流体输送机械.ppt
合集下载
化工原理(第四版)谭天恩-第二章-流体输送机械
注意安全防护
在操作流体输送机械时,应注意安全防护 ,穿戴好防护用品,避免发生意外事故。
THANKS
感谢观看
高效节能设计
优化流体输送机械的结构和运行方式,降低能耗,提高能效比。
减少排放
采取有效的措施减少流体输送机械在运行过程中产生的污染物排放, 如采用密封性能好的机械部件、回收利用排放的余热等。
环保材料
选择对环境友好的材料和润滑剂,减少对环境的污染。
资源循环利用
对流体输送机械中的可回收利用部分进行回收再利用,减少资源浪费 。
化工原理(第四版)谭 天恩-第二章-流体 输送机械
目录
• 流体输送机械概述 • 离心泵 • 其他类型的泵 • 流体输送机械的性能比较与选用 • 流体输送机械的维护与故障处理
01
CATALOGUE
流体输送机械概述
流体输送机械的定义与分类
定义
流体输送机械是用于将流体从一 个地方输送到另一个地方的机械 设备。
05
CATALOGUE
流体输送机械的维护与故障处理
流体输送机械的日常维护与保养
定期检查
对流体输送机械进行定期检查,确保其正 常运转,包括检查泵、管道、阀门等部件
是否完好无损,润滑系统是否正常等。
清洗与清洁
定期对流体输送机械进行清洗,清除残留 物和污垢,保持机械内部的清洁,防止堵 塞和腐蚀。
更换磨损部件
流体输送机械的应用
工业生产
在化工、石油、制药等领 域,流体输送机械广泛应 用于原料、半成品和成品 的输送。
能源与环保
流体输送机械在燃煤、燃 气等能源输送以及通风、 除尘等环保领域也有广泛 应用。
城市供暖与空调
在集中供暖和空调系统中 ,流体输送机械用于将热 源或冷源输送到各个用户 。
化工原理ppt-第二章流体输送机械
H
' S
p a p1
g
2022/8/12
22
二、离心泵安装高度
3.允许气蚀余量
H
' S
p a p1
g
由于HS′使用起来不便,有时引入另一表示气蚀性 能的参数,称为气蚀余量。 以NSPH表示,定义为防止气蚀发生,要求离心泵 入口处静压头与动压头之和必须大于液体在输送温 度下的饱和蒸汽压头的最小允许值。
性能曲线包括H~Q曲线、
N~Q曲线和 ~Q曲线。
2022/8/12
9
二、离心泵的性能参数与特性曲线
2.性能曲线
① H~Q特性曲线 随着流量增加,泵的压头下降,
即流量越大,泵向单位重量流体提 供的机械能越小。
② N~Q特性曲线 轴功率随着流量的增加而上升,
所以大流量输送一定对应着大的配 套电机。离心泵应在关闭出口阀的 情况下启动,这样可以使电机的启 动电流最小。
2022/8/12
24
三、离心泵的选用、安装与操作
1.离心泵类型
(1)清水泵:适用于输送清水或物 性与水相近、无腐蚀性且杂质较少的 液体。结构简单,操作容易。 (2)耐腐蚀泵:用于输送具有腐蚀 性的液体,接触液体的部件用耐腐蚀 的材料制成,要求密封可靠。 (3)油泵:输送石油产品的泵,要 求有良好的密封性。 (4)杂质泵:输送含固体颗粒的液 体、稠厚的浆液,叶轮流道宽,叶片 数少。
2022/8/12
26
三、离心泵的选用、安装与操作
3.安装与操作离心泵
(1)安装 ①安装高度不能太高,应小于允许安装高度。 ②尽量减少吸入管路阻力,以减少发生汽蚀可能性。 主要考虑:吸入管路应短而直;吸入管路直径可稍大; 吸入管路减少不必要管件;调节阀装于出口管路。 (2)操作 ①启动前应灌泵,并排气。②应在出口阀关闭情况下 启动泵。③停泵前先关闭出口阀,以免损坏叶轮。④ 经常检查轴封情况
《流体输送输送机械》课件
安全操作:操作人员应熟悉通风 机的操作规程,确保安全操作
管道系统的运行与维护
定期检查:检 查管道是否有 泄漏、腐蚀等
现象
定期清洗:清 洗管道,防止
堵塞和污染
定期润滑:润 滑管道,防止
磨损和生锈
定期维护:维 护管道,确保
其正常运行
流体输送输送机械的故障 诊断与处理
章节副标题
泵的故障诊断与处理
故障诊断方法:如观察、听 诊、测量等
THEME TEMPLATE
感谢观看
泵的常见施:如更换零件、 调整参数、维修等
预防措施:如定期检查、维 护、更换易损件等
压缩机的故障诊断与处理
故障类型:机 械故障、电气 故障、液压故
障等
故障原因:磨 损、腐蚀、堵
塞、泄漏等
故障诊断方法: 观察、听声音、 测量、分析等
故障处理措施: 更换零件、调 整参数、清洗、
流体输送输送机械的应用
石油、天然气等能源输送 化工、制药、食品等行业的物料输送 城市供水、排水、污水处理等市政工程 农业灌溉、排涝等农业工程 船舶、飞机等交通工具的燃料输送 热力、电力等能源输送
流体输送输送机械的组成 与结构
章节副标题
泵的组成与结构
泵体:容纳 流体,承受 压力
叶轮:将流 体加速,产 生压力
章节副标题
流体输送输送机械概述
章节副标题
定义与分类
定义:流体输送输送机械是一 种用于输送流体的机械设备, 包括泵、压缩机、风机等。
分类:根据流体输送输送机械 的工作原理和用途,可以分为 泵、压缩机、风机等类型。
泵:用于输送液体,包括离心 泵、轴流泵、混流泵等。
压缩机:用于压缩气体,包括 离心压缩机、轴流压缩机、混 流压缩机等。
