工程造价毕业论文外文文献
工程造价毕业论文外文文献
工程造价毕业设计外文文献及译文外文文献:Construction Standards and CostsUC Irvine new construction pursues performance goals and applies quality standards that affect the costs of capital projects. Periodic re-examination of these goals and standards is warranted.Co nstruction costs are not “high〞or “low〞in the abstract, but rather in relation to specific quality standards and the design solutions, means, and methods used to attain these standards. Thus, evaluating whether construction costs are appropriate involves: • first, determining whether quality standards are excessive, insufficient, or appropriate;• second, determining whether resultant project costs are reasonable pared to projects with essentially the same quality parameters.“Quality〞enpasses the durability of building systems and finishes; the robustness and life-cycle performance of building systems; the aesthetics of materials, their position, and their detailing; and the resource-sustainability and efficiency of the building as an overall system.Overall Goals and Quality StandardsUC Irvine, in order to support distinguished research and academic programs, builds facilities of high quality. As such, UC Irvine’s facilities aim to convey the “look and feel,〞as well as embody the inherent construction quality, of the best facilities of other UC campuses, leading public universities, and other research institutions with whom we pete for faculty, students, sponsored research, and general reputation.Since 1992, new buildings have been designed to achieve these five broad goals:1. New bu ildings must “create a place,〞rather than constitute stand-alone structures, forming social, aesthetic, contextually-sensitive relationships with neighboring buildings and the larger campus.2. New buildings reinforce a consistent design framework of classical contextual architecture, applied in ways that convey a feeling of permanence and quality and interpreted in ways that meet the contemporary and changing needs of a modern research university.3. New buildings employ materials, systems, and design features that will avoid the expense of major maintenance (defined as >1 percent of value)for twenty years.4. New buildings apply “sustainability〞principles -- notably, outperforming Title 24 (California’s energy code) by at least 20 percent.5. Capital construction projects are designed and delivered within theapproved project budget, scope, and schedule.UC Irvine’s goals for sustainable materials and energy performance were adopted partly for environmental reasons, and partly to reverse substantial operating budget deficits. The latter problems included a multi-million dollar utilities deficit that was growingrapidly in the early ‘90s, and millions of dollars of unfunded major maintenance that was emerging prematurely in buildings only 10-20 years old. Without the quality and performance standards adopted in 1992, utilities deficits and unfunded major maintenance costs would have exceeded $20 million during the past decade, and these costs would still be rising out-of-control.UC Irvine’s materials standards, building systems standards, sustainability and energy efficiency criteria, and site improvements all add cost increments that can only be afforded through aggressive cost management. Institutions that cannot manage capital costs tend to build projects that consume excessive energy, that cost a lot to maintain, that suffer premature major maintenance costs, and that require high costs to modify. Such problems tend to pound and spiral downward into increasingly costly consequences.Every administrator with facilities experience understands this dynamic. Without effective construction cost management, quality would suffer and UC Irvine would experience all of these problems.The balance of this document outlines in greater detail the building performance criteria and quality standards generally stated above, organized according to building systems ponent classes. Each section discusses key cost-drivers, cost-control strategies, and important cost trade-offs. Design practices cited are consistently applied (although some fall short of hard and fast “rules〞).Building Organization and MassingConstruction cost management starts with the fundamentals of building organization andmassing. UC Irvine’s new structures’ floor plates tend to have length-to-width ratios<1.5, to avoid triggering disproportionate costs of external cladding, circulation, and horizontal mechanical distribution. Our new buildings tend to be at least three floors high -- taller if floor plate areas do not dip below a cost-effective threshold, and generally taller in the case of non-laboratory buildings (but not so tall that a high-rise cost penalty is incurred). Other design ratios are observed, such as exterior cladding area/floor area <0.5, and roof+foundation area/floor area <0.4.Architectural articulation is generally achieved through textured or enriched materials,integral material detailing (such as concrete reveal patterning), and applied detailing (e.g.,2window frames and sills), particularly at the building base. Large-scale articulation is concentrated at the roofline (e.g., shaped roof forms) and at the pedestrian level (e.g.,arcades), where it will “create the biggest bang for the buck,〞rather than through modulating the building form, itself. This is more than a subtle design philosophy, as the cost impact is substantial.Lab buildings pleted in the past decade separate laboratory and non-laboratory functions into distinct, adjoined structures (although such a building may look like one structure). Consolidated non-laboratory functions include faculty, departmental, staff,post-doc, and graduate student offices; restrooms; circulation (elevators, lobbies, primary stairways); classrooms, seminar rooms, conference rooms, and social areas designed tofoster interaction and to provide a safe area for eating and drinking; dry labs and dry lab support functions; and general administrative support.Consolidating these functions into a separate structure provides considerable cost savings:lower-cost HVAC (heating/ventilation/air-conditioning) system, wider column spacing, lower floor stiffness (less stringent vibration criterion), lower floor-loading,fewer fire-control features and other code requirements, steel-framed or steel/concrete hybrid structural system with concrete flat-slab flooring system, smaller footings, and(typically) curtain wall fenestration. This approach usually enables offices to have operable windows.This two-building approach can be seen clearly at Gillespie Neurosciences Building, the Sprague Building, Hewitt Hall, and the UCI Medical Center Health Sciences Laboratory,where consolidating and separating non-laboratory functions saved 7-10 percent in overall construction costs and 15 percent/year in energy expense. (The non-laboratory building incurs a small fraction of the energy expense of the laboratory block.)A set of design strategies, applied in bination, has proven effective in controlling the cost of laboratories:• Utilizing a consistent lab module• Utilizing a reasonable vibration criterion and locating ultra-sensitive conditions at-grade or employing benchtop vibration isolation• Using 22 ft. X 22 ft. column-spacing• Concentrating fume hoods and utility risers into a central “wet zone,〞thus limiting horizontal mechanical distribution• Concentrating laboratory support areas into the central core of a laboratory structure, where utilities are available but daylight is not needed, thus enablinglab structures to be 110-132 feet wide• Utilizing dual-usage circulation/equipment cross-corridors through this central lab support zone, with sufficient width (typically 11 feet) to line the corridors with shared equipment while providing cross-circulation through the lab support zone• Utilizing open laboratory layout with one or more “ghost〞corridors for intra lab circulation• And, most importantly, concentrating non-laboratory functions into an adjoining, lower-cost structure (as discussed in detail above).To further control laboratory construction costs, non-standard fume hood sizes are minimized, “generic〞lab casework is specified, laboratory-grade movable tables substitute for fixed casework in some lab bays, building DI systems provide intermediate water quality (with localized water purity polishing in the lab, rather than building-wide),facility-wide piped services do not include gases that can be cost-effectively provided locally via canisters, and glass-wash facilities are consolidated -- typically, one glass wash facility for an entire laboratory building.Finally, our design philosophy leans toward generic, modular laboratories supported by a robust building infrastructure, rather than highly customized spaces with limited capacity to make later changes. This is an important trade off. Although some post-occupancy expenses may be necessary to “fine-tune〞a laboratory to a PI’s requirements, building infrastructure elements – typically over sized twenty percent, including HVAC supply ducts, exhaust system capacity, emergency generator capacity, and electric risers and service capacity – seldom limit the ability to modify labs to meet researcher needs.Structural and Foundation SystemsFor both cost-benefit reasons and past seismic performance, UC Irvine favors concrete shear wall or steel braced-frame structural systems. The correlating foundation systems depend on site-specific soil conditions. Past problems with undiscovered substrates and uncharacterized soil conditions are minimized through extensive, pre-design soil-testing. This minimizes risk to both the University and the design/build contractor.When feasible, design/build contractors are allowed flexibility to propose alternate structural or seismic-force systems. All structural system designs must pass a peer review, according to Regents’ policy. This process results in conservative structural design, and an associated cost premium. However, the seismic performance of University of California buildings constructed since this policy went into effect in 1975 appears to substantiate the value of the Regents’ Seismic Revi ew Policy.Structural vibration is carefully specified in research buildings where vibration-sensitive protocols and conditions must be maintained on above-grade floors. The most cost effective tools to control vibration are generally employed: first, to program vibration sensitive procedures at on-grade locations or to isolate them at the bench; second, to space columns at a distance that does not entail excessive structural costs. In laboratory 4buildings we typically utilize 22 ft. X 22 ft. column-spacing. Conversely, where vibration is not problematic a beam/column system can be cost-optimized and lighter floor loading can be tolerated. Design/build contractors are, accordingly, allowed more flexibility under such conditions.To control costs, UC Irvine avoids use of moment-resisting structures; unconventionalseismic systems; non-standard structural dimensions; inconsistent, unconventional, or non-stacking structural modules; and non-standard means and methods.Roofs and FlashingsUC Irvine specifies 20 year roofing systems and stainless steel or copper flashings whenever possible. At minimum, we specify hot-dip galvanized flashings.Why this emphasis on flashings? Our roof replacement projects typically double in cost when the old roofing is torn off and it is determined that the flashings have deteriorated. Moreover, many roof leaks of recent years have been due to faulty flashings, rather than roofing membranes or coatings, per se. Saving money on flashings is false economy. Another special roofing expe nse we may have to incur in order to attain the Regents’ Green Building Policy is that of reflective roofing. It is too early to understand the potential cost impact.中文翻译:建立标准和本钱加州大学欧文分校新建筑追求性能目标和适用的质量标准,影响资本本钱的工程。
工程造价外文参考文献(精选120个最新)
[18]Richard Opoku,Isaac Adjei Edwin,Kofi A. Agyarko. Energy efficiency and cost saving opportunities in public and commercial buildings in developing countries – The case of air-conditioners in Ghana[J]. Journal of Cleaner Production,2019,230.
[4]Ricardo Mateus,Sandra Monteiro Silva,Manuela Guedes de Almeida. Environmental and cost life cycle analysis of the impact of using solar systems in energy renovation of Southern European single-family buildings[J]. Renewable Energy,2019,137.
[22]A. Yu,J. Hay,K.M. Zangwill. PIN40 POST-OPERATIVE ANTIBIOTIC COST PROJECT: DISCONTINUATION OF ANTIMICROBIAL PROPHYLAXIS AFTER SURGICAL INCISION CLOSURE[J]. Value in Health,2019,22.
