化工原理第一章习题课

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:取管出口处的水平面作为基准面,在高位槽液面1-1 与管出口截面2-2间列能量方程:
z1
p1
g
v12 2g
z2
p2
g
v22 2g
H f 12
式中 z1 z z2 0 v1 0
p1 0 p2 1.96 104 Pa
v2
qv
d2
3 3600
0.785 0.0322
1.04m / s
4
阻力损失
H
f 12
l d
v22 2g
取管壁粗糙度 0.3mm,则:
0.3 0.00938
d 32
Re dv 0.0321.04861 4.46104 湍流
0.643103
查莫迪图,得 0.039
局部阻力系数查得为:
进口突然缩小(入管口 ) 0.5
90标准弯头 0.75
180回弯头 1.5
球形阀(全开) 6.4
• 【练习题1】如下图所示的CO2水洗塔供水系统,水洗塔顶 部绝对压强为2250 kPa,贮槽水面绝对压强为300 kPa 。
塔内水管与喷头连接处,高于水面20 m ,输水管规格为 φ57×3.5 mm 钢管, 送水量为15 m3.h-1 ,设管路摩擦 能量损失为49 J.kg-1, 试求水泵的有效功率。水的密度
RA
p1
(0
p2
)g
RB
( p3 p4 ) glB (0 )g
(d) (e)
RC
( p5
p6 ) glC • sin a (0 )g
(f)
将(a)、(b)、(c)3式分别代入式(d)、(e)、(f):
RA
h f ,A (0 )g
RB
g f ,B (0 )g
由(1)知
RC
h f ,C (0 )g
h f ,A h f ,B h f ,C ∴
RA RB RC
分析:由题的结论已经知道:R所包含的不光是两个测压点压 强的变化,还包含位能的变化。实际上,R所代表的仅仅是流 动阻力。如果概念清楚,由 h f ,A h f ,B h f ,C 可直接得出
RA RB RC 的结论。
【例2】 料液自高位槽流入精馏塔, 如附图所示。塔内压强为1.96×104Pa
第一章基本要求:
• 掌握一些基本概念:如密度、粘度、流速、流量、压强。 • 掌握静力学方程及其应用。 • 掌握流体流动形态及其判别。 • 掌握机械能衡算式及柏努利方程。 • 掌握流动阻力的计算。 • 主要公式:
• 静力学方程: p2 = p0 + g h
• 连续性方程式:A1v1=A2v2 (ρ不变)
l
d
v2
2g
• 层流:λ=64/Re • 湍流:经验公式及查图法。
例1:一无变径管路由水平段、垂直段和倾斜段串联而
成,在等长度的A、B、C三段两端各安一U形管压差计。
设指示液和被测流体的密度分别为和,当流体自下而上
流过管路时,试问:(1)A、B、C三段的流动阻力是否
相同?
(2)A、B、C三段的压差是否相同?
C段:pC p5 p6 h f ,c glc • sin a (c)
比较上面3式:
pB pC pA
(3)由流体静力学基本方程式
A段:
p1 gRA p2 0 gRA
B段: p3 gRB p4 0 gRB glB
C段: 整理,得
p5 gRC p6 0 gRC glC • sin a
ρ=1000 kg.m-3。( 9154w)
• 【练习题2】如图所示输水系统。已知:管路总长度(包括 所有局部阻力当量长度) 为100m,吸水池液面到压力表的
阻力当量长度为80m,管路摩擦系数λ=0.025,管子内径为
0.05m,水的密度ρ=1000kg.m-3,泵的效率为0.8,输水量为 10m3.h-1,试求:(1)泵轴功率N轴=? ( 855w) (2)压力 表的读数为多少kgf.cm-2(2.198kgf.cm2)
(表压),输送管道为φ36×2mm无缝
钢管,管长8m。管路中装有90°标准弯 头两个,180°回弯头一个,球心阀 (全开)一个。为使料液以3m3/h的流量 流入塔中,问高位槽应安置多高?(即
位差Z应为多少米)。料液在操作温度 下的物性:密度ρ=861kg/m3;粘度 μ=0.643×10-3Pa·s。
• 柏努利方程式:
gH1
v12 2
p1
W s
gH2
v
2 2
2
p2
Wf
H1
v12 2g
p1
g
H e
Fra Baidu bibliotekH2
v
2 2
2g
p2
g
H
f
• 雷诺数计算式:Re=d·v·ρ/μ • ≤2000 层流 ; • =2000~4000 过渡态; • ≥4000 湍流
• 流动阻力计算式:
Hf
l le
d
v2 2g
Hf
(3)3个压差计的读数、、是否相同?试加以论证。
(1)因流动阻力
h
f
l d
u2 2
,该管路A、B、C 3段
的 、l、d、u均相同,

h f ,A h f ,B h f ,C
(2)在A、B、C三段的上、下游截面间列柏努利方程式:
gZ1
p1
u12 2
gZ1
p2
u
2 2
2
hf
化简,得 p h f gZ A段: pA p1 p2 h f ,A (a) B 段: pB p3 p4 h f ,B glB (b)
相关文档
最新文档