化工原理课件第2章:流体输送
3. 离心泵安装时,应注意选用较大的吸入管路,减少吸入管路的弯头、 阀门等管件,以减少吸入管路的阻力损失。
4. 当液体输送温度较高或液体沸点较低时,可能出现[Hg]为负的情况, 此时应将离心泵安装于贮槽液面以下。
化工原理——流体输送机械
2.2.6 离心泵的类型与选用 1. 类型 ① 清水泵——单级、多级、双吸 ②耐腐蚀泵——用耐腐蚀材料 ③油泵——密封良好 ④液下泵——轴封要求不高 ⑤屏蔽泵——无密封、无泄漏
qV' D' qV D
H
' e
He
D' D
2
Pa' Pa
D' D
3
——切割定律
化工原理——流体输送机械
2.2.4 离心泵的工作点与流量调节 1. 管路特性曲线
K:由管路特性决定, 一般为高度湍流,与流 量无关
化工原理——流体输送机械
管路特性的影响因素 化工原理——流体输送机械
7. 效率:有效功率与轴功率之比,即
Pe
Pa
化工原理——流体输送机械
8. 泵内的能量损失 a. 容积损失
高压液体泄漏到低压处,qV
b. 水力损失 液体内摩擦及液体与泵壳的碰撞,He c. 机械损失 轴与轴承,轴封的摩擦
化工原理——流体输送机械
轴功率:电机提供给泵轴的功率,W
Pa
Pe
H串 2 A 2BoqV2串
并联时的特性曲线为:
H并
A
Bo
qV并 2
2
H串<2H单 qV串>qV单
qV 并<2qV 单 H并>H单
化工原理——流体输送机械
4. 当液体输送温度较高或液体沸点较低时,可能出现[Hg]为负的情况, 此时应将离心泵安装于贮槽液面以下。
化工原理——流体输送机械
2.2.6 离心泵的类型与选用 1. 类型 ① 清水泵——单级、多级、双吸 ②耐腐蚀泵——用耐腐蚀材料 ③油泵——密封良好 ④液下泵——轴封要求不高 ⑤屏蔽泵——无密封、无泄漏
qV' D' qV D
H
' e
He
D' D
2
Pa' Pa
D' D
3
——切割定律
化工原理——流体输送机械
2.2.4 离心泵的工作点与流量调节 1. 管路特性曲线
K:由管路特性决定, 一般为高度湍流,与流 量无关
化工原理——流体输送机械
管路特性的影响因素 化工原理——流体输送机械
7. 效率:有效功率与轴功率之比,即
Pe
Pa
化工原理——流体输送机械
8. 泵内的能量损失 a. 容积损失
高压液体泄漏到低压处,qV
b. 水力损失 液体内摩擦及液体与泵壳的碰撞,He c. 机械损失 轴与轴承,轴封的摩擦
化工原理——流体输送机械
轴功率:电机提供给泵轴的功率,W
Pa
Pe
H串 2 A 2BoqV2串
并联时的特性曲线为:
H并
A
Bo
qV并 2
2
H串<2H单 qV串>qV单
qV 并<2qV 单 H并>H单
化工原理——流体输送机械
《化工原理》第2章 流体输送机械
22
第2章 流体输送机械
2.3 其他类型泵
2.3.1 往复泵
1.往复泵的工作原理 往复泵的装置如图2-15所示,当活塞自 左向右运动时,工作室容积增大,泵体 内压强降低,排出阀受排出管内液体的 压力作用而关闭,吸入阀则受贮槽液面 与泵内压差作用而打开,液体进入泵内, 这就是吸液过程。活塞移至右死点时, 吸液过程结束。当活塞自右向左运动时, 工作室容积减小,泵体内液体压强增大, 吸入阀受压关闭,而排出阀则受缸体内 1.泵缸 2.活塞 3.活塞杆 液体压力开启,将液体排出泵外,这就 4.吸入阀 5.排出阀 是排液过程。 图2-12 往复泵装置简图
图2-11 改变转速时流量变化 的示意图
19
第2章 流体输送机械
2.2.4 离心泵的类型和选用
1.离心泵的类型 化工厂中所用离心泵的种类繁多,按所输送液体的性 质,离心泵可分为清水泵、耐腐蚀泵、油泵、杂质泵等; 按叶轮的吸入方式,可分为单吸泵和双吸泵;按叶轮数目 又可分为单级泵和多级泵。为使各种离心泵能够区别开来, 我国制造的离心泵均用汉语拼音字母作为泵的系列代号, 而在每一个系列内又有各种不同的规格,因此又以不同的 字母和数字加以区别。
4
第2章 流体输送机械
(2)气缚现象 当离心泵启动时,若泵内未能充满液体而存在大量空 气,则由于空气的密度远小于液体的密度,叶轮旋转产生 的惯性离心力很小,在叶轮中心处形成的低压不足以形成 吸入液体所需要的压强差(真空度),这种虽启动离心泵 但不能输送液体的现象称为气缚。可见,离心泵是一种没 有自吸能力的液体输送机械,在启动前必须向泵壳内灌满 液体。
图2-6 离心泵特性曲线
12
第2章 流体输送机械
3.影响离心泵性能的因素 化工生产中,所输送的液体是多种多样的,同一台离 心泵用于输送不同液体时,由于液体的性质不同,泵的性 能就要发生变化。此外,若改变泵的转速和叶轮直径,也 会使泵的性能改变。 (1)密度的影响。 (2)粘度的影响。 (3)转速的影响。 (4)叶轮直径的影响。
化工原理流体流动与输送机械PPT课件
1.1.1.连续介质的假定
质点指的是一个含有大量分子的流体微团,其尺寸远小于 设备尺寸、但比分子自由程却大的多。
连续介质假定:假定流体是由无数内部紧密相连、彼此间 没有间隙的流体质点(或微团)所组成的连续介质。
工程意义:利用连续函数的数学工具,从宏观研究流体。
1.1.2.流体的压缩性