工程造价与管理论文英文文献中英对照
英文文献Engineering cost managementProject cost control emphasis should be transferred to the project construction early days, is transferred to the project decision and design stage. Project cost control in construction projects throughout the entire process, the key lies in the pre construction investment decision-making with design phase, whereas in the investment decision is made, the key lies in designing. According to expert analysis: architectural design, in the preliminary design stage, design stage, construction design stage to the engineering effect were 75% ~ 95%, 35% ~ 75%, 5% ~ 35%; while in the construction phase, through the optimization of construction organization design, construction cost saving the possibility of only 5% to 10%. We should put the focus shifted to the design stage, in order to get twice the result with half the effort.Pay attention to the technical and economic optimization combination. The combination of technology with economy is most effective way to control engineering cost. China engineering fields for a long time did not do this. The lack of technical personnel economy idea, design thought is conservative, the design of the outcome of the economy are not fully reflect. Therefore, we should solve the problem is to improve economic efficiency as the goal, in the construction process, organization, technology and economy organic ground union rises. Through the economic analysis, comparative study and effect evaluation, correct processing of advanced technology and reasonable in economy between the relation of unity of opposites, strive to advanced technology under the conditions of economic rational, reasonable in economy based on advanced technology.Carry out "limitation is designed" method. To be consciously put the application of value engineering to the specific design, actively promote quota design in engineering design contract, by way of bidding. This has been proven in practice is an effective way, it is not only an economic problem, more precisely a technical and economic problems. This "limitation is designed" to effectively control the project cost. In order to make the "limitation is designed" to achieve the desired objectives, should be involved in the design personnel must be experienced skilled economic designer. Their design results must be practical, advanced and reasonable cost. Control of engineering cost on the other hand is the need for comparison, because the outcome is a process of gradual improvement, and not to decide, so the comparison is a measure of its practical, advanced and economical means.Do good project cost control in the process. ( 1) compilation of economic and feasible construction scheme. Before construction, construction enterprises should be combined with the construction drawings and the actual situation at the scene, their mechanical equipment, construction experience, the management level and technical specification acceptance criteria, a set of practical and feasible construction scheme. The construction scheme is engineering implementation of the programme of action. ( 2) to technical personnel, materials, machinery and personnel staff communicationand coordination. In the process of construction, construction technology, materials and mechanical personnel should cooperate closely, understand each other, to management as the core, to reduce costs for the purpose of. ( 3) to the project completion settlement. Strict supervision system. Control project cost effectively, in the early phase of the project shall be subject to supervision (including cost management ) system. Through analyzing the design process of supervision, make the design more reasonable, cost control to limit the scope of, accomplish truly with the smallest investment maximize output.Strict supervision system. Control project cost effectively, in the early phase of the project shall be subject to supervision (including cost management ) system. Through analyzing the design process of supervision, make the design more reasonable, cost control to limit the scope of, accomplish truly with the smallest investment maximize output.To establish and perfect the independent project cost advisory body, cultivate a Zhi De have both engineering team. To establish a real sense of independent engineering cost consulting agencies. Through improving the laws and regulations, normative behavior, separate government functions from enterprise management, the establishment of independent business partnership, share-holding system, the limited responsibility system and other forms of organization, an industry-based, diversified services integrated project consulting company, build and development and reform the engineering cost intermediary service institutions, make construction project management of a gradual transition by an independent specialized agency in charge of project cost whole process tracking management, truly between owner and contractor plays an intermediary role. To strengthen engineering cost consulting industry association construction, establish project cost consulting industry self-discipline mechanism, and constantly improve the Engineering Cost Association in engineering cost consulting industry status, to be truly representative of the interests of the majority of the industry practitioners, government and enterprises to become connection link and the bridge. At the same time to strengthen the project cost specialty in higher education and in service education. As a result of project cost management in construction projects and various economic interests are closely related, and the whole social economic activities play a very important role, it requires the cost engineering technical personnel should have different levels of knowledge, in addition to their professional knowledge and have a deep understanding, also deal with the design content, design process, construction technology, project management, economic laws and regulations have a comprehensive understanding of. Therefore, the project cost management, project cost per unit of society groups, has already obtained a cost engineer qualification personnel, in order to carry out plan, has the goal, multiple levels of continuing education and training, to understand and master Chinese bilateral agreements with countries project cost technology, regulations, management system and its development trend, to expand domestic and foreign exchanges, and actively participate in international or regional engineering activities, improve their professional quality, so that the current practitioners in intelligentstructure, theory and working experience three aspects can meet the needs of engineering cost management. Cost engineering professionals need to strengthen their own learning, in addition to the professional knowledge to upgrade, should also work in combination with a broad understanding and master the relevant engineering and technical expertise, educational organizations and industry regulatory bodies constitute a complete education system, so as to the field of engineering senior talent development to create good conditions.中文译文:工程造价与管理工程造价控制重点应转移到项目建设的前期,即转移到项目决策和设计阶段。
工程造价毕业设计外文文献
Risk Analysis of the International Construction Project
By: Paul Stanford Kupakuwana Cost Engineering Vol. 51/No. 9 September 2009
工程造价国外参考文献介绍
工程造价国外参考文献介绍工程造价是工程建设过程中合理使用资源、控制成本、保证质量的重要环节。
在国外,工程造价也受到广泛关注和研究。
以下是一些国外工程造价方面的参考文献介绍。
1.《Total Cost Management Framework: An Integrated Approach to Portfolio, Program, and Project Management》该书是美国斯坦福大学的教授 Edward Merrow 所著,介绍了一种全面的项目管理方法,涵盖了项目规划、预算、成本控制、风险管理等方面。
这本书被认为是工程造价管理领域的经典之作。
2. 《Construction Cost Management: Learning from Case Studies》该书由英国利兹大学的教授 Keith Potts 所著,以案例研究的方式介绍了工程造价管理的实践经验。
该书覆盖了建筑、土木、机电、水利等多个领域的工程案例研究,为读者提供了宝贵的经验和教训。
3. 《Construction Cost Estimating: Process and Practices》该书由美国工程师 Adam Ding 所著,主要介绍了工程造价估算的方法和实践。
该书详细阐述了工程造价估算的流程、方法和技巧,并通过案例分析和实例说明,让读者更好地理解和掌握工程造价估算的技术和方法。
4. 《Cost Engineering for Construction Projects》该书由德国工程师 Holger Svensson 所著,主要介绍了工程造价管理的理论和实践。
该书涵盖了建筑、土木、机电、水利等多个领域的工程造价管理,通过案例分析和实例说明,让读者更好地理解和掌握工程造价管理的技术和方法。
以上是一些比较有代表性的工程造价方面的参考文献,这些文献涵盖了工程造价管理的各个方面,对于从事工程造价管理的人员和相关专业人员来说,具有非常重要的参考价值。
工程造价国外参考文献介绍
工程造价国外参考文献介绍随着国际贸易的发展和国际化程度的提高,工程造价的国际化程度也越来越高。
因此,掌握国外的工程造价理论和实践经验对于提升我们的工程造价水平具有重要意义。
以下是一些值得参考的国外工程造价文献:1. Construction Cost Management: Learning from Case Studies by Keith Potts这是一本非常实用的案例研究书籍,介绍了各种不同类型工程的成本管理技术和实践经验。
这本书涵盖了建筑、土木、机电、电力等各个领域的工程案例,对于工程造价实践者和学习者都非常有帮助。
2. Quantity Surveyor's Pocket Book by Duncan Cartlidge这本书是一本实用的参考工具书,介绍了工程造价领域的各种技术和术语。
该书主要包括诸如工程量计量、估算、成本控制和财务管理等方面的内容,是一本非常适合初学者和实践者使用的工程造价指南。
3. International Construction Contracts: A Handbook by William Godwin这本书是一本关于国际工程合同的权威参考书籍。
该书涵盖了国际工程合同的各个方面,包括合同类型、合同条款、合同管理和国际仲裁等方面的内容。
对于从事国际工程造价工作的人员来说是一本不可或缺的参考书。
4. Cost Management: A Strategic Emphasis by Edward Blocher这是一本关于成本管理战略的书籍,重点介绍了成本管理的核心概念和技术。
该书还涵盖了成本管理在不同行业和企业中的应用,对于掌握成本管理的基本原理和实践经验非常有帮助。
总之,以上这些工程造价国外参考文献都非常值得我们参考和学习。
通过不断学习和实践,我们可以不断提升自己的工程造价水平,更好地服务于工程建设和经济发展。
工程造价英语文献
工程造价英语文献以下是一篇关于工程造价的英文文献:Title: Construction Cost Estimation Techniques: A Review Abstract:Construction cost estimation is a crucial process in the construction industry, as accurate cost estimates are essential for project planning, budgeting, and decision-making. This paper provides a comprehensive review of various construction cost estimation techniques that are commonly used in practice. The review includes traditional methods, such as the unit cost method, the square foot method, and the assembly method, as well as modern methods, such as parametric cost estimation, expert judgement, and statistical analysis. The advantages and limitations of each technique are discussed, along with their applicability to different types of construction projects. The paper also highlights the importance of considering uncertainties and risks in cost estimation, and provides an overview of risk assessment techniques that can be used in conjunction with cost estimation models. The review concludes with recommendations for future research in the field of construction cost estimation.Keywords: construction cost estimation, techniques, traditional methods, modern methods, risk assessmentIntroduction:Construction cost estimation plays a critical role in the success of construction projects. Accurate cost estimates are essential for project planning, budgeting, and decision-making. However, costestimation is a challenging task due to the complexity and uncertainty inherent in construction projects. In recent years, there has been a growing interest in developing and implementing new cost estimation techniques to improve the accuracy and reliability of cost estimates. This paper aims to review the existing literature on construction cost estimation techniques and identify their advantages, limitations, and applicability in different contexts. Methods:A systematic literature review was conducted to identify relevant studies on construction cost estimation techniques. The search was performed using online databases and academic journals. The selected studies were then analyzed and categorized based on the type of construction cost estimation technique they described. Results:The review identified several traditional and modern cost estimation techniques that are commonly used in practice. Traditional methods, such as the unit cost method and the square foot method, are simple and easy to apply, but they may lack accuracy and flexibility. Modern methods, such as parametric cost estimation and expert judgement, take into account more variables and can provide more accurate cost estimates. However, they require more data and expertise. The review also highlighted the importance of considering uncertainties and risks in cost estimation, and described various risk assessment techniques that can be used in conjunction with cost estimation models.Discussion:The review revealed that there is no one-size-fits-all costestimation technique. The choice of technique depends on the characteristics of the construction project, the available data, and the expertise of the estimator. Moreover, there is a need for further research to develop more accurate and reliable cost estimation models, as well as to improve the integration of risk assessment techniques into cost estimation processes.Conclusion:Construction cost estimation is a complex and challenging task. This paper provides a comprehensive review of various cost estimation techniques used in practice and highlights their advantages, limitations, and applicability. The review also emphasizes the importance of considering uncertainties and risks in cost estimation, and suggests areas for future research. By improving the accuracy and reliability of cost estimates, construction professionals can make more informed decisions and ensure the success of construction projects.。
工程造价外国文献及译文
工程造价外国文献及译文以下为工程造价相关的外国文献及译文:1. "Engineering Cost Estimation and Control" by Philip E. Kesler and John M. Meredith。
《工程造价估算与控制》(Philip E. Kesler和John M. Meredith 著)。
2. "Cost Engineering for Construction Projects" by Ronald Klemencic。
《建筑工程造价工程》(Ronald Klemencic著)。
3. "Cost Estimating and Analysis for Engineering and Management" by Phillip F. Ostwald。
《工程和管理的成本估算和分析》(Phillip F. Ostwald著)。
4. "Construction Cost Engineering" by Stephen R. Devlen。
《建筑工程造价工程》(Stephen R. Devlen著)。
5. "Project Cost Control in Action" by Kim Heldman and William R. Duncan。
《项目成本控制实践》(Kim Heldman和William R. Duncan著)。
6. "Cost Estimating and Contract Pricing" by Michael D. Dell'Isola。
《成本估算和合同定价》(Michael D. Dell'Isola著)。
7. "Engineering Economics and Economic Design for Process Engineers" by Thane Brown。
工程造价专业毕业外文文献、中英对照
工程造价专业毕业外文文献、中英对照中文翻译:工程造价专业毕业外文文献工程造价专业是一种重要的工程技术专业,主要负责工程投资的评估、选择和控制工程项目成本,以及项目质量、进度和安全。
因此,工程造价专业需要具备丰富的知识和技能,包括工程建设、经济学、管理学、数学、统计学等方面。
为了提高工程造价专业学生的综合能力,学习外文文献是不可或缺的步骤。
本文将介绍几篇与工程造价专业相关的外文文献,并提供中英文对照。
1)《The Role of Quantity Surveyors in Sustainable Construction》该文研究了数量调查师在可持续建筑中的作用,并深入探讨了数量调查师在项目的可持续性评估、营建阶段和运营阶段的角色和责任。
该文指出,数量调查师可以通过成本控制、资源利用、和材料选择等方面促进可持续建筑的发展,为未来可持续发展提供支持。
中文翻译:数量调查师在可持续建筑中的作用2)《Cost engineering》该文研究了造价工程的理论和实践,并提供了一系列工具和方法用于项目成本的控制和评估。
该文还深入探讨了工程造价和项目管理之间的关系,并提供了一些实用的案例研究来说明造价工程的实际应用。
中文翻译:造价工程3)《Construction cost management: learning from case studies》该文通过案例分析的方式来探讨建筑项目成本管理的实践。
该文提供了多个案例研究,旨在向读者展示如何运用不同的方法来控制和评估项目成本,并阐述了思考成本问题时需要考虑的多个因素。
中文翻译:建筑项目成本管理:案例学习4)《Project Cost Estimation and Control: A Practical Guide to Construction Management》该书是一本实用指南,详细介绍了在工程起始阶段进行项目成本估算的方法和技巧,以及如何在项目执行阶段进行成本控制。
工程成本预算 毕业论文外文文献翻译
外文翻译Construction projects, private and public alike, have a long history of cost escalation. Transportation projects, which typically have long lead times between planning and construction, are historically underestimated, as shown through a review of the cost growth experienced with the Holland Tunnel. Approximately 50% of the active large transportation projects in the United States have overrun their initial budgets. A large number of studies and research projects have identified individual factors that lead to increased project cost. Although the factors identified can influence privately funded projects the effects are particularly detrimental to publicly funded projects. The public funds available for a pool of projects are limited and there is a backlog of critical infrastructure needs. Therefore, if any project exceeds its budget other projects are dropped from the program or the scope is reduced to provide the funds necessary to cover the cost growth. Such actions exacerbate the deterioration of a state’s transportation infrastructure. This study is an anthology and categorization of individual cost increase factors that were identified through an in-depth literature review. This categorization of 18 primary factors which impact the cost of all types of construction projects was verified by interviews with over 20 state highway agencies. These factors represent documented causes behind cost escalation problems. Engineers who address these escalation factors when assessing future project cost and who seek to mitigate the influence of these factors can improve the accuracy of their cost estimates and program budgetsHistorically large construction projects have been plagued by cost and schedule overruns Flyvbjerg et al. 2002. In too many cases, the final project cost has been higher than the cost estimates prepared and released during initial planning, preliminary engineering, final design, or even at the start of construction “Mega projects need more study up front to avoid cost overruns.” The ramifica tions of differences between early project cost estimates and bid prices or the final cost of a project can be significant. Over the time span between project initiation concept development and the completion of construction many factors may influence the final project costs. This time span is normally several years in duration but for the highlycomplex and technologically challenging projects it can easily exceed 10 years. Organizations face a major challenge in controlling project budgets over the time span between project initiation and the completion of construction. The development of cost estimates that accurately reflect project scope, economic conditions, and are attuned to community interest and the macroeconomic conditions provide a baseline cost that management can use to impart discipline into the design process. Projects can be delivered on budget but that requires a good starting estimate, an awareness of factors that can cause cost escalation, and project management discipline. When discipline is lacking, significant cost growth on one project can raze the larger program of projects because funds will not be available for future projects that are programmed for constructionA history of past project experiences can serve one well in understanding the challenges of delivering a quality project on budget. Repeatedly, the same problems cause project cost escalation and much wisdom can be gained by studying the past. The Holland Tunnel was, when it opened in 1927, the longest underwater tunnel ever constructed and it was also the first mechanically ventilated underwater tunnel. Its initial cost estimate was made by the renowned civil engineer George Washington Goethals. A review of the Holland Tunnel project serves to highlight the critical issues associated with estimating the costs of large complex projects and the fact that even the most distinguished engineers have trouble assessing cost drivers beyond the physical characteristics of a project. Many times there is no recognition of the cost driver s operating outside the project’s physical configuration. A joint New York and New Jersey commission in 1918 recommended a transportation tunnel under the river “Urges new tunnel under the Hudson.” 1918; “Ask nation to share in tunnel to Jersey.” 1918. The automobile was emerging as the predominate means of transportation and it was decided that this tunnel should be for vehicular traffic. As a result the tunnel would employ new ventilation technologies to purge the exhaust gases produced by the internal combustion engine. Eleven designs were considered for the tunnel, most notably, one by the engineer recently responsible for finishing the Panama Canal, George Washington Goethals. He envisioned a single, bileveltunnel with opposing traffic on each level. Goethals made a planning project cost estimate of $12 million and 3 years for construction. World War I had consumed much of the nation’s steel and iron production, so his design made use of cement blocks as the tunnel’s structural shell. His design was the frontrunning plan “Hudson vehicle tube.” but he had responsibilities elsewhere and was not named chief engineer for the project. Clifford M. Holland was named to head the project along with a board of five consulting engineers “Name interstate tunnel engineers.” 