一双向板按弹性理论的计算方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)双向板按弹性理论的计算方法
1.单跨双向板的弯矩计算
为便于应用,单跨双向板按弹性理论计算,已编制成弯矩系数表,供设计者查用。
在教材的附表中,列出了均布荷载作用下,六种不同支承情况的双向板弯矩系数表。
板的弯矩可按下列公式计算:
M = 弯矩系数×(g+p)l x2
式中M 为跨中或支座单位板宽内的弯矩(kN·m/m);
g、p为板上恒载及活载设计值(kN/m2);
l x为板的跨度(m)。
显示更多隐藏
2.多跨连续双向板的弯矩计算
(1)跨中弯矩
双向板跨中弯矩的最不利活载位置图
多跨连续双向板也需要考虑活载的最不利位置。
当求某跨跨中最大弯矩时,应在该跨布置活载,并在其前后左右每隔一区格布置活载,形成如上图(a)所示棋盘格式布置。
图(b)为A-A剖面中第2、第4区格板跨中弯矩的最不利活载位置。
为了能利用单跨双向板的弯矩系数表,可将图(b)的活载分解为图(c)的对称荷载情况和图(d)的反对称荷载情况,将图(c)与(d)叠加即为与图(b)等效的活载分布。
在对称荷载作用下,板在中间支座处的转角很小,可近似地认为转角为零,中间支座均可视为固定支座。
因此,所有中间区格均可按四边固定的单跨双向板计算;如边支座为简支,
则边区格按三边固定、一边简支的单跨双向板计算;角区格按两邻边固定、两邻边简支的单跨双向板计算。
在反对称荷载作用下,板在中间支座处转角方向一致,大小相等接近于简支板的转角,所有中间支座均可视为简支支座。
因此,每个区格均可按四边简支的单跨双向板计算。
将上述两种荷载作用下求得的弯矩叠加,即为在棋盘式活载不利位置下板的跨中最大弯矩。
(2)支座弯矩
支座弯矩的活载不利位置,应在该支座两侧区格内布置活载,然后再隔跨布置,考虑到隔跨活载的影响很小,可假定板上所有区格均满布荷载(g+p)时得出的支座弯矩,即为支座的最大弯矩。
这样,所有中间支座均可视为固定支座,边支座则按实际情况考虑,因此可直接由单跨双向板的弯矩系数表查得弯矩系数,计算支座弯距。
当相邻两区格板的支承情况不同或跨度(相差小于20%)不等时,则支座弯距可偏安全地取相邻两区格板得出的支座弯矩的较大值。
(二)双向板按塑性理论的计算方法
1.双向板的塑性铰线及破坏机构
(1)四边简支双向板的塑性铰线及破坏机构
(a)简支双向板的裂缝分布图(b)简支双向板的塑性铰线及破坏机构图
均布荷载作用的四边简支双向板,板中不仅作用有两个方向的弯矩和剪力,同时还作用有扭矩。
由于短跨方向弯矩较大,故第一批裂缝出现在短跨跨中的板底,且与长跨平行(上图a)。
近四角处,弯矩减小,而扭矩增大,弯矩和扭矩组合成斜向主弯矩。
随荷载增大,由于主弯矩的作用,跨中裂缝向四角发展。
继续加大荷载,短跨跨中钢筋应力将首先到达屈服,弯矩不再增加,变形可继续增大,裂缝开展,使与裂缝相交的钢筋陆续屈服,形成如上图(b)所示的塑性铰线,直到塑性铰线将板分成以“铰轴”相连的板块,形成机构,顶部混凝土受压破坏,板到达极限承载力。
由于塑性铰线之间的板块处于弹性阶段,变形很小,而塑性铰线截面已进入屈服状态,有很大的局部变形。
因此,在均布荷载作用下,可忽略板块的弹性变形,假设各板块为刚片,变形(转角)集中于塑性铰线处,塑性铰线为刚片(板块)的交线,故塑性铰线必定为直线。
当板发生竖向位移时,各板块必各绕一旋转轴发生转动。
