高三一轮复习《互斥事件、独立事件与条件概率》
2025年高考数学一轮复习课时作业-事件的独立性、条件概率与全概率公式【含解析】
2025年高考数学一轮复习课时作业-事件的独立性、条件概率与全概率公式【原卷版】(时间:45分钟分值:90分)【基础落实练】1.(5分)若P(AB)=19,P( )=23,P(B)=13,则事件A与B的关系是()A.互斥B.对立C.相互独立D.既互斥又相互独立2.(5分)(2024·泉州模拟)某运动员每次射击击中目标的概率均相等,若三次射击中,至少有一次击中目标的概率为6364,则射击一次,击中目标的概率为()A.78B.34C.14D.183.(5分)小王每天在6:30至6:50出发去上班,其中在6:30至6:40出发的概率为0.3,在该时间段出发上班迟到的概率为0.1;在6:40至6:50出发的概率为0.7,在该时间段出发上班迟到的概率为0.2,则小王某天在6:30至6:50出发上班迟到的概率为()A.0.13B.0.17C.0.21D.0.34.(5分)设甲乘汽车、动车前往目的地的概率分别为0.4,0.6,汽车和动车正点到达目的地的概率分别为0.7,0.9,则甲正点到达目的地的概率为()A.0.78B.0.8C.0.82D.0.845.(5分)(多选题)甲罐中有5个红球、2个白球和3个黑球,乙罐中有4个红球、3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球、白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.则下列结论中正确的是()A.P(B)=25B.P(B|A1)=511C.事件B与事件A1相互独立D.A1,A2,A3是两两互斥的事件6.(5分)(多选题)(2024·湖南师大附中模拟)已知某数据库有视频a个、图片b张 , ∈N*, > >1,从中随机选出一个视频和一张图片,记“视频甲和图片乙入选”为事件A,“视频甲入选”为事件B,“图片乙入选”为事件C,则下列判断中正确的是()A.P(A)=P(B)+P(C)B.P(A)=P(B)·P(C)C.P( )>P( C)+P(B )D.P( C)<P(B )7.(5分)某医生一周(7天)晚上值2次班,在已知他周二晚上一定值班的条件下,他在周三晚上值班的概率为________.每次击中目标的概率为45,现连续射击两次.(1)已知第一次击中,则第二次击中的概率是________;(2)在仅击中一次的条件下,第二次击中的概率是________.9.(10分)(2024·苏州模拟)苏州某公司有甲、乙两个研发小组,开发芯片需要两道工序,第一道工序成功的概率分别为15和35.第二道工序成功的概率分别为12和23.根据生产需要现安排甲小组研发芯片A,乙小组研发芯片B,假设甲、乙两个小组的研发相互独立.(1)求两种芯片都研发成功的概率;(2)政府为了提高该公司研发的积极性,决定只要有芯片研发成功就奖励该公司500万元,求该公司获得政府奖励的概率.【能力提升练】10.(5分)(2024·南京模拟)在一段时间内,若甲去参观市博物馆的概率为0.6,乙去参观市博物馆的概率为0.5,且甲乙两人各自行动,则在这段时间内,甲乙两人至少有一个去参观博物馆的概率是()A.0.3B.0.32C.0.8D.0.8411.(5分)(2024·苏州模拟)杭州亚运会组委会将甲、乙、丙、丁4名志愿者随机派往黄龙体育中心、杭州奥体中心、浙江大学紫金港校区三座体育馆工作,每座体育馆至少派1名志愿者,A表示事件“志愿者甲派往黄龙体育中心”;B表示事件“志愿者乙派往黄龙体育中心”;C表示事件“志愿者乙派往杭州奥体中心”,则()A.事件A与B相互独立B.事件A与C为互斥事件C.P =13D.P =1612.(5分)(2024·泉州模拟)某中学为丰富学生的业余生活,举行“汉字听写大会”,老师要求参赛学生从星期一到星期四每天学习2个汉字及正确注释,每周五对一周内所学汉字随机抽取4个进行检测(一周所学的汉字每个被抽到的可能性相同),若已知抽取4个进行检测的字中至少有一个字是最后一天学习的,则所抽取的4个进行检测的字中恰有3个是后两天学习过的汉字的概率为________. 13.(5分)(2024·长春模拟)设A,B是一个随机试验中的两个事件,且P(A)=13,P(B)=34, P(A+ )=12,则P(A )=________,P(B|A)=__________.14.(10分)某企业使用新技术对某款芯片进行试生产.在试产初期,该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P1=110,P2=19,P3=18.(1)求该款芯片生产在进入第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽检.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.15.(10分)两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率.2025年高考数学一轮复习课时作业-事件的独立性、条件概率与全概率公式【解析版】(时间:45分钟分值:90分)【基础落实练】1.(5分)若P(AB)=19,P( )=23,P(B)=13,则事件A与B的关系是()A.互斥B.对立C.相互独立D.既互斥又相互独立【解析】选C.因为P(A)=1-P( )=1-23=13,所以P(A)P(B)=19,所以P(AB)=P(A)P(B)≠0,所以事件A与B相互独立,事件A与B不互斥也不对立.2.(5分)(2024·泉州模拟)某运动员每次射击击中目标的概率均相等,若三次射击中,至少有一次击中目标的概率为6364,则射击一次,击中目标的概率为() A.78B.34C.14D.18【解析】选B.设该运动员射击一次,击中目标的概率为p,若该运动员三次射击中,至少有一次击中目标的概率为1-1- 3=6364,解得p=34.3.(5分)小王每天在6:30至6:50出发去上班,其中在6:30至6:40出发的概率为0.3,在该时间段出发上班迟到的概率为0.1;在6:40至6:50出发的概率为0.7,在该时间段出发上班迟到的概率为0.2,则小王某天在6:30至6:50出发上班迟到的概率为()A.0.13B.0.17C.0.21D.0.3【解析】选B.由题意,在6:30至6:50出发上班迟到的概率为0.3×0.1+0.7×0.2=0.17.4.(5分)设甲乘汽车、动车前往目的地的概率分别为0.4,0.6,汽车和动车正点到达目的地的概率分别为0.7,0.9,则甲正点到达目的地的概率为()A.0.78B.0.8C.0.82D.0.84【解析】选C.设事件A表示“甲正点到达目的地”,事件B表示“甲乘动车到达目的地”,事件C表示“甲乘汽车到达目的地”,由题意知P(B)=0.6,P(C)=0.4,P(A|B)=0.9,P(A|C)=0.7.由全概率公式得P(A)=P(B)P(A|B)+P(C)P(A|C)=0.6×0.9+0.4×0.7=0.54+0.28=0.82.5.(5分)(多选题)甲罐中有5个红球、2个白球和3个黑球,乙罐中有4个红球、3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球、白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.