聚合物的屈服与断裂ppt
合集下载
高分子物理——聚合物的屈服与断裂
一、玻璃态高聚物的拉伸
(1)屈服点
应力达到一个极大值,屈服应力 (2)断裂方式(材料破坏有二种方式)
脆性断裂:屈服点之前发生的断裂
断裂表面光滑
不出现屈服
韧性断裂:在材料屈服之后的断裂(明显屈
服点和颈缩现象)
北京理工大学
断裂表面粗糙
(3)应变软化和应变硬化
应变软化:在拉伸过程中,应力随应变的增 大而下降
PVC在室温、图中表明的应变速率下测得的应力-应变曲线
随着拉伸速度提高,聚合物的模量增加,屈 服应力、断裂强度增加,断裂伸长率减少
• 柔性很大的链在冷却成玻璃态时,分子 之间堆砌得很紧密,在玻璃态时链段运 动很困难,要使链段运动需要很大的外 力,甚至超过材料的强度,刚性大,冷 却时堆砌松散,分子间相互作用力小, 链段活动余地较大,这种高聚物在玻璃 态时具有强迫高弹而不脆,脆点低, Tb,Tg间隔大,另外如果刚性太大,链段 不能运动,也不出现高弹形变。
0 exp(
RT )
对于某一种高聚物存在一个特征温度(Tb),只 要温度低于Tb,玻璃态高聚物就不能发展强迫高 弹形变。玻璃态高聚物只有处在Tb到Tg的温度范 围内,才能在外力作用下实现强迫高弹形变。
北京理工大学
外力 E a 拉伸速率 0 exp( ) 结构 RT 柔性高分子链:在玻璃态时呈现脆性。Tb≈Tg 刚性高分子链:较刚性:易出现受(强)迫 高弹性,脆点较低,Tb与Tg间隔较大。 高刚性:链段运动更加困难,Tb与Tg也很接 近。 分子量 分子量较小时,在玻璃态堆砌较紧密,呈现 脆性,Tb~Tg较接近。 当分子量增加到一定程度以后,Tb与Tg差距拉 大,直到达到临界值 北京理工大学
(B)受(强)迫高弹形变:材料在屈服后出现了
高分子物理 高分子物理 聚合物的屈服和断裂
(脆化温度)到 Tg之间 。
? 拉伸速度,链柔性,分子量也是影响因素。
7.1.3结晶高聚物的拉伸
? 拉伸曲线可以分为三阶段: ? 第一阶段应力随应变线性
地增加,至屈服点
? 第二阶段的应力 —应变曲
线表现为应力几乎不变, 而应变不断增加
? 第三阶段应力又随应变的
增加而增大直到断裂点
? 结晶聚合物的大形变,就本质上说也是高
d? ' ? ? ' d? ?
(2 ) d? ' d?
有一个值
(3) d? ' 有二个值 d?
(2 )
(3 )
7 .3 聚合物的断裂理论和理论强度
? 韧性材料在受到较大应力,或经受变形时,
可以发生屈服,吸收大量的能量,它使聚 合物材料在实际应用中可以发生较大的变 形或承受较大的冲击而不破坏。
? 外力超过一定限度,聚合物材料会发生韧
7.1.2玻璃态聚合物的强迫高弹形变
? 强迫高弹形变:为了区别于普通的高弹形变,玻
璃态高聚物屈服点以后材料的大形变的称为强迫 高弹形变。
? 实验证明,松弛时间与应力之间有如下关系
?
?
?
0
exp
?? ?
?
E ? a?
RT
?? ?
? 增加应力、提高温度都将使链段运动的松
弛时间缩短。
? 高弹形变条件:断裂应力大于屈服,即 T在Tb
7.2.2 真应力—应变曲线及其屈服判据
? 假定试样变形时体积
不变,则拉伸时实际 受力的截面积为
A ? A0l0 l
?
真应力:
? '?
F
? (1 ? ?)?