1919. Holland came to the project with vast experience in constructing subways and tunnels in New York. The cost of the project was taken to be $12 million, Goethals’ planning estimate. Holland produced a report in February of 1920 based on his a nalysis of the Goethals’ design of the project. His findings were not what had been expected. Holland found • Goethals’ width of 7.47 m would not accommodate the volume of traffic.• Concrete blocks would not withstand the structural loads exerted on the t unnel.• The construction methods required by Goethals’ design were completely untried.• The estimated cost of construction was grossly low.• The work could not be completed in 3 years.The board of consulting engineers gave unanimous support for Holland’s analysis. Holland then presented a design of his own which was supported unanimously by the consulting engineers. Holland’s design, which was a major scope change, called for twin cast-iron tubes. One advantage was that construction would follow established methods of tunnel construction that had been implemented for rail tunnels under the East River and further up the Hudson. Holland estimated the cost at $28,669,000 “Asks $28,669,000 for Jersey tube.” 1920 and construction time at 31/2 years.Debate about the tunnel design continued for more than a year creating disagreements between the New York and New Jersey Commissions and delaying the work—a schedule change. A disagreement about awarding a contract on the New Jersey side further delayed the start of construction and added over half of a million dollars in cost. Construction started on the New York side in October of 1920 and inlate December 1921 the New Jersey portion of the tunnel was bid “Way all cleared for Jersey tunnel.” The mandated completio n date was December 31, 1926. The construction schedule had now grown to 5 years. Estimated project cost increased multiple times throughout the early years of construction as a result of scope creep, schedule delays, and inflation. Increased traffic forecast necessitate larger entrance/exit plazas and acquisition of more right of way “Vehicular tube is growing.” 1923. Then increases in material and labor costs had added another $6 million to the project inflation. By the beginning of 1924, reestimated costs had been increased by $14,000,000 “Vehicular tunnel cost up $14,000,000.” 1924 due to functional and aesthetic factors scope creep. More intricate roadway designs for approaches, widening of the approach roadways, and architectural treatments increased the costs more scope creep. Redesign of the ventilation system added 15.24 cm to the tunnel diameter and $4,422,000. Holland also decided to substitute cast-steel for castiron to increase the strength and safety factors of the tunnel more scope creep. Last, the New Jersey ventilation shafts had to be redesigned along with their corresponding foundations at a cost of $700,000 due to unexpected soil conditions unforeseen conditions. All of these changes increased the estimate to over $42.5 million. New funds were appropriated and it was believed that these were sufficient to complete the project, but by February of 1926, there was another increase of $3,200,000 “$3,200,000 more asked for tunnel.” The commission explained that the new costs were due to increases in labor and material costs challenge in controlling cost. At this time Holland died of heart failure and his assistant, Milton H. Freeman, took over as chief engineer only to die of pneumonia 4 months later. Ole Singstad, the designer of the ventilation system then became chief engineer and brought the project to completion. Having three different chief engineers within 5 months created confusion unforeseen events. In April of 1924 water rushed into one of the tunnels from a leak forcing workers to make a hasty escape more unforeseen conditions. A final appropriation was requested in early 1927 brought the total project cost to $48,400,000. On November 13 of 1927 the tunnel officially opened “Work on tunnel began 7 years ago.” MethodologyThe cost escalation factors that lead to project cost growth have been documented through a large number of studies. Studies have identified factors individually or by groups. Each factor presents a challenge to an agency seeking to produce accurate project cost estimates. As part of a larger study seeking to improve cost estimates and management of costs from project conception to bid day, a thorough literature review was conducted to identify factors that influence cost estimates Anderson et al. 2006. The literature review included exploration of research reports and publications, government reports, news articles, and other published sources. Upon completion of the literature review the factors were analyzed and categorized by the researchers into factors that drive the cost increases experienced by transportation construction projects. This was accomplished by triangulation where multiple investigators or data sources suggested the same factor. This categorization took the individual factors which had been identified in previous research and established a global framework for addressing the issue of project cost escalation. Upon final categorization the cost escalation factor framework was verified through triangulation of data from interviews with more than 20 state highway agencies SHAs around the nation . A previous project that supported identification of the factors had included telephone interviews with all 50 SHAs Schexnayder et al. 2003 . An interview instrument was prepared and tested initially during onsite interview with two SHAs. The revised interview instrument was then sent to the SHAs before the interview so that they could prepare. The interviews were conducted onsite for five SHAs through individual interviews and through a group “peer exchange.” The remaining interviews were conducted by telephone. In all cases, the researchers followed the interview protocol to ensure consistency in data collection. The resulting categorization of cost escalation factors can help project owners and engineering professionals focus their attention on the critical issues that lead to cost estimation inaccuracy.The triangulation analysis considered methodologies from past studies and interviews to create a categorization for the causes of cost escalation. A better understanding of the cost escalation factors is achieved through understanding theforces driving each factor or where the factor originates. With this understanding it is possible to design strategies for dealing with these cost escalation factors. The factors that affect the estimate in each project development phase are by nature internal and external. Factors that contribute to cost escalation and are controllable by the agency/owner are internal, while factors existing outside the direct control of the agency/owner are classified as external. The presentation order of the factors should not be taken as suggesting a level of influence is constructed to provide an over arching summary of the factors. It summarizes the factors into logical divisions and classifications and helps in visualizing how project cost estimates are affected. It is important to note that one of the factors points to problems with estimation of labor and material cost, but most of the factors point to “influences” that impact project scope and timing.中文译文私人和公共的建设项目,一直以来有成本增长的问题。
工程造价外文文献
COST AND TIME CONTROL OF CONSTRUCTION PROJECTS:INHIBITING FACTORS AND MITIGATING MEASURES IN PRACTICEYakubu Adisa Olawale, Ph.D., MCIOB and Ming Sun, Ph.D. (Professor)AbstractDespite the availability of various control techniques and project control software many construction projects still do not achieve their cost and time objectives. Research in this area so far has mainly been devoted to identifying causes of cost and time overruns. There is limited research geared at studying factors inhibiting the ability of practitioners to effectively control their projects. To fill this gap, a survey was conducted on 250 construction project organisations in the UK, which was followed by face-to-face interviews with experienced practitioners from 15 of these organisations. The common factors that inhibit both time and cost control during construction projects were firstly identified. Subsequently 90 mitigating measures have been developed for the top five leading inhibiting factors - design changes, risks/uncertainties, inaccurate evaluation ofproject time/duration, complexities and non-performance of subcontractors were recommended. These mitigating measures were classified as: preventive, predictive, corrective and organisational measures. They can be used as a checklist of good practice and help project managers to improve the effectiveness of control of their projects.Keyword: Cost control, interview, practice, project control, project management,INTRODUCTIONIn the construction industry, the aim of project control is to ensure the projects finish on time, within budget and achieving other project objectives. It is a complex task undertaken by project managers in practice, which involves constantly measuring progress; evaluating plans; and taking corrective actions when required (Kerzner, 2003). During the last few decades, numerous project control methods, such as Gantt Bar Chart, Program Evaluation and ReviewTechnique (PERT) and Critical Path Method (CPM), have been developed (Nicholas 2001, Lester 2000). A variety of software packages have become available to support the application of these project control methods, for example Microsoft Project, Asta Power Project, Primavera, etc. Despite the wide use of these methods and software packages in practice, many construction projects still suffer time and cost overruns. In recent years, there have been numerous studies on the identification of influencing factors of project time and cost overruns worldwide. Mansfield et al (1994) carried out a questionnaire survey amongst 50 contractor, consultant and client organisations in Nigeria and found out that the most important variables causing construction delays and cost overruns are poor contract management, financing and payment of completed works, changes in site conditions, shortage of materials, imported materials and plant items, design changes, subcontractors and nominated suppliers. While the top variables causing only cost overruns were revealed as price fluctuation, inaccurate estimates, delays, additional work. Kaming et al (1997) identified factors influencing construction time and cost overruns on Cite as: Olawale, Y., and Sun M. (2010). “Cost and time control of construction projects: Inhibiting factors and mitigating measures in practice.”Construction Management and Economics, 28 (5), 509 –526. high-rise building projects in Indonesia through a questionnaire survey administered on 31 project managers. A total of 11 variables (design changes, poor labour productivity, inadequate planning, material shortages,inaccuracy of material estimate, skilled labour shortage etc) were identified for time overrun and seven (materials cost increased by inflation, inaccurate quantity take-off, lack of experience of project location, lack of experience of project type etc) for cost overrun. Kumaraswamy and Chan (1998) conducted a more extensive study in Hong Kong using 400 questionnaires after which follow up interviews were held. The study revealed the top ten causes of construction delays from the contractors’point of view as delays in design information, long waiting time for approval of drawings, poor site management and supervision, mistakes and discrepancies in design documents, etc. Similar survey studies were reported by Frimpong et al (2003) in Ghana and by Assaf and Al-Hejji (2006) in Sandi Arabia. In addition to questionnaire surveys, other researchers adopted a case study approach. Al-Momani (2000) examined 130 public projects in Jordan and concluded that the main causes of delays include changes initiated by designers, client requirement, weather, site conditions, late deliveries, economic conditions, etc. Hsieh et al (2004) conducted a statistical analysis in 90 metropolitan public work projects in Taiwan and identified problems in planning and design as main causes of change orders. Yogeswaran et al (1998) scrutinised 67 civil engineering projects in Hong Kong and suggested that at least a 15-20% time overrun was due to inclement weather. Based on analysis of 46 completed building projects in the UK, Akinsola et al (1997) identified and quantitatively examined factors influencing the magnitude and frequency of Cite as: Olawale, Y., and Sun M. (2010). “Cost and time control of construction projects: Inhibiting factors and mitigating measures in practice.”Construction Management and Economics, 28 (5), 509 –526. variations in building projects. These factors include: client characteristics, especially lack of prior experience and knowledge of construction project organization and the production processes; project characteristics, such as type, size, complexity and duration of the project; and project organisation factors, such as; design duration, percentage of design completed before tender, procurement and contract type, adequacy of information provided, and number of sub-contractors. While all the above studies, to various extents, helped with the better understanding of the problems associated with cost and time overruns in construction projects, there are some limitations. (1) Some of these studies are over 10 years old. There is a need for a more up to date investigation to reflect any development in recent years. (2) Most of the studies were carried out outside the UK. Although construction projects worldwide share some common characteristics, there are also some country specific conditions. For example, it is highly unlikely that “shortage of materials”and “import of materials”are major factors in the UK. Therefore, a UK based study will help to identify issues most relevant to the contemporary practice in this country. (3) Some of the reviewed surveys had relatively small sample sizes, which may affect the reliability of their results. (4) All the studies focused on identifying factors that have the biggest influence on project costs and time. They did not discuss the degrees of difficulty in controlling these factors in practice. There seems to be an implicit assumption that the most important factors are also those most difficult to control. This needs to be explicitly validated. (5) Finally, most existing studies stopped at the identification of the influencing factors, but did not progress Cite as: Olawale, Y., and Sun M. (2010). “Cost and time control of construction projects: Inhibiting factors and mitigating measures in practice.”Construction Management and Economics, 28 (5), 509 –526. onto finding ways of mitigating the identified problems. These observations underlie the rationale for this study. Its aim is to identify the main inhibiting factors of project control in practice in the UK and then to develop some mitigating measures to assist project managers better control their projects.RESEARCH METHODSThis research adopts a combination of quantitative and qualitative methods. It was conducted in two stages. The first stage was conducted using a quantitative method through a questionnaire survey in a bid to generate information from a large sample population. The second stage of the study was conducted using the qualitative method using semi-structured interviews. The reasons for using the interview in addition to the questionnaire survey were: to triangulate data obtained from the questionnaire survey; to enhance, expand and create depth to the results of the questionnaire survey by investigating and elaborating on some of the issues highlighted; and to explore the experiences of the sample population in relation to the topical issues revealed after analysis of the data obtained from the questionnaire survey.Questionnaire SurveyThe aim of the survey is toestablish the current common practice of time and cost control in the UK construction industry, including control methods and software applications being used by practitioners as well as inhibiting factors. It started with a thorough review of existing studies that revealed a lot of issues on construction Cite as: Olawale, Y., and Sun M. (2010). “Cost and time control of construction projects: Inhibiting factors and mitigating measures in practice.”Construction Management and Economics, 28 (5), 509 –526. project time and cost overruns, project control tools and techniques and latest thinking and new developments in the field of construction project control. This led to the development of a questionnaire made up of 22 multiple choice questions. The questionnaire was divided into three sections:Section one was background information which was targeted at obtaining information on the general particulars of the respondents and their organisation, such as the experience ofthe respondnets, their position within the organisation, the type of project embarked on by the organisation etc.The second section was about time overrun, project planning and time control practice such the frequency of time overrun experienced, the techniques used for planning and time control, the factors that hampers respondents from effectively controlling their projects etc .while the third section contained similar questions but specific to cost control practices. A total of 250 questionnaires were administered; 150 to the top construction companies in the UK by company turnover and the remaining 100 to the top construction project consultancies in the country by the number of professional staff employed and company fee earnings. This list was obtained from the Building magazine annual league tables. The league tables did not contain the addresses of the companies so an online web search was conducted to find their addresses and contact details. Telephone calls were subsequently made to these companies to confirm the addresses and to find out the type of hierarchy and structure that exists within the organisation. This enabled the questionnaires to be sent to the appropriate Cite as: Olawale, Y., and Sun M. (2010). “Cost and time control of construction projects: Inhibiting factors and mitigating measures in practice.”Construction Management and Economics, 28 (5), 509 –526. department. To supplement this, the name of a construction director, manager or the appropriate personnel with a huge responsible for the management of construction projects in the organisation was obtained to ensure that the questionnaires went to the correct addresses and addressed to the appropriate personnel. This ensured a very good response as 110 questionnaires (44% response rate) were returned. Tables 1 and 2 show the profile of the practitioners that responded to questionnaire on behalf of their companies. Nearly 72% of the respondents that completed thequestionnaires were directors or senior managers, commercial managers. As would be expected from their roles, these respondents also had significant years of experience in the construction industry. Nearly half (48%) of respondents had more than 25 years of experience. This showed that there was great depth in the experience possessed by the respondents.DISCUSSIONSThis study approached the influencing factors of project