则下列结论中正确的是()A.P(B)=25B.P(B|A1)=511C.事件B与事件A1相互独立D.A1,A2,A3是两两互斥的事件【解析】选BD.由题意知,A1,A2,A3是两两互斥的事件,故D正确;P(A1)=510=12,P(A2)=210=15,P(A3)=310,P(B|A1)=511,由此知,B正确;P(B|A2)=411,P(B|A3)=411;而P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=12×511+15×411+310×411=922,由此知A,C 不正确.6.(5分)(多选题)(2024·湖南师大附中模拟)已知某数据库有视频a个、图片b张 , ∈N*, > >1,从中随机选出一个视频和一张图片,记“视频甲和图片乙入选”为事件A,“视频甲入选”为事件B,“图片乙入选”为事件C,则下列判断中正确的是()A.P(A)=P(B)+P(C)B.P(A)=P(B)·P(C)C.P( )>P( C)+P(B )D.P( C)<P(B )【解析】选BC.由相互独立事件的概率的乘法计算公式,可得A错误,B正确;事件 包含“视频甲未入选,图片乙入选”“视频甲入选,图片乙未入选”“视频甲、图片乙都未入选”三种情况,所以P( )=P( C)+P(B )+P( ),则P( )>P( C)+P(B ),所以C正确;由题可知,P( C)=1-·1 = -1 ,P(B )=1 ·1-= -1 ,因为a,b∈N*,a>b>1,所以 -1 > -1 ,即P( C)>P(B ),故D错误.7.(5分)某医生一周(7天)晚上值2次班,在已知他周二晚上一定值班的条件下,他在周三晚上值班的概率为________.【解析】设事件A 为“周二晚上值班”,事件B 为“周三晚上值班”,则P (A )=C 61C 72=27,P (AB )=1C 72=121,故P (B |A )= ( ) ( )=16.答案:168.(5分)某射击运动员每次击中目标的概率为45,现连续射击两次.(1)已知第一次击中,则第二次击中的概率是________;(2)在仅击中一次的条件下,第二次击中的概率是________.【解析】(1)设第一次击中为事件A ,第二次击中为事件B ,则P (A )=45,由题意知,第一次击中与否对第二次没有影响,因此已知第一次击中,则第二次击中的概率是45.(2)设仅击中一次为事件C ,则仅击中一次的概率为P (C )=C 21×45×15=825,在仅击中一次的条件下,第二次击中的概率是P (B |C )=15×45825=12.答案:(1)45(2)129.(10分)(2024·苏州模拟)苏州某公司有甲、乙两个研发小组,开发芯片需要两道工序,第一道工序成功的概率分别为15和35.第二道工序成功的概率分别为12和23.根据生产需要现安排甲小组研发芯片A ,乙小组研发芯片B ,假设甲、乙两个小组的研发相互独立.(1)求两种芯片都研发成功的概率;(2)政府为了提高该公司研发的积极性,决定只要有芯片研发成功就奖励该公司500万元,求该公司获得政府奖励的概率.【解析】(1)甲小组研发芯片A 成功的概率为p 1=15×12=110,乙小组研发芯片B 成功的概率为p 2=35×23=25,由于甲、乙两个小组的研发相互独立,所以A ,B 两种芯片都研发成功的概率P=p1·p2=110×25=125.(2)该公司获得政府奖励则需有芯片研发成功,根据对立事件可知获奖的概率: P=1-(1-p1)(1-p2)=1-(1-110)(1-25)=1-910×35=2350.【能力提升练】10.(5分)(2024·南京模拟)在一段时间内,若甲去参观市博物馆的概率为0.6,乙去参观市博物馆的概率为0.5,且甲乙两人各自行动,则在这段时间内,甲乙两人至少有一个去参观博物馆的概率是()A.0.3B.0.32C.0.8D.0.84【解析】选C.依题意,在这段时间内,甲乙都不去参观博物馆的概率为P1=1-0.6×1-0.5=0.2,所以在这段时间内,甲乙两人至少有一个去参观博物馆的概率是P=1-P1=1-0.2=0.8.11.(5分)(2024·苏州模拟)杭州亚运会组委会将甲、乙、丙、丁4名志愿者随机派往黄龙体育中心、杭州奥体中心、浙江大学紫金港校区三座体育馆工作,每座体育馆至少派1名志愿者,A表示事件“志愿者甲派往黄龙体育中心”;B表示事件“志愿者乙派往黄龙体育中心”;C表示事件“志愿者乙派往杭州奥体中心”,则()A.事件A与B相互独立B.事件A与C为互斥事件C.P =13D.P =16【解析】选D.将4名志愿者分配到三座体育馆,每座体育馆至少派1名志愿者,共有C42C21A22·A33=36种安排方案;志愿者甲派往黄龙体育中心、志愿者乙派往黄龙体育中心、志愿者乙派往杭州奥体中心,各有C32A22+A33=12种方案,所以P =P =P(C)=1236=13;志愿者甲、乙均派往黄龙体育中心,有A22=2种方案,所以P =236=118;志愿者甲派往黄龙体育中心且志愿者乙派往杭州奥体中心,有1+C21C21=5种方案,所以P =536;对于A,因为P ≠P P ,所以事件A与B不相互独立,A错误;对于B,因为P =536≠0,所以事件A与C不是互斥事件,B错误;对于C,P =53613=512,C错误;对于D,P =11813=16,D正确.12.(5分)(2024·泉州模拟)某中学为丰富学生的业余生活,举行“汉字听写大会”,老师要求参赛学生从星期一到星期四每天学习2个汉字及正确注释,每周五对一周内所学汉字随机抽取4个进行检测(一周所学的汉字每个被抽到的可能性相同),若已知抽取4个进行检测的字中至少有一个字是最后一天学习的,则所抽取的4个进行检测的字中恰有3个是后两天学习过的汉字的概率为________.【解析】设进行检测的4个汉字中至少有一个是最后一天学习的为事件A,恰有3个是后两天学习过的汉字为事件B,则事件A所包含的基本事件有n(A)=C21×C63+C62×C22=55,事件B所包含的基本事件有n(B)=C41×C43=16,所以P | = ( ) ( )= ( ) ( )=1655.答案:165513.(5分)(2024·长春模拟)设A,B是一个随机试验中的两个事件,且P(A)=13,P(B)=34, P(A+ )=12,则P(A )=________,P(B|A)=__________.【解析】由题知,P (A )=13,P (B )=34,P (A + )=P +P -P =12,即13+14-P =12,则P (A )=112.因为P +P P ,所以P =13-112=14,则P (B |A =1413=34.答案:1123414.(10分)某企业使用新技术对某款芯片进行试生产.在试产初期,该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P 1=110,P 2=19,P 3=18.(1)求该款芯片生产在进入第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽检.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.【解析】(1)该款芯片生产在进入第四道工序前的次品率P =1-(1-110)(1-19)(1-18)=310.(2)设“该款芯片智能自动检测合格”为事件A ,“人工抽检合格”为事件B ,则P (A )=910,P (AB )=1-310=710,则工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率P (B |A )= ( )( )=710910=79.15.(10分)两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率.【解析】设A i表示“第i台车床加工的零件(i=1,2)”,B表示“出现废品”,C表示“出现合格品”.(1)P(C)=P(A1C∪A2C)=P(A1C)+P(A2C)=P(A1)P(C|A1)+P(A2)P(C|A2)=23×(1-0.03)+13×(1-0.02)≈0.973. (2)P(A2|B)= ( 2 ) ( )= ( 2) ( | 2)( 1) ( | 1)+ ( 2) ( | 2)=13×0.0223×0.03+13×0.02=0.25.。
