2010-2011(2)高等数学A-D 线性代数A-E答疑.

合集下载

安徽大学 10-11(2)高数A(二)、B(二)答案

安徽大学 10-11(2)高数A(二)、B(二)答案

+
2x
∂z
⎤ ⎥
∂y ⎥⎦
=
x2z2
sin
z + 2x2z cos z (cos z − xy)3

2x3 yz

四、应用题(每小题 8 分,共 16 分)
第2页 共3页
1. 解. 构造 Lagrange 函数 L(x, y, z, λ, μ) = x + 2 y + 3z + λ(x2 + y2 − 2) + μ( y + z −1) . 求偏导得 Lx = 1+ 2λ x, Ly = 2 + 2λ y + μ, Lz = 3 + μ , Lλ = x2 + y2 − 2, Lμ = y + z −1, 联立解得 x = −1, y = 1, z = 0 或 x = 1, y = −1, z = 2 . 代入原函数得 f (−1,1, 0) = 1, f (1, −1, 2) = 5 . 故所求最大值为 5, 最小值为1.
∫ 2. 解. 所求金属丝的质量为 m = ρds . L
弧微分 ds = [x '(t)]2 + [ y '(t)]2 + [z '(t)]2 dt = 3etdt .
∫ ∫ 故 m =
11 0 2e2t
3etdt = 3 1e−tdt = 3 (1− e−1) .
20
2
五、证明题(每小题 5 分,共 10 分)
1 . 证 明 . 设 f (x) = x , 则 f '(x) = 2011− x , 显 然 x ≥ 2011 时 ,
x + 2011
2 x (x + 2011)

高等数学A(二)(答案及得分详解)

高等数学A(二)(答案及得分详解)

高等数学A (二)带答案一、单项选择题(每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10答案 B B A A D B C C BA 得分1、设三个向量,,a b c 满足关系式0a b c ++= ,则a b ⨯= ( )。

(A) c b ⨯ (B) b c ⨯ (C) a c ⨯ (D) b a ⨯2、函数()22,y x y x f +=在点)2,1(处沿向量→l =( )的方向导数最大。

(A) )2,1( (B) )4,2( (C) )4,4( (D) )2,2(3、函数()y x f ,在点()00,y x 处偏导数都存在且连续是()y x f ,在该点处可微的( )条件。

(A) 充分 (B) 必要 (C) 充分必要 (D) 既不充分也不必要4、空间曲线3,1,1t z tt y t t x =+=+=在对应于1=t 的点处的切线方程是( )。

(A) 12142121-=--=-z y x (B) 121411-=--=z y x (C) 02184=-+-z y x (D) 0284=++-z y x 5、取}01),({22>≤+=x y x y x D ,,则下面二重积分中其值为0的是 ( )。

(A) ()σd y x D ⎰⎰+22 (B) ()σd xy x D⎰⎰+23(C) ()σd y x D ⎰⎰+33 (D) σd y x D ⎰⎰sin cos6、()=+⎰ds y x L22( ),其中L 为圆周222=+y x 。

(A) π2- (B) π24 (C) 238π (D) 17、设曲面∑为上半球面2222x y z R ++=0)z ≥(,曲面1∑是曲面∑第一卦限的部分,则下面等式成立的是( )。

(A) 14xdS xdS ∑∑=⎰⎰⎰⎰(B)14ydS xdS ∑∑=⎰⎰⎰⎰ (C) 14zdS xdS ∑∑=⎰⎰⎰⎰(D) 14xyzdS xyzdS ∑∑=⎰⎰⎰⎰ 8、下列级数中,绝对收敛的是( )。

2010-2011天津科技大学线性代数答案pdf版解读

2010-2011天津科技大学线性代数答案pdf版解读

2 1. 2 x12 − 6 x3 + 2 x1 x2 − 6 x1 x3 + 8 x2 x3 ;2. 2 2 − x12 + 3x2 + 2 x3 + 2 5 x1 x2 −4 x2 x3 . 二.计算题⎛⎜0 ⎜ 3 解:(1 二次型 f 的矩阵为 A = ⎜⎜2 ⎜⎜ −3 ⎜⎝⎛3 ⎜2 0 ⎜ 3 A→⎜0 ⎜ 2 ⎜⎜0 −1 ⎜ 2 ⎝⎛ −5 ⎜⎜0 ⎜ (2 二次型 f 的矩阵为 A = ⎜⎜0 ⎜⎜⎜0 ⎝⎛ −5 0 ⎜⎜0 1 ⎜ 2 A→⎜⎜0 0 ⎜⎜0 0 ⎝ 0 ⎞ −3 ⎟⎟ 1 0 − ⎟,对其施行初等行变换,得 2⎟⎟ 1 − −3 ⎟⎟ 2 ⎠ 1⎞ − ⎟ 1⎞⎛3 2 0 − ⎟⎟⎜ 2 2 ⎟, r ( A = 3 ,故 f 的秩为3. −3 ⎟ → ⎜⎟⎜ 0 1 −2 ⎟⎟⎜⎟⎝ 0 0 −5 ⎠ −4 ⎟⎟⎠ 3 2 0 1 2 0 ⎞⎟ 5 − ⎟ 0 2⎟⎟,对其施行初等行变换,得1 2 −5 ⎟ 2 ⎟⎟ 5 − −5 0 ⎟⎠ 2 0 0 ⎞⎛ −5 0 0 0 ⎞⎟⎜⎟ 1 2 −5 ⎟⎜ 0 2 −5 ⎟⎟⎜⎟ 2 , r ( A = 3 ,故 f 的秩为 3. → 1 5⎟⎜ 1 5⎟ − ⎟⎜0 0 − ⎟ 2 2⎟⎜ 2 2⎟⎜0 0 0 0 ⎟ 5 −25 ⎟⎠⎠⎝天津科技大学线性代数检测题 5-2 参考答案一.填空题 1. n ;2 2. y12 − y2 ;2 2 3. λ1 y12 + λ2 y2 + λ3 y3 . 二.选择题 1. (A; 2. (C ; 3. (A. 三.计算题⎛2 1⎞ λ − 2 −1 1. 解:二次型 f 的矩阵为 A = ⎜⎟,由λ E − A = −1 λ − 2 = (λ − 1(λ − 3 ,知特征值为λ1 =1 ,⎝1 2⎠2 λ2 =3 ,故二次型 f 的标准形为 f = y12 + 3 y2 . ⎛ −1 −1⎞⎛ x1 ⎞⎛ 0 ⎞⎛ −1⎞对于λ = λ1 = 1 ,解方程组( E − A X = 0 ,即⎜⎟⎜⎟ = ⎜⎟,得到特征向量 p2 = ⎜⎟;⎝ −1 −1⎠⎝ x2 ⎠⎝ 0 ⎠⎝1⎠⎛ 1 −1⎞⎛ x1 ⎞⎛ 0 ⎞⎛ 1⎞对于λ = λ2 = 3 ,解方程组(3 E − A X = 0 ,即⎜⎟⎜⎟ = ⎜⎟,得到特征向量 p2 = ⎜⎟ . ⎝ −1 1 ⎠⎝ x2 ⎠⎝ 0 ⎠⎝ 1⎠单位化,得 e1 = 1 ⎛ −1⎞ 1 ⎛ 1⎞⎜⎟, e2 = ⎜⎟. 1 2⎝⎠ 2 ⎝ 1⎠ 16⎛ 1 ⎜− 2 令P =⎜⎜ 1 ⎜⎝ 2 1 ⎞⎛ 1 − ⎟⎛ x1 ⎞⎜ 2⎟ 2 ⎜,则所求正交变换为 X = PY 即⎜⎟ = 1 ⎟⎝ x2 ⎠⎜ 1 ⎟⎜ 2⎠⎝ 2 1 ⎞⎟ 2 ⎟⎛ y1 ⎞⎜⎟ . 1 ⎟⎝ y2 ⎠⎟ 2⎠⎛ 2 0 0⎞ λ −2 0 0 ⎟,由 = 2. 解:二次型 f 的矩阵为 A = ⎜ λ 0 − 1 − 1 = (λ − 2 2 λ ,知特征值为λE − A ⎜0 1 1⎟⎜0 1 1⎟ 0 −1 λ − 1 ⎝⎠ 2 λ1 = λ2 =2 ,λ3 = 0 ,故二次型 f 的标准形为 f = 2 y12 + 2 y2 . ⎛1⎞⎛ 0⎞⎛ 0 0 0 ⎞⎛ x1 ⎞⎛ 0 ⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟对于λ = 2 ,解方程组(2 E − A X = 0 ,即⎜ 0 1 −1⎟⎜ x2 ⎟ = ⎜ 0 ⎟,得到特征向量 p1 = ⎜ 0 ⎟, p2 = ⎜ 1 ⎟;⎜ 0 −1 1 ⎟⎜ x ⎟⎜ 0 ⎟⎜ 0⎟⎜1⎟⎝⎠⎝ 3 ⎠⎝⎠⎝⎠⎝⎠⎛0⎞⎛ −2 0 0 ⎞⎛ x1 ⎞⎛ 0 ⎞⎟⎜ x ⎟ = ⎜⎟,得到特征向量 p = ⎜ −1⎟ . 对于λ = 0 ,解方程组− AX = 0 ,即⎜ 3 ⎜⎟⎜ 0 −1 −1⎟⎜ 2 ⎟⎜ 0 ⎟⎜ 0 −1 −1⎟⎜ x ⎟⎜ 0 ⎟⎜1⎟⎝⎠⎝ 3 ⎠⎝⎠⎝⎠⎛0⎞⎛0⎞ 1⎜⎟ 1 ⎜⎟标准正交化,得 e1 = p1 ,e2 = −1⎟ . 1 ⎟, e3 = 2⎜ 2⎜⎜1⎟⎜1⎟⎝⎠⎝⎠⎛1 ⎜⎜0 令P =⎜⎜⎜0 ⎜⎝ 0 ⎞⎛1 ⎜⎟ x ⎛⎞ 1 ⎟ 1 ⎜ − ⎜⎟ 0 2 2 ⎟,则所求正交变换为 X = PY 即⎜ x2 ⎟ = ⎜⎟⎜x ⎟⎜ 1 1 ⎟⎝ 3 ⎠⎜0 ⎜⎟ 2 2 ⎠⎝ 0 1 0 1 2 1 2 0 ⎞⎟ 1 ⎟⎛ y1 ⎞ − ⎜⎟ 2 ⎟⎜ y2 ⎟ . ⎟⎟ 1 ⎟⎜⎝ y3 ⎠⎟ 2 ⎠⎛3 0 0⎞ λ −3 0 0 ⎜⎟ 3. 解:二次型 f 的矩阵为 A = ⎜ 0 2 1 ⎟,由λ E − A = 0 λ − 2 −1 = (λ − 3 2 (λ − 1 ,知特征值为⎜ 0 1 2⎟ −1 λ − 2 0 ⎝⎠ 2 2 λ1 = λ2 = 3 ,λ3 = 1 ,故二次型 f 的标准形为 f = 3 y12 + 3 y2 . + y3 ⎛1⎞⎛ 0⎞⎛ 0 0 0 ⎞⎛ x1 ⎞⎛ 0 ⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟对于λ = 3 ,解方程组(3 E − A X = 0 ,即⎜ 0 1 −1⎟⎜ x2 ⎟ = ⎜ 0 ⎟,得到特征向量 p1 = ⎜ 0 ⎟, p2 = ⎜ 1 ⎟;⎜ 0 −1 1 ⎟⎜ x ⎟⎜ 0 ⎟⎜ 0⎟⎜1⎟⎝⎠⎝ 3 ⎠⎝⎠⎝⎠⎝⎠⎛0⎞⎛ −2 0 0 ⎞⎛ x1 ⎞⎛ 0 ⎞⎜⎟⎜⎟⎜⎟⎜⎟对于λ = 1 ,解方程组( E − A X = 0 ,即⎜ 0 −1 −1⎟⎜ x2 ⎟ = ⎜ 0 ⎟,得到特征向量 p3 = ⎜ −1⎟ . ⎜ 0 −1 −1⎟⎜ x ⎟⎜ 0 ⎟⎜1⎟⎝⎠⎝ 3 ⎠⎝⎠⎝⎠⎛0⎞⎛0⎞ 1 ⎜⎟ 1 ⎜⎟标准正交化,得 e1 = p1 , e2 = 1 ⎟,e3 = −1⎟ . 2⎜ 2⎜⎜1⎟⎜1⎟⎝⎠⎝⎠⎛1 ⎜⎜0 令P =⎜⎜⎜0 ⎜⎝ 0 ⎞⎛1 ⎟ x ⎛ 1⎞⎜ 1 ⎟ − ⎜⎟⎜0 2 2 ⎟,则所求正交变换为 X = PY 即⎜ x2 ⎟ = ⎜⎟⎜x ⎟⎜ 1 1 ⎟⎝ 3 ⎠⎜0 ⎜⎟ 2 2 ⎠⎝ 0 1 0 1 2 1 2 0 ⎞⎟ 1 ⎟⎛ y1 ⎞ − ⎜⎟ 2 ⎟⎜ y2 ⎟ . ⎟⎟ 1 ⎟⎜⎝ y3 ⎠⎟ 2 ⎠天津科技大学线性代数自测题 5 参考答案 17一.填空题 1. 0 ; 2. 2 . 二.选择题 1. (C. 三.计算题⎛ 6 12 ⎞ λ − 6 −12 = (λ + 10(λ − 15 , 1. 解:二次型 f 的矩阵为 A = ⎜由λE − A = 知特征值为λ1 = −10 ,⎟,−12 λ + 1 − 12 1 ⎝⎠ 2 λ2 = 15 ,故二次型 f 的标准形为f = −10 y12 + 15 y2 . ⎛3⎞⎛ −16 −12 ⎞⎛ x1 ⎞⎛ 0 ⎞⎜− 4⎟; p = = 对于λ = −10 ,解方程组(−10 E − A X = 0 ,即⎜,得到特征向量⎟⎜⎟⎜⎟ 1 ⎜⎜ 1 ⎟⎟⎝ −12 −9 ⎠⎝ x2 ⎠⎝ 0 ⎠⎝⎠⎛4⎞⎛ 9 −12 ⎞⎛ x1 ⎞⎛ 0 ⎞⎜ 3⎟. = p = 对于λ = 15 ,解方程组(15 E − A X = 0 ,即⎜,得到特征向量⎟⎜⎟⎜⎟ 2 ⎜ x − 12 16 0 ⎜1⎟⎟⎝⎠⎝ 2 ⎠⎝⎠⎝⎠⎛3 ⎜− 5 − 3 4 1⎛⎞ 1⎛⎞单位化,得 e1 = ⎜⎟, e2 = ⎜⎟ . 令 P = ⎜ 5⎝ 4 ⎠ 5 ⎝3⎠⎜ 4 ⎜⎝ 5 ⎛ 3 − ⎛ x1 ⎞⎜ 5 ⎜⎟=⎜⎝ x2 ⎠⎜ 4 ⎜⎝ 5 4⎞ 5⎟⎟,则所求正交变换为 X = PY 即 3⎟⎟ 5⎠ 4⎞⎛ −10 0 ⎞ 5 ⎟⎛ y1 ⎞ T ⎟⎜⎟,且P T AP = Λ = ⎜⎟,于是A = P Λ P , 3 ⎟⎝ y2 ⎠⎝ 0 15 ⎠⎟ 5⎠ T 10 A10 = ( P Λ P ⎛ 3 ⎜−5 =P Λ10 P T = ⎜⎜ 4 ⎜⎝ 5 4⎞⎛ 3 − 10 ⎟⎛⎞ 0 ⎜ 5 5 ( −10 ⎟⎜⎜⎟ 3 ⎟⎜ 4 0 1510 ⎟⎠⎜⎟⎝⎜ 5⎠⎝ 5 4⎞ 10 10 12(1510 − 1010 ⎞ 5 ⎟ 1 ⎛ 9 × 10 + 16 × 15 ⎟= ⎜⎟. 3 ⎟25 ⎝ 12(1510 − 1010 16 × 1010 + 9 × 1510 ⎠⎟ 5⎠ 2. * (此题型不要求学生掌握5 −1 3 ⎛ 5 −1 3 ⎞⎜⎟解:(1二次型 f 的矩阵为 A = ⎜ −1 5 −3 ⎟,由 r ( A = 2 ,知 A = −1 5 −3 = 24(a − 3 = 0 ,故 a = 3 . ⎜ 3 −3 a ⎟ 3 −3 a ⎝⎠ λ −5 1 −3 (2 λ E − A = 1 λ −5 3 = λ (λ − 4(λ − 9 ,知特征值为λ1 = 0 ,λ2 = 4 ,λ3 = 9 ,−3 2 1 2 2 3 2 3 λ −3 2 2 故二次型f = 5 x + 5 x + 3x − 2 x1 x2 + 6 x1 x3 − 6 x2 x3 可经正交变换 X = PY 化为标准形为 f = 4 y2 + 9 y3 ,于是 2 2 曲面方程变为 4 y2 + 9 y3 = 1 .由于正交变换相当于坐标旋转,因此并不改变曲面的形状,从而所求曲面为椭圆柱面. 18。

