初中数学解题方法:换元法
初中数学 什么是换元法
初中数学什么是换元法换元法是一种在初中数学中常用的解题方法,特别适用于一些复杂的方程或不等式的求解过程。
通过引入一个新的未知数或进行一定的代换,可以将原问题转化为更简单的形式,从而更容易求解。
下面我将为您详细介绍换元法的定义、原理以及应用方法。
一、换元法的定义换元法是指通过引入一个新的未知数或进行一定的代换,将原问题转化为更简单的形式,从而更容易求解的解题方法。
通过将问题中的变量进行替换,可以改变问题的形式,使其更易于处理。
换元法在解方程、求不等式的最值、证明等问题中都有广泛的应用。
二、换元法的原理换元法的原理是通过引入一个新的未知数或进行一定的代换,将原问题转化为更简单的形式。
新的未知数或代换的选择通常是根据问题的特点和需要来确定的。
通过合理的选择,可以使问题的形式更简单,从而更容易求解。
三、换元法的应用方法换元法的应用方法可以根据具体问题的不同而有所变化。
下面我将分别介绍在解方程、求不等式的最值以及证明中的换元法应用方法。
1. 解方程:a. 对于一元一次方程,可以通过引入新的未知数或进行代换,将其转化为更简单的形式。
例如,对于方程2x + 3 = 7,可以引入新的未知数y = 2x + 3,转化为y = 7,进而求得x的值。
b. 对于一元二次方程,可以通过引入新的未知数或进行代换,将其转化为更简单的形式。
例如,对于方程x^2 + 3x + 2 = 0,可以引入新的未知数y = x + 1,转化为y^2 + 2 = 0,进而求得x的值。
2. 求不等式的最值:a. 对于一元一次不等式,可以通过引入新的未知数或进行代换,将其转化为更简单的形式。
例如,对于不等式2x + 3 > 5,可以引入新的未知数y = 2x + 3,转化为y > 5,进而求得x的取值范围。
b. 对于一元二次不等式,可以通过引入新的未知数或进行代换,将其转化为更简单的形式。
例如,对于不等式x^2 - 4x + 3 > 0,可以引入新的未知数y = x - 2,转化为y^2 - 1 > 0,进而求得x的取值范围。
初中数学因式分解中的换元法学法指导
初中数学因式分解中的换元法学法指导徐卫东 刘建英因式分解是初中数学的重要内容之一,是多项式乘法的逆运算,在代数式的化简、求值、解方程等领域中都有着广泛、直接的应用。
但当一个多项式的项数、字母较多,次数较高或还含有代数式乘积的项时,结构复杂,容易造成思路混乱,这时可对多项式中某些相同的部分设辅助元代换,达到减少项数、降低次数,便于分解因式。
把复杂、繁难的问题变得简单、容易的目的。
举例简解如下。
一、整体换元例1 因式分解.2)1x x ()1x x (2424--++-+解:设A 1x x 24=-+,原式)1x x )(2x x ()2A )(1A (2A A 24242++-+=+-=-+= ).1x x )(1x x ()2x )(1x )(1x (]x )1x )[(2x )(1x ()x 1x 2x )(2x x (2222222222424+-+++-+=-++-=-++-+=例2 若βα、是方程0c bx x 2=++的两根。
因式分解.c ]c x )1b (x [b ]c x )1b (x [222++++++++解:因为βα、是方程0c bx x 2=++的两根,所以.c ),(b αβ=β+α-=设A c x )1b (x 2=+++,原式).A )(A (A )(A c bA A 22β-α-=αβ+β+α-=++= 但-αβ+β-α-+=α-αβ+β-α-+=α-+++=α-x x x x x )1(x c x )1b (x A 222 ),x )(1()1x ()1x (x )x ()x x x (2α-+β-α=+β-α-+β-=α+αβ-α-+β-=α同理),x )(1x (A β-+α-=β-所以原式).1x )(1x )(x )(x (+β-+α-β-α-=二、局部换元例3 因式分解.14)8x 5x )(5x 5x (22-++-+解:设,A x 5x 2=+原式14)8A )(5A (-+-=).9x 5x )(6x )(1x ()9x 5x )(6x 5x ()9A )(6A (54A 3A 2222+++-=++-+=+-=-+=例4 因式分解.x )6x 5x )(6x 7x (222+++++解:设A 6x 5x 2=++,原式.)6x 6x ()x A (x Ax 2A x )x 2A (A 222222++=+=++=++=三、局部分解后,重组再换元例5 因式分解.91)9x )(35x 4x 4(22----解:原式91)]3x )(5x 2[()]3x )(7x 2[(91)3x )(3x )(5x 2)(7x 2(--+⋅+-=--++-= ,A 21x x 291)15x x 2)(21x x 2(222=-------=设原式91A 6A 91)6A (A 2-+=-+= )8x x 2)(7x 2)(4x ()8x x 2)(28x x 2()13A )(7A (222--+-=----=+-=例6 因式分解2x 3)12x )(10x )(16x )(5x (4-++++解:原式)60x 16x )(60x 17x (4x 3)]10x )(6x )][(12x )(5x [(4222++++=-++++= .x 32-设A 60x 16x 2=++,原式)x 3A 2)(x A 2(x 3Ax 4A 4x 3)x A (A 4222+-=-+=-+= )120x 35x 2)(8x )(15x 2()120x 35x 2)(120x 31x 2(222++++=++++=注:这里分解后重组的目的是为了寻找整体或局部换元的可能。
初中数学解决复杂方程的简便方法
初中数学解决复杂方程的简便方法解决数学方程,特别是复杂的方程对于初中学生来说可能是一项挑战。
然而,通过掌握一些简便的方法和技巧,我们可以更轻松地解决这些方程。
本文将介绍一些初中数学解决复杂方程的简便方法。
1. 消元法消元法是解决一元一次方程组的常用方法,也可以用于解决一元二次方程。
这个方法的基本思想是通过消去含有未知数的项,从而将方程化为一个更简单的形式。
例如,对于方程2x + 3 = 7,我们可以通过减去3来消去常数项,得到2x = 4,进而得到x = 2的解。
2. 因式分解法因式分解法是解决二次方程的一种有效方法。
对于二次方程ax^2 + bx + c = 0,我们可以通过找到其因式分解形式来求解。
具体步骤是把方程化为(a·x +m)·(a·x + n) = 0的形式,然后分别解出括号中的因式,得到方程的解。
3. 完全平方公式完全平方公式是解决一元二次方程(即形如ax^2 + bx + c = 0的方程)的常用方法。
该公式表达为x = (-b ± √(b^2 - 4ac))/(2a)。
通过将方程和该公式进行对应,我们可以得到方程的解。
例如,对于方程x^2 + 2x - 3 = 0,我们可以根据完全平方公式得到x = (-2 ± √(2^2 - 4·1·-3))/(2·1),进而求得x的解。
4. 二次函数图像法对于一元二次方程,我们可以通过绘制二次函数的图像来解决方程。
通过观察函数图像的顶点坐标、开口方向和与x轴相交的点等信息,我们可以得到方程的解。
例如,对于方程x^2 + 2x - 3 = 0,我们可以绘制该方程对应的二次函数的图像,根据图像的特征来确定方程的解。
5. 换元法换元法是一种解决复杂方程的常用方法。
通过引入一个新的变量,我们可以将原方程转化为一个更简单的形式。
例如,对于方程x^2 + 2x - 3 = 0,我们可以进行变量替换,令x + 1 = y,这样方程就变为y^2 - 4 = 0,进而可以更容易地求得方程的解。
初中数学解题技巧-常见的转化方法
初中数学解题技巧:常见的转化方法
初中数学解题技巧:常见的转化方法
( 1 )直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题 .