不可压缩性流体:流体的体积不随压力变化而变化,如液 体;
M m M 1 y 1 M 2 y 2 M n y n
y1, y2yn——气体混合物中各组分的摩尔(体积)分数。
11
1 流体流动与输送机Байду номын сангаас——1.1 流体基本性质
1.1.5.压力
流体的压力(p)是流体垂直作用于单位面积上的力,严格 地说应该称压强。称作用于整个面上的力为总压力。
压力(小写)
p
P
A
力(大写) 面积
N [p] m2 Pa
记:常见的压力单位及它们之间的换算关系
1atm =101300Pa=101.3kPa=0.1013MPa
=10330kgf/m2=1.033kgf/cm2
=10.33mH2O =760mmHg
12
1 流体流动与输送机械——1.1 流体基本性质
压力的大小常以两种不同的基准来表示:一是绝对真空, 所测得的压力称为绝对压力;二是大气压力,所测得的压强称 为表压或真空度。一般的测压表均是以大气压力为测量基准。
第1章 流体流动与输送机械
1.1 流体基本性质 1.2 流体静力学 1.3 流体动力学 1.4 流体流动的内部结构 1.5 流体流动阻力 1.6 1.7 流速与流量的测量 1.8 流体输送机械
1
∮计划学时:12学时
∮基本要求:
质点指的是一个含有大量分子的流体微团,其尺寸远小于 设备尺寸、但比分子自由程却大的多。
连续介质假定:假定流体是由无数内部紧密相连、彼此间 没有间隙的流体质点(或微团)所组成的连续介质。
工程意义:利用连续函数的数学工具,从宏观研究流体。
1.1.2.流体的压缩性
不可压缩性流体:流体的体积不随压力变化而变化,如液 体;
M m M 1 y 1 M 2 y 2 M n y n
y1, y2yn——气体混合物中各组分的摩尔(体积)分数。
11
1 流体流动与输送机Байду номын сангаас——1.1 流体基本性质
1.1.5.压力
流体的压力(p)是流体垂直作用于单位面积上的力,严格 地说应该称压强。称作用于整个面上的力为总压力。
压力(小写)
p
P
A
力(大写) 面积
N [p] m2 Pa
记:常见的压力单位及它们之间的换算关系
1atm =101300Pa=101.3kPa=0.1013MPa
=10330kgf/m2=1.033kgf/cm2
=10.33mH2O =760mmHg
12
1 流体流动与输送机械——1.1 流体基本性质
压力的大小常以两种不同的基准来表示:一是绝对真空, 所测得的压力称为绝对压力;二是大气压力,所测得的压强称 为表压或真空度。一般的测压表均是以大气压力为测量基准。
第1章 流体流动与输送机械
1.1 流体基本性质 1.2 流体静力学 1.3 流体动力学 1.4 流体流动的内部结构 1.5 流体流动阻力 1.6 1.7 流速与流量的测量 1.8 流体输送机械
1
∮计划学时:12学时
∮基本要求:
流体输送与流体输送机械_(化工单元操作过程)-PPT精品文档
往复泵的输出流量
往复泵的理论平均流量V(m3/s) 单缸单动泵
ASn 60 ( 2 A a ) Sn V= 60 V=
单缸双动泵
式中:A —— 活塞面积 m2 S —— 活塞的冲程 m(活塞在两端点间移动的距离) n —— 活塞往复的频率 1/min a —— 活塞杆的截面积 m2 活门不能及时启闭和活塞环密封不严等原因造成容积损失。
往复泵的输出流量
单动往复泵流量不连续,流量曲线与活塞排液冲程的速度变 化规律相一致,是半周正弦曲线。
V
后果:引起流体的惯性阻力损 失,增加能量消耗,诱发管路 系统的机械振动。
0
V
2 3 (a) 单动泵的流量曲线
0 V
2
3
4
(b) 双动泵的流量曲线
0
2
34Βιβλιοθήκη 解决方法: (1)采用双动泵或多缸并联 (2)在往复泵的压出口与吸入口处设置空气室,利用气体 的可压缩性来缓冲瞬间流量增大或减小。
往复泵的性能特点
4.流量不均匀,排出压力波动 为减轻之,常采用多作用往复泵或设置空气室。 5.转速不宜太快 电动往复泵转速多在200~300 r/min以下,若n过 高,泵阀迟滞造成的容积损失就会相对增加;泵 阀撞击更为严重,引起噪声和磨损;液流和运动 部件的惯性力也将随之增加,产生有害的影响。 由于n受限,往复泵流量不大。 6.对运送液体污染度不是很敏感,但液体含固体杂质 的时,泵阀容易磨损和泄漏 ,应装吸入滤器。 7.结构比较复杂,易损件(活塞环、泵阀、填料等)较 多 由于上述特点,笨重(在Q相同时与其它泵相比) , 造价高,管理维护麻烦,在许多场合它已被离心 泵所取代。
排除方法 定期清洗或更换过滤器 提高炉压,加温,夏季罐不满时可用 压风机吹搅 适量掺入冷水进行降温 调整盘根使靠背轮转动灵活为宜 重新填加新盘根 卸下叶轮进行清洗 关掉出口闸门,打开放空闸门放空到 液体自然流出 打开电机接线盒调整接线头 打开泵体进行紧固 启泵时出口闸门要关严但不能太死
流体输送输送机械-资料.ppt
在叶轮与泵壳间安装一固定不动 的带有叶片的导轮(diffuser), 也可减少此项能量损失。
c
cr
u
R
机械损失:泵轴与轴承之间、泵轴与密封填料之间等产生的 机械摩擦造成的能量损失。
