线性规划中的对偶规划模型及对偶理论

合集下载

线性规划中的对偶规划模型及对偶理论

线性规划中的对偶规划模型及对偶理论

MaxZ 2x1 x2
s.t.53xx11
4x 2x
2 2
15 10
x1, x2 0
MinW 15y1 10y2
3y1 5y2 2 s.t.4y1 2y2 1
y1, y2 0
2、非对称形式的对偶关系:
(1) 原问题
n
MaxZ c j x j j 1 n
s.t. j1 aij x j bi i 1,2, , m x j 0 j 1,2, , n
(特点:等式约束)
对偶问题
m
MinW bixi i 1
m
s.t. i1 aij yi 来自cjj 1,2, ,n
yi符号不限, i 1,2, ,m
(特点:对偶变量符号 不限,系数阵转置)
(2)怎样写出非对称形式的对偶问题? 把一个等式约束写成两个不等式约束, 再根据对称形式的对偶关系定义写出;
5y3 3
,y
2
3
0
(用于生产第i种产 品的资源转让收益不 小于生产该种产品时 获得的利润)
对偶变量的经济意义可以解释为对工时及原材 料的单位定价 ;
若工厂自己不生产产品A、B和C,将现 有的工时及原材料转而接受外来加工时, 那么上述的价格系统能保证不亏本又最富 有竞争力(包工及原材料的总价格最低)
课堂练习:写出下面线性规划的对偶规划:
MinZ 4x1 2x2 3x3
4x1 5x2 6x3 7
s.t.182x1x191x32 x2
10x3 14
11
x1 0, x2符号不限, x3 0
下面的答案哪一个是正确的?为什麽?
MaxW 7 y1 11y2 14y3 MaxW 7 y1 11y2 14y3
x2

《管理运筹学》第3章--线性规划的对偶问题

《管理运筹学》第3章--线性规划的对偶问题

x1 x2 x3 2
s.t.
x12x1x2
x3 x2
1 x3
2
x1 0; x2 , x3 ?

这样所有的约束条件均为“≤”和“=”类型,按前述对
应关系原则,可写出其对偶问题为:
minW ( y) 2 y1 y2 2 y3
y1 y2 2 y3 1
s.t.
y1 y1
y2 y2
min W ( y) 2 y1 6 y2 0 y3/ 0 y3//
y1
s.t.
0
y1
y1
2 y2 y3/ y3// 0
y2
y/ 3
y3/ /
2
6 y2 3 y3/ 3 y3//
5
y1
,
y2
,
y/ 3
,
y3/ /
0
13
OR:SM
• 再设y/3-y//3=y3,代入上述模型得:
始问题,则(3-2)称为对偶问题。
8
OR:SM
• 3.1.2 对称型线性规划问题——对称型对偶问题

• 每一个线性规划问题都必然有与之相伴随的对偶问题 存在。先讨论对称型对偶问题;对于非对称型对偶问题, 可以先转化为对称型,然后再进行分析,也可以直接从 非对称型进行分析。
• 对称型线性规划问题数学模型的一般形式为
变量 m个
约束 ≤ ≥
= (方程) 系数矩阵
b c
变量 ≥0 ≤0
无非负约束 转置
c b
19
OR:SM

这样对于任意给定的一个线性规划问题,均可依据上述
对应关系直接写出其对偶问题模型,而无须先化成对称型。
• 例3 写出下列线性规划的对偶问题

第二章 线性规划的对偶理论

第二章 线性规划的对偶理论
max 3 2 A= 2 1 0 3 c=
对偶问题: Min f = 65 y1 + 40 y2 + 75 y3
s.t. 3y1 + 2 y2
y1, y2 , y3
min
≥1500
≥ 0
2y1 + y2 + 3y3 ≥2500
b=
65 40 75
A=
3 2
2 1
0 3
b=
1500 2500
1500 2500
例:
Min z= 5x1+ 25x2 7x1+ 75x2 ≤98 s.t. 5x1 + 6x2 = 78 24x1+ 12x2≥54 x1≥0 、x2 ≤ 0
怎么样, 没问题吧!
Max w= 98y1+ 78y2 + 54y3 7y1+ 5y2 + 24y3 ≤ 5 s.t. 75y1+ 6y2 + 12y3 ≥25 y1 ≤ 0 、y2无限制、 y3≥0
二、对偶规划问题的求解
1、利用原问题的最优单纯形表
3x1 x2 3x3 ≤100 x1, x2 , x3 ≥0 解: 对偶问题为
min w 100y1 100y2
max z 4 x1 3x2 7 x3 s.t. x1 2 x2 2 x3≤100
s.t.
2 y1 y2 ≥3 2 y1 3 y2≥7
原问题检验数与对偶问题的解的总结
•在主对偶定理的证明中我们有:对偶(min型)变量的最 优解等于原问题松弛变量的机会成本,或者说原问题松 弛变量检验数的绝对值 •容易证明,对偶问题最优解的剩余变量解值等于原问 题对应变量的检验数的绝对值 •由于原问题和对偶问题是相互对偶的,因此对偶问题 的检验数与原问题的解也有类似上述关系。 •更一般地讲,不管原问题是否标准,在最优解的单纯 型表中,都有原问题虚变量(松弛或剩余) 的检验数对应 其对偶问题实变量 (对偶变量)的最优解,原问题实变量 (决策变量) 的检验数对应其对偶问题虚变量 (松弛或剩 余变量)的最优解。因此,原问题或对偶问题只需求解 其中之一就可以了。

8对偶LP及对偶单纯形法

8对偶LP及对偶单纯形法
原问题 对偶问题 (对偶问题)
原始规划与对偶规划是同一组数 据参数,只是位置有所不同,所描 述的问题实际上是同一个问题从 另一种角度去描述.
(原问题)
线性规划的对偶模型
Page 10
特点:目标函数求极大值时,所有约束条件为≤ 号,变量非负; 目标函数求极小值时,所有约束条件 为≥号,变量非负.
LP:min Z C X
如何安排生产, 使获利最多?
最优解为 x (4, 2)T 最优值为 zmax 14
Page 6
反过来问:若厂长决定不生产甲和乙型产品,决定 出租机器用于接受外加工,只收加工费,那么4种 机器的机时如何定价才是最佳决策?
付出的代价最小, 且对方能接受。
出让代价应不低于 用同等数量的资源 自己生产的利润。
本节主要内容
线性规划的对偶模型 对偶性质
Page 2
对偶单纯形法
学习要点: 1. 掌握线性规划的对偶形式
2. 掌握对偶单纯形法的解题思路及求解步骤
对偶现象普遍存在
Page 3
“对偶”,在不同的领域有着不同的诠释。在词 语中,它是一种修辞方式,指两个字数相等、结构 相似的语句,旨表达出相关或相反的意思。如: “下笔千言,离题万里” “横眉冷对千夫指,俯首甘为孺子牛” “天高任鸟飞,海阔凭鱼跃” 数学上也有如下对偶例子: 周长一定,面积最大的矩形是正方形; 面积一定,周长最小的矩形是正方形。
0T Y Xs 0 T 0 Ys X 0
互补松弛条件
其中:Xs为松弛变量、Ys为剩余变量.
对偶性质的应用
Page 21
借助以上性质可以证明,在用单纯形法求解原问题的迭代 过程中,单纯形表右列中的元素对应于原问题的基本可行解, 底行中松弛变量对应的元素恰好构成对偶问题的基本解。逐次 迭代下去,当底行对应于对偶问题的解也变成基本可行解(底 行元素全非负)时,原问题和对偶问题同时达到最优解. 即此 时对偶问题的这个基本可行解就是它的最优解。 用单纯形方法求解原线性规划的过程中,每次迭代都保证 得到原问题的一个基本可行解,底行某些元素对应于对偶问题 的基本解. 单纯形法的迭代的过程既可以看作使原问题的基本 可行解逐步变为最优解(此时底行元素非负)的过程,也可看 作使对偶问题的基本解逐步变成基本可行解的过程。