线性代数试题及答案解析

线性代数试题及答案解析

线性代数试题及答案解析一、选择题(每题4分,共40分)1. 矩阵A和矩阵B相乘,得到的结果矩阵的行列数为()。

A. A的行数乘以B的列数B. A的行数乘以B的行数C. A的列数乘以B的列数D. A的列数乘以B的行数答案:D解析:矩阵乘法中,结果矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。

2. 向量α和向量β线性相关,则下列说法正确的是()。

A. α和β可以是零向量B. α和β可以是任意向量C. α和β中至少有一个是零向量D. α和β中至少有一个是另一个的倍数答案:D解析:线性相关意味着存在不全为零的系数,使得这些系数乘以对应的向量和为零向量,因此至少有一个向量是另一个向量的倍数。

3. 对于n阶方阵A,下列说法不正确的是()。

A. A的行列式可以是0B. A的行列式可以是负数C. A的行列式可以是正数D. A的行列式一定是正数答案:D解析:方阵的行列式可以是正数、负数或0,因此选项D不正确。

4. 矩阵A和矩阵B相等,当且仅当()。

A. A和B的对应元素相等B. A和B的行数相等C. A和B的列数相等D. A和B的行数和列数都相等答案:A解析:两个矩阵相等,必须满足它们具有相同的行数和列数,并且对应元素相等。

5. 向量组α1,α2,…,αn线性无关的充分必要条件是()。

A. 由这些向量构成的矩阵的行列式不为0B. 这些向量不能构成齐次方程组的非零解C. 这些向量不能构成齐次方程组的非平凡解D. 这些向量可以构成齐次方程组的平凡解答案:C解析:向量组线性无关意味着它们不能构成齐次方程组的非平凡解,即唯一的解是零向量。

6. 矩阵A可逆的充分必要条件是()。

A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式为任何非零数答案:A解析:矩阵可逆当且仅当其行列式不为0。

7. 矩阵A的特征值是()。

A. 矩阵A的行数B. 矩阵A的列数C. 矩阵A的对角线元素D. 满足|A-λI|=0的λ值答案:D解析:矩阵的特征值是满足特征方程|A-λI|=0的λ值。

《线性代数》课后习题答案

《线性代数》课后习题答案

《线性代数》课后习题答案第一章行列式习题1.11. 证明:(1)首先证明)3(Q 是数域。

因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。

任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(21212121221121212211212122 11b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。

因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221 121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。