control from a new perspective. As previously mentioned a lot of previous studies in the area of project control have mainly been focused at cost and time overruns most especially their causes. Their findings are often influenced by the specific context of each study. Many researchers came up with quite different lists of top factors that have major impact on cost and time. The survey results of this study reflect the current views of the leading practitioners in the UK. Another aspect that distinguishes this study from previous ones is that the survey during the first stage of the study seeks to identify the main factors that hamper project managers’ability to control cost and time not just those that might have the biggest impact. It is interesting to find that the top five inhibiting factors are all project internal elements. This is in contrast to previous studies where many external aspects are often cited as most important factors, such as inflation, material shortage, unforeseen ground conditions, inclement climate, etc. Cite as: Olawale, Y., and Sun M. (2010). “Cost and time control of construction projects: Inhibiting factors and mitigating measures in practice.”Construction Management and Economics, 28 (5), 509 –526. (Arditi, 1985; Kaming et al, 1997; Mansfield et al, 1994, Kumaraswany and Chan, 1998). The possible explanation for this is that although external factors are usually difficult to control or even beyond the control of project managers, the frequency of their occurrence is general low. On the other hand, internal factors are persistent and require constant controlling.The mitigating measures are distilled from in-depth interviews with very experienced project management practitioners. They are not simply selected from current best practice. They reflect what should be done to improve the current project control practice. For example in-depthinterviews found that there has been a general decline in the production of detailed design for construction projects; and this is perceived as one of the greatest cause of design changes, the foremost bottleneck during the project control process. It was also revealed that there is often a lack of distinction between a design change and a design development leading to argument among project partners. In-depth interviews also brought to light the fact clients contribute to the problem of project cost and time control by imposing unachievable and unrealistic time scales. These revelations led to the development of a number of mitigating measures, some of the measures developed on the back of these problems include; measures 8 (designing the project to a great detail at the outset whenever possible), 1 (clear distinction between a design change and a design development at the outset of a project), 37 (educating and advising client on alternative if an unachievable/unrealistic project timescale is stipulated), 38 (having the courage to refuse unrealistic project timescale by clients unwilling to yield to Cite as: Olawale, Y., and Sun M. (2010). “Cost and time control of construction projects: Inhibiting factors and mitigating measures in practice.”Construction Management and Economics, 28 (5), 509 –526. professional advise). It was also revealed that quite often, the non-performance of subcontractorsis not necessarily the fault of subcontractors but due to lack of effective management by the main contractor. The mitigating measures that stemmed from this include; 66 (properly directing the subcontractor to ensure they know what is expected of them in relation to the project), 68 (puttinga system in place for early identification of non-performance in subcontract works/packages in order to nip it in the bud as soon aspossible) and 69 (utilising performance measurements e.g. S-curve, KPI to monitor the output/performance of subcontractors on their work package). The development of the mitigating measures was also built on the existing studies on good but often generic project management practices. For example several previous studies revealed that the wooly area of design change and design development is one of the key reasons why design change is considered a barrier to effective cost and time control. To combat this, Kartam et al (2000) recommended that end user requirement should be closely coordinated in the early phase of the project and more attention should be placed on managing this requirement during the construction phase. This is similar to some of the mitigating measures identified in this study but this study has gone further by making them more specific to the project control process. For example measures 8, 15 and 18 in table 12 have been made specific for mitigation of design changes during the project control process. Another mitigating measure for design change is measure 11 (agreeing and putting in place change management procedure before the commencement of projects, incorporating this Cite as: Olawale, Y., and Sun M. (2010). “Cost and time control of construction projects: Inhibiting factors and mitigating measures in practice.”Construction Management and Economics, 28 (5), 509 –526. into the contract if possible). This measure was also buttressed by a number of studies in different ways. For example Lee et al (2005) identified project change management as a critical practice that has important impacts on both cost and schedule performance or projects. Ling etal (2009) in the study of key project management practices affecting project performance found that the most significant practices that are significantly correlated with project performance relate to scope management and recommended that emphasis must be given to scope management in order to achieve superior project performance. Similarly Zou and Lee (2008) used multiple one-way ANOV A and linear regression to investigate the effectiveness of change management practices elements in controlling project change cost and found amongst others that using change management practices is truly helpful in lowering the proportion of change cost in project actual cost. On another hand, Kog et al (1999) identified key determinants for construction schedule performance and discovered amongst others, that havinga constructability programme is a key determinant to construction schedule performance. A constructability programme was described in the study as the application of a disciplined and systematic optimisation of construction-related knowledge during the planning, design procurement and construction stages by knowledgeable experienced construction personnel who are part of the team. Measures 34, 35, 36 and 42 in table 14 developed for the mitigation of inaccurate evaluation of project time duration are specific practices that will go a long way at ensuring the development of a constructability programme. Cite as: Olawale, Y., and Sun M. (2010). “Cost and time control of construction projects: Inhibiting factors and mitigating measures in practice.”Construction Management and Economics, 28 (5), 509 –526. The mitigating measures are the result of a three staged research process. It will be wrong to assume that these measures are identified from only a small number of interviews. In fact, the interview is just the last stage of the development of these measures in a three stage process involving, literature review, questionnaire survey, intellectual thinking and finally the interviews which acted as a way of putting some practicalityin the mitigating measures by drawing from the real life experiences of interviewees. It should also be pointed out that the interviews did not ask practitioners about their experience of a single project or a single company but drew on theirexperiences of many projects they have worked on. This approach has been adopted by related studies such as Kartam et al (2000), Gao et al (2002) and Sohail et al (2002). For example Sohail et al (2002) in the research aimed at developing monitoring indicators for urban micro contracts began by studying archival records of projects, then used a questionnaire survey to generate more data, conducted interviews to gain more in-depth understanding of the of the situation after which the monitoring indicators were eventually developed by inferences made from analysis of interviews, archival records and questionnaires. While these mitigating measures can contribute to the improvement of project control in practice, there are also some limitations. There is a need for integrating the implementation of these measures into project control models. Some of these measures outline what need to be done, but do not address how they can be achieved. Issues like these need to be investigated in future research. Cite as: Olawale, Y., and Sun M. (2010). “Cost and time control of construction projects: Inhibiting factors and mitigating measures in practice.”Construction Management and Economics, 28 (5), 509 –526.CONCLUSIONSA combination of questionnaire survey and in-depth interviews has been used to provide useful information on issues surrounding project control in practice in the UK. Issues such as the degree of application of project controls, the most commonly used time and cost control techniques, supporting software packages, frequency of time and cost overrun, the leading inhibiting factors to effective cost and time control, the reasons for this and measures that can be used for their mitigation were brought to light.The top five factors inhibiting time and cost control in construction practice in the UK was revealed as design changes, risks and uncertainties; inaccurate evaluation of project time/duration; complexity of works and; non-performance of subcontractors. Design change is the single most important factor considered by practitioners as hindering the ability to control not only time of construction projects but also cost. In fact, it is found that there is a high level correlation between the inhibiting factors for cost control and time control. Following the identification of the inhibiting factors, 90 mitigating measures are established to address potential problems caused by the top five inhibiting factors. The measures can be broadly classified as preventive, predictive, corrective and organisational measures. These measures are by no means exhaustive as there will obviously be numerous practices out there that have not made the list. It is also worth noting that the measures may seem obvious to the experienced practitioner but will be useful to the less experienced and people new to the project management profession. The study should be viewed as the first Cite as: Olawale, Y., and Sun M. (2010). “Cost and time control of construction projects: Inhibiting factors and mitigating measures in practice.”Construction Management and Economics, 28 (5), 509 –526. effort of developing solutions for mitigating leading cost and time control inhibiting factors. Clearly, further development is needed to cover more inhibiting factors beyond the top five. In addition, the effectiveness of these mitigating measures during the project control process needs to be investigated in future research.REFERENCESAibinu, A. and Jagboro, G. (2002) The effects of construction delays on projectdelivery in Nigerian construction industry. International Journal of ProjectManagement, 20 (8), 593-599.Akinsola, A., Potts, K., Ndekugri, I., Harris, F. (1997) Identification and evaluationof factors influencing variations on building projects. International Journal ofProject Management, 15 (4), 263-267.Century, Ascot.Cooke, B. and Williams, P. (2004) Construction planning programming and control.Blackwell publishing, Oxford.Dlakwa, M. M. and Culpin, M. F. (1990). Reasons for overrun in public sectorconstruction projects in Nigeria. International Journal of Project Management, 8(4),237–240.Egbu, C., Young, B., Torrance, V. (1998) Planning and control processes andtechniques for refurbishment management. Construction Management andEconomics, 16, 315-325.Kog, Y., Chua, D., Loh, P., Jaselskis, E. (1999) Key determinants for constructionschedule performance. International Journal of Project Management, 17 (6), 351 –359.//15566/2/Cost_and_time_control_inhibiting_factors_and_mitigating_mea sures.pdf。
工程造价英文文献
工程造价英文文献以下是一篇关于工程造价的英文文献:标题:Engineering Cost Estimation: A Review of Common Methods and Best Practices作者:John Smith, Jane Doe摘要:Engineering cost estimation is a critical process in project management. Accurate cost estimation is crucial for project planning, budgeting, and decision-making. This review paper examines common methods and best practices in engineering cost estimation. The paper provides an overview of the different types of cost estimation methods, including bottom-up estimation, parametric estimation, and analog estimation. It also discusses the factors that influence cost estimation accuracy, such as project scope, project complexity, and project stage. The paper further explores the challenges and limitations of cost estimation, as well as the importance of historical data and expert judgment in the estimation process. Best practices for engineering cost estimation are also discussed, including the use of standardized cost estimation templates, the involvement of multidisciplinary teams, and the regular updating of cost estimates throughout the project lifecycle. Overall, this paper aims to provide valuable insights into the field of engineering cost estimation and assist practitioners in improving the accuracy and reliability of their cost estimates.关键词:engineering cost estimation, project management, cost estimation methods, project scope, project complexity, historicaldata, expert judgment, best practices. (注意:该文献仅为虚构,仅供参考)。
工程造价工程变更毕业论文中英文资料外文翻译文献
工程变更中英文资料外文翻译文献Highway engineering change reasonanalysis and cost of the project of influenceAbstract: in the implementation stage because of highway engineering design factors, environmental factors, the influence of various engineering changes happened is more common, combining with engineering practice, this paper discusses the causes and engineering change of project cost.Keywords: engineering change, Reason, CostDue to the highway project period, long, long line, so broad in construction of various causes by the engineering change is inevitable. Engineering change could lead to increase of construction cost or time limit of the owner and the contractor, between the claim will claim and the cost of the project.Owner of change and the causes of the costAnd when the owner change engineering bidding of construction conditions of commitment. "SanTongYiPing" referred to in the preceding paragraph, the engineering tight finish, delay purpose will increase the contractor's settlement fee, but little impact on total cost, the owner or project quantity change projects. Increase the project content or quantity, will increase the cost, Project content or cancel or reduce the number will reduce cost, but may affect the use function of engineering, because the owner with agreements for the existence of incomplete, or in the contract when division, can increase content of missing the contract cost, and the owners' requirements, and shorten delivery of finished ahead of the original contract period, invest more in construction unitcost of manpower and material resources, to increase, and improve the design standard requirement owner, beautiful Angle from security requirements of engineering structure change type, elevation, baseline, location, size and strength, make cost increase, and the owner to change in the construction organization design has approved the construction plan, cost increase, and the owner of the contract with the owner of the materials or equipment supply for the category and quantity, cause cost increase or decrease, and the owner of the contract specifies unreasonable, can make the cost is increasedThe design of change and the causes of the costThe design adopts the new standard, new technology, new technology, to replace the original design of the project, and put to use more favorable for owner reduce project cost, the depth of the design documents, cannot satisfy the relevant provisions of the relevant design phase of engineering change and requirements, cost increase or decrease, and when designing units in the preliminary design to fully consider the network planning, and in local government and related departments (e.g., environmental protection, water conservancy, electricity, gas, communication, navigation, etc.) and the requirements of the project, the main structure change shape and size change etc, make the cost increase, and design personnel errors or omissions caused engineering change. Due to the "two SanShen school system to implement the change that cost is increased, Unit, uncoordinated cooperation between designers, or the highway facilities with the principal part of the project design, cause sync job change, make cost increase, and the design drawing not timely delivery time delay, provide, construction, make the cost compensation shutdown caused by increased.Tthe contractor to change and cause the influence. CostThe contractor is unable to perform the contract or can't completely, the contractor shall take remedial measures proposed change, this kind of change of engineering cost, can increase by contractor burden loss, the contractor has been approved changes when bidding of construction project, this kind of change of cost, but almost no effect for the contractor may save construction cost, and the contractor for construction is convenient, or to shorten the construction period, or to reduce the investment of construction, and puts forward such reasons, and more economical and reasonable, optimizing design scheme, this kind of change if owner recognized, can reduce the construction cost, also can reduce the cost of the owner and the contractor, mutually beneficial, According to the contract, the contractor couldn't finish, engineering construction contractextension, the owner may terminate the contract terms, according to the content of construction contract in whole or in part, by the contractor, this kind of other changes generally does not make owner cost increase, but will make the contractor under loss, due to the contractor technology or management of the error caused by engineering change, this kind of change to the contractor, the owner may claim generally do not increase the cost, stipulated in the contract, the contractor change by owner procurement materials, using other kinds of materials, and therefore model brand damage by contractor, unless the owner to approbate, generally do not add costthe supervisor of change and the causes of the costSupervision by the owner, commissioned by the cause of the change of the owner or expenses directly influence the cost. 1 and supervision engineer in order to coordinate the contractor's operation, or section of this project contractors to coordinate with relevant departments or units where the relations of production, easy cause engineering change caused by increased cost. the site supervision engineers in actual situation in the contract and the technical specification for the design, according to local modification and perfect or by design, this kind of change unit may cause increased cost. and supervision engineers work and coordination ability damage caused by lack of rework, engineering cost change work. and supervision engineer proposed optimization design or construction, the design optimization or contractor agree, can reduce engineering changes caused by the project cost.The environment factors and impact on the cost of changeEngineering geology unknown or insufficiency in design, engineering cost increased to. and highway engineering construction projects from the construction, project feasibility study, design and construction drawing design to construction, due to various reasons, the project in the declaration and approval process, some problems existing in the construction stage, these problems caused by exposure to change, and engineering cost increase. and national policies, laws and regulations and standard, the change of change, resulting in increased cost. Four, the local government of the people's production and life convenient scheme adopted by engineering change after that cost increase. whose house is caused by delay, the work of engineering change, could lead to increased cost.Highway engineering change of a variety of reasons, this means that the appraisal work for engineering changes are complex and difficult to decrease the cost, the change of the effects are also different. Through the analysis, is looking for engineering changes the various causes, andthrough the analysis of the cost control are not isolated, control cost, the key is to establish and perfect the scientific management system. Based on control cost, quality assurance and accelerate the progress, the principle of efficiency to determine the necessity and feasibility of engineering change. Only in this way can we truly achieve the effective control of the construction project cost and improve the economic benefit and social benefit.公路工程变更原因分析及其对工程造价的影响摘要:公路工程在实施阶段由于设计因素、环境因素等多方面的影响,发生工程变更是较常见的,文章结合工程实践,探讨工程变更的原因及其对工程造价的影响。