例如上图(b)中板块A绕ab轴(支座)转动,板块B绕ad轴(支座)转动。
因此两相邻板块之间的塑性铰线ea必然通过两个板块旋转轴的交点a。
上述塑性铰线的基本特征,可用来推断板形成机构时的塑性铰线位置。
显示更多隐藏
(2)四边连续双向板的塑性铰线及破坏机构
均布荷载作用下四边连续双向板的塑性铰线及破坏机构图当板为四边连续板时,最大弯矩位于短跨的支座处,因此第一批裂缝出现在板顶面沿长边支座上,第二批裂缝出现在短跨跨中的板底或板顶面沿短边支座上(由于长跨的支座负弯矩所产生的)。
随荷载增加,短跨跨中裂缝分叉向四角发展,四边连续板塑性铰线的形成次序是,短跨支座截面负弯矩钢筋首先屈服,弯矩不再增加,然后短跨跨中弯矩急剧增大,到达屈服。
在短跨支座及跨中截面屈服形成塑性铰线后,短跨方向刚度显著降低。
继续增加的荷载将主要由长跨方向负担,直到长跨支座及跨中钢筋相继屈服,形成机构,到达极限承载力,其塑性铰线如上图所示。
与简支板不同的是四边连续板支座处的塑性铰代替了简支板支座的实际铰。
显示更多隐藏
2.均布荷载作用下双向板的极限荷载
双向板四个板块的极限平衡受力图
(1)按塑性理论计算双向板的基本公式(四边连续双向板的极限荷载)
为了简化计算,可取角部塑性铰线倾斜角为45o。
按照均布荷载作用下四边连续双向板的塑性铰线及破坏机构图(取虚位移δ=1)利用虚功原理,或按照双向板四个板块的极限平衡受力图利用力矩平衡方程,可求得按塑性理论计算双向板的基本公式(四边连续双向板的极限荷载):
ql x2(3l y-l x)/12=2M x+2M y+M x'+M x”+M y'+M y”
式中q为均布极限荷载;
l x、l y分别为短跨、长跨(净跨);
M x、M y分别为跨中塑性铰线上两个方向的总弯矩:
M x=l y m x M y=l x m y
m x、m y分别为跨中塑性铰线上两个方向单位宽度内的极限弯矩;
M x'、M x”、M y'、M y”分别为两个方向支座塑性铰线上的总弯矩:
M x'=M x”=l y m x'=l y m x” M y'=M y”=l x m y'=l x m y”
m x'=m x”、m y'=m y”分别为两个方向支座塑性铰线上单位宽度内的极限弯矩。
(2)按塑性理论计算四边简支双向板的极限荷载
四边简支双向板属四边连续板的特例,令M x'=M x”=M y'=M y”=0,即为四边简支双向板的极限荷载计算公式:ql x2(3l y-l x)/24=M x+M y
显示更多隐藏
3.双向板的设计公式
(1)两个方向弯矩比值的选定
设计双向板时,通常已知板的荷载设计值q和净跨l x、l y,要求计算板的弯距和配筋。
在四边连续板的一般情况下,有4个未知量:m x、m y、m x'=m x”、m y'=m y”,而只有一个方程式,不可能求得唯一的解,故需先选定弯矩间的比值α、β:α=m y/m x β=m x'/m x=m x”/m x=m y'/m y=m y”/m y
设板的长短跨比 n=l y/l x,通常可取α=1/n2。
为了避免β 值过小(β<1.5)使支座截面弯矩调幅过大,导致裂缝的过早开展;并考虑到将支座负弯矩钢筋在距支座边l x/4处截断,为避免形成局部破坏机构,降低极限荷载,β 值也不应大于2.5。
设计时可取β =1.5~2.5。
(2)跨中钢筋全部伸入支座时的弯距和配筋
如跨中钢筋全部伸入支座,则由基本公式可求得m x:
m x=(3n-1)ql x2/24(n+α)(1+β)