如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。

又因为有理数的和、差、积、商仍为有理数,所以)3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。

综上所述,我们有)3(Q 是数域。

(2)类似可证明)(p Q 是数域,这儿p 是一个素数。

(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。

(反证法)如果)()(q Qp Q ?,则q b a p Q b a +=?∈?,,从而有q ab qb a p p 2)()(222++==。

由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。

所以有0=a 或0=b 。

0910高等数学A(二)答案

0910高等数学A(二)答案

0910高等数学A(二)答案第一篇:0910高等数学A(二)答案济南大学2009~2010学年第二学期课程考试试卷评分标准(含参考答案)A卷课程名称:高等数学A(二)任课教师:张苏梅等一、填空题(每小题3分,共18分)1.yzez-xy;2.y=2x3-x2;3.2xdx+2ydy;π∞(-1)n(2x)2n4.0;5.2;6..12(1-n∑=0(2n)!),(-∞,+∞)二、选择题(每小题3分,共18分)C;D;C;B;A;B.三、计算题(每小题8分,共32分)1.解:∂z∂x=1ycosxy;.....4分∂2z1xxx∂x∂y=-y2cosy+y3siny.....8分2.解:⎰⎰xydσ=⎰2dx⎰xxydy.....4分D0=12⎰20x3dx=2.....8分 3.解:dS=+x2x2+y+y2x2+ydxdy=2dxdy.....2分⎰⎰zdS=⎰⎰x2+y22dxdy.....5分∑Dxy=⎰2πdθ⎰2r2dr=π.....8分 4.解:⎰⎰(x2+y2+z2)dxdy=dxdy=πa4...........8分∑D⎰⎰axy四、应用题(每小题8分,共16分)1.解:由椭球的对称性,不妨设(x,y,z)是该椭球面上位于第Ⅰ卦限的任一点,内接长方体的相邻边长为2x,2y,2z(x,y,z>0),其体积为:V=8xyz构造拉格朗日函数F(x,y,z,λ)=8xyz-λ(x2y2a+b+z2c-1)......4分∂F∂x=8yz-λ2xa2=0令∂F2y∂y=8xz-λb2=0........6分∂F∂z=8xy-λ2zc2=0求得(x,y,z)=⎛a,b,c⎫⎪,V=8xyz=8abc......8分⎝33⎪⎭332.解:Iz=⎰⎰⎰(x2+y2)dv.........3分Ω=⎰2π2430dθ⎰0dr⎰r2rdz.........6分=2π⎰2r3(4-r2)dr=03π.........8分五、(8分)解:因为limana=limn=1,所以收敛半径为1.n→∞n+1n→∞n+1又x=±1时,级数均发散,故级数的收敛域为(-1,1).....3分n=1∑nx∞n=x∑nxn=1∞n-1=x(∑xn)'......6分 n=1∞xx=x()'=,x∈(-1,1).........8分 21-x(1-x)六、(8分)解:① 设u=x2+y2,则∂zx=f'(u);∂xu∂2zx21x2=()f''(u)+f'(u)-3f'(u)........2分 2uu∂xuy21y2同理,2=()f''(u)+f'(u)-3f'(u)uu∂yu由∂2z∂2z∂x2+∂2z∂y2=0⇒f''(u)+1f'(u)=0.....4分 u② 设f'(u)=p,f''(u)=dp,du则原方程化为:dp1dpdu+p=0⇒=-duupu积分得:p=CC,即f'(u)=,........6分 uu由f'(1)=1,得C=1.于是f(u)=ln|u|+C1代入f(1)=0得:C1=0.函数f(u)的表达式为:f(u)=ln|u|.......8分第二篇:1112高等数学B(二)答案济南大学2011~2012学年第二学期课程考试试卷评分标准(含参考答案)A卷课程名称:高等数学B(二)任课教师:一、填空题(每小题2分,共10分)1、2dx+dy,2、-5,3、1,4、⎰10dy⎰1yf(x,y)dx5、1二、选择题(每小题2分,共10分)1、A2、B3、C4、C5、D三、计算题(每小题8分,共40分)1、解:令F=x2+y2+z2-2z,则Fx=2x,Fz=2z-2.....2分∴∂zFx∂x=-xF=z.....4分z1-∂2z∂x(1-z)2+x2∴∂x2=∂x(1-z)=(1-z)3.....8分2、解:⎰⎰(x+6y)dxdy=⎰1dx5x76D0⎰x(x+6y)dy=3.....8分π3、解:⎰⎰+x2+y2dxdy=D⎰2dθ⎰1+r2rdr=π(22-1).....8分4、解:ux(2,1,3)=4,uy(2,1,3)=5,uz(2,1,3)=3 方向lϖ=(3,4,12)cosα=313,cosβ=413,cosγ=12 .....6分∂z∂l=uu68xcosα+ycosβ+uzcosγ=13.....8分5、解:收敛域为(0,2).....2分∞∞令S(x)=∑(n+1)(x-1)n=(1)n+1)'.....6分n=0∑(x-n=0S(x)=(x-12-x)'=1(2-x)2x∈(0,2).....8分四、解答题(每小11分,共33分)ϖ1、解:交线的方向向量为nϖiϖjkϖ=1-4=(-4,-3,-1).....8分2-1-5所求直线方程为x+3y-2z-54=3=1.....11分2、解:令f(x)=xx-1,则f'(x)=-1-x2x(x-1)<0x>1 所以un单调递减且limn→∞un=0∞所以级数∑(-1)nnn=2n-1.....6分n∞由于limn→∞=1,且∑1发散n=2nn∑∞(-1)n所以级数n.....11分n=2n-13、解:旋转曲面方程为z=x2+y2.....3分投影区域D:x2+y2≤1.....5分V=⎰⎰(1-x2-y2)dxdy=⎰2πdθ⎰1π(1-r)rdr=D.....11分五、证明题(每小题7分,共7分)ff(x,0)-f(0,0)x(0,0)=lim证:x→0x=0f(0,0)=limf(x,0)-f(0,0)xx→0x=0所以函数f(x,y)在(0,0)处可导.....3分lim∆z-fx(0,0)∆x-fy(0,0)∆yρ→0ρ=limf(∆x,∆y)∆x∆yρ→0∆x2+∆y2=limρ→0∆x2+∆y2取∆y=k∆x,得极限为k1+k,说明极限不存在所以函数f(x,y),在(0,0)点不可微.....7分第三篇:专升本高等数学(二)成人高考(专升本)高等数学二第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念(对极限定义等形式的描述不作要求)。

线性代数A试卷答案(无框版)

线性代数A试卷答案(无框版)
A、 A − 1 + B
−1
B、 A + B
C、 ( A + B ) − 1
D、 A( A + B) B
−1
)5 设 α1 ,α 2 ,… ,α m 是 n 维向量组, 下列命题中正确的是( B )
A、如 α m 不能由 α1 ,α 2 ,… ,α m −1 线性表示 , 则 α 1 ,α 2 ,… ,α m 线性相关; B、如 α1 ,… ,α m 线性相关 , α m 不能由 α 1 ,… , α m −1 线性表示 , 则 α1 ,α 2 ,… ,α m −1 线性相关 ; C、如 α 1 ,α 2 ,… ,α m 中, 任意 m − 1 个向量都线性无关 , 则 α 1 ,α 2 ,… ,α m 线性无关; D、零向量不能由 α 1 ,α 2 ,… ,α m 线性表示 .
得分
评阅人
三、计算题(每题 9 分, 共 45 分. )
⋯ 0 ⋯ 0 ⋱ ⋮ ⋯ x ⋯ a2 0 0 ⋮ 的值. −1 a1 + x
10
x −1 0 0 x −1 计算 n 阶行列式 D = ⋮ ⋮ ⋮ 0 0 0 an an−1 an−2
解:采用按最后一行展开计算,可得结果 D = a n ( − 1) n + 1 ( − 1) n − 1 + a n − 1 ( − 1) n + 2 ( − 1) n − 2 x + ⋯
四、证明题(每题 10 分, 共 20 分)
n-1
15
设 A 为 n(n ≥ 2) 阶方阵, 证明 : A* = A
n
.
证:因为 AA* = A E. ,所以 A A* = A . 分两种情况证明
(1) A ≠ 0. 由上式可知 A* = A

高数必不挂-高等数学A(一)2010-2011(A)解答

高数必不挂-高等数学A(一)2010-2011(A)解答

第 1 页 共 6 页上 海 海 事 大 学 试 卷2010 — 2011 学年第一学期期末考试 《 高等数学A (一)》(A 卷)解答一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中) (本大题分3小题, 每小题4分, 共12分).)( ;)(;2)( ; 0)(2coslim 120不存在,但不是无穷大为无穷大 等于 等于)(的值为、D C ••B A •••A••••••••••••••••xx x +→个不同的实根 有 有三个不同的实根 有唯一实根 无实根 )(则方程适合、设5)()()()(0432,,53,,2352D C •••B A ••••B•••••c bx ax x b a b a =+++< 为正常数 恒为零 为负常数 不为常数 )(则、设)()()()()(,)(32sin D C •••B A •••D•••••••••••x F dt e x F •x •xt ⎰+=π二、填空题(将正确答案填在横线上)(本大题分2小题, 每小题4分, 共8分)1、的值为201lim x x e x x --→ 212、设a b c ,,均为非零向量,满足c b a a c b b a c ⨯=⨯=⨯=,,,b ++三 计算题(必须有解题过程,否则不给分) (本大题分10小题,每题6分,共 60分)1、极限xx xx 2)4(lim +∞→ 884)41(lim e xxx =+=⋅∞→原式 6分2、)0(,)cos()(y y xy e x y y xy '=+=求确定由方程设--------------------------------------------------------------------------------------装 订线第 2 页 共 6 页解:y xy y x y y x y e xy '='+-'+)sin()()(, 4分2)0(,2.,0='==y y x 时当 6分3、.求dx xx••⎰--1145 解:令 ,541452-==-x t x t () 1分 原式=-⎰185213()t dt4分 =166分 4、.d )1(arctan x x x x⎰+求解:x x x xd )1(arctan ⎰+)d(arctan arctan 2x x ⎰= 3分C x +=2)(arctan 6分(遗留C 扣1分)5、.点处的连续性和可导性在试讨论,,已知 0)( , 00cos )(20=⎪⎩⎪⎨⎧≤>=⎰x x f x •••x x tdt t x f •x •解:0)0(0lim )(lim )0(0cos lim )0(200====-==+--+→→→⎰f x x f f tdt t f x x xx 又 2分∴= 在点处连续f x x ()0 3分lim )0()(lim )0(0)cos (lim cos lim )0()(lim )0(200000==-='===-='--+++→→-→→→+⎰x x xf x f f x x xtdt t xf x f f x x x xx x 5分第 3 页 共 6 页'==f f x x ()()000,在点处可导. 6分.,试求: 斜率等于处的切线,且它在原点通过原点具有连续导数,又曲线、设函数xx dtt f •••x f y x f •x•x sin )(lim100)()(60⎰→=解:,,由题意知,1)0(0)0(='=f f 2分lim()sin lim ()sin cos x xx f t dt x x f x x x x→→⎰=+000 4分='-→lim()cos sin x f x x x x 02 5分='=12012f () 6分7、)为驻点,,使得点(中的试确定442,,,,23-+++=d c b a d cx bx ax y(1,—10)为拐点。

线性代数试题A答案[大全5篇]

线性代数试题A答案[大全5篇]