( 2 )换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题 .
( 3 )数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径 .
( 4 )等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的 .
( 5 )特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题 .
( 6 )构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题 .
( 7 )坐标法:以坐标系为工具,用计算方法解决几何问题也是转化方法的一个重要途径
转化与化归的指导思想
( 1 )把什么问题进行转化,即化归对象 .
( 2 )化归到何处去,即化归目标 . 0
( 3 )如何进行化归,即化归方法 .
化归与转化思想是一切数学思想方法的核心 .。
初中换元法经典例题
初中换元法经典例题初中数学中,换元法是一种常用的解题方法,用于将复杂的表达式转化为简单的形式,从而更容易进行计算或求解。
下面是一个经典的例题,我将从多个角度给出详细的解答。
例题,求解方程 $2x^2 5x + 3 = 0$。
解答:1. 角度一,直接使用求根公式。
这个方程是一个二次方程,我们可以直接使用求根公式来解。
求根公式为 $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$,其中 $a = 2$,$b = -5$,$c = 3$。
代入公式计算可得:$x = \frac{-(-5) \pm \sqrt{(-5)^2 4 \cdot 2 \cdot 3}}{2 \cdot 2}$。
$x = \frac{5 \pm \sqrt{25 24}}{4}$。
$x = \frac{5 \pm \sqrt{1}}{4}$。
$x = \frac{5 \pm 1}{4}$。
解得 $x_1 = 1$,$x_2 = \frac{3}{2}$。
2. 角度二,使用换元法。
我们可以使用换元法将这个方程转化为一个更简单的形式。
设$y = 2x^2 5x + 3$,则原方程可以表示为 $y = 0$。
现在我们需要找到一个合适的变量替换,使得方程变得简单。
我们可以尝试令 $u = x \frac{1}{2}$,即 $x = u + \frac{1}{2}$。
将 $x$ 替换为$u + \frac{1}{2}$,得到:$y = 2(u + \frac{1}{2})^2 5(u + \frac{1}{2}) + 3$。
$y = 2(u^2 + u + \frac{1}{4}) 5u \frac{5}{2} + 3$。
$y = 2u^2 + u \frac{1}{2}$。
现在方程变为 $2u^2 + u \frac{1}{2} = 0$,我们可以使用求根公式来解这个一元二次方程。
求根公式为 $u = \frac{-b \pm\sqrt{b^2 4ac}}{2a}$,其中 $a = 2$,$b = 1$,$c = -\frac{1}{2}$。
初中数学换元法解析
初中数学换元法解析换元法是数学中的重要方法之一,它往往和消元的思想联系在一起.换元的实质就是“转化”的数学思想,关键是构造元和设元,理论依据是等量代换.换元的基本方法有:整体换元、局部换元、均值换元、三角换元等.换元法的一般步骤为:设元(或构造元)、换元、求解、回代和检验等。
(1)换元法在整式运算中的应用初中数学问题中,常见的就是整式运算问题.在整式运算中经常会出现相对复杂的题目,这就需要在解题过程中将结构相同的部分看成一个整体,并用新元去替换它,将综合性强的问题转换成普通问题。
【典型例题】【思路分析】从题目中可发现,第一个括号中的式子=1-第四个括号中的式子,第三个括号中的式子=1-第二个括号中的式子.所以我们可以把第四个括号中的式子、第二个括号中的式子整体设元。
【答案解析】设2+3+4+…+999=a,2+3+4+…+998=b,则有a-b=999.所以原式=(1-b)·a-(1-a)b=a-ab-b+ab=a-b=999.【归纳总结】解题之前可以先观察题目,发现并探究相同的式子,然后用字母将相同部分替换,计算相对快捷简便.从此题中还可以发现,每两组括号都会相差999,第三个括号比第一个括号中少了999,第二个括号比第四个括号中多了999.所以还可以这样设元、换元:设1-2-3-…-998=a,2+3+4+…+998=b,则有a+b=1那么原式就变换a·(b+999)-(a-999)b=999(a+b)=999.所以换元方法不止一种,可以灵活选择.(2)换元法在因式分解中的应用初中数学问题中的重要内容之一就是因式分解.用换元法分解因式,它的基本思路就是将多项式中的某一部分用新的变量替换,减少因式项数或者降低次数,同时,让隐含的关系清晰地表现出来,从而使运算过程简明清晰.【典型例题】【思路分析】认真观察题目的结构,可以发现(x-4)(x+1)=x²-3x-4,(x-2)(x-1)=x²-3x+2,它们的二次项、一次项完全相同,这就具备了换元的条件,使用换元法进行降次处理,就使得分解变得简单易行.在设辅助未知数时,方法比较灵活,如可设x²-3x=a,或设x²-3x-4=a等,一般地,设辅助元为x²-3x-4和x²-3x+2的算术平均式比较简捷.【答案解析】(3)换元法在解方程(组)中的应用掌握运用换元法解方程和方程组是初中数学的一个重点要求,而在解高次方程、分式方程、无理方程时,要注意方程的特点,创造运用换元法的条件,往往会简化求解过程.A.高次方程解一元高次方程的基本思想是降次,而换元法是降次的一种基本方法.用换元法解高次方程的思路,与用换元法分解因式的思路一致.【典型例题】【思路分析】这个方程左边的两个因式中都含有x²+3x,于是解此题可设x²+3x+4=y或者x²+3x=y,当然与分解因式类似,也可设两个因式的算术平均式为辅助元,不过此题中算术平均式为x2+3x+9/2,计算并不方便.所以辅助元的选择要根据题意灵活地掌握.【答案解析】B.分式方程运用换元法解分式方程的基本思路是化分式方程为整式方程.【典型例题】【思路分析】【答案解析】C.无理方程运用换元法解无理方程的基本思路是化无理方程为有理方程.