离心泵的特性曲线(Characteristic curves)
H [m] N [kW]
[%]
在一定转速下,泵的轴功 率随输送流量的增加而增 大,流量为零时,轴功率 最小。关闭出口阀启动离 心泵,启动电流最小。
12 30
8
N
8 20
4
4 10
0 0
20 40 60 80 100 120 1400
0
Q/ m3/h
离心泵的特性曲线反映了泵的基本性能,由制造厂附于产品 样本中,是指导正确选择和操作离心泵的主要依据。以下逐 一对其进行讨论。
离心泵的特性曲线(Characteristic curves)
H—V 曲线
液体密度的影响
离心泵的理论流量和理论压头与液体密度无关,说明 H—V
曲线不随液体密度而变,由此 —V 曲线也不随液体密度而
变。离心泵所需的轴功率则随液体密度的增加而增加,即 N—V 曲线要变。 注意:叶轮进、出口的压差 p 正比于液体密度。
气缚现象(airbound)
泵启动前空气未排尽或运转中有空气漏入,使泵内流体平均 密度下降,导致叶轮进、出口压差减小。或者当与泵相连的 出口管路系统势压头一定时,会使泵入口处的真空度减小、 吸入流量下降。严重时泵将无法吸上液体。
容积损失:一部份已获得能量的高压液体由叶轮出口处通过 叶轮与泵壳间的缝隙或从平衡孔泄漏(Leakage)返回到叶 轮入口处的低压区造成的能量损失。 解决方法:使用半开式和蔽式叶轮。蔽式叶轮容积损失量小, 但叶轮内流道易堵塞,只适宜输送清洁液体。开式叶轮不易 堵塞,但容积损失大故效率低。半开式介于二者之间。
c
cr
u
R
机械损失:泵轴与轴承之间、泵轴与密封填料之间等产生的 机械摩擦造成的能量损失。
离心泵的特性曲线(Characteristic curves)
H [m] N [kW]
[%]
在一定转速下,泵的轴功 率随输送流量的增加而增 大,流量为零时,轴功率 最小。关闭出口阀启动离 心泵,启动电流最小。
12 30
8
N
8 20
4
4 10
0 0
20 40 60 80 100 120 1400
0
Q/ m3/h
离心泵的特性曲线反映了泵的基本性能,由制造厂附于产品 样本中,是指导正确选择和操作离心泵的主要依据。以下逐 一对其进行讨论。
离心泵的特性曲线(Characteristic curves)
H—V 曲线
液体密度的影响
离心泵的理论流量和理论压头与液体密度无关,说明 H—V
曲线不随液体密度而变,由此 —V 曲线也不随液体密度而
变。离心泵所需的轴功率则随液体密度的增加而增加,即 N—V 曲线要变。 注意:叶轮进、出口的压差 p 正比于液体密度。
气缚现象(airbound)
泵启动前空气未排尽或运转中有空气漏入,使泵内流体平均 密度下降,导致叶轮进、出口压差减小。或者当与泵相连的 出口管路系统势压头一定时,会使泵入口处的真空度减小、 吸入流量下降。严重时泵将无法吸上液体。
容积损失:一部份已获得能量的高压液体由叶轮出口处通过 叶轮与泵壳间的缝隙或从平衡孔泄漏(Leakage)返回到叶 轮入口处的低压区造成的能量损失。 解决方法:使用半开式和蔽式叶轮。蔽式叶轮容积损失量小, 但叶轮内流道易堵塞,只适宜输送清洁液体。开式叶轮不易 堵塞,但容积损失大故效率低。半开式介于二者之间。
常见泵的知识讲解ppt课件
水泵
水泵的分类 1、按泵轴方向可分为卧式、立式、斜式 2、按壳体剖分型式分为径向剖分式和轴向剖分式 3、按级数分为单级和复级 4、按吸入形式分为单吸和双吸 5、按水泵形式分各中心支承式,管道式、共座式、分座式、可移式 6、按驱动方式分为直接连接、齿轮传动式、液力偶合传动式、皮带传多式和共轴式 7、按特殊结构分为液下式、筒式、双壁壳式、地坑筒式、抽出式、自吸式、潜液式和屏蔽式 8、按轴向力平衡方式分为平衡鼓式、平衡盘式、自身平衡式和平衡孔式 9、按用途不同主要分为锅炉给水泵、循环水泵、排污泵、杂质泵、砂泵、渣浆泵、泥浆泵、污水泵、
空气密封的干式潜水泵是在电动机与水泵中间设 有空气室,水泵下井后,空气室中形成压缩空气垫把 水隔开。
机械密封式的潜水泵适用于水质比较纯净的场合; 空气密封式的可用于抽送泥沙含量较高的浑水。受密 封结构的限制,两者浸入水中的深度都不能太大,一 般不宜超过5m。
潜水电泵(充油式)
充油式潜水泵机械结构和干式相似,其密封装置除了采用上述机械密 封装置外,电动机内腔还充满了变压器油或锭子油,起防潮、绝缘、冷 却和润滑作用。
第一部分:泵的简介 第二部分:常见泵结构、原理及应用 第三部分:泵的选型 第四部分:注意事项
泵的简介
泵的原理及作用 泵的分类
泵的原理及作用
泵是输送流体或使流体增压的机械。它将原动机的 机械能或其他外部能量传送给液体,使液体能量增加。 泵主要用来输送水、油、酸碱液、乳化液、悬乳液和 液态金属等液体,也可输送液、气混合物及含悬浮固 体物的液体。
液压泵分类(按结构)
液压泵的种类
齿轮泵
液压泵 (按结构)
叶片泵 柱塞泵
螺杆泵
齿轮泵
齿轮泵是液压泵中结构最简单的一种泵,它的抗污染能力 强,价格最便宜。但一般齿轮泵容积效率较低,轴承上不平衡 力大,工作压力不高。齿轮泵的另一个重要缺点是流量脉动大, 运行时噪声水平较高,在高压下运行时尤为突出。
