,从名称上看我们就知到此方法是用来解决动态变化问题的。

当我们从实际问题中得到的目标量是一个随时间或空间在改变的量时,直接建立此目标量的动态变化方程是很困难的,通常可以先找到此问题的动态变化函数〔一般是一个微分方程或方程组〕,然后通过解方程的方法来求解出我们所需要的目标量所满足的方程。

同样在《高数》书中提到的微元法就是此方法的讨论,它是任何一项研究都必须要首先考虑和掌握的基本方法。

下边举几个例子看一下我们该怎样使用这两种方法.===================================================================== 二、微分静态模型微分静态模型的关键就是建立一个包含各个影响因素在内的目标函数。

具体分析步骤:〔1〕首先明确我们的优化目标;〔2〕明确影响这个目标的各个因素;〔3〕建立目标函数与各指标的代数关系;〔4〕对各指标变量求导数〔或偏导〕找极值点;〔5〕讨论目标的极值。

问题1血液在动物的血管中一刻不停地流动,为了维持血液循环动物的机体要提供能量。

能量的一部分用于供应血管壁以营养。

另一部分用来克服血液流动受到的阻力,消耗的总能量显然与血管系统的几何形状有关。

在长期的生物进化过程中,高级动物血管系统的几何形状应该已经到达消耗能量最小原则下的优化标准了。

微分方程模型

微分方程模型

6.1 微分方程模型的建模步骤 6.2 作战模型
6.3 传染病模型 习题
6.1 微分方程模型的建模步骤
例1 某人的食量是10467焦/天,其中5038焦/天用于基本的新
陈代谢(即自动消耗)。在健身训练中,他每天大约每千克
体重消耗69焦的热量。 假设以脂肪形式贮藏的热量100%地有效,而1千克脂肪含 热量41868焦,试研究此人的体重随时间变化的规律。
模型分析
甲乙两支部队互相交战,在整个战争期间,双方的兵力 在不断发生变化,而影响兵力变化的诸多因素转化为数量非 常困难。为此,我们作如下假定把问题简化。
模型假设
1. x(t) , y(t) 表示甲乙双方在时刻 t 的人数, x(0)=x0 ,y(0)=y0 表示甲乙双方开战时的人数,x0 > 0, y0 >0; 2.设x(t) , y(t)是连续变化的,并且充分光滑; 3.每一方的战斗减员率取决于双方的兵力,不妨以f(x,y) ,
投入多大的初始兵力。不妨设 100 x0
S 活动区域 x 0.1
p, 0.1 rx, x
ry 2
, 平
平方千米,乙方射击的有效面积 1 sy
y0 2 0.1 0.1 106 100 x 2 1 100 0
2
方米,则可得乙方获胜的条件为:
a
时甲方兵力
降为“零”,从而乙方获胜。同理可知,K 0
甲方获胜。而当 K 0 时,双方战平。 2 2 甲方获胜的充要条件为 bx0 ay0 0
时,
代入a 、b 的值,有甲方获胜的充要条件为
2 2 rx p x x 0 r y p y y 0
故可找到一个用于正规作战部队的综合战斗力的评价函数:

微分方程(模型)

微分方程(模型)

dx 2 或 x 0.03 dt 100 t 这是一阶线性非齐次方程,且有初值条件 x(0) 10,;利用8.3节的公式(5),可得此 C 方程的通解:x (t ) 0.01(100 t ) (100 t ) 2 有初值条件可得C 9 10 4,所以容器内含盐 量x随时间t的变化规律为 9 10 4 x 0.01(100 t ) 2 (100 t )
微分方程模型
重庆邮电大学
数理学院
引言
微分方程模型
当我们描述实际对象的某些特性随时间(空 间)而演变的过程、分析它的变化规律、预测它 的未来形态、研究它的控制手段时。通常要建立 对象的动态模型。