【典型例题】【思路分析】当无理方程的有理式部分与无理式部分所含未知数的项的系数成比例(包括相等)时,把无理式部分设为辅助元.此方程组中存在两组这样的关系,所以需设两个辅助元.用换元法解方程或方程组,虽然能把复杂的方程(组)简单化,但用此方法必须验根,因为在换元过程中(特别是分式方程和无理方程)常会出现增根.【答案解析】(4)换元法在证明中的应用换元法在证明中应用广泛,比如一元二次方程根的问题、不等式的证明、几何问题等,证明题利用换元法十分简捷.常采用的方法有增量换元法、均值换元法等.【典型例题】【思路分析】因为b+c=8,所以b和c的均值就是4,所以b和c的值都在4附近,所以可分别给b,c在4的基础上加上一个变量,这两个变量之和应为0,所以为简便起见,一个表示为t,另外一个则为-t.所以设b=4+t,c=4-t.又因为b,c都大于0,所以可以求出t值的取值范围.到此,设辅助元完成,然后代入换元即可.像这样,若某几个变量之和为一定值,则可求出其均值,则这几个变量都在均值这一常量附近变化,此时,可设这几个变量为该均值加上另外几个变量.新加入的变量之和为0,这种换元方法叫作均值换元法.【答案解析】。
初中数学因式分解常用七大解题方法,分类讲解+例题解析,收藏
初中数学因式分解常用七大解题方法,分类讲解+例题解析,收藏初中数学|因式分解常用七大解题方法,分类讲解+例题解析,收藏 -一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a2-b2 ---------a2-b2=(a+b)(a-b);(2) (a±b)2 = a2±2ab+b2 ———a2±2ab+b2=(a±b)2;(3) (a+b)(a2-ab+b2) =a3+b3------ a3+b3=(a+b)(a2-ab+b2);(4) (a-b)(a2+ab+b2) = a3-b3 ------a3-b3=(a-b)(a2+ab+b2).下面再补充两个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);三、分组分解法(一)分组后能直接提公因式比如,从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
(二)分组后能直接运用公式分组后能直接运用公式,主要是通过对题目当中各因式的观察,进行分组后,能够进行提公因式分解,直到分解的最后能够变成几个多项式或单项式与多项式的乘积为止。
综合练习:四、十字相乘法.十字相乘法是因式分解当中比较难的一种分解方式。
在运用过程当中,对同学们的思维提出了更高的要求,等大家都熟练了这种方法以后,其实对于因式分解是非常简单的,而且比较方便。
对于十字相乘法,我们分为四种类型。
给大家做详细的讲解。
针对每一种方法都有经典的例题解析,通过例题解析的方式让大家明白因式分解时该如何操作,遵循怎样的分解步骤,才能比较顺利的解决和掌握十字相乘法。
初中数学:二元一次方程组的几种简便解法
初中数学:二元一次方程组的几种简便解法1、整体代入法整体代入法是用含未知数的表达式代入方程进行消元.有些方程组并不一定能直接应用这种解法,不过,我们可以创造条件进行整体代入.解析:这道题中的系数较繁,按常规方法去解比较麻烦.我们可以先将②式有目的地进行变形,再将①式中的看成一个整体代入求解.由②式可得.化简,得.③将①代入③,得.解得,代入①可得.故方程组的解为2、换元法换元法就是设出一个辅助未知数,分别用含有这个未知数的代数式表示原方程组中未知数的值,把二元一次方程组转化为一元一次方程组进行求解.换元有一定的技巧性.有代数式整体换元,还有设比值换元等多种方法,下面举例说明.解析:我们可以分别尝试整体换元和设比值换元.方法1:设,则.代入②,得.解得.从而可得方程组的解为方法2:设.由①得,所以.③由②得.④③÷④,得.解得.从而可得3、直接加减法直接加减法有别于课本中的加减消元法,它通过将方程组中的方程相加减后把较繁的题目转化得相对简单.解析:若用一般方法去解这个方程组,其复杂程度可想而知,我们采用直接加减法.①+②,得,即.③①-②,得.④由③④可得4、消常数项法解析:可将两式消去常数项,直接得到与的关系式,而后代入消元.①-②,得,即.将代入②,得,即.从而可得5、相乘保留法解析:去分母时,如果把两数相乘得出结果,不仅数值变大,而且给下面的解题过程带来麻烦,所以有时我们暂时保留相乘的形式.由①,得.③由②,得.④④-③,得.从而可得6、科学记数法当方程组中出现比较大的数字时,可用科学记数法简写.例6、解方程组解析:这个数比较大,可用科学记数法写成.由②,可得.③将①代入③,得.从而可得7、系数化整法若方程组中含有小数系数,一般要将小数系数化为整数,便于运算.解析:利用等式的性质,把①式变形为.③利用分子、分母相除,把②式变形为.④③-④,得.从而可得8、对称法例8、解方程组解析:这个方程组是对称方程组,其特点是把某一个方程中的互换即可得到另一个方程.由对称性可知,则可得解得9、拆数法例9、解方程组解析:我们可以有目的地将常数项进行变形,通过观察得出方程组的解.原方程组可变形为从而可得。
初中数学—换元法
知识点拨【知识提要】1. 方程中变量的换元;2. 三角换元;3. 特殊换元。
【基本题型】1. 解超过二次的方程,或解某些特殊的根式方程;2. 证明某些不等式,或者某些量的取值范围;3. 求某些难以直接求出来表达式的值。
【解题技巧】1. 遇到可以整体代入的时候,可以考虑换元;2. 解特殊的高次方程的时候,可以考虑换元;3. 有时候甚至可以联想三角函数。
快乐热身【热身】已知若有23y x =+成立,则有恒等式2223x x ay by c ++=++成立。
求abc 的值。
【解析】分析 直接用待定系数法会很繁琐。
有没有简单一些的方法呢?解 因为23y x =+,所以32y x -=。
所以,22239232424y y y x x y -⎛⎫++=+=-+ ⎪⎝⎭。
因此,119942432abc ⎛⎫=⨯-⨯=- ⎪⎝⎭。
第五讲 换元法热身完了,我们开始今天的课程吧!例题精讲【例 1】 求1111111...++++(无穷多个)的值。
【解析】 分析 连分数化简为分数从最底下开始,但是这个是无限的,应该怎么办呢?解 设原式x =,则11x x=+,也就是说210x x --=。
