小功率充电器的设计文献翻译

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单位代码01

学号__

分类号TN7__

密级___ _

文献翻译

小功率充电器的设计

院(系)名称

专业名称

学生姓名

指导教师

2010年月6日

黄河科技学院毕业设计(文献翻译)第1页1 引言

为了使手机、电动自行车等所使用的充电器实现自动充电的功能,大都采用各种各样的专用IC充电器集成电路和各种采样电路。本文介绍一种既能省去复杂的IC电路及其外围电路,又能够实现自动充电功能的电路。

2 工作原理

图1充电器的原理图

原理图如图1所示,它由如下元件构成:C1,V1~V4,C2组成滤波整流电路,变压器T为高频变压器,V5,R2,C11组成功率开关管V7的保护电路,NF为供给IC电源的绕组。单端输出IC为UC3842,其8脚输出5 V基准电压,2脚为反相输入,1脚为放大器输出,4脚为振荡电容C9,电阻R7输入端,5脚为接地端,3脚为过流保护端,6脚为调宽单脉冲输出端,7脚为电源输入端。R6、C7组成负反馈,IC启动瞬间

黄河科技学院毕业设计(文献翻译)第2页由R1供给启动电压,电路启动后由NF产生电势经V6,C4,C5整流滤波后供给IC工作电压。R12为过流保护取样电阻,V8,C3组成反激整流滤波输出电路。R13为内负载,V9~V12及R14~R19组成发光管显示电路。V5,V6选用FR107,V8选用FR154,V7选用K792,当V7导通时,整流电压加在变压器T初级绕组Np上的电能变成磁能储存在变压器中,在V7导通结束时,Np绕组中电流达到最大值:Ipmax:Ipmax=(E/Lp)ton式中:E为整流电压;Lp为变压器初级绕组电感;ton为V7导通时间。在V7关闭瞬间,变压器次级绕组放电电流为最大值Ismax,若忽略各种损耗应为:Ismax=nIpmax=n(E/Lp)ton。式中:n为变压器变比,n=Np/Ns,Np,Ns为变压器初、次级绕组匝数。

高频变压器在V7导通期间初级绕组储存能量与V7关闭期间次级绕组释放能量应相等:n(E/Lp)ton=(Uo/Ls)toff,式中:Ls为变压器次级绕组电感;Uo为输出电压;toff为V7关闭时间。

因为Lp=n2Ls,则:(E/nLs)ton=(Uo/Ls)toffEton=nUotoffUo=(ton/ntoff)E,上式说明输出电压Uo与ton成

正比,与匝比n及toff成反比。

变压器在导通期间储存的能量WLp为:WLp=(1/2)LpI2pmax

变压器Lp愈大储能愈多。

变压器储存的能量能否在toff期间释放完,不仅与变压器的工作频率f有关,而且与次级绕组电感量Ls有关,更与负载的大小有关。

储能释放时间常数τ和V7关闭时间toff之间的差异形成变换器三种工作状态,下面分开介绍:

(1)toff=τ这种状态为临界状态。各参数波形如图2所示。

图2中ub为Vp的控制电压波形;up为变压器初级Np电势波形;φ为变压器磁通变化波形;uces为V7集电极电压波形;ip,is为初、次级电流波形。

(2)toff>τ各参数波形如图3所示。

从图3中可以看出磁通φ复位时V7关闭还持续一段时间,ip呈线性上升,is线性下降。

黄河科技学院毕业设计(文献翻译)第3页

图2 t off=的波形图

图3t off>的波形图

变压器储存的能量等于电路输出能量:(1/2)LPIpmax2f=Uo2/RL

Uo2=(1/2)LpIpmax2RLf将Ipmax=(E/Lp)ton代入上式,则式中:RL为电路负载电阻;T=1/f为变压器工作周期。式中E,ton,T,Lp为定值,所以输出电压Uo随负载电阻RL的大小而变化,若忽略整流器件压降,则输出电压最大值应为:Uomax=(1/n)Up=(1/n)EV7

承受的反压应为:Ucc=E+ Up=E+nUo。

(3)toff<τ各参数波形如图4所示。从图4中可以看出磁通φ在toff期间不能复位,ip也不是从0开始线性增加,is下降不到0,这种工作状态输出电压Uo应满足如下关

黄河科技学院毕业设计(文献翻译)第4页系:Etou=(Np/Ns)Uot

Uo=(ton/toff)(Ns/Np)E

上式说明在Lp较大的情况下,Uo只决定于变压器匝数、导通截止脉宽和电源电压E,而与负载电阻RL无关。

图4 t off<的波形图

图5充电特性曲线

上述三种工作状态中,第二种工作状态输出电压Uo随负载电阻大小而变化,我们正好利用这个特点,满足充电器的充电特性。从电路中可知,电路的负载电阻RL实际上是被充电电池的等效内阻,当电池电量放空时,等效内阻RL很小,随着充电量增大,其等效内阻升高,而电路输出电压Uo就是充电电压,其变化是随RL增大而升高,所以有如图5所示的充电特性曲线。从图5可以看出充电电流是随着RL增大而下降。

黄河科技学院毕业设计(文献翻译)第5页IO=UO/RL充电电压UO、充电电流IO都是随RL而变化,RL的变化曲线是电池的充电特性决定的,所以用单端反激电路作成的充电器其充电电压、电流有很好的跟随性当电池充满后,RL也就大到一定限度,充电电压也就进入饱和状态,充电电流自动进入浮充状态。这样便大大简化了自动充电的控制电路。与相同性能的其他充电器电路相比,成本大大降低,可靠性大大提高。

图6磁滞回线图

3 电路设计计算

(1)高频变压器的设计

变压器是变换器的主要部件,其设计内容主要是磁芯选定,绕组匝数和导线直径的选定。

变压器主要参数计算公式:

输出功率PO=UOIO;输入功率PI=PO/Η;占空比D=TON/T;变压器效率为Η=PO /PI;负载电阻RL=UO/IO。

变压器输入电流最大值IPMAX=2UO2/DΗEMINRL;变压器输入电流有效值IPEFF=DIP;变压器工作频率F的确定:

F高虽然体积、重量可减小,但V7开关损耗增大,F低则变压器体积变大重量加大,综合考虑,一般选F=50 KHZ左右。

当电池充满后,RL也就大到一定限度,充电电压也就进入饱和状态,充电电流自动进入浮充状态。这样便大大简化了自动充电的控制电路。与相同性能的其他充电器电路相比,成本大大降低,可靠性大大提高。

(2)磁芯尺寸选取

相关文档
最新文档