在研究某些实际问题时,经常无法直接得 到各变量之间的联系,问题的特性往往会给出关 于变化率的一些关系。利用这些关系,我们可以 建立相应的微分方程模型。在自然界以及工程技 术领域中,微分方程模型是大量存在的。它甚至 可以渗透到人口问题以及商业预测等领域中去, 其影响是广泛的。
四. 悬链线方程问题
将一均匀柔软的绳索两端固定,使之仅受重力的作 用而下垂,求该绳索在平衡状态下的曲线方程(铁塔 之间悬挂的高压电缆的形状就是这样的曲线)。 解 以绳索所在的平面为xoy 平面,设绳索最低点 为y轴上的P点,如图8-1所示。考察绳索上从点p到 l 另一点Q(x,y)的一段弧 PQ ,该段弧长为 ,绳索线密 度为 l ,则这段绳索所受重力为gl 。由于绳索是软 的,
y x 2 2.
微分方程的几个应用实例
许多实际问题的解决归结为寻找变量间的函数关 系。但在很多情况下,函数关系不能直接找到,而只 能间接的得到这些量及其导数之间的关系,从而使得 微分方程在众多领域都有非常重要的应用。本节只举 几个实例来说明微分方程的应用。进一步的介绍见第 十章。 一. 嫌疑犯问题