解得12x +=(负根舍去)。
说明 无限连分数和无限小数一样,都是极限。
关于极限的概念,以后会学到。
【例 2】 解关于x 的一元四次方程:43210x ax bx ax ++-+=。
【解析】 分析 因为方程次数高,所以应当设法降次。
解 观察方程的系数,具有对称的特点,所以应当使用换元法。
显然0x =不是原方程的解,所以除以2x 后得到:2210a x ax b x x ++-+=。
设1y x x=-,则有220y ay b +++=。
248a b ∆=--。
⑴若0∆>,则方程的解为1y =2y =。
代回1y x x =-得到1,2x =,3,4x =。
⑵若0∆=,则方程的解为1,22a y =-,于是有1,34a x -+=,2,44a x -=。
初中数学竞赛专题选讲换元法(含答案)
初中数学竞赛专题选讲(初三.8)换元法一、内容提要1. 换元就是引入辅助未知数.把题中某一个(些)字母的表达式用另一个(些)字母的表达式来代换,这种解题方法,叫做换元法,又称变量代换法.2. 换元的目的是化繁为简,化难为易,沟通已知和未知的联系.例如通过换元来降次,或化分式、根式为整式等.换元的关鍵是选择适当的式子进行代换.3. 换元要注意新旧变元的取值范围的变化.要避免代换的新变量的取值范围被缩小;若新变量的取值范围扩大了,则在求解之后要加以检验.4. 解二元对称方程组,常用二元基本对称式代换.5. 倒数方程的特点是:按未知数降幂排列后,与首、末等距离的项的系数相等.例如:一元四次的倒数方程ax 4+bx 3+cx 2+bx+a=0.两边都除以x 2,得a(x 2+21x )+b(x+x 1)+c=0. 设x+x 1=y, 那么x 2+21x = y 2-2, 原方程可化为ay 2+by+c -2=0.对于一元五次倒数方程 ax 5+bx 4+cx 3+cx 2+bx+a=0, 必有一个根是-1.原方程可化为 (x+1)(ax 4+b 1x 3+c 1x 2+b 1x+a)=0.ax 4+b 1x 3+c 1x 2+b 1x+a=0 ,这是四次倒数方程.形如 ax 4-bx 3+cx 2+bx+a=0 的方程,其特点是:与首、末等距离的偶数次幂项的系数相等,奇数次幂的系数是互为相反数.两边都除以x 2, 可化为a(x 2+21x)-b(x -x 1)+c=0. 设x -x 1=y, 则x 2+21x=y 2+2, 原方程可化为 ay 2-by+c+2=0.二、例题例1. 解方程1112---++x x x =x. 解:设11-++x x =y, 那么y 2=2x+212-x .原方程化为: y -21y 2=0 . 解得 y=0;或y=2.当y=0时,11-++x x =0 (无解) 当y=2时, 11-++x x =2,解得,x=45. 检验(略). 例2. 解方程:x 4+(x -4)4=626.解:(用平均值24-+x x 代换,可化为双二次方程.) 设 y= x -2 ,则x=y+2.原方程化为 (y+2)4+(y -2)4=626.[((y+2)2-(y -2)2)2+2(y+2)2(y -2)2-626=0整理,得 y 4+24y 2-297=0. (这是关于y 的双二次方程).(y 2+33)(y 2-9)=0.当y 2+33=0时, 无实根 ;当y 2-9=0时, y=±3.即x -2=±3,∴x=5;或x=-1.例3. 解方程:2x 4+3x 3-16x 2+3x+2=0 .解:∵这是个倒数方程,且知x ≠0,两边除以x 2,并整理 得2(x 2+21x )+3(x+x 1)-16=0. 设x+x 1=y, 则x 2+21x =y 2-2. 原方程化为 2y 2+3y -20=0.解得 y=-4;或y=25. 由y=-4得 x=-2+3;或x=-2-3.由y=2.5得 x=2;或x=21. 例4 解方程组⎪⎩⎪⎨⎧=+++++=+++++01012124012522222y x y xy x y x y xy x解:(这个方程组的两个方程都是二元对称方程,可用基本对称式代换.) 设x+y=u, xy=v. 原方程组化为:⎪⎩⎪⎨⎧=+++=+++010********v u u v u u . 解得⎩⎨⎧-==374v u ; 或⎪⎪⎩⎪⎪⎨⎧=-=91132v u . 即⎩⎨⎧-==+374xy y x ; 或⎪⎪⎩⎪⎪⎨⎧=-=+91132xy y x . 解得:⎪⎪⎩⎪⎪⎨⎧--=+-=33213321y x ;或⎪⎪⎩⎪⎪⎨⎧+-=--=33213321y x ;或⎪⎩⎪⎨⎧-=+=412412y x ;或⎪⎩⎪⎨⎧+=-=412412y x .三、练习解下列方程和方程组:(1到15题): 1. =++++)7(27x x x x 35-2x.2. (16x 2-9)2+(16x 2-9)(9x 2-16)+(9x 2-16)2=(25x 2-25)2.3. (2x+7)4+(2x+3)4=32 .4. (2x 2-x -6)4+(2x 2-x -8)4=16.5. (2115-+x )4+(2315-+x )4=16.6. x x x x 112+++=223. 7. 2x 4-3x 3-x 2-3x+2=0. 8. ⎪⎩⎪⎨⎧=++=+++19182222xy y x y x y x 9. ⎪⎩⎪⎨⎧=+=+160311122y x y x . 10. 563964467222+-=+-+--x x x x x x . 11. (6x+7)2(3x+4)(x=1)=6.12. ⎪⎩⎪⎨⎧=+=-++13511y x y x . 13. ⎪⎩⎪⎨⎧=+=+1025y x x y y x .14. ⎪⎩⎪⎨⎧=+-+=-+++01823312y xy y y x y x . 15x xx x =-+-111. 16. 分解因式: ①(x+y -2xy)(x+y -2)+(1-xy)2; ②a 4+b 4+(a+b)4 .17. 已知:a+2=b -2=c ×2=d ÷2, 且a+b+c+d=1989.则a=___,b= ____,c=_____,d=____18. [a ]表示不大于a 的最大整数,如[2]=1,[-2]=-2,那么 方程 [3x+1]=2x -21 的所有根的和是_____.参考答案 1. 221229 2. ±43±34 3. -25 4. 2,-23,4651± 5.3231-32211, 6. 1 7.21,2 8.⎪⎩⎪⎨⎧+-=--=⎪⎩⎪⎨⎧--=+-=⎩⎨⎧==⎩⎨⎧==727272722332y x y x y x y x 9. ⎪⎩⎪⎨⎧+-=--=⎪⎩⎪⎨⎧--=+-=⎩⎨⎧==⎩⎨⎧==555555555555412124y x y x y x y x 10. 7,-111.-32,-3512.⎩⎨⎧==⎩⎨⎧==10358y x y x 13.⎩⎨⎧==⎩⎨⎧==8228y x y x 14. ⎪⎩⎪⎨⎧+=-=⎪⎩⎪⎨⎧-=+=⎩⎨⎧-==⎩⎨⎧==1031041031041513y x y x y x y x 15. x=251± 16.①设x+y=a,xy=b ②设a 2+b 2=x,ab=y17.设原式=k, k=44218. –2可设2x -21=t, x=21t+41代入[3x+1]。