线性规划的对偶理论(第一部分

线性规划的对偶理论(第一部分

对偶问题的约束条件 对应于原问题的目标 函数和约束条件的系 数。
对偶问题的可行解集 是原问题可行解集的 凸包。
原问题与对偶问题关系
弱对偶性
对于任意一对原问题和对偶问题 的可行解,原问题的目标函数值 总是大于或等于对偶问题的目标
函数值。
强对偶性
当原问题和对偶问题都存在可行 解时,它们的最优解对应的目标
强对偶性定理
若原问题和对偶问题都有可行解,则 它们分别存在最优解,且这两个最优 解的目标函数值相等。
在满足某些约束规格(如Slater条件) 的情况下,强对偶性成立。
互补松弛条件
在原问题和对偶问题的最优解中,如果某个约束条件的对偶变量值为正,则该约束 条件必须是紧的(即取等号)。
如果原问题(对偶问题)的某个变量在最优解中取正值,则其对应的对偶问题(原 问题)的约束条件必须是紧的。
标准形式
通常将线性规划问题转化为标准 形式,即求解目标函数的最小值 ,约束条件为一系列线性不等式 。
对偶问题定义与性质
对偶问题定义:对于 给定的线性规划问题, 可以构造一个与之对 应的对偶问题,该问 题的目标函数和约束 条件与原问题密切相 关。
对偶问题性质
对偶问题的目标函数 是原问题约束条件的 线性组合。
解决对偶间隙等关键问题
在实际应用中,由于原问题和对偶问题之间可能存在对偶间隙,导致对偶理论的实用性受到一定的限制。 未来可以研究如何缩小或消除对偶间隙,提高对偶理论的实用性和应用范围。
THANKS
感谢您的观看
简化了复杂问题的求解过程
对偶理论能够将一些复杂的线性规划问题转化为相对简单的对偶问题进行求解,从而降低了问题 的求解难度和计算量。
揭示了原问题和对偶问题之间的内在联系

运筹学课件 第2章:线性规划的对偶理论

运筹学课件 第2章:线性规划的对偶理论

min w 16y1 36y2 65y3
90 y1 3 y 2 y1 2 y 2 5 y 3 70 y , y , y 0 1 2 3
原问题 A b C 约束系数矩阵
对偶问题 约束系数矩阵的转臵
约束条件的右端项向量 目标函数中的价格系数向量 目标函数中的价格系数向量 约束条件的右端项向量 Max z=CX Min w=Y’b 目标函数 AX≤b A’Y≥C’ 约束条件 X≥0 Y≥0 决策变量
若原问题为求极小形式的对称形式线性规划问题, 对偶问题应该具有什么形式?
Min w Y 'b A'Y C Y 0
max w Y 'b A'Y C Y 0
min z CX
Max z CX
AX b X 0
AX b X 0
min w 5 y1 4 y2 6 y3 4 y1 3 y2 2 y3 2 y1 2 y2 3 y3 3 3 y1 4 y3 5 2 y 7 y y 1 2 3 1 y1 0, y2 0, y3无约束
对偶问题 约束系数矩阵的转臵
目标函数中的价格系数向量
目标函数 约束条件
变量
Max z=CX m个 ≤ ≥ = n个 ≥0 ≤0 无约束
约束条件的右端项向量 目标函数 Min w=Y’b m个 ≥0 变量 ≤0 无约束 n个 ≥ 约束条件 ≤ =
【例2-3】写出下列线性规划问题的对偶问题
min 2x1 3x2 5x3 x4
1.初始表中单位阵在迭代后单纯形表中对应的位臵就是B-1 2.对于原问题的最优解,各松弛变量检验数的相反数恰好 是其对偶问题的一个可行解,且两者具有相同的目标函数 值。根据下面介绍的对偶问题的基本性质还将看到,若原 问题取得最优解,则对偶问题的解也为最优解。

运筹学02对偶理论1线性规划的对偶模型,对偶性质

运筹学02对偶理论1线性规划的对偶模型,对偶性质

(x1, x2, x3)T 0
从而对偶问题为
4 min w Yb ( y1, y2 ) 1 4 y1 y2
4 1 -1
YA ( y1, y2 ) 1 -7
5
(4 y1 y2, y1 7 y2, y1 5y2 ) (5, 2, 3)
min Z 4 y1 y2
4 y1 y2 5
min
w
6 y1
8y2
10 y3
约束, 即
5yy1175yy22
y3 3 y3
4
3
yi 0, i 1,2,3
3.1 线性规划的对偶模型 Dual model of LP
线性规划问题的规范形式(Canonical Form 或叫对称形式) : 定义:
目标函数求极大值时,所有约束条件为≤号,变量非负; 目标函数求极小值时,所有约束条件为≥号,变量非负。
【例3.2】写出下列线性规划的对偶问题
max Z (5, 2,3)(x1, x2, x3)T
max Z 5x1 2x2 3x3
4x1x1 7
x2 x2
x3 4 5x3 1
x1, x2, x3 0
【解】设Y=(y1,y2 ), 则有
4
1
1 7
1
5
x1 x2 x3
4 1
y1y1 7
y2 2 5 y2 3
y1 0, y2 0
3.1 线性规划的对偶模型 Dual model of LP
【例3.3】 写出下列线性规划的对偶问题
max Z 4x1 3x2
5x1 x2 6 7x1x1 35x2x2108 x1 0, x2 0
【解】该线性规划的对偶问题是求最 小值,有三个变量 且非负, 有两个“ ≥”

第三章 对偶理论 第一讲 线性规划的对偶模型,对偶性质

第三章 对偶理论 第一讲 线性规划的对偶模型,对偶性质

根据对偶性质;可将原问题与对偶问题解的对应关系列表如下: 表3-6 一个问题max 有最优解 无 最 优 解 无最优解 无界解 (有可行解) 无可行解 另一个问题min 有最优解 无最优解 无可行解 无界解 (有可行解) 性质4 性质4 性质2
应用
已知最优解 已知检验数
通过解方程
检验数乘以
求最优解 求得基本解
max w 2 y1 2 y 2 y1 y 2 1 1 y1 y 2 2 2 y1 , y 2 0
【性质2】 弱对偶性: 设X*、Y*分别为LP(mix)与 DP(max)的可行解,则
CX Y b
* *
【性质3】最优准则定理: 设X*与Y*分别是(LP)与(DP) 的可行解,则X*、Y*是(LP)与(DP)的最优解当且仅当 C X*= Y*b . 【性质4】对偶性:若互为对偶的两个问题其中一个有 最优解,则另一个也有最优解,且最优值相同。 另一结论:若(LP)与(DP)都有可行解,则两者都有最优 解,若一个问题无最优解,则另一问题也无最优解。 【性质5】互补松弛定理: 设X*、Y*分别为 (LP) 与 (DP) 的可行解,XS和YS分别是它们的松弛变量的可行解,则 X*和Y*是最优解当且仅当
YSX*=0 和 Y*XS=0
i 1
可写成下式
y x 0
i 1 n * i Si
m
y
j 1
n
Sj
x 0
* j

* S j* (2) yS j 0时x j j j 1
y
x 0, 反之当x* 0时y 0 0 j S
j
已知一个问题的最优解时求另一个问题的最优解的方法
max z 3 x1 4 x 2 x3 x1 2 x 2 x3 10 【例3.5】 已知线性规划 2 x 2 x x 16 1 2 3 x 0, j 1,2,3 j

第2章线性规划的对偶理论

第2章线性规划的对偶理论

max z 5x1 6x2 3x3
x1 2x2 2x3 5
(1)
s.t
.
4xx1 175xx223xx33

3 8
x2 0, x3 0
n
max z c j x j j1


n
aij x j
bi
(i 1,, m1 m)
-15 y3 1/5 0 -4/5 1
zj - cj
0 4 0
原问题松 弛变量
00
y4 y5 -1/2 0
1/5 -1/5
3 3
原问题 变量
第19页
说明:1)只需求解其中一个问题, 从最优解的单纯形表中同时得
到另一个问题的最优解.
2)单纯形法迭代的每一步中, 原问题及对偶问题解的关系
目标函数值
n)
m
min w bi yi i 1
yi 0 (i 1,, m1 )
yi无约束(i m1 1,, m)
m
aij yi c j ( j 1,, n1 )
i 1 m
aij yi c j ( j n1 1,, n)
i 1
第10页
写出下列线性规划的对偶问题

m i 1
aij
yi

c
j
(
j

1,, n)
yi 0 (i 1,, m)
min w bY
AY C
s.t.
Y 0
第4页
2-2 原问题与对偶问题
对应关系: (1) max
min
= (2)
约束条 件个数
变量的 个数