常见的微分方程模型

常见的微分方程模型

常见的微分方程模型微分方程是数学的一个重要分支,广泛应用于自然科学和工程领域。

它描述了物理现象、社会问题和自然现象的变化规律,能够帮助我们理解和预测各种现象的发展趋势。

下面将介绍一些常见的微分方程模型。

1. 一阶线性微分方程一阶线性微分方程是最简单且常见的微分方程之一。

它可以描述许多实际问题,比如放射性衰变、人口模型等。

一阶线性微分方程的一般形式可以写为dy/dt = f(t) * y + g(t),其中f(t)和g(t)是已知函数,y是未知函数。

2. 指数衰减模型指数衰减模型是描述某种变化过程的常见微分方程。

它可以用来描述放射性物质的衰变、人口增长的趋势等。

指数衰减模型的一般形式是dy/dt = -ky,其中k是常数。

这个方程表示y的变化速率与y本身成比例,且反向。

3. 扩散方程扩散方程是描述物质或能量传递过程的微分方程。

它可以用来研究热传导、扩散现象等。

扩散方程的一般形式是∂u/∂t = D ∇²u,其中u是未知函数,D是扩散系数,∇²是Laplace算子。

这个方程表示u 的变化率与u的二阶导数成正比。

4. 多体问题多体问题是描述多个物体之间相互作用的微分方程模型。

它可以用来研究天体运动、分子碰撞等问题。

多体问题的方程通常包括牛顿第二定律和对应的初始条件,如F = ma和相关的速度、位置初值条件。

5. 随机微分方程随机微分方程是考虑了随机因素的微分方程模型。

它可以用来研究金融市场的波动、生态系统的不确定性等。

随机微分方程的方程形式通常会引入一个随机项,如dy/dt = f(t, y) dt + g(t, y) dW,其中dW是布朗运动,表示随机项。

以上介绍的是一些常见的微分方程模型,它们在理论和实际应用中都具有重要的地位。

通过研究这些模型,我们可以深入理解各种现象背后的数学规律,并且为实际问题提供解决方案。

微分方程模型不仅有助于推动数学的发展,还在科学研究、工程设计和技术创新等领域中发挥着重要作用。

03-1第三章-第1-8节-微分方程模型市公开课获奖课件省名师示范课获奖课件

03-1第三章-第1-8节-微分方程模型市公开课获奖课件省名师示范课获奖课件

(5 13)
将(5-10)和( pr 2
ur
(5 14)
最终f 把 (54-1pA4r2)2m和r(05-6)代r0入(rr5-4)式得 (5 15) r 这里 0 是单位向径,指示向径方向。
(5-15)式表白: (1)行星运动时受旳力旳方向与它旳向径方向
相反,即在太阳—行星连线方向,指向太阳;
若记x(t),y(t)为开始用力后铅球运动轨迹旳水平和 铅垂方向旳坐标。则根据牛顿第二运动定理,由假 设3我们有
mx(t) F cos
my(t) F sin mg
(2 3)
式中m为铅球旳质量,F是对铅球旳推力, 为力旳
方向既铅球旳出手角度。
根据假设2,令t=0时运动员开始用力推球,t t0
22
§4 追踪问题旳数学模型
问题:我辑私舰雷达发觉距d海里处有一艘走私船正
以匀速 a沿直线行驶,辑私舰立即以最大旳速度 (匀v速)追赶。若用雷达进行跟踪,保持舰旳瞬时
速度方向一直指向走私船,试求辑私舰旳运动轨迹 及追上旳时间。
(留作自学)
23
§5 万有引力定律旳发觉
历史背景: 开普勒三定律: 1、各颗行星分别在不同旳椭圆轨道上绕太 阳运营,太阳位于这些椭圆旳一种焦点上。 2、每颗行星运营过程中单位时间内太 阳—行星向径扫过旳面积是常数。 3、各颗行星运营周期旳平方与其椭圆轨道 长半轴旳3次方成正比。
14
x
v2 g
cos
sin
(
v2 g2
sin 2
2h
)
1 2
g
v
cos
v
(
F m
2 2
g2
2F m
g sin )t0

2微分方程模型(人口模型)

2微分方程模型(人口模型)
(t ) 表示 t 时刻某范围内一种群的数量或密度,当种群数量 较大时,将 x(t ) 看作 t 的连续函数,则 x(t ) 的变化与出生、死亡、迁 入、迁出等因素有关.若用 B, D, I , E 分别表示种群的出生率、死亡率、 迁入率、迁出率,则种群数量或密度变化的一般模型是:
K x (t ) 成正比, 比例系数为固有增长率(或称内增长率), K
映了人口增长率随人口数量的增加而减少的现象。
模型建立
人口增长的洛杰斯蒂克 (Logistic)模型:
x dx rx(1 ) K dt x(t 0 ) x0
微分方程模型实例1——人口模型
模型求解 模型分析
微分方程模型实例1——人口模型
补充:从另一个角度导出Logistic模型
2 在 Malthus 模型上增加一个竞争项 bx (b 0) ,它
的作用是使纯增长率减少。如果一个国家工业化程度 较高,食品供应较充足,能够提供更多的人生存,此 时 b 较小;反之 b 较大,故建立方程
dx x(a bx) dt x(t 0 ) x0 , (a, b 0),
a 时, x' (t ) b
a
0 , x(t ) 递增;当 x
a a x' (t ) 0 ;当 x (t ) 时, b b 时,
x' (t ) 0 , x(t ) 递减。
(iii)当 0 x
a 2b
时, x' ' (t ) 0 , x(t ) 为凹,当
a a x 时, x' ' (t ) 0 , x(t ) 为凸。 2b b
dx K dx (t ) x rx (1 ) 的右端为 x(t ) 的二次函数,易证当 x 时, (3) 由于 dt dt 达到最大 2 K

微分方程模型

微分方程模型

房室具有以下特征:它由考察对象均匀分 布而成,房室中考察对象的数量或浓度(密 度)的变化率与外部环境有关,这种关系被 称为“交换”且交换满足着总量守衡。在本 节中,我们将用房室系统的方法来研究药物 在体内的分布。在下一节中,我们将用多房 室系统的方法来研究另一问题。
单房室系统
交换 环境
内部
均匀分布
,i(t)单 s0 增。但在i(t)增加的同时,伴随地有s(t)单减。当 s(t)减少到小于等于 时, i(t)开始减小,直 至此疾病在该地区消失。
(2)如果
则: s(t ) s
r (t )
1
o
e

di ,则开始时 dt 0
五.稳定性问题
在研究许多实际问题时,人们最为关心的也许并 非系统与时间有关的变化状态,而是系统最终的发展 趋势。例如,在研究某频危种群时,虽然我们也想了 解它当前或今后的数量,但我们更为关心的却是它最 终是否会绝灭,用什么办法可以拯救这一种群,使之 免于绝种等等问题。要解决这类问题,需要用到微分 方程或微分方程组的稳定性理论。在下两节,我们将 研究几个与稳定性有关的问题。
容器损失的水量为:
[ R ( R r ) ]dh
2 2
由质量守恒
[ R ( R r ) ]dh sv(t )dt
2 2
其中
v(t ) 0.6 2gh(t)
从而建立方程:
0.6s 2 gh dh 2 2 dt [R (R r) ]
解得
0.6s 2 gh 14 R T dh 2 2 R [R (R r) ] 9s 2 g
微分方程 模型
• 微分方程建模
对于某种现象或提出的问题,通过建立微分方程 来解释或解决.通常可分为两大类:

数学建模,第三章-微分方程模型

数学建模,第三章-微分方程模型

8小时20分-2小时57分=5小时23分
即死亡时间大约在下午5:23,因此张某不能被 排除在嫌疑犯之外。
理学院
3.2 目标跟踪模型
例1 饿狼追兔问题 黑 龙 现有一直兔子,一只狼,兔子位于狼的正西100米处,假 江 科 设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的 技 巢穴跑,而狼在追兔子,已知兔子、狼是匀速跑且狼的速度 学 是兔子的2倍。兔子能否安全回到巢穴? 整理得到下述模型: 院 解:设狼的行走轨迹为y=f(x),则有:
理பைடு நூலகம்院
本章将通过一些最简单的实例来说明微分方程建模的 一般方法。在连续变量问题的研究中,微分方程是十分常 用的数学工具之一。
在许多实际问题中,当直接导出变量之间的函数关系 较为困难,但导出包含未知函数的导数或微分的关系式较 为容易时,可用建立微分方程模型的方法来研究该问题,
黑 龙 江 科 技 学 院 数 学 建 模
数 学 建 模
B
60
2 2xf' ' x 1 f' x y' x 0 , y 0 100 x 100 解得狼的行走轨迹为: 100 0 100 (0,h) 0, f' f 假设在某一时刻,兔子跑到 处,而狼在 (x,y)处,则有:
理学院
y y0 g e
g
车间空气中CO2浓度y 与时间t的数学模型
黑 龙 江 科 技 学 院 数 学 建 模
3.4 学习模型
一般认为,对一项技术工作,开始学得较快,但随着学 得越来越多时,内容也越来越复杂,学员学得就会越来越慢。
员学习的速度,则随y的增长而下降。
dy 设y%表示已经掌握了这项工作的百分数, dt