A
? 屈服点:
? 拉伸速度,链柔性,分子量也是影响因素。
7.1.3结晶高聚物的拉伸
? 拉伸曲线可以分为三阶段: ? 第一阶段应力随应变线性
地增加,至屈服点
? 第二阶段的应力 —应变曲
线表现为应力几乎不变, 而应变不断增加
? 第三阶段应力又随应变的
增加而增大直到断裂点
? 结晶聚合物的大形变,就本质上说也是高
d? ' ? ? ' d? ?
(2 ) d? ' d?
有一个值
(3) d? ' 有二个值 d?
(2 )
(3 )
7 .3 聚合物的断裂理论和理论强度
? 韧性材料在受到较大应力,或经受变形时,
可以发生屈服,吸收大量的能量,它使聚 合物材料在实际应用中可以发生较大的变 形或承受较大的冲击而不破坏。
? 外力超过一定限度,聚合物材料会发生韧
7.1.2玻璃态聚合物的强迫高弹形变
? 强迫高弹形变:为了区别于普通的高弹形变,玻
璃态高聚物屈服点以后材料的大形变的称为强迫 高弹形变。
? 实验证明,松弛时间与应力之间有如下关系
?
?
?
0
exp
?? ?
?
E ? a?
RT
?? ?
? 增加应力、提高温度都将使链段运动的松
弛时间缩短。
? 高弹形变条件:断裂应力大于屈服,即 T在Tb
7.2.2 真应力—应变曲线及其屈服判据
? 假定试样变形时体积
不变,则拉伸时实际 受力的截面积为
A ? A0l0 l
?
真应力:
? '?
F
? (1 ? ?)?
A
? 屈服点:
第六章 聚合物的屈服与断裂
二、结晶态聚合物的应力-应变曲线 同样经历五个阶段, 不同点是第一个转 折点出现“细颈 化”,接着发生冷 拉,应力不变但应 变可达500%以上。 结晶态聚合物在拉 伸时还伴随着结晶 形态的变化。
整个曲线可分为三个阶段:
1、应力随应变线性地增加,试样被均匀拉长, 伸长率可达百分之几到十几,到y点后,试样 截面开始变得不均匀,出现一个或几个“细 颈”,即进入第二阶段。 2、细颈与非细颈部分的横截面积分别维持不 变,而细颈部不断扩展,非细颈部分逐渐缩短, 直到整个试样完全变细为止。在第二阶段的应 变过程中应力几乎不变,最后,进入第三阶段。 3、即成颈的试样又被均匀拉伸,此时应力又 随应变的增加而增大直到断裂为止。
2.屈服机理
(1)银纹屈服 银纹:很多高聚物,尤其是玻璃态透明高聚物(PS、 PMMA、PC)在储存过程及使用过程中,往往 会在表面出现像陶瓷的那样,肉眼可见的微细 的裂纹,这些裂纹,由于可以强烈地反射可见 光,看上去是闪亮的,所以又称为银纹crage。 在拉伸应力的作用下高聚物中某些薄弱部位, 由于应力集中而产生的空化条纹形变区。
强度:材料所能承受的应力(指材料承受外 力而不被破坏)(不可恢复的变形也属被破坏) 的能力 )。 韧性:材料断裂时所吸收的能量
受 力 方 式
简单拉伸
F
简单剪切
F θ
均匀压缩
l0
F
F
受 力 特 点 弹 性 模 量 柔 量
外力F是与截面垂 外力F是与界面平行,材料受到的是围压 直,大小相等,方 大小相等,方向相 力。 向相反,作用在同 反的两个力。 一直线上的两个力。 杨氏模量:
E
切变模量:
G=
体积模量:
B P PV 0 V
高分子材料(力学性能) ppt课件
三、粘弹性
§5.1 力学性能
三、粘弹性
§5.1 力学性能
2、动态粘弹性 (滞后)
• 滞后:一定温度下,受交变的应力,形变随时
间的变化跟不上力随时间的变化
应力周期性变化:σ=σ 0 Sin ω t 应变:ε =ε 0 Sin(ω t +δ )
落后一相位角
结果:产生滞后圈--能耗
(机械能(弹性能)--热能) ----力学损耗
如何§解5.决1 ?力学性能
1、特征
➢涂料涂装时流挂问题如何 解决?