线性规划对偶理论(含影子价格)_21136

线性规划对偶理论(含影子价格)_21136

对 偶
a11 a12
s.t.
a21
a22
a1n x1 b1
a2n
x2
b2
对 称

am1 am2
amn
xn
bm


x1, x2 , , xn 0

min Z c1x1 c2 x2 cn xn
定 义
a11 a21
s.t.
a12
a22
a1n a2n
x2 0,
x2
2
0
无界
关于无界性有如下结论: minW 4 y1 2 y2
原问题
问题无界
无可 行解
对偶问题 无可行解 无可行解
问题无界
y1 y2 2
(对)
y1
y1
y2 0, y2
1 0
无可 行解
原 : max Z x1 2x2
x1 x2 x3 2
2x1 x2 x3 1
m
m
A
≥b
n
对偶问题的特点
〔1〕目标函数在一个问题中是求最大值在 另一问题中则为求最小值
〔2〕一个问题中目标函数的系数是另一个 问题中约束条件的右端项
〔3〕一个问题中的约束条件个数等于另一 个问题中的变量数
〔4〕原问题的约束系数矩阵与对偶问题的 约束系数矩阵互为转置矩阵
一般
线性规 划问题 的对偶 问题
〔4〕强对偶性〔最优解的目标函数之间的关系〕 如果原问题有最优解,则其对偶问题也一定有 最优解,且两者的目标函数值相等
3、互补松弛性
在线性规划问题的最优解中, 如果对应某一约束条件的对偶变量值为非零,
则该约束条件取严格等式;
反之如果约束条件取严格不等式,

第三章线性规划的对偶定理

第三章线性规划的对偶定理

特点:
1. max min 2.限定向量b 价值向量C
其它形式 的对偶
?
(资源向量)
3.一个约束 一个变量。
4. max z的LP约束“ ” min z 的
LP是“ ”的约束。
5.变量都是非负限制。
二、原问题与对偶问题的数学模型
❖ 1.对称形式的对偶
当原问题对偶问题只含有不等式约束
时,称为对称形式的对偶。
根据对称形式的对偶模型,可直接 写出上述问题的对偶问题:
b max w (Y 1,Y 2 ) -b
(Y
1,Y
2
)
A A
C
Y1 0 ,Y2 0
max w (Y 1 Y 2 ) b
(Y
1
Y
2
)
A
C
Y 1 0, Y 2 0
令 Y Y,1 Y得2对偶问题为:
max w Yb
❖ (3)若原问题可行,但其目标函数值无 界,则对偶问题无可行解。
❖ (4)若对偶问题可行,但其目标函数值 无界,则原问题无可行解。
❖ (5)若原问题有可行解而其对偶问题无 可行解,则原问题目标函数值无界。
❖ (6)对偶问题有可行解而其原问题无可 行解,则对偶问题的目标函数值无界。
CX Yb
原问题
设备A 设备B 调试工序
产品Ⅰ 产品Ⅱ
0
5
6
2
1
1
利润(元) 2
1
D
15时 24时 5时
x 设 Ⅰ产量––––– 1
x Ⅱ产量––––– 2
如何安排生产, 使获利最多?
max z 2 x1 x2
s.t.
5x2 15
6 x1 2 x2 24