由选定的α、β可依次计算m y、m x'=m x”、m y'=m y”,再根据这些弯矩计算跨中及支座截面所需配置的受力钢筋。
(3)四边连续板跨中钢筋截断或弯起时的弯距和配筋
四边连续板跨中钢筋的截断或弯起图
为充分利用钢筋,可将连续板的跨中正弯矩钢筋在一定距离处截断,或弯起一部分作为支座负弯矩钢筋。
但如果截断钢筋的数量过多,有可能使截断(或弯起)处钢筋先达到屈服,形成新的极限荷载较低的破坏机构。
为防止出现这种情况,通常在距支座l x/4处将跨中正弯矩钢筋截断或弯起一半,如上图所示。
采用上图所示的截断钢筋位置和数量,将不会形成新的破坏机构。
对于四边连续板,由基本公式可求得m x:
m x=(3n-1)ql x2/12[2(n-0.25)+1.5α+2nβ+2αβ]
显示更多隐藏
4.设计公式的应用
双向板楼盖的计算,一般先从中间区格开始,如上图中板B1,然后再计算边区格板B2及B3,最后计算角区格B4。
(1)中间区格板
板B1为四边连续板,按照已知的荷载设计值q、净跨l x、l y及选定的α、β值,采用前述有关公式可求得m x,并依次算出m y、m x'=m x”、m y'=m y”,再根据这些弯矩计算跨中及支座截面所需配置的受力钢筋。
(2)边区格板
板B2为三边连续,一短边简支(m y'=0)。
另一短边支座a是B2与B1的公共支座,其配筋在计算板B1时已确定,即B2板的支座弯矩m y”为已知,计算时需将m y'=0及已知的m y”代入基本公式,按选定的α、β值可求得m x,并依次算出m y、m x'=m x”,再根据这些弯矩计算跨中及支座截面所需配置的受力钢筋。
如考虑在距支座l x/4处将跨中正弯矩钢筋截断或弯起一半,则按下式求m x
m x=[(3n-1)ql x2/12- m y”]/[2(n-0.25)+1.5α+2nβ]
板B3为三边连续,一长边简支(m x'=0)。
另一长边支座b的配筋在计算板B1时已确定,即B3板的支座弯矩m x”为已知,计算时将m x'=0及已知的m x”代入基本公式,按选定的α、β值可求得m x,并依次算出m y、m y'=m y”,再根据这些弯矩计算跨中及支座截面所需配置的受力钢筋。
如考虑在距支座l x/4处将跨中正弯矩钢筋截断或弯起一半,则按下式求m x
m x=[(3n-1)ql x2/12-nm x”]/[2(n-0.25)+1.5α+2αβ]
(3)角区格板
板B4为两相邻边连续,其余两边简支。
其连续支座c与d的配筋,在计算板B2与板B3时已经确定,即支座d的弯矩m x”和支座c的弯矩m y”均为已知,且跨中钢筋宜全部伸入简支支座,则:
m x=[(3n-1)ql x2/12-m y”-nm x”]/[2(n+α)]
(三)双向板的配筋构造
1. 弯矩折减系数
在设计周边与梁整体连接的双向板时,应考虑极限状态下周边支承梁对板的推力的有利影响,截面的弯矩设计值可予以折减。
折减系数按下列规定采用:
(1)对于连续板中间区格的跨中截面和中间支座截面,折减系数为0.8;
(2)对于边区格的跨中截面和自楼板边缘算起的第二支座截面:
当l b/l<1.5时,折减系数为0.8;
当1.5≤l b/l≤2时,折减系数为0.9;
式中l b为边区格沿楼板边缘方向的跨度,l 为垂直于楼板边缘方向的跨度。
(3)对于角区格的各截面,不应折减。
显示更多隐藏
2. 钢筋布置
(1)板的有效高度与内力臂系数