线性代数试题A答案[大全5篇]第一篇:线性代数试题A答案2006-2007学年第二学期线性代数试题A卷参考答案及评分标准一.填空题(本题满分12分,每小题3分)⎛1-20 0 -25 -111、1;2、-3;3、A=00 3 1 00-3⎝0⎫⎪0⎪2⎪;4、2 ⎪3⎪1⎪⎪3⎭二、选择题(本题满分12分,每小题3分,.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内)1.C;2.C;3.A;4、B 三.计算行列式(本题满分6分)解 1 10Dn=001-110010Λ00-111000-11=100010100200Λ03ΛΛ1Λ00Λ0100Λ00n3-1ΛΛ011ΛΛΛΛΛΛΛΛΛΛΛΛ分Λn-1=n3分解2 10Dn=001-110010Λ00-111000=Dn-1+13分-1ΛΛ011ΛΛΛΛΛΛΛΛ-11=n3分四.(本题满分12分)解:⑴ 由等式A+B=AB,得A+B-AB+E=E,即(A-E)(B-E)=E3分因此矩阵A-E可逆,而且(A-E)=B-E.2分-1⑵ 由⑴知,A-E=(B-E),即A=(B-E)+E-1-1A=(B-E)+E或A=B(B-E)-12分-1⎛0-10-30100⎛⎫⎛⎫⎪⎪1=200⎪+010⎪=-3 001⎪001⎪0⎝⎭⎝⎭⎝⎛1 1=-3 0 ⎝1210⎫0⎪⎪0⎪ 2分⎪2⎪⎪⎭1200⎫0⎪100⎫⎪⎛⎪0⎪+010⎪3分⎪⎪1⎪⎝001⎭⎪⎭五.(本题满分14分)解:110⎤⎡1⎡11⎢01⎥⎢0221⎥→⎢A=⎢⎢0-1a-3-2b⎥⎢0⎢⎥⎢321a-1⎣⎦⎣01110⎤1221⎥⎥4分0a-10b+1⎥⎥00a-10⎦所以,⑴ 当a≠1时,rA=r(A)=4,此时线性方程组有唯一解.2分⑵ 当a=1,b≠-1时,r(A)=2,rA=3,此时线性方程组无解.2分⑶ 当a=1,b=-1时,rA=r(A)=2,此时线性方程组有无穷多组解.2分此时,原线性方程组化为()()()⎧x1+x2+x3+x4=0 ⎨⎩x2+2x3+2x4=1因此,原线性方程组的通解为⎧x1=x3+x4-1⎪x=-2x-2x+1⎪234 ⎨x=x3⎪3⎪x4⎩x4=或者写为⎡x1⎤⎡1⎤⎡1⎤⎡-1⎤⎢x⎥⎢-2⎥⎢-2⎥⎢1⎥2⎢⎥=k⎢⎥+k⎢⎥+⎢⎥4分⎢x3⎥1⎢1⎥2⎢0⎥⎢0⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣0⎦⎣1⎦⎣0⎦⎣x3⎦六.(本题满分12分)3-λ解 A-λE=-101202-λ1=(2-λ)(3-λ),2分03-λ所以得特征值λ1=2,λ2=λ3=32分⎛101⎫⎪对λ1=2,解方程组(A-2E)x=0,由A-2E=-101⎪,得特征向量001⎪⎝⎭⎛0⎫⎪ξ1=1⎪0⎪⎝⎭⎛0⎫⎪所以对应λ1=2的全部特征向量为c1 1⎪,c1≠03分0⎪⎝⎭⎛0 1对λ2=λ3=3,解方程组(A-3E)x=0,由A-3E=-0⎝01⎫1⎛10⎪r 1-1⎪−−→0 0100⎪0 ⎭⎝00⎫⎪⎪,⎪⎭⎛1⎫⎛1⎫⎪⎪得特征向量ξ2=-1⎪,全部特征向量为c2 -1⎪,c2≠03分0⎪0⎪⎝⎭⎝⎭A没有三个线性无关的特征向量,所以不能对角化.2分七.(本题满分12分)⎛1λ解:f的矩阵为A=λ4 -12⎝-1⎫⎪2⎪.…………2分 4⎪⎭因此,二次型f为正定二次型.⇔矩阵A为正定矩阵.⇔矩阵A的各阶顺序主子式全大于零.…………2分而矩阵A的各阶顺序主子式分别为D1=1>0,D2=1λ=4-λ2,…………2分λ41D3=A=λλ-12=-4(λ-1)(λ+2).…………2分 44-12所以,二次型f 为正定二次型.⇔D2=4-λ2>0,且D3=-4(λ-1)(λ+2)>0由 D2=4-λ2>0,得-2<λ<2 .由 D3=-4(λ-1)(λ+2)>0,得-2<λ<1 .因此,得-2<λ<1 .即,二次型f为正定二次型.⇔-2<λ<1…………4分八.(本题满分8分)已知三维向量空间的一组基为α1=(1,1,0),α2=(1,0,1),α3=(0,1,1)求向量β=(2,0,0)在上述基下的坐标.解:设向量β在基(α1,α2,α3)下的坐标为(x1,x2,x3),则有x1α1+x2α2+x3α3=β,2分写成线性方程组的形式,有⎛1⎫⎛1⎫⎛0⎫⎛2⎫⎪⎪⎪⎪x1 1⎪+x2 0⎪+x3 1⎪=0⎪2分 0⎪1⎪1⎪0⎪⎝⎭⎝⎭⎝⎭⎝⎭即⎧x1+x2=2⎪⎨x1+x3=0,⎪x+x=03⎩2得唯一解x1=1,x2=1,x3=-1,3分,1,-1).1分因此所求坐标为(1九.(本题满分12分)证法1:记A=(α1,α2,Λ,αm),B=(α1,α2,Λ,αm,β),显然r(A)≤r(B).1°因为α1,α2,Λ,αm线性无关,知r(A)=m1分2°因为α1,α2,Λ,αm,β线性相关,知r(B)<m+1 1分因此r(B)=m,1分Ax=(α1,α2,Λ,αm)x=b有解且唯一。

大学《线性代数》第2版(清华大学出版社、居余马)课后习题详细答案-较完整精编版

大学《线性代数》第2版(清华大学出版社、居余马)课后习题详细答案-较完整精编版

= 10 ⋅ (−1)
1 1 1 −1 1 1 1 1 1 1
⋅1⋅ 2L 8 ⋅ 9 = 10!
11、
1 1 1 1 1 第2行 − 第1行 1 0 −2 0 0 第3行 − 第1行 = 1*(−2)3 = −8 −1 1 0 0 −2 0 第4行 − 第1行 1 −1 0 0 0 −2
12、该行列式中各行元素之和均为 10,所以吧第 2,3,4 列加到第 1 列,然后再把第 1 列 后三个元素化为零,再对第 1 列展开,即
1 0 0
18、 A = 1 2
0 = 1* 2*3 = 3!,
1 2 3
0 0 B =0
0 0 0
0 0
0 −1 −2 0 0 = (−1) 0 0 0 0
−3 0
5(5 −1) 2
(−1)(−2)(−3)(−4)(−5) = −5!
0 −4 0 −5 0 0
所以
* B
A = (−1)3*5 | A || B |= −3!5! 0
1 a2 可以看出, M 42 = (ab + bc + ca)M 44 ,即 1 b 2 1 c2
1 0 2 a a 0 2 1 a 2 0 b 0 第1,列 4 0 0 b 2 第2, 3行 5 23、 − 3 c 4 5 对换 5 c 4 3 对换 0 d 0 0 0 0 0 0 d 0
a3 1 a a2 b3 = (ab + bc + ca) 1 b b 2 ,得证. c3 1 c c2
所以n2n原式由公式得22n为阶范德蒙行列式nn原式n又1an所以原式31系数行列式njiij100110114220对换114220对换11145130110101112042204211111110114行1201111001111010113行112114行4120对换101110111121412053421001415d410110113210对换014321对换10145145110110011032102143110104行11101114行所以32系数行列式01111011101101011110112行对换011101110100110101001111101111101101014111001110410030010第5行第4行第4行第3行第3行第2行第2行第1行120110000101511121第1行第5行10074第1行第3行111010101000第1行第4行110第1行第2行01111112111410115110第5行第4行第4行第3行第3行第2行第2行第1行0111001101010100111按第1列展开17按第4列44展开14011510第5行第4行第4行第3行第3行第2行第2行第1行1010100001110111100按第1列展开1113按第1列展开01111101111214111150第5行第4行第4行第3行第3行第2行第2行第1行0101000011110101111按第1列0110展开101按第1列展开01111011111241105第5行第4行第4行第3行第3行第2行第2行第1行01010000110111111按第1列展开001101110115按第1列展开所以d4d4d4d4d433因为齐次线性方程组有非零解所以其系数行列式即2111aa1b第2行第1行第3行第1行第4行第1行110100所以34设直线方程由于直线过点所以2

高等数学 线性代数 习题答案第二章

高等数学 线性代数 习题答案第二章

第二章习题2-11. 证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有n x a ε-<取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有n k x a ε+-<由数列极限的定义得 lim n k x x a +→∞=.2. 证明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:lim 0,,.使当时,有n x n x aN n N x a εε→∞=∴∀>∃>-<而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。

3. 证明:lim n →∞x n =0的充要条件是lim n →∞∣x n ∣=0.证:必要性由2题已证,下面证明充分性。

即证若lim 0n n x →∞=,则lim 0n n x →∞=,由lim 0n n x →∞=知,0ε∀>,N ∃,设当n N >时,有0 0n n n x x x εεε-<<-<即即由数列极限的定义可得 lim 0n n x →∞=4. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭ =0; (2) lim n →∞2!n =0. 证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭ . (2)因为22222240!1231n n n n n<=<- ,而且4lim 0n n →∞=, 所以,由夹逼定理得2lim 0!nn n →∞= 5. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x 1>0,x n +1=13()2n nx x +,n =1,2,…; (2) x 1x n +1,n =1,2,…;(3) 设x n 单调递增,y n 单调递减,且lim n →∞(x n -y n )=0,证明x n 和y n 的极限均存在.证:(1)由10x >及13()2n n nx x x =+知,有0n x >(1,2,n = )即数列{}n x 有下界。

2010年数学二试题分析、详解和评注(曹)

2010年数学二试题分析、详解和评注(曹)