数学建模微分方程模型

数学建模微分方程模型

数学建模微分方程模型在数学建模的旅程中,微分方程模型扮演了至关重要的角色。

它们在描述和解决各种实际问题中,从物理学到社会科学,都起到了关键的作用。

在本章中,我们将探讨微分方程模型的基本概念、类型和应用。

微分方程是一种方程,它包含未知函数的导数。

这种方程在描述变化率时非常有用,例如,描述物体的速度或加速度。

在形式上,微分方程可以表示为 y'(x) = f(x, y),其中 y'表示 y的导数,f是一个给定的函数。

根据方程的特点,微分方程可以划分为多种类型,如线性微分方程、非线性微分方程、常微分方程、偏微分方程等。

每种类型的方程都有其特定的求解方法和应用领域。

微分方程在众多领域中都有应用,如物理学、工程学、经济学等。

例如,牛顿第二定律就是一个微分方程,它描述了物体的加速度如何由作用力决定。

人口增长模型、传染病模型等也都依赖于微分方程。

建立微分方程模型通常需要以下步骤:确定模型的目标和变量;然后,根据问题背景和物理规律建立数学模型;通过数值计算或解析解法得出结果。

求解微分方程的方法主要有两种:数值方法和解析方法。

数值方法是通过计算机程序或软件进行数值计算得到近似解,而解析方法是通过求解方程得到精确解。

对于某些类型的微分方程,可能需要结合使用这两种方法。

建立微分方程模型后,我们需要对模型进行评估和检验,以确保其有效性和准确性。

这通常包括对模型的假设进行检验、对模型的预测结果进行验证以及对模型的参数进行估计和调整等。

随着科学技术的发展,微分方程模型的应用前景越来越广阔。

例如,在生物学中,微分方程被用来描述疾病的传播动态;在经济学中,微分方程被用来分析市场供需关系的变化;在工程学中,微分方程被用来模拟复杂系统的行为等。

未来,随着大数据和人工智能等技术的发展,微分方程模型将在更多领域得到应用和发展。

微分方程模型是数学建模中一个极其重要的部分。

通过学习和掌握微分方程的基本概念、类型、应用以及求解方法等,我们可以更好地理解和解决现实生活中的各种问题。

第五章 微分方程模型讲1

第五章 微分方程模型讲1
σ >1
i0
1-1/σ σ
di 1 = −λi[i − (1 − )] σ =λ/ µ dt σ
σ >1
i
σ ≤1
di/dt < 0
i0
0
1-1/σ σ
1 i
i0
0
1 , σ > 1 1 − i(∞ ) = σ 0, σ ≤ 1
t
0
t
接触数σ =1 ~ 阈值
σ >1
σ ≤ 1 ⇒ i (t ) ↓
s i ( s ) = ( s 0 + i0 ) − s + ln σ s0
i
1
1D = {( s ,源自i ) s ≥ 0 , i ≥ 0 , s + i ≤ 1}
D 0
s
1
模型4 模型
相轨线 i ( s ) 及其分析
i
1 D
SIR模型 模型
s i(s) = (s0 + i0 ) − s + ln σ s0
dP dP = kP(10000− P) 把 P t=0 =10, = 100代入微分方程 dt dt t=0
1 得 k= 999 鸟的数量和时间的函数关系为 P =
10000 1+ 999 e
− 10000 t 999
Logistic函数 函数
5.1 传染病模型
问题
• 描述传染病的传播过程 • 分析受感染人数的变化规律 • 预报传染病高潮到来的时刻 • 预防传染病蔓延的手段 • 按照传播过程的一般规律, 按照传播过程的一般规律, 用机理分析方法建立模型 已感染者(the infective) 易感染者 易感染者(the susceptible) 已感染者 移出者(the removed) 移出者

微分方程模型

微分方程模型
人口将按指数规律无 限增长!
r0
r0
x(t ) x0
x(t ) 0
人口将始终保持不变! 人口将按指数规律减少直 至绝灭!
2 T ln r
人口倍增时间
Malthus模型预测美国人口
Malthus模型预测美国人口
Malthus模型预测的优缺点
优点 缺点 原因 短期预报比较 准确 不适合中长期预报 预报时假设人口增长率 r 为常数。没有考虑环 境对人口增长的制约作用。
机动
目录
上页
下页
返回
结束
医学(流行病,传染病问题)模型,经济(商业销 售,财富分布,资本主义经济周期性危机)模 型,战争(正规战,游击战)模型等。 下面,我们给出如何利用方程知识建立 数学模型的几种方法。
机动
目录
上页
下页
返回
结束
1.利用题目本身给出的或隐含的等量 关系建立微分方程模型。这就需要我们仔 细分析题目,明确题意,找出其中的等量关 系,建立数学模型。 2.从一些已知的基本定律或基本公式出 发建立微分方程模型.我们要熟悉一些常用 的基本定律,基本公式.例如力学中的牛顿第 二运动定律,电学中的基尔霍夫定律等.从 这些知识出发我们可以建立相应的微分方 程模型。
到t t时刻, 除去死亡的人外 , 活着的都变成了
r dr1 , r dr dr1 区间内的人, t t时刻年龄在
即p(r dr 1 , t dt) dr.这里dr 1 dt.
而在这段时间內死去的 人数为 r , t pr , t drdt, 它们之间的关系为 : pr , t dr pr dr 1 , t dt dr r , t p r , t drdt r , t pr , t drdt