由于短跨方向的弯矩比长跨方向弯矩大,故短跨方向的受力钢筋应放在长跨方向受力钢筋的外侧(在跨中正弯矩截面短跨方向钢筋放在下排;支座负弯矩截面短跨方向钢筋放在上排),以充分利用板的有效高度h0。
在估计h0时:短向h0=h-20mm;长向h0=h-30mm。
在计算单位板宽内的受力钢筋截面面积 A s=m/f yγs h0时,内力臂系数γs可取0.9~0.95。
显示更多隐藏
(2)钢筋分带布置问题
当按弹性理论计算求得的最大弯矩配筋时,考虑到近支座处弯矩比计算的最大弯矩小得多,为了节约钢材,可将两个方向的跨中正弯矩配筋在距支座l x/4宽度内减少一半(见上图)。
但支座处的负弯矩配筋应按计算值均匀布置。
支座负弯矩钢筋可在距支座不小于l x/6处截断一半,其余的一半可在距支座不小于l x/4处截断,或弯下作为跨中正弯矩配筋。
当按塑性理论计算时,钢筋布置已反映在所选用的弯矩计算公式中,跨中钢筋的配筋数量不分中间带及边带。
当边支座为简支时,边区格及角区格与楼板边缘垂直的跨中钢筋一般不宜截断,或通过计算确定截断钢筋的数量及位置。
支座上负弯矩钢筋可在伸入板内不少于l x/4处截断。
显示更多隐藏
(3)边支座构造钢筋及角部附加钢筋
简支板角部裂缝图
无论按弹性或塑性理论计算,边支座一般按简支支座考虑,计算上取M=0。
但实际上由于砖墙或边梁的约束作用,仍存在有一定的负弯矩,故需在简支支座的顶部设置构造钢筋,其数量与单向板的要求相同。
角区格的角部受荷后有翘起的趋势(见上图),如支座处有砖墙压住,限制了板的翘起,角部板的顶面将出现见如上图所示斜裂缝。
为了控制这种裂缝的发展,需在简支板的角部l x/4范围内配置顶部附加钢筋(参见本章第四节板中构造钢筋图)。
(四)双向板支承梁的计算
(a)、(b)、(c)双向板支承梁的荷载图
(d)梯形或三角形分布荷载图(e)等效均布荷载图
双向板传给两个方向支承梁的荷载,可按下述近似方法计算:从板的四角作45o线,将每一区格板分为四块,每块面积内的荷载传给与其相邻的支承梁上(见上图a)。
因此,板传给长边支承梁的荷载为梯形分布(见上图b),传给短边支承梁的荷载为三角形分布(见上图c)。
承受梯形或三角形分布荷载的连续梁(见上图d),其内力分析可根据固端弯矩相等的条件,换算成等效的均布荷载q(换算公式见上图e)。
多跨连续梁可利用结构力学方法或教材附表计算等效荷载q作用下的支座弯矩。
再根据求得的支座弯矩和每跨的实际荷载分布,按平衡关系求各跨的跨中弯矩。
当考虑塑性内力重分布时,可在按弹性理论计算求得的支座弯矩基础上,应用调幅法选定支座弯矩,再按实际荷载分布计算跨中弯矩。
双向板支承梁的载面配筋计算和构造要求与单向板楼盖中的梁相同。
(一)排架的计算简图
1.计算单元的确定
显示更多隐藏2.排架结构的基本假定
显示更多隐藏3.排架结构的计算简图
(a)排架结构(b)变截面排架柱的实际轴线(c)排架结构计算简图
(1)排架柱的高度由固定端算至柱顶铰结点处。
排架柱的轴线为柱的几何中心线。
当柱为变截面柱时,排架柱的轴线为一折线。
上柱高H u,下柱高H l,全柱高H,上柱截面惯性矩为I u,下柱截面惯性矩为I l,如上图(b)所示。
(2)排架的跨度以厂房的轴线为准。
横梁用一条线来代表(EA=∞),计算简图如上图(c)。
由上图(b)改用上图(c),需在柱的变截面处增加一个力偶M,M 等于上柱传下的竖向力乘以上下柱几何中心线的间距e 。
显示更多隐藏
(二)排架上的荷载