2010 年全国硕士研究生入学统一考试数学二试题 分析、详解和评注考研数学专家 曹显兵、刘喜波教授 解答分析解答所用参考资料:曹显兵(线代、概率部分)与刘喜波(高数部分)的授课讲稿, 黄先开、曹显兵与刘喜波主编的参考书:1.《2010 考研数学经典讲义》,简称经典讲义(人大 社出版). 2.《2010 考研数学最新精选 600 题》,简称 600 题. 3.《2010 考研数学经典冲刺 5 套 卷》,简称冲刺卷.一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项...指定位置上. 2x − x 1 (1) 函数 f ( x ) = 1 + 的无穷间断点数为 22 x − 1x(A) 0.(B)1.(C) 2.(D) 3.【】【答案】 应选(B).【分析】 间断点为 ,计算各点处的极限以判断间断点的类型 x = 0, ±12 x − x 1 【详解】 f ( x) = 1 + 有间断点 x = 0, ±1 . 又 2 2 x − 1 xx ( x − 1) 1 x 1f ( x ) =1 + = 1 +2 2( x + 1)( x − 1) x x + 1 x1 1因为 lim x 1 + = 1, lim = x 1 + = − 1 ,所以 x = 0 为跳跃间断点. +2 −2 x → 0x x → 0 x1 2 又 lim f ( x) = 1 + 1 = ,所以 x = 1 为可去间断点,且 x → 12 2x 1lim f ( x ) = lim1 + = ∞ ,所以 x = −1 为无穷间断点,因而选择(B).2 x →− 1x →− 1 x + 1 x【评注】 x → 0 时的极限要考虑单侧极限.原题见《经典讲义》高等数学部分习题精选一解答题的第 10 题, 以及强化班讲义第一讲中 的例题 38.(2) 设y 1, y 2是一阶线性非齐次微分方程y ′ +p (x ) y = q (x )的两个特解. 若常数λ , μ 使 λ y 1 + μ y 2 是该方程的解, λ y 1 − μ y 2是对应的齐次方程的解, 则1 1 1 1(A) λ = , μ = (B) λ = − , μ = −2 2 2 2 2 12 2(C) λ = , μ =(D) λ = , μ =【 】3 33 3【答案】 应选(A) .【分析】 此题主要考察线性微分方程解的性质和结构 【详解】 因 λ y 1 − μ y 2 是方程y ′ +p (x ) y =0 的解, 所以 (λ y 1 − μ y 2)′ +p (x ) (λ y 1 − μ y 2) =0,即λ [y 1′ +p (x ) y 1 ] − μ [ y 2′ +p (x ) y 2 ] =0 . 由已知得(λ − μ ) q (x ) =0, 因为 q (x ) ≠0, 所以 λ − μ =0, 又 λ y + μ y 是非齐次y ′ +p (x ) y = q (x )的解,1 2 故(λ y 1 + μ y 2)′ +p (x ) (λ y 1 + μ y 2) = q (x ) . 即λ [y 1′ +p (x ) y 1 ] − μ [ y 2′ +p (x ) y 2 ] = q (x ) . 由已知得(λ + μ ) q (x ) = q (x ) . 因为 q (x ) ≠0, 所以 λ + μ =1 , 1 1 解得λ = , μ =2 2【评注】此题属反问题,题目构造较新颖.原题见《经典讲义》高等数学部分第十章解的性质和解的结构定理2(3) 曲线 y = x 与曲线 y = a ln x(a ≠ 0) a(A)4e (B)3e (C)2e (D)e 【】【答案】 应选(C).【分析】 利用导数的几何意义(切点处斜率相等)及两条曲线都经过切点.1 a 2【详解】因 y = x 与 y = a ln x (a ≠ 0) 相切,故 2 x = a ⋅ , 即x = x 22a aa 在 y = x 上 , x =时 , y = ; 在 y = a ln x (a ≠ 0) 上 , x = 时 ,2 2 2a 1 a a a ay = a ln= a ln = ln ,即 a = 2e . 所以选 (C).2 22 . 因此 2 2 2 原题见《经典讲义》高等数学部分第二章的例题 2.27, 以及强化班讲义第七讲中的例题 2.m2 1 ln ( 1 − x )(4) 设 m , n 是正整数, 则反常积分 dx 的收敛性: ∫ 0n x(A) 仅 m 与值有关. (B) 仅 n 与值有关. (C) 与 m , n 值都有关. (D) 与 m , n 值都无关.【 】【答案】 应选(D).1 【分析】 x = 0 、1 为瑕点,插入分点 ,利用比较判别法判断两个无界函数反常积分的敛 2散性.22 m21m m1ln ( 1 − x ) [ln ( 1 − x ) ] 1 [ln ( 1 − x ) ] 2【详解】dx = dx + dx = I + I ∫∫ 1 ∫ 1 1 1 2 0n 0x n 2nx x2m 2 1 [ln 1 − x ] − +( ) 2 1 m n对 I , 当 x → 0 时, ~ x . 显然 − > − 1 ,由比较判别法知无论正整 1 1m nnx 数 m ,n 取何值, 反常积分 I 是收敛的. 12 2 1 mm[ln ( 1 − x ) ][ln ( 1 − x ) ] 2对 I ,lim (1 − x ) = lim 2 −1−1x → 1x → 1− n2x(1 − x )2 2 − 1 2 m − 1 − 1− [ln ( 1 − x ) ] (1 − x ) m 4[ln ( 1 − x ) ] m = lim = lim − 3 − 1 x → 1 1 − x → 1 − 2 2− (1 − x ) m (1 − x ) 22 2 − 2 2 m − 1 − 2 − 4( − 1)[ln ( 1 − x ) ] (1 − x ) m8(2 − m )[ln ( 1 − x ) ] m = lim = lim = 0 − 3 −1 x → 1 1− x → 1 − 2 2 2− m (1 − x ) m (1 − x ) 2由比较判别法知无论正整数 m ,n 取何值反常积分 I 是收敛的,因此应选(D).2 【评注】根据当年考试大纲的要求,此题属超纲范围.y z (5) 设函数z = z (x , y ) 由方程 F ( , ) = 0 确定, 其中F 为可微函数, 且f ′2≠0, 则x x∂ z ∂ zx + y = ___________ . ∂ x ∂ y(A) x .(B) z .(C) − x .(D) − z .【】【答案】 应选(B) .【分析】 利用公式直接求两个一阶偏导数.⎛ y ⎞ ⎛ z ⎞ y z F ′ − + F ′ − ′ ′ 1 ⎜ 2 ⎟ 2 ⎜ 2 ⎟ F ⋅ + F ⋅ ′ 1 2 ∂ z F x x x⎝ ⎠ ⎝ ⎠ x x 【详解】因为= − = − = , ∂ x ′ 1 ′ F F z F ′ ⋅ 2 2x1 F ′ ⋅ F ′ 1 ′ ∂ z y F x 1= − = − = − ,∂ y ′ 1 ′ F F z F ′ ⋅ 2 2x∂ z ∂ z yF ′ + zF ′ yF ′ F ′ ⋅ z 1 2 1 2 所以 x + y =− = = z 因此应选(B).∂ x ∂ y ′ ′ ′ F F F 2 2 2∂ ∂ z y原题见《经典讲义》高等数学部分的第六章的例题 6.19, 以及强化班讲义第八讲中的 例题 8. n nn(6) lim= ∑ ∑ 2 2n →∞i = 1 j = 1( n + i)(n + j ) 1x 11x 1(A)dx dy(B) dxdy ∫ 0∫2 ∫∫ 0 (1 + x )( 1 + y ) ( 1 + x )( 1 + y )111111(C)dx dy(D) dxdy 【 】∫ ∫∫ ∫ 20 1 + x 1 + y 0( )() ( 1 + x )( 1 + y )【答案】 应选(D).【分析】 用二重积分(或定积分)的定义. 【详解】 因为n nn nn nlim = lim ∑ ∑ 2 2 ∑ ∑ n →∞ ( n + i )( n + j ) n →∞ i j i = 1 j = 1 i = 1 j = 1 2 2 n ( 1 + ) n [ 1 + ( ) ]n nn n1 1= lim ⋅ ∑ ∑ 2n →∞ i j i = 1 j = 12 n ( 1 + ) [ 1 + ( ) ]n n111= dx dy ,∫ 0 ∫0 2 ( 1 + x )( 1 + y )所以应选(D).【评注】1. 也可用定积分定义计算n nnn n 1 1 1 1lim = lim ( ⋅ ) ( ⋅ ) ∑ ∑ 2 2 ∑ ∑ n →∞ ( n + i )( n + j ) n →∞ i n j n i = 1 j = 1i = 1 j = 1 2 1 + 1 + ( ) n nnn 1 1 1 1= lim ( ⋅ ) lim ( ⋅ ) ∑ ∑ n →∞ i n n →∞ j n i = 1j = 1 21 + 1 + ( ) n n 11 1 1 1 1 1 = dx dy = dx dy ∫0 ∫ 0 2 ∫ 0 ∫ 0 2 1 + x 1 + y ( 1 + x )( 1 + y ) 2. 以往多次考过定积分定义求极限,本题是首次考查二重积分定义求极限,题目较新颖.(7)设向量组I:α1,α2 , ⋅⋅⋅ , αr 可由向量组II: β1,β2 , ⋅⋅⋅ , βs 线性表示, 则列命题正确的是(A) 若向量组I线性无关, 则r≤s. (C) 若向量组II线性无关, 则r≤s. (B) 若向量组I线性相关, 则r > s. (D) 若向量组II线性相关, 则r > s. 【】【答案】应选(A) .【详解】因向量组I能由向量组II线性表示,所以r(I)≤r(II),即r (α1,α2 , ⋅⋅⋅ , αr)≤r (β1,β2 , ⋅⋅⋅ , βs)≤s ,若向量组I线性无关,则r(α1,α2 , ⋅⋅⋅ , αr )= r,所以r≤s . 故应选(A). 【评注】这是线性代数中的一个重要定理,对定理熟悉的考生可直接得正确答案. 原题见《经典讲义》线性代数部分的第三章§1中的推论3.5.(8)设A为4阶实对称矩阵, 且A2+A=O, 若A的秩为3, 则A与相似于⎡1⎤⎡1⎤⎢⎥⎢⎥1 1(A) ⎢⎥(B) ⎢⎥⎢ 1 ⎥⎢−1⎥⎢⎥⎢⎥0 0⎣⎦⎣⎦⎡1⎤⎡−1⎤⎢⎥⎢⎥−1−1(C) ⎢⎥(D) ⎢⎥【】⎢−1⎥⎢−1⎥⎢⎥⎢⎥0 0⎣⎦⎣⎦【答案】应选(D) .【详解】设λ为A的特征值,由A2+A=O,知特征方程为λ2+λ=0,所以λ= − 1或0. 由于A 为实对称矩阵,故A可相似对角化,即A ~Λ,r(A)= r(Λ)=3,因此⎡−1⎤⎢⎥−1A ~Λ= ⎢⎥,⎢−1⎥⎢⎥⎣⎦应选( D) .【评注】(1)若A可对角化,则r(A)=A的非零特征值的个数.(2)本题由A 2+A=O即可得到A可对角化,因此题设条件A为实对称矩阵可去掉.. 几乎原题见《经典讲义》线性代数部分的例题5.30,5.39, 以及强化班第一讲中的例题8、冲刺辅导班讲义线性代数部分例题4....指定位置上.(9) 3阶常系数线性齐次微分方程y′′′− 2 y′′+ y′− 2 y = 0 的通解为y =2 x【答案】应填y = C e + C cos x + C sin x1 2 3【分析】求特征方程的解,直接写出3阶常系数线性齐次微分方程的通解,属基础题型.3 2【详解】y′′′− 2 y′′+ y′− 2 y = 0 的特征方程为λ− 2λ+ λ− 2 = 0 ,2 即 ( λ − 2 ) λ + 1 = 0 ,解得 λ = 2, λ = ± i , 所以通解为 ( ) 12,3 2 xy = C e + C cos x + C sin x 1 2 3【评注】虽然此题是 3 阶微分方程,但是考试大纲明确要求会的内容.原题见《经典讲义》高等数学部分第十章的例题 10.13.3 2 x(10) 曲线 y = 的渐近线方程为 2x + 1【答案】 应填 y = 2 x【分析】曲线只有斜渐近线,直接计算即可.【详解】 函数的定义域是全体实数,于是不存在垂直渐近线. 又 lim y = ∞ ,故不存在水x →∞y 平渐近线,而lim = 2 , lim( y − 2x ) = 0 ,所以曲线的斜渐近线为 y = 2 x x →∞ x x →∞【评注】求曲线的斜渐近线几乎每年均有考题,属基本题型.原题见《经典讲义》高等数学部分的第三章的例题 3.73, 以及强化班讲义第七讲中的例题 5.(11) 函数 y = ln (1 −2 x ) 在x = 0 处的 n 阶导数 y (n ) (0 ) = n【答案】 应填 − 2⋅ ( n − 1 ) ! 【分析】利用函数 y = ln (1 − x ) 的高阶导数公式. n n ( n − 1)! n【详解】 [ln (1 −2 x ] = − 2 . 令 x = 0 ,得所求 n 阶导数为 − 2 ⋅ ( n − 1 ) ! , n(1 − 2x )n故应填 − 2⋅ ( n − 1 ) ! 【评注】此题也可用 ln (1 − x ) 的麦克劳林展开式,比较系数得到结果. 原题见《经典讲义》高等数学部分第二章的例题 2.44, 以及强化班讲义第二讲中的例题 18.(12) 当 0≤ θ ≤ π 时, 对数螺线 r = e θ 的弧长为 ____________ .【答案】 应填 2 ( e π − 1 )【分析】直接用极坐标下的弧长计算公式.【详解】由弧长公式π π22π s = r ( θ ) + r ′ ( θ )d θ = 2e θd θ = 2 (e − 1)∫ ∫ 0故应填2 ( e π − 1 )原题见《经典讲义》高等数学部分第四章例题 4.102.(13) 已知一个长方形的长 l 以 2cm /s 的速率增加, 宽 w 以 3 cm /s 的速率增加, 则当 l =12cm ,w =5cm 时, 它的对角线增加的速率为 ____________ .【答案】 应填 3 c m / s 【分析】利用导数的物理意义.【详解】设 l = x (t ), w = y (t ) ,由题意知,在 t = t 时0 x ( t ) = 12, y (t ) = 5 , 且 x ′ (t ) = 2, y ′ (t ) = 30 0 0 0 x (t ) x ′ (t ) + y (t ) y ′ (t )2 2又 S (t ) = x (t ) + y (t ) ,所以 S ′(t ) = ,22x (t ) + y (t )x ( t ) x ′ ( t ) + y ( t ) y ′ ( t ) 12 × 2 + 5 × 3 0 0 0 0因而S ′ ( t ) = = = 32 2 2 2 x ( t ) + y ( t ) 12 + 5 0 0(14) 设A , B 为 3 阶矩阵, 且| A |=3, | B |=2, |A −1+B |=2, 则 |A +B −1|= _______ . 【答案】 应填 3 .【分析】本题考查矩阵的运算、行列式的性质.【详解】由于 |A +B −1|=|(AB +E )B −1|=|(AB +AA −1)B −1|=|A (B +A −1)B −1|=| A |⋅|A −1+B |⋅|B −1|=3⋅2⋅2−1=3 因此应填 3 .【评注】 也可以由 |A |⋅|A −1+B | =| E +AB | =| A +B −1|⋅|B | 得 |A +B −1|=3. 类似的问题见《经典讲义》线代部分的例题 2.10.三、解答题:15—23 小题,共 94 分.请将解答写在答题纸指定位置上.解答应写出文字说明、 证明过程或演算步骤. (15) (本题满分 10 分)2x 22 t 求函数 f (x )= ( x − t )e − dt 的单调区间与极值. ∫ 1 【分析】求变限积分f (x )的一阶导数,利用其符号判断极值并求单调区间. 222x 2x 2x 22− t 2− t − t 【详解】f ( x ) = ( x − t ) e dt = xe dt − te dt ,∫ ∫∫ 11122x 244x 2− t 3 − x 3 − x − t f ′ ( x ) = 2dt + 2 x e− 2 x e= 2dt∫1∫1令 f ′( x) = 0 ,得 x = 0, x = ±1 因为当 x > 1 时, f ′( x ) > 0 ;当 0 < x < 1 时,f ′(x ) < 0 ; 当− 1 < x < 0 时, f ′( x ) > 0 ; x < −1f ′( x ) < 0所 以 f ( x) 的 单 调 递 减 区 间 为 ( −∞, −1), (0,1) ; f ( x ) 的 单 调 递 增 区 间 为 (− 1,0), (1, +∞) ; 极小值为 f (1) = f ( −1 ) = 0 ,极大值为121 2 1 − t − t − 1f (0) = (0 − t ) e dt = − e = (1 − e )∫ 1 2 20 【评注】也可用二阶导数的符号判断极值点,此题属基本题型.原题见《经典讲义》高等数学部分第三章例题 3.69. (16) (本题满分 10 分)1n (I) 比较 | ln t | [ln(1 + t )] dt 与 t n | ln t | d t (n =1, 2, ⋅⋅⋅) 的大小, 说明理由;∫0 01nlim u n n →∞ t n | ln t| dt 再用夹逼定理求极限.【详解】(I) 当 0≤ t ≤1 时, 0≤ ln(1+ t ) ≤ t , 故 | ln t | [ ln(1+ t ) ] n ≤ | ln t | t n . 1n由积分性质得|ln t | [ln( 1 + t )] dt ≤ t n | ln t | dt (n =1, 2,⋅⋅⋅) .∫ 0 0 1 1 1 1 1 n n n + 1 1 n + 1 (II) t | ln t | d t = − t ⋅ ln t dt = − [ t ⋅ ln t | − t ⋅ dt ]∫ ∫ 0 ∫ 0 0 0 n + 1 t1 n + 1 11 = ⋅ t | =2 0 2( n + 1 ) ( n + 1 ) 1于是有0≤ u n ≤ , (n =1, 2, ⋅⋅⋅) , 2( n + 1 ) 1由夹逼定理得0≤ lim u ≤ lim =0, 故 lim u = 0 n 2n n →∞ n →∞ ( n + 1 ) n →∞ 【评注】若一题有多问,一定要充分利用前面提供的信息。