初中数学十大思想方法-换元法
解:(用平均值 x x 4 代换) 2
设 y= x-2 ,则 x=y+2.
原方程化为 (y+2)4+(y-2)4=626.
[((y+2)2-(y-2)2)2+2(y+2)2(y-2)2-626=0
整理,得 y4+24y2-297=0.
(这是关于 y 的双二次方程).
(y2+33)(y2-9)=0.
3. (2x+7)4+(2x+3)4=32 .
4. (2x2-x-6)4+(2x2-x-8)4=16.
5. (2 5 x 1 1)4+(2 5 x 1 3 )4=16.
6.
x x2 1
x1 =3
2
.
x2
7. 2x4-3x3-x2-3x+2=0.
x 2 y 2 x y 18 8. x 2 y 2 xy 19
则
x2+
1 x2
=y2-2.
原方程化为 2y2+3y-20=0.
5
解得 y=-4;或 y= .
2
由 y=-4 得 x=-2+ 3 ;或 x=-2- 3 .
由 y=2.5 得
x=2;或 x= 1 . 2
2x 2 5xy 2 y 2 x y 1 0 例 4 解方程组 x 2 4xy y 2 12x 12 y 10 0
形如 ax4-bx3+cx2+bx+a=0 的方程,其特点是:
与首、末等距离的偶数次幂项的系数相等,奇数次幂的系数是互为相反数.
x
2
1
x
2
1
两边都除以 x2, 可化为 a(x2+
初中换元法解题技巧和方法总结
初中换元法解题技巧和方法总结嘿,同学们!今天咱就来讲讲初中数学里超有用的换元法解题技巧和方法。
咱先想想啊,有时候数学题就像一团乱麻,直接去解那可真是让人头疼。
但换元法呢,就像是一把神奇的剪刀,咔嚓一下,把这团乱麻剪成一段段好处理的小线头。
比如说,遇到那种式子特别长、特别复杂的方程或者代数式,换元法就派上大用场啦!咱可以把其中的一部分看成一个整体,给它换个“新名字”,这样不就简单多了嘛。
就好比你有个特别难记的朋友名字,你给他起个好记的外号,那下次提起他不就容易多了嘛。
举个例子哈,看到一个式子,里面有个部分一直重复出现,那咱就把它设成一个字母,比如设成 t。
然后呢,原来复杂的式子瞬间就变得清晰明了啦!换元法还能帮我们化繁为简呢!有些题目看上去超级复杂,各种式子纠缠在一起,让人摸不着头脑。
但用了换元法,把复杂的部分一替换,哇,就像拨开云雾见青天一样。
咱再想想,这换元法是不是就像给题目做了一次整容手术呀,把那些难看的、复杂的部分整得漂漂亮亮、简简单单的。
还有啊,换元法也能让我们的解题思路更加清晰。
就好像走在迷宫里,突然找到了一条明确的路。
同学们可别小瞧了这换元法哦,它能解决好多难题呢!有时候你苦思冥想半天都没头绪的题,用换元法一试,说不定就迎刃而解啦!那怎么用好换元法呢?这可得细心啦!首先得找对可以换元的部分,这就需要我们有一双敏锐的眼睛,能从复杂的式子中发现那个关键的部分。
然后呢,换元之后要记得把新的式子整理清楚,可别换了之后更乱啦!最后,解出答案后,还要记得把换的元换回来哦,不然可就闹笑话啦!总之呢,换元法是我们初中数学的一个好帮手,大家一定要好好掌握它呀!它能让我们在数学的海洋里畅游得更轻松、更愉快!相信大家只要多练习,多尝试,一定能把换元法用得炉火纯青,到时候什么难题都不怕啦!加油吧,同学们!。
初中换元法解二元一次方程
初中换元法解二元一次方程在初中数学的世界里,有一种方法叫换元法,听起来是不是有点高大上?其实它就是个聪明的“小把戏”。
想象一下,你在解一个二元一次方程,像是遇到了一道难题。
咱们不慌,换个角度,换个“角色”,把方程变得简单明了,就像魔术师变出的小兔子。
先说说什么是二元一次方程。
简单来说,就是形如ax + by = c的方程,x和y就是咱们的主角。
它们就像两位舞者,在数学的舞台上翩翩起舞。
可是这俩家伙的舞步总是对不上,导致我们看得一头雾水。
换元法就像是给他们换了一双舞鞋,让他们能够跳得更顺畅。
想象一下,x有时候在大舞台上不够自信,y就得给它鼓劲。
这个时候,我们可以设x = u,y = v,这样它们就有了新的身份,新的舞台。
怎么换呢?比方说,我们有方程2x + 3y = 12,先设x = u,y = (12 2u) / 3,这样把y“藏”起来,x就能更自由地展现自己。
这时候,看,u就是新的舞者,舞步变得简单又清晰。
咱们可以轻松求出u的值,再代入到y的表达式里,这样就能找到y。
这种方法不就像变魔术吗?你一换,就变成了新的方程。
在生活中,换元法就像是把繁琐的事情简化,比如说,你在厨房里做饭,遇到了一道复杂的菜谱,结果你灵机一动,把一些材料换成了更简单的,比如说换点儿调料。
这样,菜也能做得更顺口。
数学也是一样,换个方式,问题就迎刃而解。
说到这里,许多小伙伴可能会觉得这方法有点难,其实不然,换元法最重要的就是找到合适的“替代品”。
像换鞋一样,合适的才舒适。
如果你换的角色不合适,那可就麻烦了,可能舞蹈就会变成踩脚舞,哈哈。
记得最初学的时候,我也是一头雾水,总是搞不清楚该怎么换。
有一次,老师的一个简单例子彻底点醒了我。
老师说,“就像换口味的冰淇淋,选哪个都能好好享受。
”这下我懂了,换元其实也是让方程更美味的过程。
练习是关键,毕竟“工欲善其事,必先利其器”。
多做几道题,你就会发现,换元法其实是一种乐趣。
像在打游戏,刚开始可能会有些难,但越玩越顺手。
三角函数解题技巧
三角函数是中考必不可少的的考点,也是初中数学学习的重难点。