第三章 线性规划及其对偶问题

第三章  线性规划及其对偶问题

第三章 线性规划及其对偶问题线性规划是最优化问题的一种特殊情形,也是运筹学的一个重要分支,它的实质是从多个变量中选取一组适当的变量作为解,使这组变量满足一组确定的线性式,而且使一个线性目标函数达到最优(最大或最小).线性规划的应用极为广泛,自1949年美国数学家G. B. Dantzing 提出一般线性规划问题求解的方法——单纯形法之后,线性规划无论在理论上、计算方法和开拓新的应用领域中,都获得了长足的进步,线性规划从解决技术问题的最优化设计到工业、农业、商业、交通运输业、军事、经济计划和管理决策等领域都有广泛的发展和应用.本章主要从线性规划的基本概念、数学模型、单纯形法、对偶理论、灵敏度分析等方面进行介绍.§3.1 线性规划数学模型基本原理一、线性规划的数学模型满足以下三个条件的数学模型称为线性规划的数学模型:(1)每一个问题都用一组决策变量T n x x x ][21,,, 表示某一方案;每一组值就代表一个具体方案.(2)有一个目标函数,可用决策变量的线性函数来表示,按问题的不同,要求目标函数实现最大化或最小化.(3)有一组约束条件,可用一组线性等式或不等式来表示. 线性规划问题的一般形式为1211221111221121122222112212max(min)()()()..()0n n n n n n n m m mn n m n f x x x c x c x c x a x a x a x b a x a x a x b s t a x a x a x b x x x =++++++≤=≥⎧⎪+++≤=≥⎪⎪⎨⎪+++≤=≥⎪⎪≥⎩,,,,,,,,,,,,,.这里,目标函数中的系数n c c c ,,, 21叫做目标函数系数或价值系数,约束条件中的常数m b b b ,,, 21叫做资源系数,约束条件中的系数;,,,m i a ij 21(= )21n j ,,, =叫做约束系数或技术系数.二、线性规划问题的标准形式所谓线性规划问题的标准形式,是指目标函数要求min ,所有约束条件都是等式约束,且所有决策定量都是非负的,即1211221111221121122222112212min ()..0n n n n n n n m m mn n mn f x x x c x c x c x a x a x a x b a x a x a x b s t a x a x a x b x x x =++++++=⎧⎪+++=⎪⎪⎨⎪+++=⎪⎪≥⎩,,,,,,,,,,,或简写为11min ()12..012nj j j nij ji j jf X c x a x b i m s t x j n ===⎧==⎪⎨⎪≥=⎩∑∑,,,,,,,,,,. 可以规定各约束条件中的资源系数0(12)i b i n ≥=,,,,否则等式两端乘以“1-”.线性规划问题的矩阵表示为min ()..0f X CX AX b s t X ==⎧⎨≥⎩,,,其中12[]n C c c c =,,,,12[]T n X x x x =,,,,11121212221212n n n m m mn a a a a a a A P P P a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦[,,,],12[]T n b b b b =,,,. 任意的线性规划模型都可以转化为标准形式:(1)若目标函数是求最大值的问题,这时只需将所有目标函数系数乘以“-1”,求最大值的问题就变成了求最小值的问题,即)](min[)(max X f X f --=.求其最优解后,把最优目标函数值反号即得原问题的目标函数值.(2)若约束条件为不等式,这里有两种情况:一种是“≤”不等式,则可在“≤”不等式的左端加入一个非负的新变量(叫松驰变量),把不等式变为等式;另一种是“≥”不等式,则可在“≥”不等式的左端减去一个非负松驰变量(也叫剩余变量),把不等式变为等式.松驰变量在目标函数中对应的系数为零.(3)若存在取值无约束的变量k x ,可令k k k x x x ''-'=,其中k x ',0≥''k x . 例3.1 将下列线性规划问题化为标准形式123123123123123max ()2372.3250f X x x x x x x x x x s t x x x x x x =-+++≤⎧⎪-+≥⎪⎨-++=⎪⎪≥⎩,,,,,,为无约束. 解 将目标函数变为)](min[X f -,令543x x x -=,其中450x x ≥,,在第一个约束不等式中加入松驰变量6x ,在第二个约束不等式中减去剩余变量7x ,则可得标准形式12456712456124571245124567min[()]23()00()7()2.32()5,,,,,0f X x x x x x x x x x x x x x x x x s t x x x x x x x x x x -=-+--++++-+=⎧⎪-+--=⎪⎨-++-=⎪⎪≥⎩,,,,.三、线性规划的解的概念和基本定理 考虑线性规划标准形式的约束条件0AX b X =≥,,其中A 为n m ⨯矩阵,m n >,b 是m 维向量.假定增广矩阵,A b []的秩=矩阵A 的秩m =,把矩阵A 的列进行可能的重新排列,使,A B N =[].这里B 为m m ⨯矩阵,且有逆矩阵存在,即0||≠B ,称B 为该线性规划问题的一个基.不失一般性,设111211212,,,m m m m mm a a a B PP P a a a ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦[], 称(12)j P j m =,,,为基向量,与基向量对应的变量(12)j x j m =,,,称为基变量,记为12T B m X x x x =[,,,],其余的变量称为非基变量,记为12T N m m n X x x x ++=[,,,].令m n -个非基变量均为0,并用高斯消元法,可得一个解12[][00]T T T T B N m X X X x x x ==,,,,,,,,称X 为该约束方程组的基解,其中b B X B 1-=.满足非负约束条件0≥X (基解的非零分量都0≥)的基解称为基可行解.对应于基可行解的基称为可行基.基可行解的非零分量个数小于m 时,称为退化解.线性规划的解的基本定理:引理3.1 线性规划问题的可行解12[]T n X x x x =,,,为基可行解的充要条件是X 的正分量所对应的系数列向量是线性无关的.证 必要性由基可行解的定义可知.下证充分性若向量组k P P P ,,,21线性无关,则必有m k ≤;当m k =时,它们恰构成一个基,从而12[00]T k X x x x =,,,,,,为相应的基可行解.当m k <时,则一定可以从其余的列向量中取出k m -个与k P P P ,,,21构成最大的线性无关向量组,其对应的解恰为X ,所以它是基可行解. 定理3.1 线性规划问题的基可行解X 对应于可行域D 的顶点. 证 不失一般性,假设基可行解X 的前m 个分量为正,故∑==mj jj b xP 1.(3.1)现在分两步来讨论,分别用反证法.(1)若X 不是基可行解,则它一定不是可行域D 的顶点.根据引理3.1,若X 不是基可行解,则其正分量所对应的系数列向量m P P P ,,, 21线性相关,即存在一组不全为零的数12i i m α=,,,,,使得02211=+++m m P P P ααα (3.2)用一个0>μ的数乘式(3.2),再分别与式(3.1)相加和相减,得到111222()()()m m m x P x P x P b μαμαμα-+-++-=,111222()()()m m m x P x P x P b μαμαμα++++++=.现取11122[()()()00]T m m X x x x μαμαμα=---,,,,,,,21122[()()()00]T m m X x x x μαμαμα=+++,,,,,,,由21X X ,可得121122X X X =+,即X 是21X X ,连线的中点.另一方面,当μ充分小时,可保证012i i x i m μα±≥=,,,,,即21X X ,是可行解,这证明了X 不是可行域D 的顶点.(2)若X 不是可行域D 的顶点,则它一定不是基可行解.因为X 不是可行域D 的顶点,故在可行域D 中可找到不同的两点,(1)(1)(1)112[]T nX x x x =,,,,T nx x x X ][)2()2(2)2(12,,, =,使12(1)01X X X ααα=+-<<,.设X 是基可行解,对应向量组m P P P ,,, 21线性无关,当m j >时,有0)2()1(===j j j x x x ,由于21X X ,是可行域的两点,应满足∑∑====mj mj jj j j b xP b x P 11)2()1(,.将这两式相减,即得∑==-mj j j jx xP 1)2()1(0)(.因21X X ≠,所以上式系数)()2()1(j j x x -不全为零,故向量组m P P P ,,, 21线性相关,与假设矛盾,即X 不是基可行解.定理3.2 若可行域有界,线性规划问题的目标函数一定可以在其可行域的顶点上达到最优.证 设k X X X ,,, 21是可行域的顶点,若0X 不是顶点,且目标函数在0X 处达到最优*0()f X CX =(标准形式是*()min ()f X f X =).因0X 不是顶点,所以它可以用D 的顶点线性表示为01101kki i i i i i X X ααα===≥=∑∑,,.因此011k ki i i i i i CX C X CX αα====∑∑.(3.3)在所有的顶点中必然能找到某一个顶点m X ,使m CX 是所有i CX 中最小者,并且将m X 代替式(3.3)中的所有i X ,得到∑∑===≥ki ki m m i ii CX CX CX11αα,由此得到m CX CX ≥0.根据假设,0CX 是最小值,所以只能有m CX CX =0,即目标函数在顶点m X 处也达到最小值.§3.2 线性规划迭代算法单纯形法是求解线性规划问题的迭代算法.一、单纯形法的计算步骤单纯形法的基本思路是:从可行域中某个基可行解(一个顶点)开始,转换到另一个基可行解(顶点),直到目标函数达到最优时,基可行解即为最优解.单纯形法的基本过程如图3.1所示.为计算方便,通常借助于单纯形表来计算,从初始单纯形表3.1开始,每迭代一步构造一个新单纯形表.单纯型表中B X 列中填入基变量m x x x ,,, 21;B C 列中填入基变量的价值系数m c c c ,,, 21;b 列中填入约束方程组右端的常数;j θ列的数字是在确定换入变量后,按θ规则计算填入;最后一行称为检验数行,对应各非基变量j x 的检验数是∑=-=-=mi j j ij i j j z c a c c 1σ,1j m n =+,,(这里令∑==mi ijj j ac z 1).(1)找出初始可行基,确定初始基可行解,建立初始单纯形表. (2)检验各非基变量j x 的检验数∑=-=-=mi j j iji j j z c ac c 1σ(1j m n =+,,).若所有0≥j σ,则已得到最优解,停止计算.否则转入下一步.(3)在0(1)j j m n σ<=+,,,中,若所有0≤jk a ,则此问题无最优解,停止计算.否则转入下一步.(4)根据min{|0}j j k σσσ<=,确定k x 为换入变量.按θ规则计算min 0i l ik ik lkb ba a a θ⎧⎫=>=⎨⎬⎩⎭, 可确定l x 为换出变量,转入下一步.(5)以lk a 为主元素进行迭代(用高斯消元法),把k x 所对应的列向量120010k k k lk mk a a P l a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=−−−→⎢⎥⎢⎥←⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦变换成第行, 将B X 列中的l x 换为k x ,得到新的单纯形表,重复步骤(2)—步骤(5),直到终止.单纯形法的流程图如图3.2所示.若目标函数要求实现最大化,一方面可将最大化转换为最小化,另一方面也可在上述计算步骤中将判定最优解的0≥j σ改为0≤j σ,将换入变量的条件min{|0}j j k σσσ<=改为max{|0}j j k σσσ>=.二、初始可行基的确定 (1) 若线性规划问题是11min ()12..012nj j j nij ji j jf X c x a x b i m s t x j n ===⎧==⎪⎨⎪≥=⎩∑∑,,,,,,,,,,, 则从(12)j P j n =,,,中一般能直接观察到存在一个初始可行基12100010[,,,]001m B P P P ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦.(2)对所有约束条件是“≤”形式的不等式,可以利用化标准形式的方法,在每个约束条件的左端加入一个松驰变量,经过整理重新对j x 及ij a 进行编号,可得下列方程组.,,m n mn m m m m n n m m n n m m b x a x a x b x a x a x b x a x a x =+++=+++=+++++++++ 11,2211,221111,11显然得到一个m m ⨯单位矩阵B 可作为初始可行基12100010[,,,]001m B P P P ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦. (3)对所有约束条件是“≥”形式的不等式及等式约束情况,若不存在单位矩阵时,可采用人工变量,即对不等式约束减去一个非负的剩余变量后,再加入一个非负的人工变量;对等式约束再加入一个非负的人工变量,总可得到一个单位矩阵作为初始可行基.例3.2 求解线性规划问题12121212max ()2328416..4120f X x x x x x s t x x x =++≤⎧⎪≤⎪⎨≤⎪⎪≥⎩,,,,,. 解:将线性规划问题化为标准形式12345123142512345min[()]2300028416..4120f X x x x x x x x x x x s t x x x x x x x -=--+++++=⎧⎪+=⎪⎨+=⎪⎪≥⎩,,,,,,,,.作初始单纯形表,按单纯形法计算步骤进行迭代,结果如下(表3.2).表3.2最后一行的检验数均为正,这表示目标函数值已不可能再减小,于是得到最优解*42004T X =[,,,,],目标函数值14)(*=X f .三、单纯形法的有关说明对线性规划问题min ()..0f X CX AX b s t X ==⎧⎨≥⎩,,,(3.5) 若系数矩阵中不含单位矩阵,没有明显的基可行解时,常采用引入非负人工变量的方法来求初始基可行解.下面分别介绍常用的“大M 法”和“两阶段法”.(一)大M 法在约束条件式(3.5)中加入人工变量,人工变量在目标函数中的价值系数为M ,M 为一个很大的正数.在迭代过程中,将人工变量从基变量中逐个换出,如果在最终表中当所有检验数0≥j σ时,基变量中不再含有非零的人工变量,这表示原问题有解,否则无可行解.例3.3 求解线性规划问题12312312313123min ()3211423..210f X x x x x x x x x x s t x x x x x =-++-+≤⎧⎪-++≥⎪⎨-+=⎪⎪≥⎩,,,,,,. 解:将原问题化为标准形式并引入人工变量,得12345671234123561371234567min ()300211423..210f X x x x x x Mx Mx x x x x x x x x x s t x x x x x x x x x x =-++++++-++=⎧⎪-++-+=⎪⎨-++=⎪⎪≥⎩,,,,,,,,,,.用单纯形法计算,得表3.3.根据表 3.3的最后一行的检验数均0≥,得最优解*4190000T X =[,,,,,,],最优值2)(*-=X f ,由于人工变量的值均为零,故得原问题的最优解*419T X =[,,],最优值为2)(*-=X f .(二)两阶段法两阶段法是把线性规划问题的求解过程分为两个阶段:第一阶段,给原问题加入人工变量,构造仅含价值系数为1的人工变量的目标函数且要求实现最小化,其约束条件与原问题相同,即11111111211221112min ()00..0n n m n n n n nn n n m mn n n m m n m g X x x x x a x a x x b a x a x x b s t a x a x x b x x x ++++++=++++++++=⎧⎪+++=⎪⎪⎨⎪+++=⎪⎪≥⎩,,,,,,,. 然后用单纯形法求解上述问题,若得到0)(=X g ,这说明原问题存在基可行解,可进入第二阶段计算,否则原问题无可行解,停止计算.