高等数学教材线性代数答案

高等数学教材线性代数答案

高等数学教材线性代数答案1. 引言在高等数学中,线性代数是一个重要的分支。

它研究的是线性方程组、向量空间、线性变换以及特征值等内容。

掌握线性代数的知识对于理解高等数学的整体结构以及解决实际问题具有重要意义。

本文将为大家提供高等数学教材中线性代数部分的答案。

2. 线性方程组线性方程组是线性代数中的一个基本概念。

在解答线性方程组时,我们可以通过消元法、矩阵法或者向量法等不同的方法进行求解。

根据不同的题目设定,可以采用不同的方法,具体如下:(1)消元法消元法是线性方程组求解的一种常用方法。

它通过多次变换方程组,把方程组转化为最简形式,从而求得解,步骤如下:- 逐行消元,将方程组转化为上三角形式;- 逆序代回,求出方程组的解。

(2)矩阵法矩阵法是另一种常用的线性方程组求解方法。

它将线性方程组转化为矩阵形式,并通过矩阵的运算来求解。

具体步骤如下:- 将线性方程组的系数矩阵与常数矩阵合并,得到增广矩阵;- 利用矩阵的相似变换,将增广矩阵转换为最简形式;- 从最简形式中读出方程组的解。

3. 向量空间向量空间是线性代数中的重要概念,它描述了一组向量所具有的性质。

在解答向量空间的问题时,我们需要了解向量空间的定义、基底、维数等概念,并掌握相关性质和定理。

(1)向量空间的定义向量空间是由一组向量及其线性组合构成的集合。

它应满足以下几个条件:- 对于任意向量u、v,其线性组合仍然在该向量空间内;- 存在零向量,它是该向量空间内的一个特殊向量;- 对于任意向量v,存在一个标量k,使得kv也在该向量空间内。

(2)基底与维数基底是向量空间的一个重要概念,它是一个线性无关的向量组,并且该向量组能够生成向量空间的所有向量。

向量空间的维数指的是基底中向量的个数。

4. 线性变换线性变换是线性代数中的核心概念,它描述了向量空间之间的关系。

在解答线性变换的问题时,我们需要了解线性变换的定义、矩阵表示、特征值等内容,并掌握相关的性质和定理。

2011A卷答案

2011A卷答案

海南大学2010-2011学年度第2学期试卷 科目:《线性代数与概率论》试题(A 卷)参考答一.选择题(每题3分,共24分)1、若三阶行列式M a a a a a a a a a =333231232221131211,则111213212223313233333333333a a a a a a a a a ---------=( D )。

(A) -9M (B) 9M (C) 27M (D) -27M2、设矩阵A 和C 分别是m n ⨯和s t ⨯,若要使ABC 有意义,则矩阵B 应是( B )。

(A) m t ⨯阵 (B) n s ⨯阵 (C) m s ⨯阵 (D) n t ⨯阵3、齐次线性方程120n x x x +++= 的基础解系中解向量的个数为( C )。

(A) 0 (B) 1 (C) 1n - (D) n4、在线性方程组Ax b =中,A 是86´阵,如果系数矩阵A 与增广矩阵(,)A b 的秩均为6,则Ax b =有( A ) .(A) 有唯一解 (B) 有无穷解 (C) 无解 (D) 无法确定是否有解5、一名射手连续向某目标射击三次,事件i A 表示第i 次射击时击中目标(1,2,3)i =,则三次射击至少有一次击中目标表示为:( B ) (A ) 121323A A A A A A ++ (B ) 123A A A ++(C ) 123A A A ++ (D )123A A A 6、已知离散型随机变量X 的概率分布为:X -1 0 1 2 4P101 51 101 51 52则下列概率计算结果中( D )正确.(A )1}4{=<X P (B )0}0{==X P (C )1}1{=->X P (D )103}21{=<<-X P 7、设离散型随机变量),,(~p n B X 若数学期望,2.1)(=X E 方差,08.1)(=X D 则参 数,n p 的值为( A ).(A ) 16,0.1n p == (B ) 4,0.4n p == (C ) 8,0.2n p == (D ) 2,0.8n p ==8、设随机变量X 的概率密度为()X f x ,则23Y X =-+的概率密度为 ( B )(A )13()22X y f --- (B ) 13()22X y f --(C )13()22X y f +-- (D ) 13()22X y f +-二、填空题:(每题3分,共24分)1、已知171201,423132201A B 骣-÷ç骣÷-ç÷÷çç÷=?çç÷÷ç÷ç÷桫ç÷÷ç桫,则()T AB =_____0171413310骣÷ç÷ç÷ç÷ç÷ç÷ç÷÷ç-桫________. 2、设行列式1428211012341021D -=,则1113142A A A ++=________0______. 3、n 维向量组12(1,1,,1),(2,2,,2),,(,,,)m m m m a a a === 的秩为____1______.4、已知矩阵111121231A l 骣÷ç÷ç÷ç÷=ç÷ç÷ç÷÷ç+桫的秩为()2,R A =则l =____1______. 5、设随机变量X 和Y 相互独立,且()()1E X E Y ==,()2D X =,()3D Y =,则()D XY =____11______.()()()D XY E X Y E XY =-222[]()()()()E X E Y E X E Y =? 222()()()()E X E Y E X E Y =? 2222(()())(()())D X E X D Y E Y =+?-221()()=++-21311=11.6、设事件,,,A B C A B È发生的概率分别为0.4,0.3,0.6,则()P AB =____0.3_______.7、设随机变量123,,X X X 相互独立,其中1X 在[0,6]上服从均匀分布,2X 服从正态分布2(0,2)N ,3X 服从参数为3l =的泊松分布,记12323Y X X X =-+,则()D Y =______46_________.依题意21()()12b a D X -=,22()4D X s ==,3()3D X l ==,123123()(23)()4()9()46D Y D X X X D X D X D X =-+=++=.8、已知二维随机变量(,)X Y 的密度函数为4,01,01(,)0,xy x y f x y <<<<⎧=⎨⎩,其它.则{}P X Y ≤=___12_________. 111{}(,)42xx yP X Y f x y dxdy xdx ydy ≤≤===⎰⎰⎰⎰ 三、计算题(每题6分,共42分)1、计算行列式 3111131111311113D =. 解:3111131111311113D ==6666131111311113……………(3分) =61111131111311113=611110200002002=48. ……………(6分)2、解矩阵方程AX B X +=,其中01011111,2010153A B -⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭.解:由AX B X +=得()I A X B -=。