几种重要的微分方程应用模型

几种重要的微分方程应用模型
该模型由一组微分方程组成,描述了两种物种的数量变化和相互竞争的关 系。
生态竞争模型的解可以表现出多种动态行为,如周期振荡和混沌运动等, 取决于物种之间的竞争参数。
斐波那契序列模型
01
斐波那契序列是一个经典的数学序列,每个数字是前两个数字 的和。
02
斐波那契序列模型可以用于描述许多自然现象,如植物生长、
模型等。
02 线性微分方程模型
线性微分方程的解法
分离变量法
通过将方程中的未知函数和其导数分 离到等式的两边,从而将微分方程转 化为代数方程。
变量代换法
通过引入新的变量来简化微分方程, 例如使用积分因子或积分因子法。
参数法
当微分方程中包含参数时,可以通过 令参数等于某个特定的值来求解微分 方程。
幂级数法
拉普拉斯变换法
将高阶微分方程转化为代数方 程,适用于初值问题和具有特
定边界条件的问题。
阻尼振动模型
1 2
线性阻尼
阻尼力与速度成正比,导致振动逐渐减小并趋于 静止。
非线性阻尼
阻尼力与速度的幂函数相关,如速度的二次方、 三次方等,导致振动表现出不同的非线性行为。
3
阻尼振动应用
描述机械系统、电磁振荡器等物理系统的振动现 象,用于预测系统的稳定性和动态响应。
热传导方程的一般形式为:$frac{partial u}{partial t} = alpha nabla^2 u$,其中 $u$ 表示温度分布,$alpha$ 是热扩散系数,$nabla^2$ 表示拉普拉斯算子。
波动方程模型
01
波动方程是描述波动现象的偏微分方程,如声波、光波和水 波等。
02
它的一般形式为:$frac{partial^2 u}{partial t^2} = c^2 nabla^2 u$,其中 $u$ 表示波动场,$c$ 是波速。

微分方程模型

微分方程模型

微分方程模型引言微分方程是描述自然界中很多现象和问题的数学模型。

通过建立微分方程模型,我们可以定量地描述和预测各种物理、化学、生物和工程问题的演化和变化。

本文将介绍微分方程模型的基本概念、常见类型和求解方法,并给出一些应用实例。

基本概念微分方程是含有未知函数及其导数的方程。

通常用符号形式表示如下:F(x, y, y', y'', ..., y^(n)) = 0其中,y是未知函数,x是自变量,n是方程中最高阶导数的阶数。

微分方程模型是以微分方程为基础,结合具体物理、化学、生物和工程问题的特点所建立的数学模型。

通过对问题的建模,我们可以将真实世界中复杂的问题简化为数学形式,从而利用微分方程的性质和解析方法求解或近似解。

常见类型微分方程可以分为多种类型,常见的包括:•一阶常微分方程:包含一个未知函数的一阶导数的方程,形式如下:y' = f(x, y)•高阶常微分方程:包含一个未知函数的高阶导数的方程,形式如下:F(x, y, y', y'', ..., y^(n)) = 0•偏微分方程:包含多个未知函数及其偏导数的方程,形式如下:F(x, y, z, ∂u/∂x, ∂u/∂y, ∂u/∂z, ∂^2u/∂x^2, ∂^2u/∂y^2, ∂^2u/∂z^2, ..., ∂^nu/∂x^n, ∂^nu/∂y^n, ∂^nu/∂z^n) = 0求解方法求解微分方程模型的方法包括解析解和数值解。