下面小编整理了三角函数解题技巧,赶快收藏吧!数学三角函数解题方法1.直接法顾名思义,就是直接进行正确的运算和公式变形,结合已知条件,得到正确的答案。
三角函数中大量的题型都是根据该方法求值解答的,它要求我们对三角函数的基本公式要牢牢掌握。
2.换元法换元法就是用一个量替代另一个量,发现题设中(隐含)条件,进行带式替换,从而将三角函数求值转变成代数式求值。
3.比例法对三角等式变形,找出与之有关的函数值,利用比例性质,对三角函数值进行计算。
三角函数解题思路求三角函数值的问题,可依循三种途径:1、先化简再求值,将式子化成能够利用题设已知条件的最简形式;2、从已知条件出发,选择合适的三角公式进行变换,推出要求式的值;3、将已知条件与求值式同时化简再求值。
三角函数公式特殊三角度数的特殊值sin30°=1/2sin45°=√2/2sin60°=√3/2cos30°=√3/2cos45°=√2/2cos60°=1/2tan30°=√3/3tan45°=1tan60°=√3cot30°=√3cot45°=1cot60°=√3/3两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2 tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积公式2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB锐角三角函数公式sinα=∠α的对边/斜边cosα=∠α的邻边/斜边tanα=∠α的对边/∠α的邻边cotα=∠α的邻边/∠α的对边倍角公式Sin2A=2SinA.CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))。
初中数学重点梳理:换元法
换元法 知识定位很多时候,我们遇到的问题直观比较复杂,在这种情况下把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
换元法又称辅助元素法、变量代换法。
通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。
或者变为熟悉的形式,把复杂的计算和推证简化。
换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
知识梳理知识梳理1:换元法在因式分解中的运用利用换元法分解因式,就是将多项式中的某一部分用一个新字母(元)来代替,进行变量替换,将问题转化,从而起到化繁为简、化隐为显、化难为易的作用。
知识梳理2:换元法在解方程中的运用换元法在解方程中是一种常用的方法,特别是解特殊方程中经常能产生事半功倍的 效果,下面介绍解特殊方程时应用换元法的几种常见的方法。
例题精讲【试题来源】【题目】分解因式:()()a a a a a 22216112++-++【答案】【解析】直接换元设a m 21+=,则原式=+-+()()m a m a a 6122=-+=--=+-+-=-+-m am a m a m a a a a a a a a 22222256231213311()()()()()()【知识点】换元法【适用场合】当堂例题【难度系数】3【试题来源】【题目】分解因式:()()()a b b c c a ----24 【答案】【解析】双元换元设b c m c a n -=-=,则a b m n -=-+(),原式=-+-[()]m n mn 24=-=---=+-()[()()]()m n b c c a a b c 2222【知识点】换元法【适用场合】当堂例题【难度系数】3【试题来源】【题目】分解因式:()()()a b ab a b ab +-+-+-2212【答案】【解析】和积换元设a b m ab n +==,原式=--+-()()()m n m n 2212=---+=--=+--=--()()()()()()m n m n m n a b ab a b 22222211111【知识点】换元法【适用场合】当堂例题【难度系数】3【试题来源】【题目】分解因式:()()()ab a b ab a b --+---1222 【答案】【解析】和差换元设a b ab m n +-=+22--=-a b m n则m ab n a b ab =-=+--11, 原式=-+-m m n m n 2()()=--=m m n n 2222()=+--=--()()()a b ab a b 111222【知识点】换元法【适用场合】当堂练习题【难度系数】3【试题来源】【题目】分解因式:a a a 42200320022003+++【答案】【解析】常值换元设2003=m ,则20021=-m ,原式=++-+a ma m a m 421()=-+++()()a a m a a 421=++-+=++-+()()()()a a a a m a a a a 2222112003【知识点】换元法【适用场合】当堂例题【难度系数】3【试题来源】【题目】分解因式: ()()()()x m x m x m x m m +++++2344 【答案】【解析】均值换元 原式=+++++()()x mx m x mx m m 222245456 设n x mx m x mx m =+++++1254562222[()()] =++x mx m 2255则原式=-++()()n m n m m 224==++n x mx m 222255()【知识点】换元法 【适用场合】当堂例题【难度系数】4【试题来源】【题目】分解因式:291492432a a a a -+-+【答案】【解析】倒数换元 原式=-+-+a a a a a 222291492()=+-++a a a a a 222219114[()()] 设a a m +=1,则原式=--+a m m 2222914[()]=-+=--a m m a m m 2222910225()()()=+-+-=-+-+=---a a a a a a a a a a a a 222212225212521221()()()()()()()【知识点】换元法【适用场合】阶段测验【难度系数】3【试题来源】【题目】分解因式:()()()a b b c c a abc ++++【答案】【解析】变形后换元原式=++-++-++-+()()()a b c c a b c a a b c b abc设a b c m ++=,则原式=---+()()()m c m a m b abc =-+++++-+=-+++=++++m a b c m ab bc ca m abc abcm m m ab bc ca mab bc ca a b c 3232()()()()()·【知识点】换元法【适用场合】课后两周练习【难度系数】3【试题来源】【题目】分解因式: ()()()a a a 212472----【答案】【解析】整体换元原式=+----[()()][()()]a a a a 141272 =---+-()()a a a a 22343272设a a m 232-+=,则原式=--()m m 672=--=-+=-+--++=+--+m m m m a a a a a a a a 222267212632123262538()()()()()()()【知识点】换元法【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】分解因式: ()12323+++-m m m m【答案】【解析】局部换元设12++=m m a ,则原式=+-()a m m 323 =++-=++-=++-=++-=++++++a am m m a am m m a am m m aa a m m m m m m m m m 23632333233343223422121211()()()()()【知识点】换元法【适用场合】课后两周练习【难度系数】3【试题来源】【题目】解方程:x 4+(x -4)4=626.【答案】x=5;或x=-1.【解析】(用平均值24-+x x 代换,可化为双二次方程.) 设 y= x -2 ,则x=y+2.原方程化为 (y+2)4+(y -2)4=626.[((y+2)2-(y -2)2)2+2(y+2)2(y -2)2-626=0整理,得 y 4+24y 2-297=0. (这是关于y 的双二次方程).(y 2+33)(y 2-9)=0.当y 2+33=0时, 无实根 ;当y 2-9=0时, y=±3.即x -2=±3,∴x=5;或x=-1.【知识点】换元法【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】解方程:2x 4+3x 3-16x 2+3x+2=0 .【答案】x=-2+3;x=-2-3; x=2;或x=21. 【解析】∵这是个倒数方程,且知x ≠0, 两边除以x 2,并整理 得2(x 2+21x )+3(x+x 1)-16=0. 设x+x 1=y, 则x 2+21x =y 2-2. 原方程化为 2y 2+3y -20=0.解得 y=-4;或y=25.由y=-4得 x=-2+3;或x=-2-3.由y=2.5得 x=2;或x=21. 【知识点】换元法【适用场合】课后两周练习【难度系数】3【试题来源】【题目】 解方程组⎪⎩⎪⎨⎧=+++++=+++++01012124012522222y x y xy x y x y xy x 【答案】⎪⎪⎩⎪⎪⎨⎧--=+-=33213321y x ;或⎪⎪⎩⎪⎪⎨⎧+-=--=33213321y x ;或⎪⎩⎪⎨⎧-=+=412412y x ;或⎪⎩⎪⎨⎧+=-=412412y x . 【解析】(这个方程组的两个方程都是二元对称方程,可用基本对称式代换.)设x+y=u, xy=v. 原方程组化为:⎪⎩⎪⎨⎧=+++=+++010********v u u v u u . 解得⎩⎨⎧-==374v u ; 或⎪⎪⎩⎪⎪⎨⎧=-=91132v u . 即⎩⎨⎧-==+374xy y x ; 或⎪⎪⎩⎪⎪⎨⎧=-=+91132xy y x . 解得:⎪⎪⎩⎪⎪⎨⎧--=+-=33213321y x ;或⎪⎪⎩⎪⎪⎨⎧+-=--=33213321y x ;或⎪⎩⎪⎨⎧-=+=412412y x ;或⎪⎩⎪⎨⎧+=-=412412y x .【知识点】换元法【适用场合】随堂课后练习【难度系数】3【试题来源】 【题目】解方程=++++)7(27x x x x 35-2x. 【答案】【解析】7=x x t ++则原式变为2t 420t +-=,解得t = -7 或 6【知识点】换元法【适用场合】课后两周练习【难度系数】3【试题来源】【题目】解方程(16x 2-9)2+(16x 2-9)(9x 2-16)+(9x 2-16)2=(25x 2-25)2. 【答案】【解析】可以换元令16x 2-9 = a ,9x 2-16 = b ,25x 2-25 = a + b 则原式变为 ()222a ab b a b++=+化简得ab = 0即【知识点】换元法【适用场合】阶段测验【难度系数】3【试题来源】【题目】解方程(2115-+x )4+(2315-+x )4=16.【答案】1,3【解析】【知识点】换元法【适用场合】阶段测验【难度系数】3【试题来源】【题目】解方程x x x x 112+++=223.【答案】无实数解【解析】x x x x 112+++=223 即111x x x x +++=223.令1x x + = t原方程变为1t t +=223.【知识点】换元法【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】解方程组【答案】【解析】【知识点】换元法【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】[a ]表示不大于a 的最大整数,如[2]=1,[-2]=-2, 那么 方程 [3x+1]=2x -21 的所有根的和是_____.【答案】-2【解析】【知识点】换元法【适用场合】课后一个月练习【难度系数】4【试题来源】 【题目】解方程1112---++x x x =x. 【答案】45 【解析】设11-++x x =y, 那么y 2=2x+212-x . 原方程化为: y -21y 2=0 . 解得 y=0;或y=2.当y=0时,11-++x x =0 (无解) 当y=2时, 11-++x x =2,解得,x=45. 检验(略). 【知识点】换元法【适用场合】随堂课后练习【难度系数】3。
初中数学整体换元法
初中数学整体换元法整体换元法是解决函数复杂的积分问题的一种常用方法,通常适用于一些特殊的函数或形式。
在初中数学的学习中,整体换元法是一个比较高深的数学知识点,需要很好的数学基础和分析能力才能掌握。