工程造价专业外文文献翻译(中英文对照
外文文献:Project Cost Control: The Way it WorksBy R. Max WidemanIn a recent consulting assignment we realized that there was some lack of understanding of the whole system of project cost control, how it is setup and applied. So we decided to write up a description of how it works. Project cost control is not that difficult to follow in theory.First you establish a set of reference baselines. Then, as work progresses, you monitor the work, analyze the findings, forecast the end results and compare those with the reference baselines. If the end results are not satisfactory then you make adjustments as necessary to the work in progress, and repeat the cycle at suitable intervals. If the end results get really out of line with the baseline plan, you may have to change the plan. More likely, there will be (or have been) scope changes that change the reference baselines which means that every time that happens you have to change the baseline plan anyway.But project cost control is a lot more difficult to do in practice, as is evidenced by the number of projects that fail to contain costs. It also involves a significant amount of work, as we shall see, and we might as well start at the beginning. So let us follow the thread of project cost control through the entire project life span.And, while we are at it, we will take the opportunity to point out the proper places for several significant documents. These include the Business Case, the Request for (a capital) Appropriation (for execution), Work Packages and the Work Breakdown Structure, the Project Charter (or Brief), the Project Budget or Cost Plan, Earned Value and the Cost Baseline. All of these contribute to the organization's ability to effectively control project costs.FootnoteI am indebted to my friend Quentin Fleming, the guru of Earned Value, for checking and correcting my work on this topic.The Business Case and Application for (execution) FundingIt is important to note that project cost control is most effective when the executive management responsible has a good understanding of how projects should unfold through the project life span. This means that they exercise their responsibilities at the key decision points between the major phases. They must also recognize the importance of project risk management for identifying and planning to head off at least the most obvious potential risk events.In the project's Concept Phase• Every project starts with someone identifying an opportunity or need. That is usually someone of importance or influence, if the project is to proceed, and that person often becomes the project's sponsor.• To determine the suitability of the potential project, most organizations call for the preparation of a "Business Case" and its "Order of Magnitude" cost to justify the value of the project so that itcan be compared with all the other competing projects. This effort is conducted in the Concept Phase of the project and is done as a part of the organization's management of the entire project portfolio.• The cost of the work of preparing the Business Case is usually covered by corporate management overhead, but it may be carried forward as an accounting cost to the eventual project. No doubt because this will provide a tax benefit to the organization. The problem is, how do you then account for all the projects that are not so carried forward?• If the Business case has sufficient merit, approval will be given to proceed to a Development and Definition phase.In the project's Development or Definition Phase• The objective of the Development Phase is to establish a good understanding of the work involved to produce the required product, estimate the cost and seek capital funding for the actual execution of the project.• In a formalized setting, especially where big projects are involved, this application for funding is often referred to as a Request for (a capital)Appropriation (RFA) or Capital Appropriation Request (CAR).•This requires the collection of more detailed requirements and data to establish what work needsto be done to produce the required product or "deliverable". From this information, a plan is prepared in sufficient detail to give adequate confidence in a dollar figure to be included in the request.• In a less formalized setting, everyone just tries to muddle through.Work Packages and the WBSThe Project Management Plan, Project Brief or Project Charter•If the deliverable consists of a number of different elements, these are identified and assembled into Work Packages (WPs) and presented in the form of a Work Breakdown Structure (WBS).• Each WP involves a set of activities, the "work" that is planned and scheduled as a part of the Project Management Plan. Note, however, that the planning will still be at a relatively high level,and more detailed planning will be necessary during execution if the project is given the go ahead.• This Project Management Plan, by the way, should become the "bible" for the execution phase of the project and is sometimes referred to as the "Project Brief" or the "Project Charter".• The cost of doing the various activities is then estimated and these estimated costs are aggregated to determine the estimated cost of the WP. This approach is known as "detailed estimating" or "bottom up estimating". There are other approaches to estimating that we'll come to in a minute. Either way, the result is an estimated cost of the total work of the project.Note: that project risk management planning is an important part of this exercise. This should examine the project's assumptions and environmental conditions to identify any weaknesses in the plan thus far, and identify those potential risk events that warrant attention for mitigation. This might take the form of specific contingency planning, and/or the setting aside of prudent funding reserves.Request for capitalConverting the estimate•However, an estimate of the work alone is not sufficient for a capital request. To arrive at a capital request some conversion is necessary, for example, by adding prudent allowances such asoverheads, a contingency allowance to cover normal project risks and management reserves to cover unknowns and possible scope changes.•In addition, it may be necessary to convert the estimating data into a financial accounting formatthat satisfies the corporate or sponsor's format for purposes of comparison with other projects and consequent funding approval.• In practice all the data for the type of "bottom up" approach just described may not be available.In this case alternative estimating approaches are adopted that provide various degrees of reliability in a "top down" fashion. For example:Order of Magnitude estimate – a "ball park" estimate, usually reserved for the concept phase onlyAnalogous estimate – an estimate based on previous similar projectsParametric estimate –an estimate based on statistical relationships in historical data•Whichever approach is adopted, hopefully the sum thus arrived at will be approved in full and proves to be satisfactory! This is the trigger to start the Execution Phase of the projectNote: Some managements will approve some lesser sum in the mistaken belief that this will help everyone to "sharpen their pencils" and "work smarter" for the benefit of the organization. This is a mistaken belief because management has failed to understand the nature of uncertainty and risk in project work. Consequently, the effect is more likely to result in "corner cutting" with an adverse effect on product quality, or reduced product scope or functionality. This often leads to a "game" in which estimates are inflated so that management can adjust themdownwards. But to be fair, management is also well aware that if money is over allocated, it will get spent anyway. The smart thing for managements to do is to set aside contingent reserve funds, varying with the riskiness of the project, and keep that money under careful control.Ownership of approved capital•If senior management approves the RFA as presented, the sum in question becomes the responsibility of the designated project sponsor. However, if the approved capital request includes allowances such as a "Management Reserve", this may or may not be passed on to the project's sponsor, depending on the policies of the organization.• For the approved RFA, the project sponsor will, in turn, further delegate expenditure authority to the project's project manager and will likely not include any of the allowances. An exception might be the contingency allowances to cover the normal variations in work performance.• The net sum thus arrived at constitutes the project manager's Approved Project Budget.Note: If management does not approve the RFA, you should not consider this a project failure. Either the goals, objectives, justification and planning need rethinking to increase the value of the project's deliverables, or senior management simply has higher priorities elsewhere for the available resources and funding.The Project's Execution PhaseThe project manager's Project Budget responsibility•Once this Approved Project Budget is released to the project manager, a reverse process must take place to convert it into a working control document. That is, the money available must be divided amongst the various WBS WPs that, by the way, have probably by now been upgraded! This results in a project execution Control Budget or Project Baseline Budget, or simply, the Project Budget. In some areas of project management application it is referred to as a Project Cost Plan. •On a large project where different corporate production divisions are involved, there may be a further intermediate step of creating "Control Accounts" for theseparate divisions, so that each division subdivides their allocated money into their own WBS WPs.• Observe that, since the total Project Budget received formal approval from Executive Management, you, as project manager, must likewise seek and obtain from Executive Management, via the project's sponsor, formal approval for any changes to the total project budget. Often this is only justified and accepted on the basis of a requested Product Scope Change.• In such a case the project's sponsor will either draw down on the management reserve in his or her possession, or submit a supplementary RFA to upper management. • Now that we have the Project Budget money allocated to Work Packages we can further distribute it amongst the various activities of each WP so that we know how much money we have as a "Baseline" cost for each activity.• This provides us with the base of reference for the cost control function. Of course, depending on the circumstances the same thing may be done at the WP level but the ability to control is then at a higher and coarser level.Use of the Earned Value technique• If we have the necessary details another control tool that we can adopt for monitoring ongoing work is the "Earned Value" (EV) technique. This is a considerable art and science that you must learn about from texts dedicated to the subject. • But essentially, you take the costs of the schedule activities and plot them as a cumulative total on the appropriate time base. Again you can do this at the activity level, WP level or the whole project level. The lower the level the more control information you have available but the more work you get involved in. The Cost Baseline•This planned reference S-curve is sometimes referred to as the "Cost Baseline", typically in EVparlance. That is, it is the "Budgeted Cost of Work Scheduled" (BCWS), or more simply the "Planned Value" (PV).•Observe that you need to modify this Cost Baseline every time there is an approved scope change that has cost and/or schedule implications and consequently changesthe project's Approved Project Budget.• Now, as the work progresses, you can plot the "Actual Cost of Work Performed" (ACWP or simply "Actual Cost" - AC).• You can plot other things as well, see diagram referred to above, and if you don't like what you see then you need to take "Corrective Action". CommentaryThis whole process is a cyclic, situational operation and is probably the source of the term "cycle" in the popularly misnamed "project life cycle".As an aside, the Earned Value pundits offer various other techniques within the EV process designed to aid in forecasting the final result, that is, the "Estimate At Completion" (EAC). EAC is what you should really be interested in because it is the only constant in a moving project. Therefore, these extended EV techniques must be considered in the same realm of accuracy as top-down estimating. They are useful, but only if you recognize the limitations and know what you are doing!But, as we said at the beginning, it is a lot more difficult to do in practice –and involves a significant amount of work. But, let's face it, that's what project managers are hired for, right?中文译文:项目成本控制:它的工作方式R.马克斯怀德曼我们在最近的咨询任务中意识到,对于整个项目成本控制体系是如何设置和应用的这个问题,我们仍有一些缺乏了解。
工程造价外文文献
毕业设计外文文献翻译院系:土木工程与建筑系年级专业:08级工程管理姓名:x学号:xOn the whole process of construction 附件:project cost control指导老师评语:指导教师签名:年月日On the whole process of construction project cost control 【Abstract】: This article mainly introduced the engineering project cost control throughout the whole process of project implementation, including project decision-making, project design, project bidding, project construction and completion of the settlement this five stages.【Keywords】: Project, the construction cost, engineering, project, construction, project costEngineering project cost control throughout the whole process of project implementation, including project decision-making, project design, project bidding, project construction and completion of the settlement this five stages. According to the statistics show that, in the project decision-making stage and design stage, and the influence of construction project cost is a 40% chance-75%; and in construction stage, influence the possibility of construction project cost is only 5%-25%.Obviously, control the cost of the key link is in the project implementation of decision-making and design stage before. And from a stage program speaking, construction management can play a decisive role. To control the engineering cost is in the design phase, project decision stage, stage of construction, project bidding, completed the stage of the settlement construction engineering cost incurred amount of control in the approval within the limit, and correct the deviation of at any time, ensure division breakdown their investment goal the realization, to get the best economic benefit and social benefit.1 whole process cost control each phase of the basic situationThe whole process of construction project cost control can be divided into the following basically five stages:1.1 construction project cost control decision-making stageP roject investment decision is choice and decided to invest action process, is aiming projecton the necessity and feasibility of technical and economic the authentication, correct decision-making is reasonable and the premise to control the engineering cost, including feasibility study, investment estimation, financial foundation estimates and evaluation data. Project investment decision stage cost control and management of the key is:1) Completes the project decision-making before preparation. Comprehensive collecting have material, including equipment operation, equipment technical parameters, the construction market dynamic and other related content of the original records and information. To do the scientific research work and then find out need emphasizes to solve the problems.2) to do a project proposal and feasibility studies reports. Must according to the market demand and development prospects, reasonably determine the scale of the project and construction standards. Two applications should be strong conviction and feasibility. In the fight for early project at the same time, should be completed as soon as possible of the feasibility study.3) science to develop the construction projects of benefit analysis of activities of investment estimate and work. The preparation of investment estimate to have the basis, to be as careful as possible and reasonable. From reality, full consideration to during the project that may arise during the process of all kinds of accidents and unfavorable factors, as well as their cost of the project may produce negative effects, want to consider the market situation and construction of the reserve price during the floating coefficient, like this can make the investment basically accord with the actual and leave room, make the investment estimate really play the role of control the total investment in the project.1.2 project cost control design stageThe government in accordance with the examination and approval according to regulation, design institute of professional elaborate design, the strict control of cost engineers, the engineering construction cost control design stage "trinity" optimal combination. The construction project design is by plans to reality decisive significance of the work phase,design work is one of the important principles to ensure that the design integrity, designed for this work include the design evaluation and comparison, the design scheme optimization design budgetary estimate, the compiling and examination, the list of quantities and control the compiling and price review.1) Reasonable function orientation and reliable design quality, meet the national standards, meet the project function requirement, this is the quality of the design of the four basic requirements. The function of the construction project positioning, first must do with national conditions, reflect the national strength. At the same time, the engineering design must meet the construction procedure in each stage of depth requirements, avoid and prevent "Sanchez" (budget exceeds the estimation, the budget exceeds the budget estimates, the settlement) takes place.2) Optimizing design scheme, effective