解析解对于一些简单的微分方程模型,可以通过解析方法求得解析解。

解析解是指能够用数学公式精确表示的解。

解析解求解的基本思路是尝试找到满足微分方程的函数形式,并通过代入求导的方式得到方程中的常数。

一些经典的微分方程模型如线性微分方程、齐次线性微分方程、可分离变量的微分方程等可以通过解析方法求解。

数值解对于一些复杂的微分方程模型,无法找到解析解或解析解难以求得,我们可以采用数值解法进行近似求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:设t时刻容器内的盐量为x(t)kg
t到t+dt, dt时间内容器中盐的改变量为dx,
dx=注入的盐水所含盐量-抽出的盐水中所含盐量
0.01 3dt
100
xt 3-
2t
2dt
dx
0.03dt
100
xt 3-
2t
2dt
0.03dt
2x 100
t
dt
dx 0.03 2x
dt
100 t
利用微分方程解决这样的问题的一般 步骤如下: (分为六步)
第一步: 注意到实际问题中有与数学中“导数”
有关的常用词,如
“速度”、“速率”(运动学、化学反应 中“)边;际的”(经济学中);
“增长”(生物学、金融、经济等中); “衰变”(放射性问题中);
以及与“改变”、“变化”、“增加”、 “减少”等有关词语,都可能是微分方程的 问题。
单位 km/h 换成 m/s.
现在可以计算出“黄灯时间”
( Db
v02 ) 2 fg
A T Db I L T
v0
I
L .
v0
2 fg v0
模型应用和数据试验(暂略)
例 5:作战模型
例5 作战模型
题目:讨论传统的正规战争、游击战争、以及
分别使用正规部队和游击部队的所谓混合战争 的作战模型。
当然,这些模型是非常简单的,只考虑双 方的兵力的多少和战斗力的强弱,并且当时只 使用枪炮之类的常规武器。兵力因战斗减员和 非战斗减员而减少,由于增援而增加;战斗力 是杀伤对方的能力,它与射击率(单位时间的 射击次数)、射击命中率以及战争类型(正规 战、游击战等)有关。即这些模型仅考虑战场 上的兵力的优劣,并没有考虑交战双方的政治、 外交、经济、社会等因素,所以仅用这些模型 来判别一场战争的结局是不现实的。
(1)
2
初始值: y(0) 0, y(0) 0, y(5 / 60) 300.
代入(1)求得: c 0, b 0, a 3600.
因此: y(5 / 60) 1800 ( 5 )2 12.5 (km).
60
#
例2 细菌增长
例 2:细菌增长
题目:细菌的增长率与总数成正比。如果培养
的细菌总数在 24h 内由 100 增长为 400 , 那么, 前12h 后的细菌总数是多少?
需要的初始值。
第六步:求微分方程的解并给出问题的答案。
下面我们从易到难给出微分方程模型之应 用案例
例 1:火车启动
例1 火车启动
题目:一列火车从静止开始启动,均匀地加速,
五分钟时速度达到 300 千米。问:这段时间内 该火车行进了多少路程?
例1 火车启动
解 这个问题相对比较简单,问题与“加速”、 “速度”有关,所以与导数有关;
dx dt fgt v0
(4 - 2)
于是
dx
dt 0 时,t = tb =v0/(fg)。
在 x(0)=0 的条件下对(4-2)两边积分,得
x
从而得
1 2
fgt 2
v0t
x(tb )
Db
v02 2 fg
(4 - 3)
(4 - 4)
例4 黄灯时间
注意,在计算时间时,要将速度 v0 通常用的
通解为: 初始值:
ln S x c. V
S(0) 1.
例3 溶液浓度
(3)
代入(3)求得: c 0.
因此有: x V ln S.
我们要求的是:
x(1/ 2) V ln(1/ 2) V ln 2.
即:要使酸性减弱一般,应注入清水 V ln2 .
#
B:
设容器内有100L盐水,内含有盐10kg,现以3L/min 的速度注入质量浓度为0.01kg/L的淡盐水,同时以 2L/min的速度抽出混合均与的盐水。求容器内盐含 量变化的数学模型。
涉及的量为: “时间”(小时),“路程”(千米),“速
度”(千米/小时),“加速度”(常数 a );
有(待定)函数关系的两个量定为:
路程 y 时间 t ;
涉及的原则或物理定律: 导数=速度,二阶导数=加速度;
建立微分方程:
例1 火车启动
dy dt
at b