第二阶段,将第一阶段计算得到的最终表,除去人工变量,将目标函数行的系数换为原问题的目标函数系数,作为第二阶段计算的初始单纯形表进行计算.例3.4 用两阶段法求解线性规划问题12312312313123min ()3211423.210f X x x x x x x x x x s t x x x x x =-++-+≤⎧⎪-++≥⎪⎨-+=⎪⎪≥⎩,,,,,,. 解 第一阶段,标准化并引入人工变量,得如下的线性规划=)(min X g 76x x +,1234123561371234567211423.210x x x x x x x x x s t x x x x x x x x x x -++=⎧⎪-++-+=⎪⎨-++=⎪⎪≥⎩,,,,,,,,,. 用单纯形法计算该线性规划(见表 3.4),最优解为*[011120000]T X =,,,,,,,,最优值0)(*=X g .表3.4由于人工变量076==X X ,所以得原问题的基可行解为[011120]T X =,,,,.于是进入第二阶段计算(见表3.5),最优解为*[41900]T X =,,,,,最优值2)(*-=X f ,于是原问题的最优解为*[419]T X =,,,最优值为2)(*-=X f .§3.3 对偶问题的基本原理一、对偶问题的提出对偶性是线性规划的重要内容之一,每一个线性规划问题必然有与之相伴而生的另一个线性规划问题,我们称一个叫原问题,另一个叫对偶问题,这两个问题有着非常密切的关系,让我们先分析一个实际的线性规划模型与其对偶线性规划问题的经济意义.例3.5 某工厂计划在下一生产周期生产3种产品1A ,2A ,3A ,这些产品都要在甲、乙、丙、丁4种设备上加工,根据设备性能和以往的生产情况知道单位产品的加工工时,各种设备的最大加工工时限制,以及每种产品的单位利润(单位:千元),如表3.6所示,问如何安排生产计划,才能使工厂得到最大利润?解 设321x x x ,,分别为产品321A A A ,,的产量,构造此问题的线性规划模型为1231231231312123max ()8102237042280..3152250,,0f X x x x x x x x x x s t x x x x x x x =++++≤⎧⎪++≤⎪⎪+≤⎨⎪+≤⎪⎪≥⎩,,,,,.现在从另一个角度来讨论该问题.假设工厂考虑不安排生产,而准备将所有设备出租,收取租费.于是,需要为每种设备的台时进行估价.设4321y y y y ,,,分别表示甲、乙、丙、丁4种设备的台时估价.由表3.6可知,生产一件产品1A 需用各设备台时分别为h h h h 2342,,,,如果将h h h h 2342,,,不用于生产产品1A ,而是用于出租,那么将得到租费43212342y y y y +++.当然,工厂为了不至于蚀本,在为设备定价时,保证用于生产产品1A 的各设备台时得到的租费,不能低于产品1A 的单位利润8千元,即823424321≥+++y y y y .按照同样分析,用于生产一件产品2A 的各设备台时h 1,h 2,0,h 2所得的租费,不能低于产品2A 的单位利润10千元,即1022421≥++y y y .同理,还有223321≥++y y y .另外,价格显然不能为负值,所以01234iy i ≥=,,,,. 企业现在设备的总以时数为70h ,80h ,15h ,50h ,如果将这些台时都用于出租,企业的总收入为422150158070)(y y y y Y g +++=.企业为了能够得到租用设备的用户,使出租设备的计划成交,在价格满足上述约束的条件下,应将设备价值定得尽可能低,因此取)(Y g 的最小值,综合上述分析,可得到一个与例3.5相对应的线性规划,即123412341231231234min ()70801550243282210..3220g Y y y y y y y y y y y y s t y y y y y y y =++++++≥⎧⎪++≥⎪⎨++≥⎪⎪≥⎩,,,,,,,.称后一个规划问题为前一个规划问题的对偶问题,反之,也称前一个规划问题是后一个规划问题的对偶问题.二、原问题与对偶问题的表达形式和关系在线性规划的对偶理论中,把如下线性规划形式称为原问题的标准形式11221111221121122222112212min ()..0n n n n n n m m mn n mn f X c x c x c x a x a x a x b a x a x a x b s t a x a x a x b x x x =++++++≥⎧⎪+++≥⎪⎪⎨⎪+++≥⎪⎪≥⎩,,,,,,,. 而把如下线性规划形式称为对偶问题的标准形式11221111221121122222112212max ()..0n n m m m m n n mn m nm g Y b y b y b y a y a y a y c a y a y a y c s t a y a y a y c y y y =++++++≥⎧⎪+++≥⎪⎪⎨⎪+++≥⎪⎪≥⎩,,,,,,,. 若用矩阵形式表示,则原问题和对偶问题分别可写成如下形式:原问题min ()..0f X CX AX b s t X =≥⎧⎨≥⎩,,.(3.6)对偶问题max ()..0g Y Yb YA C s t Y =≤⎧⎨≥⎩,,.(3.7)原问题与对偶问题的关系见表3.7.例3.6 求下面线性规划问题的对偶问题123412341342341234min ()23535224..600f X x x x x x x x x x x x s t x x x x x x x =+-++-+≥⎧⎪+-≤⎪⎨++=⎪⎪≤≥⎩,,,,,,,无约束. 解:根据表3.7可直接写出上述问题的对偶问题12312131********max ()546223..325100g Y y y y y y y y s t y y y y y y y y y =+++≥⎧⎪+≤⎪⎪-++≤-⎨⎪-+=⎪⎪≥≤⎩,,,,,,,无约束. 三、对偶理论定理3.3(弱对偶定理) 对偶问题(max )的任何可行解︒Y ,其目标函数值总是不大于原问题(min )任何可行解︒X 的目标函数值.证 由定理所设及问题(3.6)和问题(3.7)容易看出︒︒︒︒≤≤CX AX Y b Y .定理3.4(对偶定理) 假如原问题或对偶问题之一具有有限的最优解,则另一问题也具有有限的最优解,且两者相应的目标函数值相等.假如一个问题的目标函数值是无界的,则另一问题没有可行解.证明从略.定理3.5(互补松驰定理) 假如︒X 和︒Y 分别是原问题(3.6)和对偶问题(3.7)的可行解,︒U 是原问题剩余变量的值,︒V 是对偶问题松驰变量的值,则︒X 、︒Y 分别是原问题和对偶问题最优解的充要条件是0=+︒︒︒︒X V U Y .证 由定理所设,可知有0AX U b X U ︒︒︒-=︒≥,,,(3.8) 0Y A V C Y V ︒︒︒︒︒+=≥,,.(3.9)分别以︒Y 左乘式(3.8),以︒X 右乘式(3.9),两式相减,得b Y CX X U U Y ︒︒︒︒︒︒-=+.若0=+︒︒︒︒X V U Y ,根据弱对偶定理知CX b Y CX Yb ≤=≤︒︒.这说明︒X ,︒Y 分别是原问题和对偶问题最优解,反之亦然.根据互补松驰定理和决策变量满足非负条件可知,在最优解时,︒︒U Y 和︒︒X V 同时等于0,所以有)21(000n j x v j j ,,, ==, )21(000m i u y i i ,,, ==. 于是,互补松驰定理也可以这样叙述:最优化时,假如一个问题的某个变量取正数,则相应的另一个问题的约束条件必取等式;或者一个问题中的约束条件不取等式,则相应于另一问题中的变量必为零.例3.7 已知线性规划问题123451234512445min ()23523234.2330125jf X x x x x x x x x x x s t x x x x x x j =++++⎧++++≥⎪-+++≥⎨⎪≥=⎩,,,,,,,.已知其对偶问题的最优解为5)(5/35/4**2*1===Y g y y ,,,试用对偶理论找出原问题的最优解.解:先写出它的对偶问题12121212121212max ()4322(1)3(2)235(3)..2(4)33(5)0g Y y y y y y y y y s t y y y y y y =++≤⎧⎪-≤⎪⎪+≤⎪⎨+≤⎪⎪+≤⎪≥⎪⎩,,,,,,,.将*2*1y y ,的值代入约束条件,得(2),(3),(4)为严格不等式,由互补松驰定理得***2340x x x ===,因021≥y y ,,原问题的两个约束条件应取等式,故有**1534x x +=, **1523x x +=.求解后得到**1511x x ==,,故原问题的最优解为 **10001()5TX f X ==[,,,,],.四、对偶问题的迭代算法对偶单纯形法是对偶问题的迭代算法,其基本思想是:从原问题的一个基本解出发,此基本解不一定是可行解,但它对应着对偶问题的一个可行解;然后检验原问题的基本解是否可行,即是否有负的分量.如果有小于零的分量,则进行迭代,求另一个基本解,此基本解对应着另一个对偶可行解.如果得到的基本解的分量皆非负,则该基本解为最优解.也就是说,对偶单纯形法在迭代过程中始终保持对偶解的可行解,使原问题的基本解由不可行逐步变为可行.当同时得到对偶问题与原问题的可行解时,便得到原问题的最优解.对线性规划问题的标准形式min ()..0f X CX AX b s t X =≥⎧⎨≥⎩,,.对偶单纯形法的计算步骤如下:(1)找出原问题的一个基,构成初始对偶基可行解,使所有检验数0≥j σ,构成初始对偶单纯形表.(2)若所有0≥i b ,则当前的解是最优解,停止计算,否则计算min{|0}l i i b b b =<,则l 行为主行,该行对应的基变量为换出变量.(3)若所有0≥lj a ,则对偶问题无界,原问题无解,停止计算,否则计算min |0j k lj lj lka a a σσθ⎧⎫⎪⎪=<=⎨⎬--⎪⎪⎩⎭,则k 列为主列,该列对应的基变量为换入变量.(4)以lk a 为主元素进行迭代,然后转回步骤(2). 对偶单纯形法的流程图如图3.3所示.例3.8 用对偶单纯形法求解下述线性规划问题123123123123min ()23423..2340f X x x x x x x s t x x x x x x =++++≥⎧⎪-+≥⎨⎪≥⎩,,,,,.解:首先将“≥”约束条件两边反号,再加入松驰变量,可得原问题的一个基123451234123512345min ()2340023..2340f X x x x x x x x x x s t x x x x x x x x x =++++---+=-⎧⎪-+-+=-⎨⎪≥⎩,,,,,,,.图3.3从表3.8看出,所有检验数0≥j σ,则对应对偶问题的解是可行的,因b 列数字为负,需进行迭代,计算min 344--=-{,}.所以5x 为换出变量.又因为24min 123θ⎧⎫=-=⎨⎬⎩⎭,,,所以1x 为换入变量,以换入、换出变量所在行列交叉处元素“-2”为主元素,按单纯形法计算步骤进行迭代,得表3.9.由表3.9的最后一行看出,所有检验数0≥j σ,故原问题的最优解为*[11/52/50]T X =,,.若对应两个约束条件对偶变量为1y ,2y ,则可得对偶问题的最优解为*[8/51/5]T Y =,.§3.4 线性规划问题灵敏度在建立实际的线性规划模型时,所收集到的数据不是很精确;另一方面在实际应用中,各种信息瞬息万变,已形成的数学模型中的某些数据需要随之而变.因此,对于一个线性规划问题,研究当数据发生变动时解的变化情况是很重要的.下面仅介绍两种数据变化而导致解的变化的情况,这就是灵敏度分析问题.一、价值系数的变化假设只有一个系数k C 变化,其它系数保持不变 ,k C 的变化只影响检验解而不影响解的非负定性,下面分别就k C 是非基变量系数和基变量系数两种情况进行讨论.(1)k C 是非基变量的系数由于B C 不变,因而j Z 对任何j 都不变.这时非基变量的系数k C 的变化只影响与k C 有关的一个检验数k σ的变化,而对其它j σ没有影响,设系数从k C 变化到k C ',这时检验数k k k Z C -=σ被k k kZ C -'='σ所代替,在当前解是原问题的最优解时,有0≥-=k k k Z C σ,假如()(k k k k k k C Z C Z C σ'''=-=-+)0k C -<,则k X 必须引进基,单纯形法继续进行,否则原解仍是k C 变化后的新问题的最优解,最优解不变相当于k C '变化的界限为)(k k k kZ C C C --≥'. (2)k C 为基变量的系数当k C 被k C '所代替时,j Z 变成j Z ',j j Z C '-可计算为kj k kj j j j a C C Z C Z C )(-'--='-. (3.10)特别是当k j =时,0=-k k Z C ,且1=kk a ,因此k k k k C C Z C -'='-,仍为零.由式(3.10)知,基变量k x 的价值系数k C 的变化会引起整个价值系数行的变化,变化值为)(k k C C -'-乘以最终表相应该基变量k x 所在的k 行的数值kj a .k 列本身则调整为0='-'k k Z C .由式(3.10)可看出,当对某个非基变量j x ,式(3.10)为负时会引起基的变化,若要保持最优解不变,分析变化值)(k k C C -'且大于或小于零以及kj a 值是正或负的情况,得出会保持最优解不变的k C '的变化界限为max 0min 0j j j j k kj k k kj j jkj kj C Z C Z C a C C a a a ⎧⎫⎧⎫--⎪⎪⎪⎪'+<≤≤+>⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭.例3.8 以例3.2的最终表为例,设基变量2x 的系数2C 变化2C ∆,在原最优解不变条件下,确定2C ∆的变化范围.解 此时例3.2的最终表便成为表3.10为了保持原最优解不变,则2x 的检验数应当为零,进行行初等变换,得表3.11.从表(3.11)可得02232≥∆-C 且08812≥∆+C . 由此可得2C ∆的变化范围为312≤∆≤-C ,即2x 的价值系数2C 可以在[0,4]之间变化,而不影响原最优解.二、资源系数的变化假设资源系数k b 变化为k b ',k b 的变化将会影响解的可行性,但不会引起检验数的符号变化.根据基可行解的矩阵表示可知,b B X B 1-=,所以只要k b 变化必定会导致最优解的数值发生变化,最优解的变化分为两类:一类是保持01≥-b B ,最优基B 不变;另一类是b B 1-中出现负分量,这将使最优基B 变化,若最优基不变,则只需将变化后的k b 代入B X 的表达式重新计算即可;若b B 1-中出现负分量,则要通过迭代求解新的最优基和最优解.设系数k b 变化到k k k b b b ∆+=',而其它系数都不变,这样使最终表中原问题的解相应变化为11111100k B k k k k m mk m b a b X B b b B b B b b b a b ---⎡⎤⎡⎤⎢⎥⎢⎥'⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'=+∆=+∆=+∆⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 其中B X 为原最优解,i b '为B X 的第i 个分量,ik a 为1-B 的第i 行第k 列元素,为了保持最优基不变,应使0≥'B X ,即110k k m mk a b b b a '⎡⎤⎡⎤⎢⎥⎢⎥+∆≥⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦. 由此可得到保持最优基不变时,资源系数的变化界限为max 0min 0i i k ik k k ik ik ik b b b a b b a a a ⎧⎫⎧⎫''--⎪⎪⎪⎪'+>≤≤+<⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭.例3.9 若例3.2的第二个约束条件中2b 变化为22b b ∆+,在最优解不变的条件下,求2b ∆的变化范围.解 计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡≥∆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆+--000812141244002211b b B b B可得2224/(1/4)164/(1/2)82/(1/8)16b b b ∆≥-=-∆≥-=-∆≤--=,,.所以2b ∆的变化范围是(-8,16).显然2b 的变化范围是(8,32).。