第04讲事件的相互独立性与条件概率讲义-2024届高三数学一轮复习
第04讲 事件的相互独立性与条件概率【必备知识】1.相互独立事件(1)定义:对任意两个事件A 与B ,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立,简称为独立.(2)性质:若事件A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也都相互独立.2.条件概率(1)定义:一般地,设A ,B 为两个随机事件,且P (A )>0,我们称P (B |A )=P (AB )P (A )为在事件A 发生的条件下,事件B 发生的条件概率,简称条件概率.(2)两个公式①利用古典概型,P (B |A )=n (AB )n (A ); ②概率的乘法公式:P (AB )=P (A )P (B |A ).3.全概率公式设A 1,A 2,…,A n 是一组两两互斥的事件,A 1∪A 2∪…∪A n =Ω,且P (A i )>0,i =1,2,…,n .则对Ω中的任意事件B ⊆Ω,有)|()()(1ini i A B P A P B P ∑==. 考点12 条件概率的计算【常用方法】条件概率的求法(1)利用定义,分别求P (A )和P (AB ),得P (B |A )=P (AB )P (A ).这是通用的求条件概率的方法. (2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B包含的基本事件数,即n (AB ),得P (B |A )=n (AB )n (A ). 【典例分析12】1、小明早上步行从家到学校要经过有红绿灯的两个路口,根据经验,在第一个路口遇到红灯的概率为0.4,在第二个路口遇到红灯的概率为0.5,在两个路口连续遇到红灯的概率是0.2.某天早上小明在第一个路口遇到了红灯,则他在第二个路口也遇到红灯的概率是( )A .0.2B .0.3C .0.4D .0.5(2)端午节当天,小明的妈妈煮了7个粽子,其中3个腊肉馅,4个豆沙馅.小明从中随机抽取两个粽子,若已知小明取出的两个粽子为同一种馅,则这两个粽子都为腊肉馅的概率为( )A .17B .13C .37D .310考点13 相互独立事件的概率的求法【常用方法】相互独立事件的概率的求法(1)直接法:利用相互独立事件的概率乘法公式直接求解.(2)间接法:正面计算较烦琐(如求用“至少”表述的事件的概率)或难以入手时,可从其对立事件入手计算.【典例分析13】1、我们知道,排球比赛采用5局3胜制,前4局比赛采用25分制,每个队只有赢得至少25分,并超过对方2分时,才胜1局;在决胜局(第5局)采用15分制,每个队只有赢得至少15分,并领先对方2分为胜,在每局比赛中,发球方赢得此球后可得1分,并获得下一球的发球权,否则交换发球权,并且对方得1分.现有甲、乙两支球队进行排球比赛:(1)若前3局比赛中甲已经赢2局,乙赢1局,接下来两队赢得每局比赛的概率均为12,求甲队最后赢得整场比赛的概率;(2)若前4局比赛中甲、乙两队已经各赢2局,在决胜局(第5局)中,两队当前的得分为甲、乙各14分,且甲已获得下一球的发球权.若甲发球时甲赢1分的概率为25 ,乙发球时甲赢1分的概率为35,得分者获得下一球的发球权.设两队打了x (x ≤4)个球后甲赢得整场比赛,求x 的取值及相应的概率P (x ).考点14全概率公式的应用【常用方法】利用全概率公式的思路(1)按照确定的标准,将一个复合事件分解为若干个互斥事件A i(i=1,2,…,n);(2)求P(A i)和所求事件B在各个互斥事件A i发生条件下的概率P(B|A i);(3)代入全概率公式计算.【典例分析14】1、某工厂有四条流水线生产同一产品,已知这四条流水线的产量分别占总产量的15%,20%,30%和35%,且四条流水线的产品不合格率分别为0.05,0.04,0.03和0.02,现从该厂的这一产品中任取一件,问抽到不合格品的概率是多少?。
2025届高中数学一轮复习课件《事件的相互独立性与条件概率》ppt
第1页
第十章 统计、排列组合与概率
第8讲 事件的相互独立性与条件概率
高考一轮总复习•数学
第2页
复习要点 1.在具体情境中,结合古典概型,了解条件概率和两个事件相互独立的概 率.2.结合古典概型,了解条件概率与独立性的关系,会用乘法公式计算概率.3.结合古典概 型,会利用全概率公式计算概率.
它们相互独立,所以所求概率为(1-β)(1-α)(1-β)=(1-α)(1-β)2,A 正确; 对于 B,三次传输,发送 1,相当于依次发送 1,1,1,
利用相互独立事件的概率公式判断 A,B.
则依次收到 1,0,1 的事件,是发送 1 接收 1、发送 1 接收 0、发送 1 接收 1 的 3 个事件的 积,
门科目考试成绩的结果互不影响,那么这位同学恰好得 2 个 A+的概率是____3_0___.
高考一轮总复习•数学
解析:(1)P(A)=AA22A66 55=13,P(B)=AA33A66 34=15, A66
P(C)=2AA3366A33=110,P(D)=AA6336=A133=16. 对于 A,P(AB)=A22AA3366A23=110≠P(A)·P(B),故 A 错误; 对于 B,P(AC)=2C15AA6622A22=74200=118≠P(A)P(C),故 B 错误; 对于 C,P(AD)=C12AC1466C15=118=P(A)·P(D),故 C 正确; 对于 D,P(BC)=P(C)≠P(B)P(C),故 D 错误.
解析 答案
高考一轮总复习•数学
第10页
3 . (2024·四 川 成 都 七 中 月 考 ) 某 保 险 公 司 将 其 公 司 的 被 保 险 人 分 为 三 类 : “ 谨 慎
相互独立事件、条件概率与全概率公式课件-2025届高三数学一轮复习
P B =
6
36
=
1
,P
6
AB =
2
36
=
1
,所以P
18
A|B =
P AB
P B
=
1
.
3
(2)当向上的点数不相同时,向上的点数之和为4或6的概率是多少?
解 记事件Mi 表示“两颗骰子向上的点数之和为i”,则事件“向上的点数之和为4或6”可
(1)首先确定各事件之间是相互独立的;
(2)确定这些事件可以同时发生;
(3)求出每个事件的概率,再求积.
题型二 条件概率
典例3 抛掷两颗质地均匀的骰子各一次.