化工原理-第二章-流体输送机械PPT课件
总效率:
Vmh
(4)轴功率N
离心泵的轴功率N可直接用效率来计算:
流体密度,kg/ m3
泵的效率
N HQg /
泵的轴功率,W 泵的压头,m
泵的流量,m3/s
一般小型离心泵的效率50~70%,大型离心泵效率可达90% 。
2、离心泵特性曲线(Characteristic curves)
由于离心泵的各种损失难 以定量计算,使得离心泵的特
性曲线H~Q、N~Q、η~Q
的关系只能靠实验测定,在泵 出厂时列于产品样本中以供参 考。右图所示为4B20型离心泵
在 转 速n= 2900r/min 时 的特
性曲线。若泵的型号或转速不 同,则特性曲线将不同。借助 离心泵的特性曲线可以较完整 地了解一台离心泵的性能,供 合理选用和指导操作。
H/m NkW
u2
D2n
60
根据装置角β2的大小,叶片形状可分为三种:
w2
c2
2
2
u2
w2
c2
2
2
u2
w2 2
c2 2 u2
(a)
(a)β2< 90o为后弯 叶片,cotβ2 >0, HT∞ <u22 /g
(b) (b)β2= 90o为径向 叶片,cotβ2 =0 , HT∞ =u22 /g
(c) (c) β2 > 90o为前 弯叶片,cotβ2 <0,HT∞ > u22 /g
c2r
c2' r
u2
u2'
Q n Qn
H ( n)2 Hn
N H Qg ( n )3 N HQg n
不同转速下的速度三角形
比例定律
(4)叶轮直径D2对特性曲线的影响
Vmh
(4)轴功率N
离心泵的轴功率N可直接用效率来计算:
流体密度,kg/ m3
泵的效率
N HQg /
泵的轴功率,W 泵的压头,m
泵的流量,m3/s
一般小型离心泵的效率50~70%,大型离心泵效率可达90% 。
2、离心泵特性曲线(Characteristic curves)
由于离心泵的各种损失难 以定量计算,使得离心泵的特
性曲线H~Q、N~Q、η~Q
的关系只能靠实验测定,在泵 出厂时列于产品样本中以供参 考。右图所示为4B20型离心泵
在 转 速n= 2900r/min 时 的特
性曲线。若泵的型号或转速不 同,则特性曲线将不同。借助 离心泵的特性曲线可以较完整 地了解一台离心泵的性能,供 合理选用和指导操作。
H/m NkW
u2
D2n
60
根据装置角β2的大小,叶片形状可分为三种:
w2
c2
2
2
u2
w2
c2
2
2
u2
w2 2
c2 2 u2
(a)
(a)β2< 90o为后弯 叶片,cotβ2 >0, HT∞ <u22 /g
(b) (b)β2= 90o为径向 叶片,cotβ2 =0 , HT∞ =u22 /g
(c) (c) β2 > 90o为前 弯叶片,cotβ2 <0,HT∞ > u22 /g
c2r
c2' r
u2
u2'
Q n Qn
H ( n)2 Hn
N H Qg ( n )3 N HQg n
不同转速下的速度三角形
比例定律
(4)叶轮直径D2对特性曲线的影响
南京理工化工原理课件2-- 流体输送机械
24
分析:1.选泵
Q、He
?伯努利方程
已知
2.安装高度
Hg
u Hs H f 2g
2 1
0 1
25
根据被输送液体的性质和操作条件, 确定泵的类型;
根据具体管路布置情况对泵提出的流 量、压头要求,确定泵的型号
23
例1.热水池中水温为65℃。用离心泵以40m3/s 的流量送至凉水塔顶,再经喷头喷出落入凉水 池中,达到冷却目的。已知水进喷头前需维持 49×103Pa(表压)。喷头入口处较热水池水面 高6m。吸入管路和排出管路的压头损失分别为 1m和3m。管路中动压头可忽略不计。试选用合 适的离心泵。并确定泵的安装高度。当地大气 压强按101.33×103Pa计。
3
2-1-2 离心泵的理论压头
一、离心泵的理论压头 假设:
(1)叶轮内叶片的数目 无限多,叶片的厚度为无 限薄,液体完全沿着叶片 的弯曲表面而流动无任何 倒流现象; (2)液体为粘度等于零 的理想液体,没有流动阻 力。
离心力作功 : 2 2 R2 F dr R2 Rw dr w 2 2 2 u2 - u12 c R1 g = R1 g = 2g R2 - R1 = 2g
大气压 强校正
饱和蒸汽 压校正
密度 校正
18
(2) 临界汽蚀余量(Δ h )
——指离心泵入口处,液体的静压头p1/ρ g与动压
头u12/2g之和大于液体在操作温度下的饱和蒸
汽压头pv/ρ g的某一最小指定值。
p0 p1 u Hg H f g g 2g
2 1
0 1
p0 pv Hg h H f g g
l H f 8 / 2 d 4 g Qe2 d
分析:1.选泵
Q、He
?伯努利方程
已知
2.安装高度
Hg
u Hs H f 2g
2 1
0 1
25
根据被输送液体的性质和操作条件, 确定泵的类型;
根据具体管路布置情况对泵提出的流 量、压头要求,确定泵的型号
23
例1.热水池中水温为65℃。用离心泵以40m3/s 的流量送至凉水塔顶,再经喷头喷出落入凉水 池中,达到冷却目的。已知水进喷头前需维持 49×103Pa(表压)。喷头入口处较热水池水面 高6m。吸入管路和排出管路的压头损失分别为 1m和3m。管路中动压头可忽略不计。试选用合 适的离心泵。并确定泵的安装高度。当地大气 压强按101.33×103Pa计。