1.恒载
(1)屋盖恒载
(a)屋盖荷载与上、下柱的关系(b)计算简图
包括屋面构造层、屋面板、天窗架、屋架、屋盖支撑以及与屋架连接的各种管道的重力荷载。
它们都以集中力G l的形式施加于柱顶,作用点位于屋架上下弦几何中心线汇交处(对标准屋架通常在纵向定位轴线内侧l50mm处)。
G l对上柱截面中心往往有偏心距e l,对下柱截面中心又增加另一偏心距e2(e2为上下柱中心线间距),所以G l对柱顶截面中心有一个外力矩G l e l,对变截面处下柱截面中心有一个附加力矩G l e2,如上图(b)所示。
显示更多隐藏(2)柱、吊车梁和轨道联结重力荷载
(a)就位后的柱和吊车梁
(I―固定柱用的钢楔)(b)柱重力荷载用下
的计算简图
(c)吊车梁和轨道联结
作用下的计算简图
①柱的重力荷载G2、G3分别按上、下柱(下柱包括牛腿)的实际体积计算。
上柱自重G2作用于上柱重心,它的作用线与上柱中心线相重合,对下柱截面中心线有偏心距e2,对牛腿顶面处下柱截面中心有一个外力矩G2e2;下柱自重G3作用于下柱的重心,它的作用线与下柱中心线相重合,如上图(b)所示。
②吊车梁和轨道联结的重力荷载G4可从相应的标准图集中查得,轨道联结也可按1~2kN/m沿吊车梁长度方向的均布荷载计算。
G4的作用线与吊车梁轨道中心线相重合,距柱纵向定位轴线一般为750mm,并作用在柱牛腿顶面。
G4对下柱截面中心的偏心距离为e4,故G4对下柱截面中心有一外力矩G4e4,如上图(c)所示。
显示更多隐藏
(3)墙体荷载
(a)墙体作用示意图(b)墙体作用下计算简图
当外墙墙体或大型墙板搁置在连系梁(墙梁)上,连系梁又支承在柱的牛腿上时,排架柱将受到墙体、墙体上的窗重以及连系梁自重产生的偏心荷载G5,e5为墙体中心线到排架柱中心线的距离,墙体荷载作用下的计算简图如上图(b)所示。
显示更多隐藏
2.吊车荷载
吊车荷载作用示意图
吊车荷载是移动荷载,作用在厂房排架上的桥式吊车荷载一般有三种形式:(1)吊车竖向荷载D max、D min;(2)吊车横向水平荷载T max;(3)吊车纵向水平荷载。
第(1)、(2)种作用在厂房横向排架上(如上图所示),第(3)种作用在厂房纵向排架上。
(1)吊车竖向荷载
①最大轮压P max和最小轮压P min
吊车竖向荷载是吊车满载运行时通过轮压传给排架柱的竖向移动荷载。
桥式吊车竖向荷载标准值应采用吊车的最大轮压P max和吊车的最小轮压P min。
当吊车满载且卷扬机小车行驶到吊车桥架一侧的极限位置时,小车所在一侧轮压将出现最大轮压P max;同时,另一侧吊车轮压出现最小轮压P min(见上图)。
显示更多隐藏
②多台吊车的荷载折减系数ζ
当有多台吊车时,对一层吊车单跨厂房的每个排架,参与组合的吊车台数不宜多于2台;对一层吊车多跨厂房的每个排架,不宜多于4台。
对于多层吊车的单跨或多跨厂房,应按实际使用情况考虑。
当按两台或两台以上吊车计算排架时,多台吊车的竖向荷载标准值应乘以下表所示的折减系数ζ后采用,这是考虑到多台吊车同时满载,且小车位置也同时处于最不利位置的概率是很小的。
多台吊车的荷载折减系数ζ表
吊车工作制
参与组合的吊车台数
轻、中级重、超重级
2 0.9 0.95
40.8 0.85
显示更多隐藏
③吊车对排架柱产生的最大竖向荷载D max和最小竖向荷载D min
一般预制吊车梁为简支梁,利用简支梁的反力影响线可求出吊车对排架柱产生的最大竖向荷载D max(另一侧排架柱为最小竖向荷载D min)。