第2章线性规划讲义的对偶问题

第2章线性规划讲义的对偶问题

称CBB-1为单纯形乘子
19
二、对偶问题的基本性质
1. 对称性
2. 弱对偶性
推论:
(1)原问题任一可行解的目标函数值是其对偶问题目标函数 值的下界;反之对偶问题任一可行解的目标函数值是其 原问题目标函数值的上界。
(2)如原问题有可行解且目标函数值无界,则其对偶问题无 可行解;反之对偶问题有可行解且目标函数值无界,则 其原问题无可行解。
35
三、分析cj的变化 线性规划目标函数中变量系数cj的变化仅仅影响到检验 数,所以将cj的变化直接反映到最终单纯形表中,只可 能出现表2-9中的第一、二两种情况。
例5:在美佳公司例子中, (1) 若家电Ⅰ的利润降至1.5元/件, 而家电Ⅱ的利润增 至2元/件, 美佳公司最优生产计划有何变化? (2) 若家电Ⅰ的利润不变, 而家电Ⅱ的利润在什么范围 内变化时, 该公司的最优生产计划不发生变化。
28
练习: 用对偶单纯形法求解下述LP问题:
min w x1 4x2 3x4 x1 2x2 x3 x4 3
st. 2x1 x2 4x3 x4 2 xi 0(i 1,2,3,4)
29
min z cx
注: 若LP问题的标准形式为:
Ax b
st
.
x
0
其对偶单纯形法的求解步骤确定换入基变量的原则如下:
目标函数求极小值时,约束方程均为≥
2
二、对称形式下对偶问题的一般形式
对称形式的LP问题(LP1):
M Z c 1 x a 1 c 2 x x 2 c n x n
a 1 x 1 1 a 1 x 2 2 a 1 n x n b 1 a 2 x 1 1 a 2 x 2 2 a 2 n x n b 2