3
2-1-2 离心泵的理论压头
一、离心泵的理论压头 假设:
(1)叶轮内叶片的数目 无限多,叶片的厚度为无 限薄,液体完全沿着叶片 的弯曲表面而流动无任何 倒流现象; (2)液体为粘度等于零 的理想液体,没有流动阻 力。
离心力作功 : 2 2 R2 F dr R2 Rw dr w 2 2 2 u2 - u12 c R1 g = R1 g = 2g R2 - R1 = 2g
大气压 强校正
饱和蒸汽 压校正
密度 校正
18
(2) 临界汽蚀余量(Δ h )
——指离心泵入口处,液体的静压头p1/ρ g与动压
头u12/2g之和大于液体在操作温度下的饱和蒸
汽压头pv/ρ g的某一最小指定值。
p0 p1 u Hg H f g g 2g
2 1
0 1
p0 pv Hg h H f g g
l H f 8 / 2 d 4 g Qe2 d
化工原理第二章 流体输送机械
离心力 叶片间液体 中心外围 ——液体被做功
动能
高速离开叶轮
2.2.2离心泵与通风机的结构、工作原 理与分类
②泵壳:液体的汇集与能量的转换 (动静)
③吸上原理与气缚现象
叶轮中心低压的形成 —液体高速离开 p 泵内有气, 则 泵入口压力 液体不能吸上 ——气缚
故离心泵在启动前必须灌泵
④轴封的作用 ⑤平衡孔的作用 ——消除轴向推力 ⑥导轮的作用 ——减少能量损失
2.2.1离心式流体输送机械的基本方程
离心式流体输送机械的基本方程的推导基于三个假 设:
(1)叶片的数目无限多,叶片无限薄, 流动的每条流线都具有与叶片相同 的形状。
(2)流动是轴对称的相对定常流动,即在 同一半径的圆柱面上,各运动参数均相同, 而且不随时间变化。
(3)流经叶轮的是理想流体,粘度 为零,因此无流动阻力损失产生。
离心泵的压头H和风机的风压pt都是指流体 通过离心泵或通风机后所获得的有效能量。
根据伯努利方程,单位体积气体通过通
风机所获得的压头为
Ht
( p2
p1 ) /
g
(u
2 2
u12 )
2g
式中 u1, u2 ——分别为通风机进口和出口速度,m/s
2.2.3离心泵与离心通风机的性能
压头计算式中,H p ( p2 p1) / g 称为通风机的静压头,
2.2.3离心泵与离心通风机的性能
1.流量
->流量是单位时间内输送出去的流体量。通
常用Q来表示体积流量,单位m3/s。
->通风机流量也常称为风量,并以进口处为 准。通风机铭牌上的风量是在“标准条件” 下,即压力1.013105Pa,温度20C下的气体 体积。
2.2.3离心泵与离心通风机的性能
动能
高速离开叶轮
2.2.2离心泵与通风机的结构、工作原 理与分类
②泵壳:液体的汇集与能量的转换 (动静)
③吸上原理与气缚现象
叶轮中心低压的形成 —液体高速离开 p 泵内有气, 则 泵入口压力 液体不能吸上 ——气缚
故离心泵在启动前必须灌泵
④轴封的作用 ⑤平衡孔的作用 ——消除轴向推力 ⑥导轮的作用 ——减少能量损失
2.2.1离心式流体输送机械的基本方程
离心式流体输送机械的基本方程的推导基于三个假 设:
(1)叶片的数目无限多,叶片无限薄, 流动的每条流线都具有与叶片相同 的形状。
(2)流动是轴对称的相对定常流动,即在 同一半径的圆柱面上,各运动参数均相同, 而且不随时间变化。
(3)流经叶轮的是理想流体,粘度 为零,因此无流动阻力损失产生。
离心泵的压头H和风机的风压pt都是指流体 通过离心泵或通风机后所获得的有效能量。
根据伯努利方程,单位体积气体通过通
风机所获得的压头为
Ht
( p2
p1 ) /
g
(u
2 2
u12 )
2g
式中 u1, u2 ——分别为通风机进口和出口速度,m/s
2.2.3离心泵与离心通风机的性能
压头计算式中,H p ( p2 p1) / g 称为通风机的静压头,
2.2.3离心泵与离心通风机的性能
1.流量
->流量是单位时间内输送出去的流体量。通
常用Q来表示体积流量,单位m3/s。
->通风机流量也常称为风量,并以进口处为 准。通风机铭牌上的风量是在“标准条件” 下,即压力1.013105Pa,温度20C下的气体 体积。
2.2.3离心泵与离心通风机的性能
流体输送机械PPT课件
第一节 液体输送机械
3.2黏度的影响:当输送液体的黏度大于常温水的黏度时,泵内液体 的能量损失增大,导致泵的流量、压头减小、效率下降,轴功率增加,
泵的特性曲线均发生变化。理论上应进行校正。但通常由于实际应用 的液体粘度总是小于20×10-6时,如汽油、煤油、轻柴油等,可不必校 正。否则可按下式校正:
对于输送酸、碱以及易燃、易爆、有毒的液体,密封的要求就比 较高,既不允许漏入空气,又力求不让液体渗出。近年来在制药生产中 离心泵的轴封装置广泛采用机械密封。如图2-7所示,它是有一个装 在转轴上的动环和另一个固定在泵壳上的静环所构成,两环的端面借 弹簧力互相贴紧而做相对运动,起到密封作用。
第一节 液体输送机械
第一节 液体输送机械