(1)当向上的点数之和为7时,其中有一个的点数是2的概率是多少?
解 记事件A表示“两颗骰子中,向上的点数有一个是2”,事件B表示“两颗骰子向上的
斥事件是指在同一试验中,两个事件不会同时发生,计算公式为
P A∪B =P A +P B .
2.计算条件概率除了应用公式P B|A =
P B|A =
数.
n AB
n A
P AB
P A
外,还可以利用缩减公式法,即
,其中n A 为事件A包含的样本点数,n AB 为事件AB包含的样本点
3.全概率公式的意义在于,当直接计算事件B发生的概率P B 较为困难时,可以先找到样
3
6
1
2
2
6
1
3
1
6
∴ P A = = ,P B = = ,P AB = ,∴ P AB = P A ⋅ P B ,∴ 事件A与B相
互独立.
[对点训练1] 掷一枚正方体骰子一次,设事件A为“出现偶数点”,事件B为
高三数学一轮复习课件(理) 第13章13.3 互斥事件的概率、条件概率与相互独立事件的概率)
B.如果A、B不是相互独立事件,那么它们一定 是互斥事件
C.如果A、B是相互独立事件,那么它们一定不 是互斥事件 D. 如果 A+B 是必然事件,那么它们一定是对立 事件
2. 甲、乙两人独立解同一道题,甲解决这道题 的概率是0.7,乙解决这道题的概率为0.8,那么恰有
密码”为事件B,则A与B相互独立. (1) P( A B) P( A) P( B) 1 1 1 . 3 4 12 (2) P A B P( A) P( B) (1 1 ) 1 1 1 .
(3) P P ( A B A B ) P ( A) P ( B ) P ( A) P ( B )
一次取出三个球,则这三个球中至少有一个红球的
概率是多少?
解析: (方法一)记“三个球中至少有一个红 球”为事件 A ,“三个球中恰有一个红球”为事件 A1 , “三个球中有两个红球”为事件A2,“三个球全是红
球”为事件A3,则A=A1+A2+A3,且这三个事件两两互斥,
1 2 2 1 3 C · C C · C C 26 4 7 4 7 4 故得P(A)=P(A1)+P(A2)+P(A3)=3 3 3 . C11 C11 C11 33
对立事件的概率.
拓展训练:从标有1,2,3,4,5,6,7的7个小
球中取出一个,记下它上面的数字,放回并搅动,
再取出一球,记下它上面的数字,若两个数字之和 大于 11 或两个数字之积小于 11 就能中奖,问中奖的 概率是多少?
解析: 从 7个小球中有放回地两次取球,两个 6 数字之和大于11的概率是 ,两个数字之积小于11 49 21 3 , 因为两个数字之和大于11与两个数 的概率是
高考数学一轮总复习 第67讲 互斥事件、独立事件与条件概率课件 理 新人教A版
(1)有放回地在第三个盒子中连续取球 4 次,求这 4 次中 有 2 次取到红球的概率;
(2)先在第一个盒子中任取一球,若取到标有字母 A 的球, 则在第二个盒子中任取一球,若取到标有字母 B 的球,则在 第三个盒子中任取一球,求第二次取出的是红球的概率.
故所求事件的概率 P=P(A1+A2+A3) =P(A1)+P(A2)+P(A3) =CC31330+CC23C31017+CC13C31027=1274.
第二十五页,共50页。
【点评】分析求解有关复杂事件的概率的常用途径是: ①依据某标准将复杂事件分拆为彼此互斥的若干个简单事 件;②依据“正难则反”的思想,将问题转化为其对立事件 的概率.
第十六页,共50页。
4.(2011·湖南卷)如图,EFGH是以O为圆心,半径为1的圆内
接正方形.将一颗豆子随机地扔到该圆内,用A表示事件
“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形
OHE(阴影部分)内”,则:
(1)P(A)=
2 π
;
(2)P(B|A)=
1 4
.
第十七页,共50页。
【解析】(1)S 圆=π,S 正方形=( 2)2=2, 根据几何概型的求法有:P(A)=SS正圆方形=π2; (2)由∠EOH=90°,S△EOH=41S 正方形=21,
第三十六页,共50页。
(2)3 人中有 2 人被选中的概率 P2=P(AB C +A B C+ A BC) =52×34×(1-31)+25×(1-34)×31+(1-52)×34×31 =2630, 3 人中只有 1 人被选中的概率
届高三一轮数学理复习互斥事件独立事件与条件概率讲课文档
(2)设 E={从第一个盒子中取到标有字母 A 的球},F= {从第一个盒子中取到标有字母 B 的球},R={第二次取到 的球是红球},
则 P(E)=170,P(F)=130,P(R|E)=12,P(R|F)=45, 则所求概率为 P(R)=P(R|E)·P(E)+P(R|F)·P(F)=12×170 +45×130=15090.
第十五页,共38页。
解析:(1)由于每人参加其中一个社团的概率是14, 所以,甲、乙两人都参加 C 社团的概率为14×14=116. (2)总的可能情况为 4×4×4=64(种), 但由于三人中任何两人都不在同一社团的总数为 4×3×2=24(种), 所以,甲、乙、丙三名学生中至少有两人参加同一社 团的概率 1-2644=58.
(2)记“一病人被治愈”为事件 A,则 P(A)=0.8,则至 少有 6 人被治愈的概率为:
P=P10(6)+P10(7)+P10(8)+P10(9)+P10(10) =C610×0.86×0.24+C710×0.87×0.23+C810×0.88×0.22+ C910×0.89×0.2+C1100×0.810 =0.97.
第三十七页,共38页。
(2)设“这 4 个人中去参加甲游戏的人数大于去参加乙 游戏的人数”为事件 B,则 B=A3∪A4,
由于 A3 与 A4 互斥, 故 P(B)=P(A3)+P(A4)=C34(13)3(23)+C44(13)4=19, 所以,这 4 个人去参加甲游戏的人数大于去参加乙游 戏的人数的概率为19. (3)略.
第二十七页,共38页。
解析:(1)设 A={第一次取到不合格品},B={第二次取 到不合格品}.
①P(A)=1500=0.05. ②根据条件概率的定义计算,需要先求出事件 AB 的概 率.