分析表明,只有当两台吊车挨紧运行,且其中起重量大的一台的轮子行至排架柱的位置时(见上图),作用于计算排架柱的吊车竖向荷载才是最大值D max(另一侧排架柱为最小值D min)。
由反力影响线得(见上图):
D max=ΣP imax y i
D min=ΣP imin y i
式中P imax、P imin分别为第i台吊车最大、最小轮压,y i为各轮压对应的反力影响线的竖值。
桥式吊车基本参数P max、P min、桥宽B、轮距K等,可按所采用的桥式吊车规格,从产品说明书或有关专业标准中查得。
在上图中,B1、K1为吊车1的桥宽和轮距;B2、K2为吊车2的桥宽和轮距;C为两台吊车最大轮压P1max和P2max作用点的间距(见上图),其值为C=(B1-K1)/2+(B2-K2)/2
显示更多隐藏
④吊车竖向荷载对排架下柱产生的力矩M max、M min
最大(最小)竖向荷载D max(D min)对下柱几何中心线产生的力矩为
M max=D max e4
M min=D min e4
式中e4为吊车梁中心线和下柱中心线间的距离。
求出D max、D min、M max、M min后即可得到排架在吊车竖向荷载作用下的计算简图,如上图所示。
值得注意的是,D max、M max也可能施加在B柱上,与此相应的是D min、M min作用在A柱上。
显示更多隐藏
(2)吊车横向水平荷载
①吊车横向水平荷载T
桥式吊车的横向水平荷载是由吊车上的小车在启动或制动时引起的惯性力而产生的。
《荷载规范》建议吊车的横向水平荷载在两边轨道上平均分配,分别由车轮传至轨顶,并经轨道和埋设在吊车梁顶面的连接件传给上柱。
因此,吊车横向水平荷载施加于排架的作用点,就在吊车梁顶面标高处,且有向左或向右两种可能性,如上图所示。
考虑多台吊车水平荷载时,由于同时制动的机遇很小,《荷载规范》规定:对单跨或多跨厂房的每个排架,参与组合的吊车台数不应多于2台。
计算排架承受的水平荷载标准值时,也应乘以荷载折减系数
ζ。
因此,对一般4轮桥式吊车,每个轮子上产生的横向水平荷载标准值T,可按下式计算:T=α(Q+Q1)g/4 (kN)
式中Q ——吊车的额定起重量(t);
Q1——横行小车重量(t);
g ——重力加速度(9.81,可近似取10);
α——横向水平荷载系数(或称小车制动力系数)。
对于软钩吊车:
当Q≤10t时,α=12%;
当Q=15~50t时,α=10%;
当Q≥75t时,α=8%;
对于硬钩吊车α=20%。
显示更多隐藏
②吊车横向最大水平荷载T max作用下的计算简图
吊车横向水平荷载也是移动荷载,也要用影响线才能求出吊车对排架柱产生的最大水平荷载T max。
吊车的位置与计算吊车竖向荷载D max时相同,所用公式类似,即:T max=ΣT i y i
吊车横向水平荷载作用下的计算简图如上图所示。
显示更多隐藏
(3)吊车纵向水平荷载
桥式吊车的纵向水平荷载是吊车的大车在启动或制动时引起的惯性力产生的,通过大车制动轮与钢轨间的摩擦传给厂房纵向结构。
因此,吊车纵向水平荷载的作用点位于刹车轮与轨道的接触点,其方向与轨道方向一致。
作用在一边轨道上的吊车纵向水平荷载标准值T e 可按下式计算(取吊车的大车制动力系数为0.1):
T e=0.1nP max
式中n——吊车每侧制动轮数(一台四轮桥式吊车,n=1);
P max——刹车轮的最大轮压。