d2y dt 2
a.
通解为:
y 1 at 2 bt c.
例2 细菌增长
解 这个问题也比较简单。 问题与“增长率”有关,所以与导数有关;
涉及的量为: “时间”(小时),“细菌总数”(个), “速度”(个/小时);
有(待定)函数关系的两个量定为:
细菌总数 y ,时间 t ;
涉及的原则或物理定律: 导数=增长率.
建立微分方程:
通解为:
dy ky. dt
y cekt .
dx dt
f
(x,
y)
x
u(t)
dy dt
g(x,
y)
y
v(t)
(5-1)
dx dt
f
(x,
y)
x
u(t)
dy
g(x,
y)
y
v(t)
dt
例5 作战模型
(5-1)
其中, f(x,y), g(x,y) 表示各方的战斗减员
如果停车距离使用经验数据来处理, 那么这个模型在数学机理上就有些欠缺;
若通过在刹车过程中引入一个抵抗 摩擦力,利用微分方程来处理这个停车间
对于这个刹车距离问题,显然与“速度”
有关,速度要从 v0 变到 0,从而用到导数.
涉及的量为: “距离”(米),“时间”(秒), “速度”, “加速度”,摩擦力等;
例2 细菌增长
(2)
初始值: y(0) 100, y(24) 400.
代入(2)求得: c 100, k (ln 4) / 24.
因此:
y 100et ln4/ 24 .
我们要求的是:
y(12) 100e(12/ 24)ln4 200(个细菌). #
例 3:溶液浓度 A:
例3 溶液浓度
题目:一水槽内盛满酸性溶液,其体积为 V,
注清水入槽内,目的在于减弱酸性,但随时保 持溶液均匀和体积 V 的不变。 设在某一瞬间
已经注入清水的总量为 x,用 S 表示这时槽内
含有酸性溶液的浓度,问要使酸性减弱一半, 应注入清水多少?
解 这个问题比前两个例子要复杂。 问题与“减
弱”有关,所以可能与导数有关;但酸性浓度 “减弱的程度”也就是浓度的“变化率”与其他 量(浓度、清水的量)的关系不明确。
有(待定)函数关系的两个量定为: 距离 x, 时间 t;
涉及的原则或物理定律:
力学定律 F=ma.
例4 黄灯时间
设汽车重量为 W,摩擦系数为 f. 根据定义, 对汽车的制动力为 fW,其方向与汽车行进方 向相反(见图4-2).
W
fW
x
图4-2
应用力学定律:F=ma
例4 黄灯时间
停车过程看成是汽车在常力 –fW 作用下 的直线运动,其方程为:
例3 溶液浓度
所以确定浓度的“变化率”与“酸性浓度”, “清水的量”的关系是解决问题的关键。
涉及的量为: “清水的总量”,“酸性浓度”(用纯量单
位:1). “酸性浓度变化率”,体积(常数),其 中都使用题目中的纯量单位;
有(待定)函数关系的两个量定为:
酸性浓度 S,清水的总量 x;
涉及的原则或物理定律: 导数=变化率,溶液保持均匀,体积
V 不变.
例3 溶液浓度
清水
S
溶液 V
x
S(x x) S(x) V V x
建立微分方程:
例3 溶液浓度
dS
S( x x) S( x)
lim
dx x0
x
即:
lim 1 S( x)V S( x)
x0 x V x
1 x S( x) S
lim
x0 x V x
V
dS S dx V
引言:第一次世界大战期间,F W Lanchester 提出了几个关于空战战术的尚不成熟的数学模型, 后来人们不断地对这些模型进行改进,得到了关 于传统的正规战争、游击战争、以及分别使用正 规部队和游击部队的所谓混合战争的作战模型。 并且用这些模型成功地解释了越南战争和美日的 硫磺岛战役的情况。
例5 作战模型
例4 黄灯时间
解: 这个问题比上个例子还要复杂,从问题的 语言描述中不能立即看出与微分有什么关系。这 就需要先将问题分析、分解。
这个问题的解决过程和方法对于做建模竞赛 题很有参考价值。
分析:驶近路口的驾驶员,在看到黄灯信号后要 作出决定:是停车还是通过路口?
如果他以法定速度行使,当决定停车时,他 必须有足够的“停车距离”;当决定通过路口时, 他必须有足够的时间使他能够完全通过路口,这 也包括做决定的时间(“反应时间”)及停车所 需的最短距离的行驶时间。于是,
例4 黄灯时间
于是,黄灯状态应持续的时间包括: (1)驾驶员的“反应时间”; (2)“停车所需时间” (在刹车所需的最短距离内); (3)“通过交叉路口的时间”。
有了这么多的时间,驾驶员就能在刹车 距离内安全停车,否则也能安全通过路口。
例4 黄灯时间
如果法定速度为 v0,(见下图4-1)交叉路
口的宽度为 I,典型的车身长度为 L,那么通过
例5 作战模型
但是这样的模型对于局部战争和战役 仍然会有参考价值。更重要的是,这些 建模的思路和方法为我们借助数学模型 去讨论社会科学中的实际问题提供了可 以借鉴的示例。
一般战争模型
例5 作战模型
用 x(t) 和 y(t) 分别表示交战的双方在 时刻 t 的兵力(人数),假设 x(t) 和 y(t) 为时间的可导函数。从变化率入手,双方 兵力变化的情况满足下面的微分方程组:
相关文档
最新文档