control of the project cost. The design phase of the project cost control and management is not a simple design institute work content, the construction unit should also actively cooperate, have prior control and active management role. The construction unit in the review of the design unit design documents, first of all the attention to the optimization of design schemes of, should be based on all kinds of index and material to the total plane design, construction space and plane design for analysis. The two analysis of the cost of the project will not only, a major impact on construction and operation and the production, management have a great impact, but also for construction and operation of the production, management has significant correlation. In the choice of technology solutions, we should persist in China from the actual conditions of, in order to improve the benefit of investment for the premise, actively and steadily introducing advanced and reasonable technical scheme and mature new technology, new technology.3) Executes limitation for engineering design. To effectively control the construction cost, should be in the design process of the quota design way. The so-called quota design in accordance with approved reliability is in the study, investment estimation forehead design and construction design, and to guarantee the use function, under the premise of according tothe distribution of after thinning investment quota control, professional design, to try to stop not reasonable to change, in order to ensure that the total investment is not a breakthrough. Decomposition of total investment and project is a total of quota design and effective ways and main method, it is the design stage of the examination will be investment and decomposing the quantity of each professional, and then after thinning the decomposition to each unit engineering and the division of engineering, through the layers of decomposition to realize to the investment quota control and management, but also to achieve to design specifications, design standards, engineering quantity and project budget index, and other aspects of the management and control.Preliminary design must be in the feasibility study stage of investment estimate approval for the bottom line, and through the limitation of the way to control budget not more than the investment estimate, the focus is on the quantities and equipment, material control. So the amount of quota design and shall be in the feasibility study stage of design project examination and equipment, material standard as the basis for a feasibility study stage cannot be determined preliminarily concluded that for certain quantity. For the design, each professional design personnel should conscientiously strengthen project cost consciousness, and strictly according to the limit the decomposition of the design to control the project investment, to ensure that the design according to the limit in the decomposition of the investment to control the project, to secure the use function, under the premise of engineering cost and effort to control project in the limit of. To encourage and promote design personnel well design scheme selection, should introduce a competitive mechanism and implement bidding for the design, make the design units and design personnel increase market competition consciousness, try our best to make a design scheme more attain perfect.1.3 project tendering and bidding and sign a contract stageAnalysis of the specific conditions of the construction project, and according to the quantities bill valuation method, nine ministries to standard prepare the tender documents in the tender documents. Through the bid opening bid assessment, voted for a is able to satisfy the tenderdocuments, the provisions of the comprehensive evaluation standard, 2 it is able to meet the requirements of the tender documents and substantial after the appraisal bids the lowest price, but the bid price below the cost of except the winning bidder. The winning bidder is determined; the bid-winning notice issued in accordance with law, and in accordance with the tender documents and the bid documents of the winning bidder concludes a contract in writing.1) The tender documents to the list of quantities of programming. The list of quantities by the construction bidding, it is to point to by the bid invitation unit to provide a uniform bidding documents (including the quantities bill), bidding unit based on this, according to the tender documents to the list of quantities and the relevant requirements, the construction and the actual situation of the worked the construction organization design, according to the enterprise quota or refer to the competent administrative department of construction of the current consumption quota released and cost management agencies released to the market price of bid price quotation information, and the bid invitation unit selected according to the process of the winning bidder.2) to the list of quantities of law base price. The list of quantities of floor price under standard shall be in strict accordance with the "standard" to prepare to the list of quantities of engineering quantity are and comprehensive project content, according to the market price. Detailed list of engineering quantity of engineering quantity and wrote out the comprehensive project content may not be altered, fluctuation, must be kept and the bidding unit pricing the unity of the caliber. If the list of quantities and prepare the tender of base price is not same unit, should pay attention to release the list of quantities of the bidding documents and establishment of the strike to the list of quantities in the format and contents, description and so on various aspects keeps consistent, avoid from here and the result of failure or tender evaluation an injustice.3) The construction contract choice. The contract type selection should consider the factors include: the project scale and time limit for a project length, project competition, and projectsingle engineering projects are clear degree, the length of time, the project of the external environment factors. In the choice of the contract type, although the developer has the initiative, but the developer can't only consider their own interests, comprehensive consideration of the project shall be of various factors, consider the contractor bear ability, determined by the both parties of the contract type.1.4 project project construction cost controlBecause of project construction cycle is long, the economic relations and laws involving the complex relationship by natural conditions and objective, the great influence, lead to the actual situation of the project and project tendering and bidding situation will be compared has some changes. Therefore, often in engineering change and the contract price adjustment, the engineering claims this stage include the value of the project construction settlement and use fund plan and application.1) Try to control engineering change and the visa. In the project construction process, engineering change and the visa is inevitable, but will be powerful control. Due to the existence of loopholes for construction drawing and any defects and lead to change, except in the design drawings audit strictly when the party should be in the design, consultation, co-examination and technical consultation when carefully examine and check, in order to find the early to eliminate hidden dangers. Change hidden trouble found earlier, may cause loss of the small. So, should as far as possible to the design change control in the design stage initial, especially for those who can seriously affect engineering, more to want to use "down after the first, change" measures solved properly. Even in the construction process, also should strictly according to the visa procedures and provisions, such ability make project cost control effectively.2) Audit strictly engineering construction drawing budget. Supervisors should according to the progress of the construction drawing design plan and the construction of the actual schedule, timely construction drawing budget approved. Beyond the corresponding to budgetand construction drawing budget. Beyond the corresponding to the budget estimates construction drawing design part, will be detailed analysis, find out the cause, and promptly and project principal contact, depending on how to adjust or amend the truth agreed control goals. This is the cost of the project of dynamic control and management.3) into the scene, collect and master information related to the construction, do contract management work in project construction process, the personnel and cost control personnel related to often deeply the construction site, contrast carefully check construction drawings, and to project contract as the basis, the construction site to grasp the dynamic, assist owners to review and appraisal, because of the change of the design, the scene and visa and the additional costs is reasonable.1.5 The final accounts of the completed project phase and after completion engineering warrantyThe final accounts of the completed project is based on real number and currency index for the units of measure, which reflects the comprehensive completed projects start to project completion for all of the delivery of the construction cost, construction achievements and financial situation summary of the documents. Completed the final accounts by, completion financial final accounting statements, project completion figure, and project completion cost analysis of four parts. The quality repair warranty is a kind of after-sales service way, is the quality of contractor responsibility, among this warranty scope involves, period, economic responsibility and warranty costs and expenses processing.1) Audit completed projects compliance with the terms of these contract requirements content, whether acceptance, in the contract, the method of settlement, price basis, fees standard, advocate material price and discount and commitment to the facts are carried out.2) Audit component project and project unit price of fees whether the program specification,and presence of repetition and mistakes.3) Check take cover engineering acceptance record, see if any supervision engineer is signed, the completion of the project completion and whether chart are in agreement.4) Examine the change of the design in the original design of visa is a unit chief sign, whether the construction unit and supervision engineer is signed, the significant change of the design of the original design is the competent department for examination and approval. The above a not meeting the requirements, all can't calculate settlement range.5) Figure, according to the change of the design, completion visa checking the scene of engineering.6) Prepare tally with the actual situation of the completion settlement report, in the strict, reasonable, fairness, justice, and on the basis of the use situation of investment and project cost control management as the necessary analysis and summary.2 the current cost control management problems of researchAt present our country's basic construction system and process can ensure the engineering construction investment is effectively control and management, but in the practice process, there are still many problems to study it, as shown in the various stages of the disjointing of cost control, because of project decision-making and design, project bidding, project implementation and completion settlement auditing the four stages of the cost control and management of the construction units and are competent department, designing units, consulting unit lead implement, "railway, the police a tube, so it is difficult to set up the former control the latter, and the latter influence the former the effective management of the system.2.1 ignore investment stage and design phase of the cost controlAt present some design units in order to meet the time limit for construction unit, in order to drive plan and not enough jobs meticulous, led to construction drawing design depth is not enough, some of the projects (such as decoration parts) and even appeared practices and selection explanation not clear, design and the actual cost budget created serious deviation, budget documents are not complete, etc. Some design units do not follow the principle of value engineering, optimization design, but seek high security and design fees, even with the owner in collusion, cause low quoted price is high and settlement.2.2 The bidding phase don't respect the market rules, and blind low prices and wanton expand specified materials and equipmentMainly lies in:One is the provisions in some areas after the appraisal use only the minimum bid price method. When the bid assessment by the bidders from low to high price in the sort of bid documents detailed review, judge a qualified three bidders according to quote from low to high order from the candidate. Forced many construction enterprises to make "low price, high price list claim" strategy. Some even publicly threatened: "into do not come is your fierce, came in is my fierce", this is against the principle of good faith, cause the construction bidding process, tender offer for professionals often breaks the glasses. 2 it is part of the owner ignore the objective law of the construction market to expand the party a appoints supply materials and equipment, and the scope of the contract for narrow, increasing the owner and the construction units of conflict.2.3 construction stage design, blind change visa, result in a claim, cause cost increaseBelow the cost, in order to change the state of losses, a construction enterprise is often use time limit for stress condition, forcing the owner to accept its change design scheme, replacement of materials required refiners, even and owner hook connect, will see conditions and other projects QianZhengLiang increase several times, cause loss of state-owned assets; 2 it is construction unit and a few design units collude in collusion, in construction process manufacturing a lot of the change of the design, the construction unit of high prices claim for convenience.2.4 completed project cost audit settlement stage management confusionAccording to the relevant laws and regulations, engineering audit charge is according to the settlement and subtract the forehead charges, consulting unit to high fees, often WanHuaYang reduce quantity, and even apply mechanically norm, multiplied by less than 1 unit price coefficient. And the contractor on the buy off the cost intermediary organizations personnel, quantity and subtract the forehead of the false report.3 whole process cost control management advice3.1 design units should be held responsible for their own reasons of the value of the project providedIn view of the current social intermediary cost consultation institutions participated in the design stage cost control of the few features, set up bear related civil liability constraint mechanism, make design institute has a relatively independent responsibility restraint. Suchas design depth is not enough, the design drawing contradictory between different work, the conflicts between; The design of the function and will be setting is unreasonable, affecting the normal use, which caused economic losses, design units shall bear the corresponding civil liabilities.3.2 The bid assessment methods, and the bid evaluation committee and budget control price reviewThe government investment projects, the comprehensive assessment shall be allowed to bid evaluation method, and should also set the lower bid price quotations, a bidder below lowest limit of the offer, shall be null standard treatment. The price for budget control review to scientific and reasonable can't raise or floating, to control the price discount published, the competent construction administrative departments should give correct. At the same time for budget control in the price of illegal or irregular and infringe upon the lawful rights and interests of the parties bidding behavior to deal with according to law.According to the contract period, 3.3 contract signed contract amount is fixed costThe contract is throughout the entire cost control, the soul of the stand or fall of contract signing, directly influence subsequent cost control of performance, because both sides sign the is fixed unit price or a fixed unit price contract, recent construction engineering material market price volatility is frequent, make the developer and the contractor can predict market price risk, leading to the price of work valuation dispute increase, part of the project under construction is already seriously affected the construction progress and quality of the project. In order to safeguard the legitimate interests of the contracting parties, ensure the construction market stability and development, according to the national nine ministries and the standard construction bidding documents "(2007 edition) general provisions of contract provisions of international engineering construction bidding risk sharing practices, the proposal of theconstruction engineering construction of valuation price 0-5% risk sharing.3.4 construction stages invite professional construction cost consultation company site trackingIn order to strengthen the dynamic cost management, the employer may, the cost of hiring a professional consulting company, make full use of their familiar with the business, rich experience and understanding market and specialization and socialization and advantage, strict control engineering change, strengthen economic management visa.【Summary】:Above all, it is known that the investment control in the construction of the key is, three key points is feasibility research, design and contract, solve the problem that is the core of control and management. The engineering cost control and management is a dynamic process, in each project construction phase, may be because the market conditions change or other reasons, the engineering investment determination and the engineering cost control tends to be complicated, this needs will project cost management to meet both overall and selectively. To recognize cost and time limit, the quality of the dialectical relationship between, unity, in different stages of the project implementation, cost consultation with staff always to control the engineering cost economic consciousness, careful analysis and make full use of all kinds of information in the construction period, grasp the market pulse, become passive to active, and through the parties positive efforts to work, avoid or reduce the loss of the construction funds, maximize construction funds for the benefit of investment.【References】:[1] WeiRuiLi, WangXuePeng. Construction engineering project cost management discussion [J]. J wit, 2011, (19).[2] JiaoTianLei. Engineering project cost management in the whole process of managementand control [J]. Gansu and science and technology, 2009 (3).[3] ZhangHongBin. For enterprise engineering project cost management and control discussion [J]. Tianjin metallurgy, 2010, (4).[4] SuYong, GeWeiPing. Substation project cost management current situation analysis and countermeasures study [J]. Electric engineering in Anhui vocational technical college journal, 2006, (4).[5] LiuYingMin. Of engineering project cost management [J]. Shanxi building, 2007, (11).[6] MaiHui can. Shallow engineering project cost management and cost control [J]. Sichuan building materials, 2007, (2).[7] JiangJiXing. Strengthen cost management establish control consciousness [N]. China construction news, 2011-07-04 (008).翻译:浅谈工程建设项目的全过程造价控制【摘要】:本文主要介绍了工程建设项目的造价控制贯穿项目实施的全过程,包括项目决策、项目设计、项目招标投标、项目施工和竣工结算这五个阶段。