一、概述 在化工生产过程中,常常需要将流体物料从一个设备 输送至另一个设备;从一个位置输送到另一个位置。当流 体从低能位向高能位输送时必须使用输送机械,用来对物 料加入外功以克服沿程的运动阻力及提供输送过程所需的 能量。为输送流体物料提供能量的机械装置称为输送机械, 分为液体输送机械和气体输送机械。 本节先介绍液体输送机械。 液体输送机械统称为泵。因被输送液体的性质,如黏 性、腐蚀性、混悬液的颗粒等都有较大差别,温度、压力、 流量也有较大的不同,因此,需要用到各种类型的泵。根 据施加给液体机械能的手段和工作原理的不同,大致可分 为四大类,如表2-1所示。
2.3轴封装置:泵轴与泵壳之间的密封成为轴封。其作用是防止 高压液体从泵壳内沿轴的四周漏出,或者外界空气以相反方向漏入泵 壳内的低压区。常用的轴封装置有填料密封和机械密封两种,如下图 所示。普通离心泵所采用的轴封装置是填料函,即将泵轴穿过泵壳的 环隙作为密封圈,于其中填入软填料(例如浸油或涂石墨的石棉绳), 以将泵壳内、外隔开,而泵轴仍能自由转动。
化工原理流体输送机械
盖铸铁制成。全系列扬程范围8—98m,流量4.5—360 m3/h
b)多级泵:用于压头较高而流量不大旳场合。一般2级至9级,最多可达12级
系列代号D,亦称D型泵.全系列扬程范围14—351m 流量10.8-850 m3/h
c)双吸泵:用于压头要求不高但流量较大旳场合
代号sh 。全系列扬程范围 9—140m, 流量120—12500 m3/h
g
Hs’是指压强为P1处可允许到达旳最高真空度。
2.离心泵旳安装高度
允许安装高度,又称允许吸上高度,是指泵旳吸入口与吸入贮槽液
面间可允许到达旳最大垂直距离,以Hg表达
如右图,假定泵在可允许旳最高位置旳操作,0—0’与1—1’间列柏努
利方程:H可g
P0 P1 g
u12 2g
H
f
,01
得:
p0 pa
ቤተ መጻሕፍቲ ባይዱ
三、离心泵性能旳影响原因:
离心泵特征曲线是在一定转速和常压下,以常温旳清水为工质做 试验测得旳。
1. 密度旳影响 作离心泵旳速度三角形,最终推得可旳:(离心泵基本方程式)
HT∞=
u
2
c2Cos
2
g
u1c1Co31
HT∞
= u22 g
u2ctg 2 gD2b2
QT
令:A = u22
g
B = u2cty2 gD2b2
①H-Q曲线: 与Q↑时H↓ (流量转小时有例外)
②N-Q曲线: N 随Q旳增大而上升。 Q=0时 N为最小,故起动时应关闭阀门
③η-Q曲线:Q=0时,η=0;Q增大,η也逐渐增大并到达一最大值 Q再增长,η则又逐渐减小。
离心泵在一定转速下有一最高效率点,称为设计点。此时相应旳
b)多级泵:用于压头较高而流量不大旳场合。一般2级至9级,最多可达12级
系列代号D,亦称D型泵.全系列扬程范围14—351m 流量10.8-850 m3/h
c)双吸泵:用于压头要求不高但流量较大旳场合
代号sh 。全系列扬程范围 9—140m, 流量120—12500 m3/h
g
Hs’是指压强为P1处可允许到达旳最高真空度。
2.离心泵旳安装高度
允许安装高度,又称允许吸上高度,是指泵旳吸入口与吸入贮槽液
面间可允许到达旳最大垂直距离,以Hg表达
如右图,假定泵在可允许旳最高位置旳操作,0—0’与1—1’间列柏努
利方程:H可g
P0 P1 g
u12 2g
H
f
,01
得:
p0 pa
ቤተ መጻሕፍቲ ባይዱ
三、离心泵性能旳影响原因:
离心泵特征曲线是在一定转速和常压下,以常温旳清水为工质做 试验测得旳。
1. 密度旳影响 作离心泵旳速度三角形,最终推得可旳:(离心泵基本方程式)
HT∞=
u
2
c2Cos
2
g
u1c1Co31
HT∞
= u22 g
u2ctg 2 gD2b2
QT
令:A = u22
g
B = u2cty2 gD2b2
①H-Q曲线: 与Q↑时H↓ (流量转小时有例外)
②N-Q曲线: N 随Q旳增大而上升。 Q=0时 N为最小,故起动时应关闭阀门
③η-Q曲线:Q=0时,η=0;Q增大,η也逐渐增大并到达一最大值 Q再增长,η则又逐渐减小。
离心泵在一定转速下有一最高效率点,称为设计点。此时相应旳
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d
le
u2 2g
l
d
le
qVe
d
2
2g
4
对特定的管路,若忽略λ随Re的变化,且式中d、l、le、ξ均为常
数,于是可令:
l k d
le
2
8 d
4
g
H0
z
p
g
: qV
1.H随 qV增加而减少
(除流量极小外)
2. P随 qV 增加而增加
A设计点
02
高效区
P
qV 设计点
3.η存在最高效率点ηmax ——泵的设计点,为最佳工况参数 高效区:人为规定一个工作范围。通常取η = (0.9 ~ 0.92) ηmax
注意点:
1. 泵铭牌参数:效率最佳点下的性能参数,称为额定值。
阻力损失
流体性质:清液泵、耐腐泵、泥浆泵
操作特点:离心式、正位移式
工作原理:离心式、喷射式、轴流式,往复式、旋转式等
§2-1离心泵 §2-1-1离心泵的结构、工作原理、类型
一、离心泵的结构:
1、叶 轮: 2、泵 壳: 3、泵 轴 及 轴 封 装 置:
思考: 为什么叶片弯曲? 泵壳呈蜗壳状?