计算吊车纵向水平荷载引起的厂房纵向结构的内力时,对单跨或多跨厂房的每个纵向排架,参与组合的吊车台数均不应多于2台。
吊车纵向水平荷载将由同一伸缩缝区段内各柱共同承受,按各柱沿厂房纵向的抗侧刚度大小比例分配。
当有柱间支撑时,全部纵向水平荷载可考虑由柱间支撑承受。
显示更多隐藏
[例11—1]
3.风荷载
作用于单层厂房表面上的风荷载与受风表面的形状、所处的地理位置、周围环境、离地
面高度有关。
《荷载规范》规定,垂直于建筑物表面上的风荷载标准值W k(kN/m2),按下式计算:
W k=βZμSμZ W O
式中βZ——Z高度处的风振系数,仅在高度大于30m且高宽比大干1.5的房屋结构,以及基本自振周期T1大于0.25s的塔架、桅杆、烟囱等高耸结构中才予考虑,单层厂房结构一般不在此列,故单厂结构中βZ=1;
μS——风荷载体型系数,是指风作用在建筑物表面所引起的实际压力(或吸力)与理论风压的比值。
主要与建筑物的体型和尺度有关。
《荷载规范》中列出多种基本体型的风荷载体型系数,供设计时采用;
μZ——风压高度变化系数,根据离地面高度及地面粗糙度类别,查表确定;
W O——基本风压(kN/m2),是以当地比较空旷平坦地面上离地10m高统计所得的、30年一遇10分钟平均最大风速V O(m/s)为标准,按W O=V O2/1600确定的风压值。
《荷载规范》给出了全国基本风压分布图。
作用于单层厂房排架结构上的风荷载可分为两部分:
(1)柱顶以下的风荷载,可近似地按竖向均布荷载q计,风压高度系数偏安全地按柱顶标高计算。
(2)柱顶(屋架下弦)以上的风荷载,通过屋架以集中力F W的形式作用于排架柱顶。
这时的风压高度变化系数均可按天窗檐口处标高计算,也可按各部分平均高出室外地面的高度计算。
风荷载作用下的计算简图如上图所示。
4. 雪荷载、屋面积灰荷载和屋面均布活荷载
这三种荷载都是作用在屋面上的可变荷载,都以相同的途径传至柱顶,其计算简图同屋盖恒载。
在进行单层厂房结构设计时,考虑到屋面均布活荷载与雪荷载相遇的可能性很小,《荷载规范》规定,屋面均布活荷载,不应与雪荷载同时考虑,而应取两者中的较大值。
当有屋面积灰荷载时,它应与屋面均布活荷载或屋面雪荷载中之较大值同时取用。
(1)雪荷载
作用于屋面水平投影面上的雪荷载标准值S k(kN/m2),按下式计算:
S k=μr S O
式中μr——屋面积雪分布系数, 与屋面形式、朝向及风力等有关。
《荷载规范》规定了多种典型屋面的屋面积雪分布系数,供设计时采用;
S O——基本雪压(kN/m2)是以当地一般空旷平坦地面上统计所得30年一遇最大积雪的自重确定的,《荷载规范》中给出了全国基本雪压分布图。
(2)屋面积灰荷载
当设计生产中有大量排灰的厂房(如冶金、铸造、水泥等行业的建筑)及其邻近建筑时,需考虑厂房屋面积灰荷载,其取值应按《荷载规定》确定。
(3)屋面均布活荷载
不上人屋面的均布活荷载指施工阶段及使用阶段进行屋面维修时的荷载。
对钢筋混凝土屋面(包括挑檐、雨篷)上的屋面均布活荷载,按0.7 kN/m2计算。
其他屋面构造的屋面均布活荷载取值,详见《荷载规范》。
显示更多隐藏
(三)排架的内力分析
1.等高排架的内力计算
(1)对称荷载、对称排架
排架顶端无侧移,排架可简化为上端为不动铰、下端为固定端的单独竖向柱进行计算,如上图所示,屋盖恒载通常属于此种情况。
顶端为不动铰、下端为固定端的变截面单独竖向柱在任意荷载下的内力计算,可用结构力学中的力法进行求解,也可直接查用有关计算图表。