1) 粘度大;分子量越大,粘度越大;分布越宽,粘度越大;
2) 流动机理:分子重心相对位移,是由链段的相继跃迁实 现的
3) 伴有高弹形变---具有粘弹性
现象:出口膨大、爬杆效应、融体破裂
一、高聚物的流动性 ???
§5.1 力学性能
4)是一假塑性流体:
运动单元高度取向(m 不为零)
1、拉伸过程 (非晶、结晶高聚物)
C 断裂:
脆性断裂:没有屈服,断裂面光滑;
§5.1 力学性能
四 屈服、强度与断裂
韧性断裂:出现屈服后的断裂,断裂面粗糙。
T < Tb 时: σB <σY ---脆性断裂
1、拉伸过程 (非晶、结晶高聚物)
2) 结晶高聚物的应力~应变曲线
1、拉伸过程 (非晶、结晶高聚物) §5.1 力学性能
四 屈服、强度与断裂
注意: • 使用时υ趋于很小---长期强度,其远远小于所测值 ,
例:PVC: σB(1000h)=1/2σB (测) • Tb、Tg测定时,是在一定时间尺度下,
( υ比较小,时间长) 实际受力时(特别是在冲击力时)往往υ很高, 例:PVC 的Tb= - 50度,T使> - 30 ~ -15度
聚合物的屈服断裂和强度部分解析ppt课件
产生惯性移动时,它的几何形状和尺寸将发生变化, 这种变化称为应变。 ❖ 应力:单位面积上的附加内力为应力。 ❖ 应力单位:N/m2,又称帕斯卡,Pa。
2
二 应变类型 三种基本的应变类型
简单拉伸 简单剪切 均匀压缩
3
❖ 1 拉伸应变
❖ 在简单拉伸的情况下,材料受到的外力F是垂直于截面积的 大小相等、方向相反并作用于同一直线上的两个力,如下图 所示,这时材料的形变称为拉伸应变。
❖
式中W—冲断试样所消耗的功(冲击功)
21
❖ 5 硬度
❖ 硬度是衡量材料表面抵抗机械压力的能力的一种指 标。
❖ 硬度的大小—材料的抗张强度和弹性模量 ❖ 硬度试验方法有划痕法、压入法和动态法。不同测
量方法所得硬度的量值和物理意义均不同。 ❖ 划痕法测得的硬度表示材料抵抗表面局部断裂的能
力,称为莫氏硬度;
❖ 拉伸:
杨氏模量 E (MPa) σ-应力 ε-应变 F-拉伸力 AO-试样原始截面积 lO-试样原始长度 Δl-伸长长度
F
E
A0 0
11
三种基本应变的模量
❖ 剪切:
剪切模量:G (MPa) σs ―剪切应力 γ ―剪切应变 = tg θ
G S F A0tg
12
三种基本应变的模量
❖ 压缩:
ν(泊松比):横向形变与纵向形变之比
m m 00纵 横向 向 形 形 变 t变t 0
15
不同材料的泊松比
材料名称 锌 钢 铜 铝 铅 汞
泊松比 0.21 0.25~0.35 0.31~0.34 0.32~0.36 0.45 0.50
材料名称 玻璃 石料 聚苯乙系 聚乙烯 赛璐珞 橡胶类
泊松比 0.25 0.16~0.34 0.33 0.38 0.39 0.49~0.50
2
二 应变类型 三种基本的应变类型
简单拉伸 简单剪切 均匀压缩
3
❖ 1 拉伸应变
❖ 在简单拉伸的情况下,材料受到的外力F是垂直于截面积的 大小相等、方向相反并作用于同一直线上的两个力,如下图 所示,这时材料的形变称为拉伸应变。
❖
式中W—冲断试样所消耗的功(冲击功)
21