高三一轮复习《互斥事件、独立事件与条件概率》
高三一轮复习《互斥事件、独立事件与条件概率》考纲考点:1、互斥事件的意义,会用互斥事件的概率加法公式计算事件的概率2、独立事件的意义,会用独立事件的概率乘法公式计算事件的概率3、条件概率的概念,会用条件概率公式计算条件概率考情分析:互斥事件、独立事件(相互独立事件同时发生、独立重复)与条件概率是高考考查的中点内容,主要以应用题形式考查,以现实生活为背景,但实质仍是对互斥事件、独立事件与条件概率的考查。
考查中选、填、解答题中都可出现。
理科试题中往往与分布列、期望结合起来考查。
试题总体难度不大。
知识点:1、互斥事件: 叫做互斥事件互斥事件A 、B 有一个发生的概率计算公式:,则)(B A P = 。
2、对立事件: 叫做对立事件;A 的对立事件通常用 表示,且)(A p = 。
对立事件与互斥事件的关系: 。
3、独立事件:(1)若A 、B 为两个事件,如果 ,则称事件A 与B 相互独立,即相互独立事件同时发生的概率满足乘法公式。
(2)独立重复试验:在相同条件下重复做n 次试验,各次试验结果相互不影响,那么就称为n 次独立重复试验。
若每次试验事件A 发生的概率都为p ,则n 次独立重复试验中事件A 恰好发生k 次的概率)(k P n = 。
4、条件概率:对于两个事件A 和B ,在已知事件A 发生的条件下事件B 发生的概率,称为事件A 发生的条件下事件B 的 。
记为 ,且)|(A B P = 。
题型一、事件的判断1、下列说法正确的是( )A 、事件A 、B 中至少有一个发生的概率一定比A 、B 恰有一个发生的概率大B 、只有当事件A 、B 为对立事件时,A 、B 中至少有一个发生的概率才等于事件A 发生的概率加上B 事件发生的概率C 、互斥事件一定是对立事件,对立事件不一定是互斥事件D 、互斥事件不一定是对立事件,对立事件一定是互斥事件2、从装有3个红球和2个白球的口袋内任取2个球,那么互斥而不对立的是( )A 、至少有一个白球;都是白球B 、至少有一个白球;至少有一个红球C 、至少有一个白球;都是红球D 、恰有一个白球;恰有2个红球3、掷一颗质地均匀的骰子,观察所得的点数a ,设事件A=“a 为3”,B=“a 为4”,C=“a 为奇数”,则下列结论正确的是( )A 、A 与B 为互斥事件 B 、A 与B 为对立事件C 、A 与C 为对立事件D 、A 与C 为互斥事件题型二、互斥事件与对立事件的概率及应用1、中国乒乓球队甲、乙两名运动员参加奥运乒乓球女子单打比赛,甲夺得冠军的概率是73,乙夺得冠军的概率是41,那么中国队夺得女子乒乓球单打冠军的概率 。
2024届新高考一轮总复习人教版 第十章事件的相互独立性、条件概率与全概率公式 课件(33张)
3.全概率公式 一般地,设 A1,A2,…,An 是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且 P(Ai)>0,
n
i=1,2,…,n,则对任意事件 B⊆Ω,有 P(B)=P(Ai)P(B|Ai),我们称这个公式为全概
i=1
率公式.
[必记结论] 1.必然事件 Ω,不可能事件∅都与任意事件相互独立.
答案:C
4.(选择性必修第三册 P50 例 5 改编)两台机床加工同样的零件,它们出现废品的概 率分别为 0.03 和 0.02,加工出的零件放在一起.设第一台机床加工的零件比第二台的多 一倍,则任取一个零件是合格品的概率为________.
解析:第一台机床加工的零件比第二台的多一倍,那么第一台机床加工的零件所占 的比例是23,第二台机床加工的零件占13,则任取一件为不合格品的概率为23×0.03+13 ×0.02=725,故为合格品的概率为 1-725=7735.
2.事件 A,B 相互独立的充要条件是 P(AB)=P(A)·P(B).
3.当 P(A)>0 时,事件 A 与 B 相互独立⇔P(B|A)=P(B).
4.贝叶斯公式:设 A1,A2,…,An 是一组两两互斥的事件,A1∪A2∪…∪An=Ω,
且 P(Ai)>0,i=1,2,…,n,则对任意事件 B⊆Ω,P(B)>0,有 P(Ai|B)=P(APi)P(B(B) |Ai)=
第十章 计数原理、概率、随机变量及其分布
[课标解读] 1.了解两个事件相互独立的含义. 2.理解随机事件的独立性和条件概 率的关系,会利用全概率公式计算概率.
备考第 1 步——梳理教材基础,落实必备知识
1.条件概率
(1)条件概率的定义
P(AB)
2024年高考数学一轮复习课件(新高考版) 第10章 事件的相互独立性与条件概率、全概率公式
§10.5 事件的相互独立性与条件概率、全概率公式第十章 计数原理、概率、随机变量及其分布2024年高考数学一轮复习课件(新高考版)考试要求1.了解两个事件相互独立的含义.2.理解随机事件的独立性和条件概率的关系,会利用全概率公式计算概率.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.相互独立事件(1)概念:对任意两个事件A 与B ,如果P (AB )=__________成立,则称事件A 与事件B 相互独立,简称为独立.P (A )·P (B)B2.条件概率(1)概念:一般地,设A,B为两个随机事件,且P(A)>0,我们称P(B|A)=______为在事件A发生的条件下,事件B发生的条件概率,简称条件概率.(2)两个公式①利用古典概型:P(B|A)=_______;P(A)P(B|A)②概率的乘法公式:P(AB)=___________.3.全概率公式一般地,设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有P(B)=______________.常用结论1.如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2…A n)=P(A1)P(A2)…P(A n).2.贝叶斯公式:设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件判断下列结论是否正确(请在括号中打“√”或“×”)(1)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( )(2)若事件A ,B 相互独立,则P (B |A )=P (B ).( )(3)抛掷2枚质地均匀的硬币,设“第一枚正面朝上”为事件A ,“第2枚正面朝上”为事件B ,则A ,B 相互独立.( )(4)若事件A 1与A 2是对立事件,则对任意的事件B ⊆Ω,都有P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2).( )√×√√1.甲、乙两人独立地破解同一个谜题,破解出谜题的概率分别为则谜题没被破解出的概率为√设“甲独立地破解出谜题”为事件A,“乙独立地破解出谜题”为事件B,2.在8件同一型号的产品中,有3件次品,5件合格品,现不放回地从中依次抽取2件,在第一次抽到次品的条件下,第二次抽到次品的概率是√当第一次抽到次品后,还剩余2件次品,5件合格品,由题意得,居民甲第二天去A 食堂用餐的概率P =0.5×0.6+0.5×0.5=0.55.3.智能化的社区食堂悄然出现,某社区有智能食堂A ,人工食堂B,居民甲第一天随机地选择一食堂用餐,如果第一天去A 食堂,那么第二天去A 食堂的概率为0.6;如果第一天去B 食堂,那么第二天去A 食堂的概率为0.5,则居民甲第二天去A 食堂用餐的概率为_____.0.55第二部分例1 (1)(2021·新高考全国Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则√A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立事件甲与事件丙同时发生的概率为0,P(甲丙)≠P(甲)P(丙),故A错误;事件丙与事件丁是互斥事件,不是相互独立事件,故D错误.(2)(2023·临沂模拟)“11分制”乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,若甲先发球,两人又打了2个球后该局比赛结束的概率为______;若乙先发球,两人又打了4个球后该局比赛结束,则甲获胜的概率为 _____.0.50.1记两人又打了X个球后结束比赛,设双方10∶10平后的第k个球甲获胜为事件A k(k=1,2,3…),=0.5×0.4+0.5×0.6=0.5.