第四章线性规划对偶

第四章线性规划对偶

n
m
CXYb,即cjxj yibi
j1
i1
__ __
推论__ ⑴.若 X 和Y 分别是问题(P)和(D)的可__ 行解,
则C X 是(D)的目标函数最小值的一个下界; Y b 是
(P)的目标函数最大值的一个上界。
第四章线性规划对偶
11
推论⑵.在一对对偶问题(P)和(D)中,若其中 一个问题可行但目标函数无界,则另一个问题不可 行;反之不成立。这也是对偶问题的无界性。
矩 阵 形 式 :P max Z CX
AX b
(2)
X
0
D minW Yb YA C Y 无符号限制(无约束)
第四章线性规划对偶
10
(二)、对偶问题的性质
1、对称性定理:对偶问题的对偶是原问题。
__ __
2、弱对偶原理(弱对偶性):设 X和Y 分别是问题
(P)和(D)的可行解,则必有
__ __
相当于:在换基迭代过程中逐渐使得对应的对 偶消问 失题 ,( 直D到)中yT,CyBTTB1CBT是B对1 偶的问不题可的行可性行逐解渐 时,就是原问题的最优解。
第四章线性规划对偶
17
回顾(单纯形法):
m ax zcx (1)
(LP)
Ax b
(2)
s.t.
x
0
(3)
(b0)
r(Amn)m,A P 1 P m P m 1 P n B N
对偶问题(D Dual Problem)
m in 100y1 150y2
2 y1 y2 4
s .t .
1.5 y1 3 y1
2
2 y2 y2
7
5
y 1 , y 2 0

线性规划的对偶模型

线性规划的对偶模型

对偶在物流优化中的应用
1 2 3
运输优化
对偶模型可以用于优化运输方案,通过合理安排 运输路线和车辆调度,降低运输成本和提高运输 效率。
仓储优化
在仓储优化方面,对偶模型可以帮助企业合理规 划仓库布局和库存管理,提高仓储效率和降低库 存成本。
配送优化
对偶模型可以用于优化配送方案,通过合理安排 配送路线和车辆调度,提高配送效率和降低配送 成本。
05
案例分析
案例一:生产计划优化问题
01
背景描述
某制造企业需要制定生产计划,以满足市场需求并最大化利润。生产计
划需要考虑原材料供应、生产能力、市场需求等多个因素。
02 03
对偶模型建立
通过对原问题建立线性规划模型,并引入对偶变量,可以构建一个与原 问题等价的对偶问题。对偶问题可以更好地描述企业决策者的目标,例 如最小化生产成本或最大化市场份额。
02
对偶问题是凸优化问题,其解是唯一的。
03 对偶问题具有封闭解,即存在一个封闭形式的解。
对偶问题的求解方法
直接法
通过求解对偶问题的约束条件和 目标函数,得到对偶问题的最优
解。
迭代法
通过迭代求解对偶问题,逐步逼近 最优解。
拉格朗日乘数法
利用拉格朗日乘数法求解对偶问题, 得到最优解。
03
对偶模型的应用
对偶解法
通过求解对偶问题,可以得到最优配送路径。对偶解法在处理大规模、多目标优化问题时具有较高的计 算效率,并且能够提供更好的优化效果。
感谢您的观看
THANKS
对偶在金融优化中的应用
投资组合优化
对偶模型可以用于优化投资组合, 帮助投资者确定最佳的投资组合 方案,以实现风险和收益的平衡。

第三章 对偶理论 第一讲 线性规划的对偶模型,对偶性质

第三章 对偶理论 第一讲 线性规划的对偶模型,对偶性质

由这个性质可得到下面几个结论:
1) (DP) 的任一可行解的目标值是 (LP)的最优值下界; (LP)的任一可行解的 目标是 (DP)的最优值的上界;
2)在互为对偶的两个问题中,若一个问题可行且具有无界解,则另一个问 题无可行解;
3) 若原问题可行且另一个问题不可行,则原问题具 有无界解。
注意: 上述结论(2)及(3)的条件不能少。一个问题无可行解时,另一个问题可能有可 行解(此时具有无界解)也可能无可行解。
目标函数求极大值时,所有约束条件为≤号,变量非负; 目标函数求极小值时,所有约束条件为≥号,变量非负。
max Z CX
AX b
(2.1)

X

0
min Z CX
AX b
(2.2)

X
0
注: (1)线性规划规范形式与标准型是两种不同形式,但可以 相互转换。
(2)规范形式的线性规划问题的对偶仍然是规范形式.
3.1 对偶线性规划问题
对偶问题的提出
原问题
min CX
AX b

X

0
对偶问题
max ub uA C u 0
原问题
min CX
AX b

X

0
对偶问题
max ub uA C u 0
原问题与对偶问题关系
(1)原问题的约束个数(不含非负约束)等于对 偶变量的个数
对偶问题
【例】写出下列线性规划的对偶问题
min CX
max ub
max Z 5x1 2x2 3x3
AX b

X

0
uA C u 0

第一节 线性规划的对偶问题

第一节 线性规划的对偶问题

x1 , x2 0
max S 3x1 2x2 x3
x1 x2 x3 12
x1 x2 x3 12 x1 x2 x3 10
2 x1 x2 x3 14
x1 , x2 , x4 , x5 0
x3 x4 x5
解 先化为对称形式
max S 3x1 2x2 x3
x1 x2 x4 x5 12
x1 x2 x4 x5 12 x1 x2 x4 x5 10
2x1
x2
x4
x5
14
x1 , x2 , x4 , x5 0
写出其对偶问题, 设对偶问题的变量为 y1、y2、y3、y4
max S 3x1 2x2 x4 x5
x1 x2 x4 x5 12
线性规划问题和它的对偶问题之间的关系: (1)目标函数,原始问题是求最大值,对偶问题
是求最小值; (2)原始问题约束不等式的个数等于对偶问题变量
的个数; (3)原始问题的收益系数,成为对偶问题中约束不
等式右端的常数项; (4)两个约束方程组的系数矩阵互为转置矩阵. (5)约束不等式,一个全是“≤”,另一个全是“≥” ; (6)原始问题和对偶问题是相对的,可以互相转化;
产品(公斤/件)
ABCD
资 甲 1 10 2 3 源 乙3 2 5 4
单位利润(元) 8 20 12 15
现有资源(吨)
18 13
产品(公斤/件)
ABCD
资 甲 1 10 2 3 源 乙3 2 5 4
单位利润(元) 8 20 12 15
现有资源(吨)
18 13
解 设甲、乙两种资源的价格为 y1, y2.
根据对偶理论,最小值问题的任一可行解都 是其对偶问题最优值的一个上界,

2.1对偶线性规划模型

2.1对偶线性规划模型
A
2
2 设备 产品
B
1
2
C
4
0
D
0
4
产品利润 (元/件)


2
3
设备可利用机时数(时)
12
8
16
12
问:充分利用设备机时,工厂应生产甲和乙产品各多少件才能获 得最大利润?
解:设甲、乙产品各生产x1及x2件,则数学模型为:
max z 2 x1 3 x 2 2 x1 2 x 2 12 x1 2 x 2 8 s .t 4 x1 16 4 x 12 2 x1 , x 2 0
例3 写出线性规划问题的对偶问题
max Z 2 x1 3 x 2 4 x 3 2 x1 3 x 2 5 x 3 2 3 x1 x 2 7 x 3 3 x1 4 x 2 6 x 3 5 x1 , x 2 , x 3 0
对 偶 问 题 : minW 2 y1 3 y 2 5 y 3 2 y1 3 y 2 y 3 2 3 y 1 y 2 4 y 3 3 5 y1 7 y 2 6 y 3 4 y1 , y 2 , y 3 0
反过来问:若厂长决定不生产甲和乙产品,决定出租机器用 于接受外加工,只收加工费,那么4种机器的机时如何定价 才是最佳决策?
在市场竞争的时代,厂长的最佳决策显然应符合两条: (1)不吃亏原则。即机时定价所赚利润不能低于加工甲、 乙型产品所获利润。 (2)竞争性原则。即在上述不吃亏原则下,尽量降低机 时总收费,以便争取更多用户。
(1)对称形式下对偶问题的一般形式
LP:
maxZ CX AX b NhomakorabeaX 0DP :
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