高等数学A(二)答案详解

高等数学A(二)答案详解

一、单项选择题(每小题3分,共30分)请将答案填在下面表格内!切记!题号 1 2 3 4 5 6 7 8 9 10 答案 A A B B C A C A D D 得分1、已知向量(1,1,0)MA = ,(1,0,1)MB =,则AMB ∠=( )。

(A) 3π (B)6π (C) 4π (D) 2π2、函数()y x f ,在点()00,y x 处可微分是()y x f ,在该点处连续的( )条件。

(A) 充分 (B) 必要 (C) 充分必要 (D) 既不充分也不必要3、函数22y x z -=在点)1,1(沿方向(1,3)的方向导数为( )。

(A )31+ (B )31- (C )6 (D )74、曲面22214x y z ++=在点(1,2,3)处的切平面方程为( ) (A )23140x y z +++= (B )23140x y z ++-= (C )2370x y z +++=(D )2370x y z ++-=5、设()y x f ,为连续函数,则二次积分⎰⎰11),(ydx y x f dy 交换积分次序后为( )。

(A) dy y x f dx x⎰⎰112),( (B) ⎰⎰11),(dy y x f dx (C) dy y x f dx x ⎰⎰201),( (D) ⎰⎰110),(ydy y x f dx6、Lxds =⎰( )其中L 为抛物线2y x =上01x ≤≤的弧段。

(A)()155112- (B) 551- (C)112 (D)()15518- 7、设∑为球面2222R z y x =++,则曲面积分=++⎰⎰∑dS z y x )(222( )。

(A)4R π (B)42R π (C)44R π (D)46R π 8、下列级数中,条件收敛的是( )。

(A )()-+-=∞∑124131n n n n (B )()-⎛⎝ ⎫⎭⎪-=∞∑12311n nn(C )()--=∞∑11121n n n (D )()--=∞∑11211n n n n 9、幂级数20n n n e x ∞=∑的收敛半径=R ( )。

线性代数课后答案(高等教育出版社)

线性代数课后答案(高等教育出版社)

加QQ719283511 第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4. (3)222111c b a c b a ; 解 222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).4. 计算下列各行列式: (1)7110025*******214; 解 7110025102021421410014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-; 解 2605232112131412-26053212213041224--=====c c 041203212213041224--=====r r 0000003212213041214=--=====r r . (3)efcf bf de cd bd aeac ab ---;解 ef cf bf de cd bd ae ac ab ---e c b e c b ec b adf ---=abcdef adfbce 4111111111=---=.(4)dc b a 100110011001---. 解d c b a 100110011001---dc b aab ar r 10011001101021---++===== d c a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ada ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 6. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 . (2)y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=yx z x z y zy x b a )(33+=.8. 计算下列各行列式(D k 为k 阶行列式): (1)aa D n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解aa a a a D n 0 0010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 00 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n -a n -2=a n -2(a 2-1).(2)xa aa x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得 ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1(=[x +(n -1)a ](x -a )n 第二章 矩阵及其运算 1. 计算下列乘积:(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.2. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫ ⎝⎛--=150421321B , 求3AB -2A 及A TB .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T.3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4.设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.5. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA k k kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫. 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.8. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵. 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有 ⎪⎩⎪⎨⎧===001321x x x .19.设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 20. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112 ⎪⎪⎭⎫⎝⎛=1111111114.21. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.22. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1, )3(41)2(1A E E A -=+-.第三章 矩阵的初等变换与线性方程组 1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫⎝⎛--340313021201;解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. )~⎪⎪⎭⎫⎝⎛100001000001.(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; 解 ⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011. 3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫⎝⎛323513123;解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫⎝⎛----------10612631110`1022111000010000100021 ~⎪⎪⎪⎭⎫⎝⎛-------106126311101042111000010000100001 故逆矩阵为⎪⎪⎪⎭⎫⎝⎛-------10612631110104211. 5. (2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r ,所以 ⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X . 9. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.12. 设⎪⎪⎭⎫⎝⎛----=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2; (3)当k ≠1且k ≠-2时, R (A )=3. P106/ 1.已知向量组A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ;B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由 ⎪⎪⎪⎭⎫⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫ ⎝⎛-------971820751610402230421301~r ⎪⎪⎪⎭⎫⎝⎛------531400251552000751610421301 ~r ⎪⎪⎪⎭⎫ ⎝⎛-----000000531400751610421301~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示. 由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=000000110201110110220201312111421402~~r r B 知R (B )=2. 因为R (B )≠R (B , A ), 所以A 组不能由B 组线性表示. 4. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A ,所以R (A )=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为022200043012||≠=-=B ,所以R (B )=3等于向量的个数, 从而所给向量组线性相无关.5. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1, a , -1)T , a 3=(1, -1, a )T . 解 以所给向量为列向量的矩阵记为A . 由)1)(1(111111||+-=--=a a a aa a A知, 当a =-1、0、1时, R (A )<3, 此时向量组线性相关.9.设b 1=a 1+a 2, b 2=a 2+a 3, b 3=a 3+a 4, b 4=a 4+a 1, 证明向量组b 1, b 2, b 3, b 4线性相关.证明 由已知条件得a 1=b 1-a 2, a 2=b 2-a 3, a 3=b 3-a 4, a 4=b 4-a 1,于是 a 1 =b 1-b 2+a 3 =b 1-b 2+b 3-a 4 =b 1-b 2+b 3-b 4+a 1, 从而 b 1-b 2+b 3-b 4=0,这说明向量组b 1, b 2, b 3, b 4线性相关.11.(1) 求下列向量组的秩, 并求一个最大无关组:(1)a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a 3=(-2, -4, 2, -8)T ; 解 由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000000010291032001900820291844210141002291) , ,(~~321r r a a a ,知R (a 1, a 2, a 3)=2. 因为向量a 1与a 2的分量不成比例, 故a 1, a 2线性无关, 所以a 1, a 2是一个最大无关组.12.利用初等行变换求下列矩阵的列向量组的一个最大无关组: (1)⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125;解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~rr r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125, 所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎭⎫⎝⎛---14011313021512012211. 解 因为⎪⎪⎪⎭⎫ ⎝⎛---1401131302151201221113142~rr r r --⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122112343~rr r r +↔⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组. 13. 设向量组(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T的秩为2, 求a , b .解 设a 1=(a , 3, 1)T , a 2=(2, b , 3)T , a 3=(1, 2, 1)T , a 4=(2, 3, 1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=5200111031116110111031113111332221) , , ,(~~2143b a a b a b a r r a a a a ,而R (a 1, a 2, a 3, a 4)=2, 所以a =2, b =5. 20.求下列齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x ;解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=00004/14/3100401 2683154221081~r A ,于是得⎩⎨⎧+=-=43231)4/1()4/3(4x x x x x .取(x 3, x 4)T =(4, 0)T , 得(x 1, x 2)T =(-16, 3)T ; 取(x 3, x 4)T =(0, 4)T , 得(x 1, x 2)T =(0, 1)T . 因此方程组的基础解系为ξ1=(-16, 3, 4, 0)T , ξ2=(0, 1, 0, 4)T .(2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x .解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛----=000019/719/141019/119/201 367824531232~r A ,于是得⎩⎨⎧+-=+-=432431)19/7()19/14()19/1()19/2(x x x x x x .取(x 3, x 4)T =(19, 0)T , 得(x 1, x 2)T =(-2, 14)T ; 取(x 3, x 4)T =(0, 19)T , 得(x 1, x 2)T =(1, 7)T . 因此方程组的基础解系为ξ1=(-2, 14, 19, 0)T , ξ2=(1, 7, 0, 19)T .26. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=+++=+++=+3223512254321432121x x x x x x x x x x ;解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛=2100013011080101 322351211250011~r B . 与所给方程组同解的方程为⎪⎩⎪⎨⎧=+=--=213 843231x x x x x . 当x 3=0时, 得所给方程组的一个解η=(-8, 13, 0, 2)T . 与对应的齐次方程组同解的方程为⎪⎩⎪⎨⎧==-=043231x x x x x . 当x 3=1时, 得对应的齐次方程组的基础解系ξ=(-1, 1, 1, 0)T .(2)⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x . 解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-----=0000022/17/11012/17/901 6124211635113251~r B . 与所给方程组同解的方程为⎩⎨⎧--=++-=2)2/1((1/7)1)2/1()7/9(432431x x x x x x . 当x 3=x 4=0时, 得所给方程组的一个解η=(1, -2, 0, 0)T .与对应的齐次方程组同解的方程为⎩⎨⎧-=+-=432431)2/1((1/7))2/1()7/9(x x x x x x . 分别取(x 3, x 4)T =(1, 0)T , (0, 1)T , 得对应的齐次方程组的基础解系ξ1=(-9, 1, 7, 0)T . ξ2=(1, -1, 0, 2)T .。

高等数学(二)(线性代数)一第二三章习题集(部分)

高等数学(二)(线性代数)一第二三章习题集(部分)