思维升华求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于他们各自发生的概率之积.(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.跟踪训练1 小王某天乘火车从重庆到上海,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列火车正点到达的概率;由题意得A,B,C之间相互独立,所以恰好有两列火车正点到达的概率为=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)这三列火车恰好有一列火车正点到达的概率;恰好有一列火车正点到达的概率为=0.8×0.3×0.1+0.2×0.7×0.1+0.2×0.3×0.9=0.092.(3)这三列火车至少有一列火车正点到达的概率.三列火车至少有一列火车正点到达的概率为=1-0.2×0.3×0.1=0.994.例2 (1)(2022·哈尔滨模拟)七巧板是中国民间流传的智力玩具.据清代陆以湉《冷庐杂识》记载,七巧板是由宋代黄伯思设计的宴几图演变而来的,原为文人的一种室内游戏,后在民间逐步演变为拼图版玩具.到明代,七巧板已基本定型为由如图所示的七块板组成:五块等腰直角三角形(其中两块小型三角形、一块中型三角形和两块大型三角形)、一块正方形和一块平行四边形,可以拼成人物、动物、植物、房亭、楼阁等1 600种以上图案.现从七巧板中取出两块,已知取出的是三角形,则两块板恰好是全等三角形的概率为√设事件A为“从七巧板中取出两块,取出的是三角形”,事件B为“两块板恰好是全等三角形”,(2)逢年过节走亲访友,成年人喝酒是经常的事,但是饮酒过度会影响健康,某调查机构进行了针对性的调查研究.据统计,一次性饮酒4.8两,诱发某种疾病的频率为0.04,一次性饮酒7.2两,诱发这种疾病的频率为0.16.将频率视为概率,已知某人一次性饮酒4.8两未诱发这种疾病,则他还能继续饮酒2.4两,不诱发这种疾病的概率为√记事件A:这人一次性饮酒4.8两未诱发这种疾病,事件B:这人一次性饮酒7.2两未诱发这种疾病,则事件B|A:这人一次性饮酒4.8两未诱发这种疾病,继续饮酒2.4两不诱发这种疾病,则B⊆A,AB=A∩B=B,P(A)=1-0.04=0.96,P(B)=1-0.16=0.84,思维升华求条件概率的常用方法(3)缩样法:去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解.跟踪训练2 (1)(2023·六盘山模拟)已知5道试题中有3道代数题和2道几何题,每次从中抽取一道题,抽出的题不再放回.在第1次抽到代数题的条件下,第2次抽到几何题的概率为√设事件A=“第1次抽到代数题”,事件B=“第2次抽到几何题”,由题意知,第一次击中与否对第二次没有影响,②在仅击中一次的条件下,第二次击中的概率是_____.例3 (1)一份新高考数学试卷中有8道单选题,小胡对其中5道题有思路,3道题完全没有思路.有思路的题做对的概率是0.9,没有思路的题只能猜一个答案,猜对答案的概率为0.25,则小胡从这8道题目中随机抽取1道做对的概率为√设事件A表示“小胡答对”,事件B表示“小胡选到有思路的题”.则小胡从这8道题目中随机抽取1道做对的概率(2)在数字通信中,信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知当发送信号0时,被接收为0和1的概率分别为0.93和0.07;当发送信号1时,被接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的,则接收的信号为1的概率为√A.0.48B.0.49C.0.52D.0.51设事件A=“发送的信号为0”,事件B=“接收的信号为1”,思维升华利用全概率公式解题的思路(1)按照确定的标准,将一个复杂事件分解为若干个互斥事件A i(i=1,2,…,n).(2)求P(A i)和所求事件B在各个互斥事件A i发生条件下的概率P(A i)P(B|A i).(3)代入全概率公式计算.跟踪训练3 (1)设甲乘汽车、动车前往某目的地的概率分别为0.4,0.6,汽车和动车正点到达目的地的概率分别为0.7,0.9,则甲正点到达目的地的概率为√A.0.78B.0.8C.0.82D.0.84设事件A表示“甲正点到达目的地”,事件B表示“甲乘动车到达目的地”,事件C表示“甲乘汽车到达目的地”,由题意知P(B)=0.6,P(C)=0.4,P(A|B)=0.9,P(A|C)=0.7.由全概率公式得P(A)=P(B)P(A|B)+P(C)P(A|C)=0.6×0.9+0.4×0.7=0.54+0.28=0.82.(2)(2022·郑州模拟)第24届冬奥会于2022年2月4日至20日在北京和张家口举行,中国邮政陆续发行了多款纪念邮票,其图案包括“冬梦”“冰墩墩”和“雪容融”等.小王有3张“冬梦”、2张“冰墩墩”和2张“雪容融”邮票;小李有“冬梦”“冰墩墩”和“雪容融”邮票各1张.小王现随机取出一张邮票送给小李,分别以A1,A2,A3表示小王取出的是“冬梦”“冰墩墩”和“雪容融”的事件;小李再随机取出一张邮票,以B表示他取出的邮票是“冰墩墩”的事件,则P(B|A2)=_____,P(B)=_____.第三部分A.事件A与B互斥B.事件A与B对立√C.事件A与B相互独立D.事件A与B既互斥又相互独立∴P(AB)=P(A)P(B)≠0,∴事件A与B相互独立,事件A与B不互斥也不对立.4个都不能正常照明的概率为(1-0.8)4=0.001 6,只有1个能正常照明的概率为4×0.8×(1-0.8)3=0.025 6,所以至少有两个能正常照明的概率是1-0.001 6-0.025 6=0.972 8.2.(2023·开封模拟)某盏吊灯上并联着4个灯泡,如果在某段时间内每个灯泡能正常照明的概率都是0.8,那么在这段时间内该吊灯上的灯泡至少有两个能正常照明的概率是A.0.819 2B.0.972 8C.0.974 4D.0.998 4√3.根据历年的气象数据可知,某市5月份发生中度雾霾的概率为0.25,刮四级以上大风的概率为0.4,既发生中度雾霾又刮四级以上大风的概率为0.2.则在发生中度雾霾的情况下,刮四级以上大风的概率为√A.0.8B.0.625C.0.5D.0.1设“发生中度雾霾”为事件A,“刮四级以上大风”为事件B,所以P(A)=0.25,P(B)=0.4,P(AB)=0.2,4.(2022·青岛模拟)甲、乙两名选手进行象棋比赛,已知每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4,若采用三局二胜制,则甲最终获胜的概率为√A.0.36B.0.352C.0.288D.0.648由题意可得甲最终获胜有两种情况:一是前两局甲获胜,概率为0.6×0.6=0.36,二是前两局甲一胜一负,第三局甲胜,概率为×0.6×0.4×0.6=0.288,这两种情况互斥,∴甲最终获胜的概率P=0.36+0.288=0.648.记事件A 为“该考生答对题目”,事件B 1为“该考生知道正确答案”,事件B 2为“该考生不知道正确答案”,则P (A )=P (A |B 1)·P (B 1)+P (A |B 2)·P (B 2)=1×0.5+0.25×0.5=0.625.5.某考生回答一道四选一的考题,假设他知道正确答案的概率为0.5,知道正确答案时,答对的概率为100%,而不知道正确答案时猜对的概率为25%,那么他答对题目的概率为A.0.625B.0.75C.0.5D.0.25√6.将甲、乙、丙、丁4名医生随机派往①,②,③三个村庄进行义诊活动,每个村庄至少派1名医生,A表示事件“医生甲派往①村庄”; B表示事件“医生乙派往①村庄”; C表示事件“医生乙派往②村庄”,则A.事件A与B相互独立B.事件A与C相互独立√。
事件的相互独立性与条件概率、全概率公式课件-2025届高三数学一轮复习
3.全概率公式
一般地,设 , ,⋯ , 是一组两两互斥的事件,
∪ ∪ ⋯ ∪ = ,且 > , = ,2,⋯ ,,则对任意的事件 ⊆ ,
∑ ∣
有 =⑧_________________.