则定义其对偶问题为
MinW b1 y1 b2 y2 bm ym a11 y1 a21 y 2 am1 ym c1 a y a y a y c 12 1 22 2 m2 n 2 s.t. a y a y a y c 2n 2 mn n n 1n 1 y1 , y2 , , ym 0
(2)对称形式的对偶关系的矩阵描述
MaxZ CX
MinW bY
YA C ( D ) AX b (L)s.t. s.t. Y 0 X 0 (3)怎样从原始问题写出其对偶问题?
按照定义;
记忆法则:
“上、下”交换,“左、右”换位, 不等式变号,“极大”变“极小”
~ b i yi
i 1
MaxZ CX
(L)
MinW bY
AX b 和 (D) YA C s.t. s.t. X 0 Y 0 ~ ~ ~ ~ 均有可行解,分别为 X 和 Y ,则C X ≤ Yb。 ~ ~ ~ ~ ~ 证 由(L)AX b 左乘 Y ,得 YAX Yb 明 ~~ ~ ~ ~ 思 由(D)Y A C 右乘 X,得 YAX CX 路 n m ~ ~ ~ ~ : c x b y j j i i CX Yb
n m
~ ~ 则X ,Y 分别为原始问题和对偶问题的最
j 1
j
j
i 1
i
i
优解。
性质3 无界性 如果原问题(对偶问题) 具有无界解,则对偶问题(原问题)无可 行解。
注意:这个性质逆不成立。因为当原问题
(对偶问题)无可行解时,其对偶问题(原 问题)或无可行解或具有无界解。
性质4 强对偶性(或称对偶定理) 如果原问 题有最优解,则其对偶问题也一定具有最优 解,且有 max z min
2、非对称形式的对偶关系:
(1) 原问题
MaxZ c j x j
j 1 n
对偶问题
MinW bi xi
i 1 m
n aij x j bi i 1,2,, m s.t. j 1 x j 0 j 1,2,, n
m aij yi c j j 1,2,, n s.t. i 1 yi符号不限, i 1,2,, m
第二章 线性规划的对偶模型
一、对偶问题的提出 1、 对偶思想举例:某工厂拥有一定生产原材料 时,该工厂考虑是自己进行产品生产所赚的利 润大还是将其原材料直接出售给其它工厂时所 以赚取的利润大的问题。
ห้องสมุดไป่ตู้ 2、 换个角度审视生产计划问题
例:(第一章例2)要求制定一个生产计划 方案,在劳动力和原材料可能供应的范围 内,使得产品的总利润最大 。
MaxZ 2 x1 3x 2 2 x1 2 x 2 12 16 4 x 1 s.t. 15 5x 2 x1 , x 2 0
它的对偶问题就是一个价格系统,使在平衡了 劳动力和原材料的直接成本后,所确定的价格系统 最具有竞争力:
MinW 12y1 16y 2 15y 3 2 2 y1 4 y 2 5y3 3 2 y1 s.t. y1,y 2,y 3 0
二、原问题和对偶问题的关系
1、对称形式的对偶关系
(1)定义:若原问题是
MaxZ c1 x1 c 2 x 2 c n x n a11 x1 a12 x 2 a1n x n b1 a x a x a x b 21 1 22 2 2n n 2 s.t. a x a x a x b m2 2 mn n m m1 1 x1 , x 2 , , x n 0
这两个式子之间的变换关系称为 “对称形式的对偶关系”。
原问题与对偶问题的对比:
若原问题 MaxZ c1 x1 c2 x2 cn xn 对偶问题
MinW b1 y1 b2 y2 bm ym
a11 x1 a12 x2 a1n xn b1 a11 y1 a21 y2 am1 ym c1 a x a x a x b a y a y a y c 21 1 22 2 2n n 2 12 1 22 2 m2 n 2 s.t. s.t. a x a x a x b a y a y a y c mn n m mn n n m1 1 m 2 2 1n 1 2 n 2 x1 , x2 ,, xn 0 y1 , y2 ,, ym 0
下面的答案哪一个是正确的?为什麽?
MaxW 7 y1 11y 2 14 y3 MaxW 7 y1 11y 2 14 y3
4 y1 8 y 2 12 y3 4 4 y1 8 y 2 12 y3 4 5 y1 9 y 2 13y3 2 5 y1 9 y 2 13y3 2 s.t. s.t. 6 y1 10 y 2 3 6 y1 10 y 2 3 y1符号不限, y 2 0, y3 0 y1符号不限, y 2 0, y3 0
(特点:等式约束)
(特点:对偶变量符号 不限,系数阵转置)
(2)怎样写出非对称形式的对偶问题?
把一个等式约束写成两个不等式约束, 再根据对称形式的对偶关系定义写出;
按照原始-对偶表直接写出 ;
(3)原始-对偶表
原问题(或对偶问题)
目标函数 MaxZ
变量数:n个 变量 ≥0 变量 ≤0 变量 无约束

×
(原问题是极小化问题,因此应从原始对偶 表的右边往左边查!)
三、对偶定理
对偶定理是揭示 原始问题的解与对偶问题的解之间重 要关系的 一系列性质。 对称性—— 对偶问题的对偶是原问题。
~ 性质1 弱对偶性——如果 X 是原问题 j ( j 1,, n)
~ c jxj
j 1
~ 的可行解, Yi (in 1,其对偶问题的可行解,则恒有: , n) m
对偶问题(或原问题)
目标函数 MinW
约束条件数:n个 约束条件 ≥ 约束条件 ≤ 约束条件 =
约束条件:m个 约束条件 ≤ 约束条件 ≥ 约束条件 =
变量数:m个 变量 ≥0 变量 ≤0 无约束
课堂练习:写出下面线性规划的对偶规划:
MinZ 4 x1 2 x 2 3 x3 4 x1 5 x 2 6 x3 7 8 x1 9 x 2 10x3 11 s.t. 12x1 13x 2 14 x1 0, x 2 符号不限, x3 0
j 1 i 1
• 关于“界”的结果; •极小化问题有下界—— 推论1 极大化问题的任意一个可行解所对应的 目标函数值是其对偶问题最优目标函数值的一 个下界。
•极大化问题有上界——
推论2 极小化问题的任意一个可行解所对 应的目标函数值是其对偶问题最优目标函 数值的一个上界。
~ 、~ 分别为对称形式对 性质2 最优性 若 X Y 偶线性规划的可行解,且两者目标函数的 相应值相等,即 c ~ x b ~ y
j 1
n
性质6 线性规划的原问题及其对偶问题之间 存在一对互补的基解,其中原问题的松驰变 量对应对偶问题的变量,对偶问题的剩余变 量对应原问题的变量;这些互相对应的变量 如果在一个问题的解中是基解变量,则在另 一问题的解中是非基变量;将这对互补的基 解分别代入原问题和对偶问题的目标函数有:
z
性质5 互补松弛性 在线性规划问题的最优解
中,如果对应某一约束条件的对偶变量值为非 零,则该约束条件取严格等式;反之如果约束 条件取严格不等式,则其对应的对偶变量一定 为零。
即:
ˆ i 0, 则 aij x ˆ j bi 如果y
j 1
n
ˆ j bi, 则y ˆi 0 如果 aij x
例 写出下面线性规划的对偶问题:
MaxZ 2x1 x 2 3x1 4x 2 15 s.t.5x1 2x 2 10 x , x 0 1 2
MinW 15 y1 10 y 2 3 y1 5 y 2 2 s.t. 4 y1 2 y 2 1 y ,y 0 1 2
(用于生产第i种产 品的资源转让收益不 小于生产该种产品时 获得的利润)
对偶变量的经济意义可以解释为对工时及原材 料的单位定价 ;
若工厂自己不生产产品A、B和C,将现 有的工时及原材料转而接受外来加工时,
那么上述的价格系统能保证不亏本又最富
有竞争力(包工及原材料的总价格最低) 当原问题和对偶问题都取得最优解时,这 一对线性规划对应的目标函数值是相等的: Zmax=Wmin
相关文档
最新文档