【最新推荐】建设项目的工程造价外文文献
原文Study on Construction Cost of Construction Projects AbstractChina is a country which has the largest investment amount in engineering construction in the world and which has the most construction projects. It is a significant subject for the extensive engineering managers to have effective engineering cost management in construction project management and to reasonably determine and control construction cost on the condition of ensuring construction quality and time limit.On the basis of the status quo of losing control in Chinese construction investment and of separation of technique and economy in engineering, and guided by basic theories of construction cost control, the author discusses control methods and application of construction cost, sets forth existing issues in construction cost control and influences of these issues on determination and control of construction cost, puts forward that construction cost control should reflect cost control of the entire construction process at the earlier stage of construction, and then introduces some procedures and methods of applying value project cost control at all stages of construction projects.Keywords: Construction cost, Cost control, Project1. Significance of the studyThe existing construction cost management system in China was formulated in 1950s, and improved in 1980s.Traditional construction cost managerial approach was one method brought in from the former Soviet Union based on unified quota of the country. It is characterized by the managerial approach of construction cost in the planned economy, which determines that it cannot adapt to requirements of the current market economy. Traditional construction cost managerial approach in China mainly includes two aspects, namely, determination approach of construction cost and control approach of construction cost. The traditional determination approach of construction cost mainly applied mechanically national or local unified quantity quota to determine the cost of a construction project. Although this approach has undergone reform of over 20 years, until now, influences of planned economy management mode have still been in existence inmany regions. Control approach of our traditional construction cost is mainly to control settlement and alteration of construction cost, which is merely an approach to settle accounts after the event, and which cannot satisfy the purpose of saving resources and improving work. In recent years, requirements of developed countries on project investment have been to plan to control in advance and to control in the middle of an event, whose effects have proved to be effective. An actually scientific approach should be that construction cost control approach beforehand and after the event can eliminate or diminish labour in vain or poor efficiency and unnecessary resource degradation and methods applied in implementation of construction projects before or after the event. Considering the above situation, the academic circles put forward concept of cost management and control of the overall process as early as 1980s. They began to attach importance to prophase management of construction projects and take the initiative to conduct cost management. Afterwards, on July 1, 2003, implementation of <<Cost Estimate Norm for Bill of Quantity of Construction Works>> symbolized that cost estimate of China had entered a brand-new era that complied with development rules of market economy. From then on, concepts and approaches of Chinese cost management were really integrated with the international society.Losing control of construction project investment is a universal phenomenon in fixed investment field in China. A construction project consumes quite a lot of manpower, materials and machines, with large investment, long construction cycle, and strong synthesis, so it is related with economic interests of all construction parties and means a lot to national economy. Currently, in the field of Chinese project construction, there exists the status quo of separation of technique and economy. Most of engineers and technicians tend to regard construction cost as duty of financing and preliminary budget personnel, and mistakenly believe that it has nothing to do with themselves. In the process of carrying out a project, they usually only focus on quality control and progress control, while they ignore control over investment in construction projects. If technicians ignore construction cost, and those who are in charge of construction cost have no knowledge in relevant technical construction connected with construction cost, then it is difficult for them to reasonably confirm and effectively control construction cost. Construction supervision investment control refers to managerial activities at the whole implementation state of the project, which attempts to guarantee realization of project investment targets with the premise of satisfying quality and progress. Investment targets are set at different stageswith further progress of construction practice, and construction cost control runs through the entire process of project construction, but it should give prominence to the key points. Obviously, the key of construction cost control lies in investment decision-making and design stage before the construction, while after the investment decision is made, the key lies in the design. Life cycle of construction project includes construction cost and recurrent expenditure after the construction project is put into service, and discard and removal costs etc after usage period of the project. According to analysis of some western countries, usually design cost only amounts to less than 1% of life cycle of construction project. However, it is the cost of less than 1% that accounts for more than 75% of influences on construction cost. It is therefore obvious that, design quality is vital to benefits of the entire project construction.For a long time, construction cost control of the preliminary engineering of project construction has been ignored in China, while the primary energy of controlling construction cost has been focused upon auditing working drawing estimate, settling construction cost and settling itemized account during construction. Although this has its effect, after all, this had no difference from taking precautions after suffering a loss and getting half the result with twice the efforts. In order to effectively control construction cost, the emphasis of control should be firmly transferred to preliminary construction stage. At present, we should take all pains to grasp this significant stage so as to achieve maximum results with little effort.This article aims to analyze existing issues in cost control of the entire construction period through study on theoretical methods and practice of construction cost management. Especially, issues in cost control in the earlier period of construction deserve our research, so that we can explore corresponding reform measures to offer some references for construction project cost control.The situation of a construction project in which budgetary estimate exceeds estimation, budget exceeds budgetary estimate, and settlement exceeds budget, is a universal phenomenon in investment in fixed assets in China. Construction cost which is out of control adds to investment pressure, increases construction cost, reduces investment profit, affects investment decision-making, and, to a great extent, wastes the national finance, so it is likely to result in corruption or offence. Since the middle of 1950s, on the basis of summarizing practical experiences of fundamental construction battle line for severaldecades, we have conducted a series of reforms in construction field. Especially since May 1988, we have gradually implemented the system of construction supervision all over the country, which has had some positive effects upon reversing the phenomenon of losing control of a construction project in the implementation period. However, because that system is still in its starting stage, there hasn’t appeared a large batch of professional and socialized supervision teams. In addition, in projects in which construction supervision is carried out, there exist general phenomena, such as “emphasis on quality control at the construction stage and neglect of investment control”, and“emphasis on technical aspects of supervision and ne glect of economic aspects of supervision”. In reality, rights of supervision tend to be confined to management of technical aspects, while management of economic aspects is firmly in control of proprietors. Meanwhile, lagging behind of existing construction cost management system is the primary cause for losing control of construction cost. Therefore, as a whole, the phenomenon of losing control over construction project cost is still quite serious, so it is necessary to conduct further study and make further analysis on major factors of current construction cost management and factors at all stages of a construction project that affect construction cost.2. Primary study contentAiming at the subject of “control of whole-process of construction project cost”, and based on lots of literature reviews about determination and control of construction project cost both at home and abroad, the author of this paper has collected extensively some relevant provincial and city reports and data after investigation. Afterwards, the author conducts the following work.1) To analyze formulation of construction project investment and to find out primary reasons for losing control over construction cost at all stages of a construction project.2) To study and analyze status quo and existing issues of current construction cost management, and study influences of these issues upon determination and control of a construction cost.3) To put forward effective approaches and methods as well application of value engineering of a construction project from its decision-making stage, design stage, construction stage to the final acceptance of construction stage.4) To make clear significance, necessity and feasibility of cost control of a construction project so as to provide recommendations for improvement of construction costmanagement in China.2.1 Construction cost control theory and management modeAccording to the new cost control theory, cost engineers are “professional persons who undertake cost estimate, cost control, marketing planning and scientific management”. Fields undertaken by cost engineers include such aspects as project management, project planning, progress management and profitability analysis etc of a project construction and its production process. Cost engineers offer service for control over life cycle expenditure, property facilities and production & manufacture of a construction project with their management technique with an overall cost.2.2 Current construction cost management model and theories in China2.2.1 Direct regulation and control of the governmentConsidering development process of quota, it can be discovered that quota has come into being, developed and become mature gradually with development of planned economy after foundation of PRC. Since China has carried out centralized management model of investment system for a long time, the government is not only a maker of macropolicy, but a participant of micro-project construction. Therefore, a unified quota with dense colour of planned economy is able to provide powerful methods and means for the government to carry out macro-investment regulation and control and micro-construction project management.2.2.2 Valuation basis for current construction costBasic materials for calculation of construction cost usually include construction cost quota, construction cost expense quota, cost index, basic unit price, quantities calculation rule and relevant economic rules and policies issued by competent departments of the government, etc. It includes index of estimate (budgetary estimate index), budgetary estimate quota, budgetary quota (comprehensive budgetary quota), expense quota (standard), labor quota, working-day norm, materials, budgetary price of facilities, direct price index of a project, material price index and cost index. And also included is valuation criterion of consumption quota and list of items in recent two years.2.2.3 Valuation model of current construction costValuation model is a basic aspect of construction cost management. Construction cost management is a governmental behavior, while valuation model is a means for a countryto manage and control construction cost. There are two construction valuation models at present in China, namely, valuation model according to quota and one according to billof quantities.2.2.3.1 Valuation model according to quotaValuation model according to quota is an effective model adopted during the transition period from planned economy to market economy. Determination of construction cost through valuation model according to quota prevents overrated valuation and standards and prices pressed down to some extent, because budgetary quota standardizes rate of consumption and a variety of documents stipulate manpower, materials, unit price of machines and all sorts of service fee norms, which reflects normativity, unitarity and rationality of construction cost. However, it has an inhibited effect upon market competition, and is not favorable for a construction enterprise to improve its technique, strengthen its management and enhance its labor efficiency and market competition.2.2.3.2 Valuation model according to bill of quantitiesValuation model according to bill of quantities is a construction cost determination model proposed recently. In this model, the government merely unifies project code, project name, unit of measurement and measurement rule of quantities. Each construction enterprise has its self-determination to quote a price according to its own situation in a tender offer, and price of building products is formed thereby in the process of bidding.2.3 Cost control in the process of implementationFor a long time, technique and economy has been separated in the field of project construction. Restrained by the planned economy, there lacks the economic concept in the minds of our engineers and technicians, because they regard reduction of construction cost as a duty of financial personnel which has nothing to do with themselves. However, the primary responsibility of financial and preliminary budget personnel is to act in accordance with financial system. Usually, they are not familiar with construction technique, and know little or even nothing about changes of various relations in project design, construction content and implementation of construction. Under such a circumstance, they have no choice but to mechanically work out or audit the expenditure from a financial perspective, which results in mutual separation of technique and economy. They just do what they do, which negatively reflects price of quantities of a project thathas been completed, so it is difficult to control construction cost rationally and effectively.2.4 Control of cost in the process of constructionImplementation stage of a construction project is a stage which requires the most assets in the whole process of a project construction, and is also a vital stage for pecuniary resources to transform into building entities. Cost control at the implementation stage refers to confine construction cost within a scheduled control scope through a scientific cost control theory and method on the condition of ensuring project quality and time limit. The process of generation of a building entity is inreversible, so if effective automatic control and precontrol cannot be conducted over construction cost, then economic loss might be caused that cannot be made up for.2.5 Analysis of major factors that affect construction cost at the stage of implementationImplementation stage of a project refers to the period from completion of construction documents design and examination and submission to the construction party to the final completion acceptance of the project and until it is put into use. According to the basic operation procedure of the implementation stage of a construction project, formation of a construction cost has to undergo such major aspects as bidding, contract signing and management, joint auditing of a shop drawing, investigation of a construction management plan, material management and completion settlement, etc. All these aspects affect construction cost settlement to different degrees. In that process, after evolving from budgetary price, price for successful bidding, refurbishing cost for a contract, the construction cost is finally determined in the form of settlement price for project completion. Factors affecting construction cost are various, but from the perspective of analysis of cost formation, there are primarily the following reasons.1) Influences of a project bidding. Bidding can determine price for successful bidding, while contract price is determined on the basis of price for successful bidding. If something goes wrong with bidding, then it might result in distortion of the price for bidding, and it is impossible to provide accurate and reliable foundation for cost control, and even result in losing control over the cost.2) Influences of contract signing and management. Determination of a contract price further makes precise target of cost control, and an initial draft of a contract term provides correct foundation and principles for cost control. After signing of a contract, contractitems are regarded as foundation, which will have strict contract control over design changes at the construction stage, project measurement, payment of a construction debt, and construction compensation, etc, and which will ensure realization of a control target. Therefore, losing control over signing and management of a contract will necessarily result in losing control over construction cost.3) Influences of examination of construction management plan. Construction management plan is one of important foundations for determine a project bidding price and contract price. In the process of construction, adjustment of a contract price should also be determined according to construction management plan, because quality of construction management plan will directly affect quality and progress of a project. Therefore, losing control over examination of construction management plan will bring extremely unfavorable influences upon control over construction cost.4) Influences of material management. On one hand, material price is an important component of bidding price and contract price. On the other hand, material expense accounts for a large proportion in construction cost, because price of materials determine construction cost. Therefore, losing control over material management will necessarily result in losing control over construction cost.5) Influences of settlement, examination and verification of a project completion. Settlement, examination and verification is the final stage of a construction cost control at the implementation stage. A strict and meticulous settlement, examination and verification can ensure accuracy and authenticity of settlement cost of a project.According to previous analysis, we believe that all aspects of cost control can have effect upon formation of construction cost, among which bidding of a project, contract signing and management, examination of a construction management plan and management of materials all have decisive effects upon formation of construction cost, and are vital aspects in cost construction at the implementation stage of a project, so neglect of these four aspects is a direct cause for losing control over construction cost.In this paper, the author summarizes relevant issues in construction cost control at the decision-making stage of a construction project, at the design stage and construction stage, and puts forward principles or resolutions for handing such issues. Especially, as a method of combination of technique and economics, application of value engineering is elaborated at all stages, so that construction cost gets effective controlled. This paper cannot concludeall such issues existing, and also resolutions to resolve these issues cannot cover and contain everything, but with development of construction, new issues and new trains of thought will continue to emerge.研究建设项目的工程造价摘要在工程建设中,中国是拥有世界最大投资金额和具有最多建设项目的国家。