=
我们称上面的公式为全概率公式.
−
+ −
= −
+ − ,故C不正确;对于D,
发送0,采用三次传输方案译码为0,相当于发0,0,0,收到0,0,1或
0,1,0或1,0,0或0,0,0,则此方案的概率
= −
+ −
= −
相互独立事件不一定互斥.
2.条件概率
(1)概念:一般地,设,为两个随机事件,且 > ,我们称②
| =
_______________为在事件发生的条件下,事件发生的条件概率,简称
条件概率.
(2)两个公式
①利用古典概型: |
=③______.
|
=
=
,
=
=
,由条件概率
.
方法二(样本点数法):不放回地依次随机抽取2道题作答,样本空间有
× = 个样本点, = × = , = × = ,
所以 | =
=
=
.
注意 | 和 | 的区别.
1.事件的关系与运算
(1),都发生的事件为;,都不发生的事件为.
高考数学一轮总复习 7.50 互斥事件和独立事件的概率及条件概率课件 理
P(A|
_
B
)P(
_
B
)=94×23+13×13=2117.
【点评】条件概率的概念性较强,在审题时注意和
相互独立事件加以区分,条件概率P(B|A)的含义中具
ห้องสมุดไป่ตู้
有A的发生影响B发生的样本容量.
二、互斥事件、对立事件及其概率的计算 例2袋中有 12 个小球,分别为红球,黑球、黄球、
绿球,从中任取一球,得到红球的概率为14,得到黑球 或黄球的概率为152,得到黑球或绿球的概率是21,试求 得到黑球、黄球、绿球的概率各是多少?
而 P(B)=CC16011CC4911,P(C)=CC16011CC5911,P(D)=CC411·01CC9161, ∴P(A)=2940+3900+2940=7980=1135.
方法 2:设事件 A:甲乙两人中至少有一人抽到选 择题,则其对立事件为-A :甲乙两人均抽判断题.
∴P(-A )=CC14011CC3911=1920,∴P(A)=1-1920=7980=1135. 故甲、乙两人中至少有一人抽到选择题的概率为
1135.
【知识要点】
1.互斥事件与对立事件
(1)互斥事件:若A∩B为不可能事件(A∩B=∅), 则称事件A与事件B互斥,其含义是:事件A与事 件B在任何一次试验中不会同时发生.
(2)对立事件:若A∩B为不可能事件,而A∪B为 必然事件,那么事件A与事件B互为对立事件,其 含义是:事件A与事件B在任何一次试验中有且仅 有一个发生.
则
P(B∪C|A)=P(B|A)+P(C|A) .
4.相互独立事件
(1)对于事件A,B,若A的发生与B的发生互不影响,则
称
事件A与事件B相互独立.
适用于新教材2024版高考数学一轮总复习:条件概率与全概率公式相互独立事件课件北师大版
5.设甲、乙两射手独立地射击同一目标,他们击中目标的概率分别为
0.8,0.9,则目标被击中的概率为
.
答案 0.98
解析 由题意目标未被击中的概率是(1-0.8)×(1-0.9)=0.02,所以目标被击中
的概率为1-0.02=0.98.
研考点 精准突破
考点一
相互独立事件的概率
例题某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正
1
3
× ×
3
5
1
+3
2
3
3
5
1
3
1
3
2
5
× × + × × =
14
.
45
(2)开始第 5 次发球,甲得分领先,甲、乙比分可能为 4∶0 或 3∶1,记 E 表示事
件:开始第 5 次发球时,甲、乙比分为 4∶0;
P(A)
的定义
条件概率
的性质
条件下事件B发生的条件概率
微思考 P(B|A)与P(A|B)表示的意思相同吗?
提示 不同.P(B|A)表示在事件A发生的条件下,事件B发生的概率;而P(A|B)
表示在事件B发生的条件下,事件A发生的概率.另外从计算公式上看,
()
()
P(B|A)=
,P(A|B)=
第十一章 第五节 条件概率与全概率公式、相互独立事件
内
容
索
引
01
强基础 固本增分
02
研考点 精准突破
1.了解两个随机事件独立性的含义,能利用独立性计算概率.
课标解读
2.了解条件概率,能计算简单随机事件的条件概率.
3.了解条件概率与独立性的关系,会利用乘法公式计算概率.
2025年高考数学一轮复习-9.4-事件的相互独立性、条件概率与全概率公式【课件】
2
3
3
ഥ )=
不相互独立,故C是假命题;对于D,由题意得, P (
1
2
ഥ
ഥ
ഥ 相互独立,则 P (
ഥ
ഥ )= P (
ഥ)
, P ( )= ,若 ,
2
3
1
ഥ
P ( )= ,故D是假命题.故选B.
3
目录
高中总复习·数学(提升版)
(2)(2024·全国乙卷10题)某棋手与甲、乙、丙三位棋手各比赛一
( A | B )= P (
A
).
目录
高中总复习·数学(提升版)
1. 一个质地均匀的正方体,六个面分别标有数字1,2,3,4接触的面上的数字得到样本空
间Ω={1,2,3,4,5,6},设事件 E ={1,2},事件 F ={1,
3},事件 G ={2,4},则(
3
P ( A | B )=
1
3
.
解析:∵ P ( B | A )= P ( B ),∴ P ( AB )= P ( A ) P
( B ),∴ A , B 相互独立.由结论2, P ( A | B )= P ( A )=1-
2
1
ҧ
P ( )=1- = .