设有矩阵,(m≠n),下列运算结果不是阶矩阵的是().A、BAB、ABC、D、设矩阵A可以左乘矩阵B,则().A、B、C、D、若|A|=0,则A=().A、0矩阵B、数字0C、不一定是0矩阵D、A中有零元素两个n阶初等矩阵的乘积为().A、初等矩阵B、单位矩阵C、可逆阵D、不可逆阵若m×n阶矩阵A中的n个列线性无关,则A的秩().A、大于mB、大于nC、等于nD、等于n矩阵A经有限次初等行变换后变成矩阵B,则().A、A与B相似B、A与B不等价C、A与B相等D、r(A)=r(B)设m×n阶矩阵A,B的秩分别为,则分块矩阵 (A,B)的秩r适合关系式().A、B、C、D、矩阵A经过初等变换后().A、不改变它的秩B、改变它的秩C、改变它的行秩D、改变它的列秩设A为三阶方阵,且|A|=-2,则矩阵|A|A行列式||A|A|=().A、16B、-16C、8D、-8两矩阵A与B既可相加又可相乘的充要条件是().A、A、B是同阶方阵B、A的行数=B的行数C、A的列数=B的列数D、A的行数、列数分别等于B的行数、列数初等矩阵().A、相乘仍为初等阵B、相加仍为初等阵C、都可逆D、以上都不对线性方程组有解的充分必要条件是a=().A、B、-1C、D、1存在有限个初等矩阵,使是A为可逆矩阵的().A、必要条件B、充分条件C、充要条件D、无关条件矩阵A经过有限次初等行变换后变成矩阵B,则().A、r(A)≠r(B)B、A与B相等C、A的行向量组与B的行向量组等价D、A与B不等价设,,,,则向量组共有()个不同的极大无关组.A、1B、2C、3D、4设n阶矩阵A的秩为r,则结论()成立.A、|A|≠0B、|A|=0C、r>nD、已知矩阵则().A、0B、1C、2D、3设A、B均为n阶方阵,则必有().A、|A+B|=|A|+|B|B、AB=BAC、|AB|=|BA|D、若均为n阶可逆矩阵,则().A、B、C、D、阵的行向量组().A、一定线性无关B、一定线性相关C、不能确定D、以上都不对一个向量组若有两个或两个以上的极大无关组,则各个极大无关组所含向量个数必().A、不相等B、相等C、大于零且小于2D、大于零且小于3设是齐次线性方程组的三个线性无关的解向量,则().A、一定是的基础解系B、不一定是的解C、不一定是的解D、有可能是的基础解系设A,B均为n阶矩阵,如果则必有().A、A=EB、B=0C、A=BD、AB=BA设n阶矩阵A,B,C满足ABC=E,则必有().A、ACB=EB、BAC=EC、CBA=ED、BCA=E设矩阵,则下列结论不正确的是().A、A是上三角矩阵B、A是下三角矩阵C、A是对称矩阵D、A是可逆矩阵设矩阵,则下列结论正确的是().A、A是上三角矩阵B、A是下三角矩阵C、A是对称矩阵D、A是对角矩阵已知,则A=().A、B、C、D、下列矩阵中,不是初等矩阵的是().A、B、C、D、设是齐次线性方程组的二个线性无关的解向量,则().A、一定是的一个基础解系B、有可能是的一个基础解系C、不是的一个解D、不是的一个解设A为n阶方阵,且|A|=8,A*是A的伴随矩阵,则AA*是().A、数量矩阵B、单位矩阵C、三角矩阵若矩阵A中有一个r阶子式D≠0,且A中有一个含有D的r+1阶子式等于零,则一定有().A、B、设n阶方阵A可逆,数k≠0,则().A、B、C、D、给定矩阵,,下列()运算可行.A、ACB、CBC、ABCD、AB-BC.=().A、B、C、D、一个n维向量组线性相关的充要条件是其中().A、含有零向量B、有两个向量的对应分量成比例C、有一个向量是其余向量的线性组合D、每一个向量是其余向量的线性组合设A与B都是n阶方阵,则r(A+B)().A、B、C、D、?若A为n阶可逆矩阵,下列各式正确的是().A、B、C、D、C和D都不对若齐次线性方程组(Ⅰ)有非零解,则(Ⅰ)的系数行列式().A、等于1B、等于5C、等于零D、不等于零 D不对设A是m×n矩阵,齐次线性方程组是非齐次线性方程组的导出组,则().A、仅有零解时,有唯一解B、有非零解时,有无穷多解C、有无穷多解时,仅有零解D、有无穷多解时,有非零解 C不对设向量可由向量组线性表示,则表示法唯一的充要条件是().A、全为非零向量 AB不对选C或D B、全为零向量C、线性相关D、线性无关。

线性代数A习题册答案

线性代数A习题册答案

线性代数A习题册答案练习1.2 n阶⾏列式的性质与计算⼀、填空题:1. 设是⽅程的三个根,则⾏列式.解: 由于是⽅程的三个根,由根与系数的关系有, ⼜,故应填.2. ; .解:由于时, 的第⼀⼆列对应元素相等,故, 从⽽有因⼦;⼜由于时, 的第三四⾏对应元素相等,故, 从⽽有因⼦;由于中关于最⾼次数为,故,⼜由于的的项为, ⽐较两边的系数, 得,故应填.由于,故应填.3. 已知, 则.解: ,,从⽽,故应填.4. ⽅程的所有解为.解: 因为当分别等于时, 均有两列元素对应相等, 故, 故是的解, ⼜中关于的最⾼次数为, 所以是的所有解, 故应填.5. ⾏列式当时, , 当时, .解: ,当时,,故应填, .⼆、选择题:1.设则[ ](A); (B) ; (C) ; (D).解: ,故应选(B).2. 设, 其中均为三维列向量, 若, 则[ ](A) ; (B) ; (C) ; (D) .解:,故,故应选(D).3. 设, 其中均为三维列向量, 且, 则[ ](A) ; (B) ; (C) ; (D).解:.故应选(C).三、计算下列⾏列式:(1); (2) .解:四、证明:(1) ; (2).证明: (1)利⽤⾏列式的性质可将左边⾏列式表⽰为个⾏列式之和.这⼋个⾏列式中有六个⾏列式因有两列元素成⽐例,因⽽为零.所以,,得证.(2)练习1.3 ⾏列式按⾏(列)展开定理与克莱姆法则⼀、填空题:1. 已知,表⽰第⾏第列元素的余⼦式, 则.解:因为,故应填.2. .解:,故应填3. 当时, ⽅程组有⾮零解.解:⽅程组有⾮零解,由于,所以或.故应填或.⼆、选择题:1.设, 则多项式次数最⾼可能为 [ ](A); (B) ; (C) ; (D).解:,将其按第⼀⾏展开,得.若,则是常数;若,则是⼀次多项式,故应选(A). 2. 设,且其每列元素之和为, 则的第⼀⾏元素的代数余⼦式之和[ ](A) ; (B) ; (C) ; (D).解:, 显然,与第⼀⾏元素的代数余⼦式相同,所以,故应选(B).3. ⾏列式⾮零的充分条件是 [ ](A) 的所有元素⾮零; (B) 的任意两⾏元素之间不成⽐例;(C) ⾄少有个元素⾮零; (D) 以为系数⾏列式的齐次线性⽅程组有唯⼀解.解:选项(A),(B),(C)均不是⾮零的充分条件,故应选(D).4. 齐次线性⽅程组只有零解, 则应满⾜的条件是 [ ](A) ; (B) ; (C) ;(D) .解:齐次线性⽅程组只有零解, ⽽,所以,故应选(D).三、证明: (1) ; (2)证明:(1),得证.(2),得证.四、计算下列⾏列式:(1) ; (2).解:(1)将的第⾏经次⾏的调换调⾄第⼀⾏,第⾏经次⾏的调换调⾄第⼆⾏,…, 第2⾏经1次⾏的调换调⾄第⾏, 于是经过次⾏调换,故得(2)将按第列展开,得,但此递推公式难以推出的表达式. 由于于是我们猜测. 事实上,假设结论对于⼩于阶的⾏列式均成⽴,则对于阶,由递推公式有,故由数学归纳法,得.练习2.1 矩阵及其运算⼀、填空题:1. 设,则.解:,⽽,所以,,故应填.2. 设是阶矩阵, 其每⾏元素之和为,则的每⾏元素之和为.解:由题设知,即线性⽅程组有解,亦即,所以,推⼴可得,即的每⾏元素之和为,故应填.3. 已知线性变换则变量到变量的线性变换为.解1:因为,故应填.解2:由已知:,故, 故应填.4. , , ,.解: ;;;.⼆、选择题:1.设是阶⽅阵, 且, 则[ ](A); (B) ; (C) ; (D) .解: , 同理可得, 故. 故应选(C).2. 设为阶对称矩阵, 为阶反对称矩阵, 则下列矩阵中为反对称矩阵的是 [ ](A) ; (B) ; (C) ; (D) .解:, 故应选(A).3. 设为阶⽅阵,为正整数, 则下列结论中不正确的是 [ ](A) 若可交换, 则; (B) 若可交换, 则和可交换;(C) 若和可交换, 则可交换; (D) 若和可交换, 则可交换.解:若可交换, 则,故(A)正确;若可交换,显然也可交换, 于是,故(B)正确;由,知和可交换的充要条件是,即, 故(C)正确;从⽽(D)不正确. 事实上,若,由知,即不可交换,但, 故应选(A).4. 设,矩阵满⾜, 则[ ](A); (B) ; (C) ; (D) .解:由得,即,亦即, 两边取⾏列式得,因, 故, 故应选(B).5. 设为阶⽅阵,则下列结论正确的是 [ ](A) 且; (B) 若;(C) 或; (D) .解: 或, 故(C)成⽴;若,则,但,故(A)不成⽴;, 但,故(B)不成⽴;, 但,故(D)不成⽴. 故应选(C).三、设, 求解:, .四、设, 计算.解:当时, , 所以;当时, , 所以.五、设, 求.解: 设, 则,. ⽽, , 所以.六、证明任何⼀个阶⽅阵都可以表⽰为⼀对称矩阵与⼀反对称矩阵之和.证明: 设为任⼀矩阵, 且,其中, 由于, 所以,解得, 即, 且为⼀对称矩阵, 为⼀反对称矩阵.得证.练习2.2 矩阵的初等变换⼀、选择题:1.设则必有 [ ](A); (B) ; (C) ; (D).解:因为对矩阵施⾏⼀次初等⾏(列)变换, 相当于⽤同种的阶初等矩阵左(右)乘,⽽是由经过将第⼀⾏加到第三⾏,调换第⼀,⼆⾏两次初等⾏变换得到的,所以,故应选(D).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010-2011(2)高等数学A-D &线性代数A-E答疑值班表
时间:下午1:00—4:30
地点:综合楼A205(教师休息室)
教学周
课程名称
周一
周二
周三
周四
周五
5
高等数学A-D &线性代数A-E
李霞
朱海珊
艾玲
郭宇
6
高等数学A-D &线性代数A-E
李霞
朱海珊
艾玲
郭宇
7
高等数学A-D &线性代数A-E
李霞
朱海珊
艾玲
郭宇
8
高等数学A-D &线性代数A-E
林洪娟
韩维业
王晓光
袁朴玉
张有君
郑欣
9
高等数学A-D &线性代数A-E
林洪娟
韩维业
王晓光
袁朴玉
张有君
郑欣
10
高等数学A-D &线性代数A-E
林洪娟
韩维业
王晓光
袁朴玉
张有君
郑欣
11
高等数学A-D &线性代数A-E
沙萍
张彤
孙宏国
李扬
12
高等数学A-D &线性代数A国
18
高等数学A-D &线性代数A-E
周慧
唐高阳
赵伟丽
张立国
19
高等数学A-D &线性代数A-E
周慧
唐高阳
赵伟丽
张立国
学科负责人:曲铁平(高等数学A-D)、艾玲(线性代数A-E)
沙萍
张彤
孙宏国
李扬
13
高等数学A-D &线性代数A-E
沙萍
张彤
孙宏国
李扬
14
高等数学A-D &线性代数A-E
原璐
刘玉凤
李赞华
曲铁平
李新战
唐颖
15
高等数学A-D &线性代数A-E
原璐
刘玉凤
李赞华
曲铁平
李新战
唐颖
16
高等数学A-D &线性代数A-E
原璐
刘玉凤
李赞华
曲铁平
李新战
唐颖
17
高等数学A-D &线性代数A-E
相关文档
最新文档