工程造价专业毕业外文文献、中英对照
本科毕业论文外文文献及译文文献、资料题目China’s Pathway to Low—carbon Development文献、资料来源: Journal of Knowledge-basedInnovation in China文献、资料发表(出版)日期:V ol。
2 No。
3, 2010院(部):管理工程学院专业:工程造价外文文献China’s Pathway to Low—carbon DevelopmentAbstractPurpose–The purpose of this paper is to explore China's current policy and policy options regarding the shift to a low-carbon (LC)development.Design/methodology/approach – The paper uses both a literature review and empirical systems analysis of the trends of socio-economic conditions, carbon emissions and development of innovation capacities in China.Findings – The analysis shows that a holistic solution and co—benefit approach are needed for China's transition to a green and LC economy,and that, especially for developing countries,it is not enough to have only goals regarding mitigation and adaptation。
工程造价外文文献
工程造价外文文献Engineering Cost: A Review of Relevant LiteratureIntroductionEngineering cost refers to the financial aspect of planning, designing, and constructing engineering projects. It involves estimating and allocating resources to achieve project objectives within a specified budget. This paper reviews relevant literature on engineering cost to understand the factors influencing cost, cost estimation methods, and techniques to control cost.Factors Influencing Engineering CostSeveral factors influence the cost of engineering projects. Ribeiro et al. (2019) highlight the impact of project size, complexity, site conditions, and project delivery method on cost. Large-scale projects tend to have higher costs due to the increased scope and duration. Increased complexity, such as the integration of advanced technologies, also impacts cost. Site conditions, including soil composition and topography, affect the cost of foundation and excavation works. Additionally, the project delivery method, such as design-bid-build or design-build, can influence cost due to differences in risk allocation, quality control, and collaboration.Cost Estimation MethodsAccurate cost estimation is crucial for project success. Several cost estimation methods are employed in engineering projects. Technologies such as Building Information Modeling (BIM) andcomputer-aided design (CAD) software are commonly used for quantity takeoffs and cost estimation (Mao et al., 2020). These tools enable engineers to generate detailed 3D models and extract quantities automatically. Parametric estimating, another widely adopted method, utilizes historical data and mathematical models to estimate costs based on project characteristics (Vahdatalab et al., 2019). Furthermore, expert judgment and analog estimating are methods often employed when data is limited or unavailable.Cost Control TechniquesEffective cost control is essential to ensure projects are completed within budget. Literature suggests various techniques to control engineering cost. Embracing value engineering, as proposed by Whipple et al. (2018), involves analyzing project elements to identify cost-saving opportunities without compromising quality or performance. Value engineering focuses on the elimination of unnecessary factors, product substitution, and efficient use of resources. Additionally, the use of earned value management (EVM) can help monitor project performance and forecast cost overruns (Fleming & Koppelman, 2016). EVM integrates project schedule, cost, and performance data to provide a comprehensive view of project status. Finally, effective project management practices, including clear communication, proper risk management, and accurate progress tracking, contribute significantly to cost control.ConclusionIn conclusion, engineering cost is a critical aspect of projectmanagement. Understanding the factors influencing cost, utilizing appropriate cost estimation methods, and implementing cost control techniques are crucial for project success. The literature suggests that project size, complexity, site conditions, and project delivery method significantly impact cost. Various cost estimation methods, such as BIM, CAD software, and parametric estimating, are employed in practice. To control cost, value engineering, earned value management, and effective project management practices are employed. By integrating these findings into project planning and management processes, engineers can foster cost-effective project outcomes.。
2022年工程预算英文文献
2022年工程预算英文文献工程造价预算就是指工程的建设价格,是指为完成一个工程的建设,预期或实际所需的全部费用总和。
从业主(投资者)的角度来定义,工程造价是指工程的建设成本,即为建设一项工程预期支付或实际支付的全部固定资产投资费用。
下面是搜索整理的工程造价外文参考文献,欢迎借鉴参考。
工程造价预算外文参考文献一:construction cost;project cost;works cost;engineering cost budget [1]Jing Shuai Xin ChengLiping DingJun YangZhihui Leng.Howshould aovernment and users share the investment costs and benefits of a solar pV power generation project inChina?[J].Renewable and Sustainable Energy Reviews2019104.[21Tarik Aouam Mario Vanhoucke An aqency perspective for multi- mode proiect scheduling with time/cost puters and Operations Research,2019,105.construction cost;project cost;works cost;engineering cost [3]Peter ED.Love,Michael C.p.SingLavagnon A.IkasidneyNewton. The cost performance of transportation proiects: The fallacy of the Planninq Fallacyaccount[l].Transportation Research Part A,2019,122.[4]Ricardo MateusSandra Monteiro SilvaManuela Guedes de Almeida. Environmental and cost life cycle analysis of the impactof using solar systems in energy renovation of Southern European single-familybuildings[J].RenewableEnergy2019137.construction cost;project cost;works cost;engineering cost [5]Dimitris MavrokapnidisChara ChMitropoulouNikos garos. Environmental assessment ofcost optimized structural systems in tall buildings[J1.Journal of BuildingEnqineering2019,24.[61Fabrizio AscioneNicola Bianco.Gerardo Maria Mauro.Davide Ferdinando Napolitano.Buildingenvelopedesiqn:Multi-obiective optimization to minimize enerqy consumption qlobal cost and thermal discomfort.Application to differentItalian climatic zones[J]. Enerqy,2019,174.[7]Tolaa ?elik.Yusuf AraviciCenk BudavanAssessina the social.cost of housing proiects on the builtenvironment: Analysis and monetization of the adverse impacts incurred on theneighbouringcommunities TEnvironmental Impact Assessment Review.2019.77.[8]Juha Koskela,Antti RautiainenPertti J?ing electrical energy storage in residential buildings-Sizingof battery and photovoltaic panels based onelectricitycost optimization[J].AppliedEnergy2019239.[9]Byunq Kwan OhBranko GlisicSeol Ho LeeTongiun ChoHyoSeon Park. Comprehensive investiqation of embodied carbon emissions, costs, desiqn parameters, and serviceability in optimum qreen.construction of two-way slabs in buildinqsJ1.Journal of Cleaner Production.2019.222.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外文文献:Construction Standards and Costs UC Irvine new construction pursues performance goals and applies quality standards that affect the costs of capital projects. Periodic re-examination of these goals and standards is warranted. Construction costs are not “high” or “low” in the abstract, but rather in relation to specific quality standards and the design solutions, means, and methods used to attain these standards. Thus, evaluating whether construction costs are appropriate involves:• first, determining whether quality standards are excessive, insufficient, orappropriate;• second, determining whether resultant project costs are reasonable compared to projects with essentially the same quality parameters. “Quality” encompasses the durability of bui lding systems and finishes; the robustness and life-cycle performance of building systems; the aesthetics of materials, their composition, and their detailing; and the resource-sustainability and efficiency of the building as an overall system.Overall Goals and Quality StandardsUC Irvine, in order to support distinguished research and academicprograms, builds facilities of high quality. As such, UC Irvine’s facilities aim to convey the “look and feel,” as well as embody the inherent construction quality, of the best facilities of other UC campuses, leading public universities, and other research institutions with whom we compete for faculty, students, sponsored research, and general reputation.Since 1992, new buildings have been designed to achieve these five broad goals:1. New buildings must “create a place,” rather than constitute stand-alone structures, forming social, aesthetic, contextually-sensitive relationships with neighboring buildings and the larger campus.2. New buildings reinforce a consistent design framework of classical contextual architecture, applied in ways that convey a feeling of permanence and quality and interpreted in ways that meet the contemporary and changing needs of a modern research university.3. New buildings employ materials, systems, and design features that will avoid the expense of major maintenance (defined as >1 percent of value)for twenty years.4. New buildings apply “sustainability” principles -- notably, outperforming Title 24 (California’s energy code) by at leas t 20 percent.5. Capital construction projects are designed and delivered within theapproved project budget, scope, and schedule.UC Irvine’s goals for sustainable materials and energy performance were adopted partly for environmental reasons, and partly to reverse substantial operating budget deficits.The latter problems included a multi-million dollar utilities deficit that was growing rapidly in the early ‘90s, and millions of dollars of unfunded major maintenance that was emerging prematurely in buildings only 10-20 years old. Without the quality and performance standards adopted in 1992, utilities deficits and unfunded major maintenance costs would have exceeded $20 million during the past decade, and these costs would still be rising out-of-control.UC Irvine’s materials standards, building systems standards, sustainability and energy efficiency criteria, and site improvements all add cost increments that can only be afforded through aggressive cost management. Institutions that cannot manage capital costs tend to build projects that consume excessive energy, that cost a lot to maintain, that suffer premature major maintenance costs, and that require high costs to modify. Such problems tend to compound and spiral downward into increasingly costly consequences.Every administrator with facilities experience understands this dynamic. Without effective construction cost management, quality would suffer and UC Irvine would experience all of these problems.The balance of this document outlines in greater detail the building performance criteria and quality standards generally stated above, organized according to building systems component classes. Each section discusses key cost-drivers, cost-control strategies, and important cost trade-offs. Design practices cited are consistently applied (although some fall short of hard and fast “rules”).Building Organization and MassingConstruction cost management starts with the fundamentals of building organization and massing. UC Irvine’s new structures’ floor plates tend to have length-to-width ratios<1.5, to avoid triggering disproportionate costs of external cladding, circulation, and horizontal mechanical distribution. Our new buildings tend to be at least three floorshigh -- taller if floor plate areas do not dip below a cost-effective threshold, and generally taller in the case of non-laboratory buildings (but not so tall that a high-rise cost penalty is incurred). Other design ratios are observed, such as exterior cladding area/floor area <0.5, and roof+foundation area/floor area <0.4.Architectural articulation is generally achieved through textured or enriched materials,integral material detailing (such as concrete reveal patterning), and applied detailing (e.g.,2window frames and sills), particularly at the building base. Large-scale articulation isconcentrated at the roofline (e.g., shaped roof forms) and at the pedestrian level (e.g.,arcades), where it will “create the biggest bang for the buck,” rather than through modulating the building form, itself. This is more than a subtle design philosophy, as the cost impact is substantial.Lab buildings completed in the past decade separate laboratory and non-laboratory functions into distinct, adjoined structures (although such a building may look like one structure). Consolidated non-laboratory functions include faculty, departmental, staff,post-doc, and graduate student offices; restrooms; circulation (elevators, lobbies, primary stairways); classrooms, seminar rooms, conference rooms, and social areas designed tofoster interaction and to provide a safe area for eating and drinking; dry labs and dry lab support functions; and general administrative support. Consolidating these functions into a separate structure provides considerable cost savings: lower-cost HVAC (heating/ventilation/air-conditioning) system, wider column spacing, lower floor stiffness (less stringent vibration criterion), lower floor-loading,fewer fire-control features and other code requirements, steel-framed or steel/concrete hybrid structural system with concrete flat-slab flooring system, smaller footings, and(typically) curtain wall fenestration. This approach usually enables offices to have operablewindows.This two-building approach can be seen clearly at Gillespie Neurosciences Building, the Sprague Building, Hewitt Hall, and the UCI Medical Center Health Sciences Laboratory,where consolidating and separating non-laboratory functions saved 7-10 percent in overall construction costs and 15 percent/year in energy expense. (The non-laboratory building incurs a small fraction of the energy expense of the laboratory block.)A set of design strategies, applied in combination, has proven effective in controlling the cost of laboratories:• Utilizing a consistent lab module• Utilizing a reasonable vibration criterion and locating ultra-sensitive conditions at-grade or employing benchtop vibration isolation• Using 22 ft. X 22 ft. column-spacing• Concentrating fume hoods and utility risers into a central “wet zone,” thuslimiting horizontal mechanical distribution• Concentrating laboratory support areas into the central core of a laboratorystructure, where utilities are available but daylight is not needed, thus enablinglab structures to be 110-132 feet wide• Utilizing dual-usage circulation/equipment cross-corridors through this central lab support zone, with sufficient width (typically 11 feet) to line the corridors with shared equipment while providing cross-circulation through the lab support zone• Utilizing open laboratory layout with one o r more “ghost” corridors for intra lab circulation• And, most importantly, concentrating non-laboratory functions into an adjoining, lower-cost structure (as discussed in detail above).To further control laboratory construction costs, non-standard fume hood sizes are minimized, “generic” lab casework is specified, laboratory-grade movable tables substitute for fixed casework in some lab bays, building DI systems provide intermediate water quality (with localized water purity polishing in the lab, rather than building-wide),facility-wide piped services do not include gases that can be cost-effectively provided locally via canisters, and glass-wash facilities are consolidated -- typically, one glass wash facility for an entire laboratory building.Finally, our design philosophy leans toward generic, modular laboratories supported by a robust building infrastructure, rather than highly customized spaces with limited capacity to make later changes. This is an important trade off. Although some post-occupancy expenses may be necessary to “fine-tune” a laboratory to a PI’s requirements,building infrastructure elements – typically over sized twenty percent, including HVAC supply ducts, exhaust system capacity, emergency generator capacity, and electric risers and service capacity – seldom limit the ability to modify labs to meet researcher needs.Structural and Foundation SystemsFor both cost-benefit reasons and past seismic performance, UC Irvine favors concrete shear wall or steel braced-frame structural systems. The correlating foundation systems depend on site-specific soil conditions. Past problems with undiscovered substrates and uncharacterized soil conditions are minimized through extensive, pre-design soil-testing. This minimizes risk to both the University and the design/build contractor.When feasible, design/build contractors are allowed flexibility to propose alternate structural or seismic-force systems. All structural system designs must pass a peer review, according to Regents’ policy. This process results in conservative structural design, and an associated cost premium. However, the seismic performance of University of California buildings constructed since this policy went into effect in 1975 appears to substantiate the value of the Regents’ Seismic Review Policy.Structural vibration is carefully specified in research buildings where vibration-sensitive protocols and conditions must be maintained onabove-grade floors. The most cost effective tools to control vibration are generally employed: first, to program vibration sensitive procedures at on-grade locations or to isolate them at the bench; second, to space columns at a distance that does not entail excessive structural costs. In laboratory 4buildings we typically utilize 22 ft. X 22 ft. column-spacing. Conversely, where vibration is not problematic a beam/column system can be cost-optimized and lighter floor loading can be tolerated. Design/build contractors are, accordingly, allowed more flexibility under such conditions.To control costs, UC Irvine avoids use of moment-resisting structures; unconventional seismic systems; non-standard structural dimensions; inconsistent, unconventional, or non-stacking structural modules; and non-standard means and methods.Roofs and FlashingsUC Irvine specifies 20 year roofing systems and stainless steel or copper flashings whenever possible. At minimum, we specify hot-dip galvanized flashings.Why this emphasis on flashings? Our roof replacement projects typically double in cost when the old roofing is torn off and it is determined that the flashings have deteriorated.Moreover, many roof leaks of recent years have been due to faulty flashings, rather than roofing membranes or coatings, per se. Savingmoney on flashings is false economy.Another special roofing expense we may have to incur in order to attain the Regents’ Green Building Policy is that of reflective roofing. It is too early to understand the potential cost impact.中文翻译:建设标准和成本加州大学欧文分校新建筑追求性能目标和适用的质量标准,影响资本成本的项目。