3
3
目录
课堂演练
考点 分类突破
精选考点 典例研析 技法重悟通
)
A. E 与 F 不是互斥事件
B. F 与 G 是对立事件
C. E 与 F 是独立事件
D. F 与 G 是独立事件
目录
高中总复习·数学(提升版)
解析: 因为 E ∩ F ={1},所以 E 与 F 不是互斥事件,A正确;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三一轮复习《互斥事件、独立事件与条件概率》
考纲考点:1、互斥事件的意义,会用互斥事件的概率加法公式计算事件的概率
2、独立事件的意义,会用独立事件的概率乘法公式计算事件的概率
3、条件概率的概念,会用条件概率公式计算条件概率
考情分析:互斥事件、独立事件(相互独立事件同时发生、独立重复)与条件概率是高考考查的中点内容,主要以应用题形式考查,以现实生活为背景,但实质仍是对互斥事件、独立事件与条件概率的考查。
考查中选、填、解答题中都可出现。
理科试题中往往与分布列、期望结合起来考查。
试题总体难度不大。
知识点:
1、互斥事件:叫做互斥事件
互斥事件A、B有一个发生的概率计算公式:,则)
P = 。
A
(B
2、对立事件:叫做对立事件;A的对立事件通常
用表示,且)
p= 。
对立事件与互斥事件的关系:。
(A
3、独立事件:(1)若A、B为两个事件,如果,则称事件A与B
相互独立,即相互独立事件同时发生的概率满足乘法公式。
(2)独立重复试验:在相同条件下重复做n次试验,各次试验结
果相互不影响,那么就称为n次独立重复试验。
若每次试验
事件A发生的概率都为p,则n次独立重复试验中事件A恰
= 。
好发生k次的概率)
P
(k
n
4、条件概率:对于两个事件A和B,在已知事件A发生的条件下事件B发生的
概率,称为事件A发生的条件下事件B的。
记为,且B
P= 。
|
)
(A
题型一、事件的判断
1、下列说法正确的是()
A、事件A、B中至少有一个发生的概率一定比A、B恰有一个发生的概率大
B、只有当事件A、B为对立事件时,A、B中至少有一个发生的概率才等于
事件A发生的概率加上B事件发生的概率
C、互斥事件一定是对立事件,对立事件不一定是互斥事件
D、互斥事件不一定是对立事件,对立事件一定是互斥事件
2、从装有3个红球和2个白球的口袋内任取2个球,那么互斥而不对立的是()
A、至少有一个白球;都是白球
B、至少有一个白球;至少有一个红球
C、至少有一个白球;都是红球
D、恰有一个白球;恰有2个红球
3、掷一颗质地均匀的骰子,观察所得的点数a,设事件A=“a为3”,B=“a为
4”,C=“a为奇数”,则下列结论正确的是()
A、A与B为互斥事件
B、A与B为对立事件
C、A与C为对立事件
D、A与C为互斥事件
题型二、互斥事件与对立事件的概率及应用
1、中国乒乓球队甲、乙两名运动员参加奥运乒乓球女子单打比赛,甲夺得冠军
的概率是
73,乙夺得冠军的概率是4
1,那么中国队夺得女子乒乓球单打冠军的概率 。
2、猎人在距100米处射击一野兔,命中的概率为2
1,如果第一次没有命中,则猎人进行第二次射击,但距离已是150米,如果又没有命中,则猎人进行第三次射击,但距离已是200米,已知此猎人命中的概率与距离的平方成反比,则三次内击中野兔的概率等于 。
3、现有甲、乙、丙、丁四名义工到三个不同的社区参加公益活动。
若每个社区
至少一名义工,则甲、乙两人被分到不同社区的概率为( )
A 、61
B 、65
C 、2710
D 、27
17 4、第16届亚运会于2010年11月12日在中国广州举行,运动会期间来自A 大
学2名和B 大学4名的大学生志愿者,现从这6名志愿者中随机抽取2人到体操比赛场馆服务,至少有一名A 大学志愿者的概率是( )
A 、151
B 、52
C 、53
D 、15
14 5、一射手对同一目标独立地进行三次射击,已知至少命中一次的概率为64
63,则此射手的命中率为 。
6、从男女学生共有36名的班级中,任意选出2名委员,任何人都有同样的当选机会。
如果选得同性委员的概率等于2
1,那么男女生相差 名。
7、在甲、乙两个盒子中分别装有标号为1,2,3,4的四个小球,现从甲、乙两
个盒子中各取1个小球,每个小球被取出的可能性相等。
(1)求取出的两个小球标号恰好相同的概率;
(2)求取出的两个小球的标号至少有一个大于2的概率。
题型三、相互独立事件的概率及应用
1、两个实习生每人加工一个零件,加工为一等品的概率分别为4
332和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为
( )A 、21 B 、125 C 、41 D 、6
1 2、某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回
答出两个问题,即停止答题,晋级下一轮。
假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于 。
3、某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中的目标的概率为 。
4、某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其盖内印有“奖励一瓶”字样即为中奖,中奖概率为6
1。
甲、乙、丙三位同学每人购买了一瓶该饮料。
求:
(1)三位同学都没有中奖的概率;(2)三位同学中至少有两位没有中奖的概率。
5、甲、乙、丙三人射击同一目标,各射击一次,是否击中是相互独立的。
将甲、
乙、丙三人击中目标分别记为事件A 、B 、C ,已知5
1)(,53)(==ABC P A P , )()(15
1)(C P B P C B A P >=且 (1)求至少有一人击中目标的概率;(2)求P(B)、P(C)的值。
6、某射手每次射击击中目标的概率都是3
2,且各次射击的结果互不影响。
(1)假设这名射手射击5次,求恰有2次击中目标的概率;
(2)假设这名射手射击5次,求有3次连续击中目标,另外两次未击中目标的
概率。
7、甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立。
根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6,0.5,0.4,能通过面试的概率分别是0.6,0.6,0.75.求:
(1)甲、乙、丙三个同学中恰有一人通过笔试的概率;
(2)经过两次考试后,至少有一人被该高校预录取的概率。
题型四、条件概率的计算
1、从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则)|(A B P = 。
2、抛掷两颗均匀的骰子,已知第一颗骰子掷出6点,则掷出点数之和不小于10的概率为 。
3、高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是 。
4、从混有5张假钞的20张百元钞票中任意抽取2张,将它们放在验钞机上检验,结果提示其中有假钞,则两张都是假钞的概率为 。
5、某电视台综艺频道主办了一种有奖过关游戏,该游戏设有两关,只有过了第一关,才能玩第二关,每关最多玩两次,连续两次失败者被淘汰出局。
过关者可获奖金:只过第一关获奖金900元,两关全过获奖金3600元。
某同学有幸参与了上述游戏,且该同学每一关每次过关的概率均为3
2,各次过关与否均互不影响。
在游戏过程中,该同学不放弃所有机会。
(1)求该同学获得900元奖金的概率;
(2)若该同学已顺利通过第一关,求他获得3600元奖金的概率。