本篇文章将系统地介绍初中数学整体换元法,帮助大家掌握这一难点知识点。
一、基本概念整体换元法是指将积分变换为另一种形式,使得原来难以计算的积分变得容易计算。
以下是整体换元法的一些基本概念:1.变量代换:将函数中的自变量用一个新的变量(常数)表示,称为变量代换。
例如:设 y=f(x),则将 x 替换为 u=g(x) 后,y=f(u)。
2. Jacobian 行列式:Jacobi 行列式是指变量代换中的导数式。
设有变量代换 x=g(u),则有:$\frac{\mathrm{d} x}{\mathrm{d} u}=g'(u)$$J=\frac{\partial(x,y)}{\partial(u,v)}=\begin{vmatrix}\dfrac{\partialx}{\partial u} & \dfrac{\partial x}{\partial v} \\ \dfrac{\partial y}{\partial u} & \dfrac{\partial y}{\partial v} \end{vmatrix}$Jacobian 行列式在整体换元法中非常重要,它可以帮助我们计算新的积分变量。
二、标准形式整体换元法的关键在于将积分式子变成标准形式。
以下是几种常见的标准形式:4. $\int\frac{\mathrm{d} x}{\sqrt{x^2+1}}=\ln|x+\sqrt{x^2+1}|+C$其中,C 为常数。
三、例题以下是一些常见的例题和解法:$\int\frac{\sqrt{1-2x}}{x}\mathrm{d}x=-\int\frac{\sqrt{u^2-1}}{1-u^2}\mathrm{d}u=\ln|\frac{(u+\sqrt{u^2-1})^2}{u-1}|+C=\ln|\frac{(1-2x+\sqrt{1-2x})^2}{2x}|+C $四、注意事项2.整体换元法要注意选取合适的新变量,只有选取合适的变量才能使积分变得简单。
初中数学换元法
初中数学换元法数学中的换元法指通过一个一次或多次函数变换将原方程转化成更易解的方程的方法。
它在初中数学中主要应用于简化复杂的代数式和解方程,主要有以下几种类型。
1. 代数式的化简当出现一次多项式和一个二次多项式相乘时,可以使用一个新的变量,将二次项的系数给去掉。
例如:x^2 + 6x = (x+3)^2-92. 解一元一次方程组对于一元一次方程组,也可以使用换元法进行求解,通过将其中一个方程的某一变量项代入到另一个方程中,从而消去一部分未知数。
例如:\begin{cases} x-y=3\\ 2x+y=7\end{cases},可将第一个方程中的 y 用 3-x 表示,代入第二个方程,得到 x=2,进而求出 y=-1。
3. 解一元二次方程对于一元二次方程,可以通过变换将其化为一元一次方程。
例如:x^2-5x+4=0,令 x=y-\dfrac{b}{2a},代入原方程即可求解 y,再通过还原变量得到 x。
4. 解三角函数方程对于某些三角函数方程,可以通过一些简单的代数变换将其转化为其他类型的方程,例如:\sin^2 x - \sin x -2=0,令 y=\sin x,则原方程变为 y^2-y-2=(y+1)(y-2)=0,解得 y=-1 或 y=2,进而求出 x。
5. 解根式方程对于一些含有根式的方程,可以通过换元法将其化为一元二次方程,例如:\sqrt{2x+5}-\sqrt{x+1}=1,令 y=\sqrt{x+1},则原方程变为\sqrt{2y^2+3}-y=1,化为 2y^2-2y-2=0,解得 y=1+\sqrt{2} 或y=1-\sqrt{2},进而求出 x。
初中数学解题常用的数学思想方法
初中数学解题常用的数学思想方法数学学习分为好多个环节,比如预习、上课、作业、复习、考试等等,而上课的部分是非常关键的环节。
小编整理了初中数学解题常用的数学思想方法,欢迎参考借鉴。
初中数学解题常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。
初中换元法经典例题
初中换元法经典例题
初中数学中的换元法是一种常用的解题方法,用于将复杂的代
数式转化为简单的形式,从而更容易解决问题。
下面是一个经典的
例题,我们来看一下如何运用换元法解决它。
例题,已知函数 $y = x^3 2x^2 + x$,求函数 $y$ 的最小值。
解题步骤如下:
1. 首先,我们观察到函数 $y$ 是一个三次函数,我们想要求
它的最小值。
根据函数的图像特点,最小值通常出现在函数的拐点处,即导数为零的点。
2. 我们对函数 $y$ 求导数,得到 $y' = 3x^2 4x + 1$。
然后,我们令导数等于零,解方程 $3x^2 4x + 1 = 0$。
3. 接下来,我们需要解这个二次方程。
可以使用因式分解、配
方法或求根公式等方法。
假设方程的解为 $x_1$ 和 $x_2$。
4. 然后,我们将求得的解 $x_1$ 和 $x_2$ 代入原函数 $y =
x^3 2x^2 + x$ 中,得到对应的函数值 $y_1$ 和 $y_2$。
5. 最后,我们比较 $y_1$、$y_2$ 和函数在拐点处的函数值,即 $y$ 的最小值就是其中的最小值。
通过以上步骤,我们可以得到函数 $y$ 的最小值。
需要注意的是,这只是换元法解题的一个例子,实际上,换元法还可以应用于其他类型的问题,如解方程、求极值等。
在解题过程中,我们需要灵活运用换元法,并结合具体问题的特点来选择合适的代换,以达到简化问题、求解的目的。
希望以上回答能满足你的需求。
如果你还有其他问题,欢迎继续提问。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学解题方法:换元法
数学的解题方法是随着对数学对象的研究的深入而发
展起来的。
六年级的同学们很快就要小学毕业,中学的大门已经向我们敞开。
为了能进一步学好数学,有必要掌握初中数学的特点尤其是解题方法。
下面介绍的解题方法,都是初中数学中最常用的,有些方法也是中学教学大纲要求掌握的。
换元法
换元法是数学中一个非常重要而且应用十分广泛的
解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
以上就是为大家提供的“初中数学解题方法:换元法”希望能对考生产生帮助,更多资料请咨询中考频道。