二、工作原理:
(一)叶轮→泵壳段
依靠电机使叶轮高速旋转,产生 离心力,流体受离心力作用被抛 向壳壁,同时流体在泵壳流道中 随着流道的扩大,动能大部分转 化为静压能。
(二)泵吸入端 → 叶轮中心
由于叶轮中心流体被抛出,于中 心处形成真空,故吸入端与中心 处产生静压差(势能)使流体不 断吸入。
思考: 泵启动前为什么要灌满液体?
1.管路特性方程式和特性曲线
2
2‘ 泵对单位重量(1N)流体所做的有效功为
He
z
p
g
u 2 2g
Hf
1
1‘
在特定的管路系统中,Δu2/2g常可忽 略,Δz与Δp/ρg均为定值,令
H0
z
p
g
对于直径均一的管路系统,压头损失可表达为:
2
l
H f
任务:
第二章 流体输送
①讨论化工常用泵结构、工作原理和性能 ②学会正确选用、操作各类流体输送机械
概述:
①流体输送及输送机械在化工生产中的普遍性、广泛性
液体输送机械 泵
流体输送机械
通风机
气体压送机械
鼓风机 压缩机
流体输送
位能
真空泵
②泵的作用
提高流体的机械能 静压能
③泵的分类方法:
转数n一定 2 .泵特性曲线标定条件: 20℃清水为工作介质,
思考:
大气压强为10mH2O。
离心泵启动,停泵时均关闭出口阀门,why?
3.因 qV 0 时 ,P ≠ 0(但最小),故启动泵时,应先关出口阀, 减小启动电流,保护电机。
4.停泵时也应先关出口阀,再关电机,为了防止高压液体倒流损 坏叶轮。
②泵壳(蜗壳): 思考:泵壳的主要作用是什么? 作用: A. 汇集叶轮所抛出的液体; B. 实现动能向静压能转变。
③导轮(导叶轮):导轮上叶片与叶轮上叶片方向相反 作用:起缓冲作用,减少能量损耗,提高泵效率
机械密封 ④轴封装置:
填料密封 作用:减小泄漏,防止气傅,提高效率
§ 2-2离心泵主要性能参数与特性曲线
2、压头(扬程)H
离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效 能量,单位为J/N或m。
泵的特性曲线的测定
H z p u2 Σh ——克服流体阻力所消耗的功
g 2g
f 12
提高流体动能作功
提高流体静压作功
提高流体位差(势能)作功
泵传给流体压头可以认为:
流量计 真空表 2 压力表 Z 1
泵的性能及相互之间的关系是正确选泵和进行流量调节的依据。 离心泵的主要性能参数有流量、压头、效率、轴功率等。它们之 间的关系常用特性曲线来表示。特性曲线是在一定转速下,用 20℃清水在常压下实验测得的。
§ 2-2-1离心泵的性能参数
一.离心泵的性能参数 1、流量 qV 离心泵的流量是指单位时间内排到管路系统的液体体积, 常用单位为l/s、m3/s或m3/h等。
qV1 n1 H1 ( n1 )2 P1 ( n1 )3 ——离心泵的比例定律
qV 2 n2 H 2
n2
P2
n2
其适用条件是离心泵的转速变化不大于±20%。
§ 2-2-4. 离心泵的工作点和流量调节
(一)管路特性曲线和离心泵的工作点
当离心泵安装在特定管路系统操作时,实际的工作压头和流量 ,不仅遵循泵特性曲线上二者的对应关系,而且还受管路特性 所制约
(3)机械损失:
高速旋转的叶轮表面与液体之间 摩擦,泵轴与轴承、密封圈等机 械部件之间的摩擦。
Pe
P
Pe qmW qV gH (W )
Pe
qV H
102
(kW )
P
机械 容积 水力 损失 损失 损失
Pe
§ 2-2-2离心泵特性曲线及其应用
一.泵的特性曲线
H : qV P 三条曲线 P : qV
§ 2-2-3影响离心泵性能的因素分析
一.流体性质: 1.密度的变化: 泵的P与ρ成正比,离心泵的qV、 H ,均与ρ无关 2.粘度的影响 μ增加,流体在泵内的能量损失增大, qV H,P , 当液体运动粘度γ大于20cSt(厘沲)时,离心泵的性能需按 下式进行修正,具体参考离心泵专著 二.离心泵转速的影响
p H z hf 管
gห้องสมุดไป่ตู้
H p2 p1 p2 (表) p1(真)
g
g
注意:泵的进出口及泵内的局部阻力 损失均计入泵的效率考虑
3、效率和功率
小型水泵:一般为5070%
与效率有关的各种能量损失: 大型泵:可达90%以上
(1)容积损失: 内漏
(2)水力损失: 环流损失、摩擦损失、冲击损失
He
z
p
g
u 2 2g
Hf
He H0 kqV2e
上式为管路特性方程式。He与qVe的关系曲线称为管路特性曲线。 注意: 此曲线的形状由管路布局和流量等条件来确定,与泵的性能无关.
气缚现象:未灌满液体,泵内存在 空气,离心力小形成真空度低、压 差小,流体吸不进。
措施:装底阀,防泄漏. 启动前灌泵
二.主要部件:
①叶轮 : 开式: 效率较低,内回流 较严重所致; 半开式: 效率较高,易堵塞 闭式:
思考:三种叶轮中哪一种效率高?
闭式叶轮的内漏较弱些, 敞式叶轮的最大。
但敞式叶轮和半闭式叶轮 不易发生堵塞现象