❖ 5 硬度
❖ 硬度是衡量材料表面抵抗机械压力的能力的一种指 标。
❖ 硬度的大小—材料的抗张强度和弹性模量 ❖ 硬度试验方法有划痕法、压入法和动态法。不同测
量方法所得硬度的量值和物理意义均不同。 ❖ 划痕法测得的硬度表示材料抵抗表面局部断裂的能
力,称为莫氏硬度;
❖ 拉伸:
杨氏模量 E (MPa) σ-应力 ε-应变 F-拉伸力 AO-试样原始截面积 lO-试样原始长度 Δl-伸长长度
F
E
A0 0
11
三种基本应变的模量
❖ 剪切:
剪切模量:G (MPa) σs ―剪切应力 γ ―剪切应变 = tg θ
G S F A0tg
12
三种基本应变的模量
❖ 压缩:
ν(泊松比):横向形变与纵向形变之比
m m 00纵 横向 向 形 形 变 t变t 0
15
不同材料的泊松比
材料名称 锌 钢 铜 铝 铅 汞
泊松比 0.21 0.25~0.35 0.31~0.34 0.32~0.36 0.45 0.50
材料名称 玻璃 石料 聚苯乙系 聚乙烯 赛璐珞 橡胶类
泊松比 0.25 0.16~0.34 0.33 0.38 0.39 0.49~0.50
聚合物的屈服与断裂高级课件
(electronic material testing system)
学习培训
3
8.1.1非晶态高聚物的应力-应变曲线
σ
B
Y
σ
σ
B
y
0
ε
ε
εy
非晶态高聚物的应力-应变曲线
B
学习培训
4
一、非晶态高聚物的应力-应变曲线
σ
A
B
Y
σ
εY
y
0
σ
B
εB
ε
我们先对这条曲线定义几个术语:
1) A点称为“弹性极限点”,A 弹性极限应变 ,A弹性极限应力
n=0
s=0
学习培训
31
对于试样中倾角为β= a+π/2的斜截面(它与第一个斜截面
相互垂直)进行同样处理,我们也可以得到:
σβn=σ0 Cos2β=σ0 Sin 2α
σβs=σ0/2 Sin2β=-σ0/2 Sin 2α
显然: σβs= -σas,这说明两个互相垂直的斜截面上的
切应力大小相等、方向相反,而且它们总是同时出现的,之和
“软”和“硬”用于区分模量的低或高,“弱”和“强”是指
强度的大小,“脆”是指无屈服现象而且断裂伸长很小,“韧”
是指其断裂伸长和断裂应力都较高的情况,有时可将断裂功作
为“韧性”的标志。
学习培训
26
表1 五种应力-应变曲线的特征
类型
模量
拉伸
强度
屈服点
伸长率
曲线下
面积
实例
硬而脆
高
中
无
小(2%)
小
PS、PMMA、
和剪切应力下的分子链滑移(b)
学习培训
学习培训
3
8.1.1非晶态高聚物的应力-应变曲线
σ
B
Y
σ
σ
B
y
0
ε
ε
εy
非晶态高聚物的应力-应变曲线
B
学习培训
4
一、非晶态高聚物的应力-应变曲线
σ
A
B
Y
σ
εY
y
0
σ
B
εB
ε
我们先对这条曲线定义几个术语:
1) A点称为“弹性极限点”,A 弹性极限应变 ,A弹性极限应力
n=0
s=0
学习培训
31
对于试样中倾角为β= a+π/2的斜截面(它与第一个斜截面
相互垂直)进行同样处理,我们也可以得到:
σβn=σ0 Cos2β=σ0 Sin 2α
σβs=σ0/2 Sin2β=-σ0/2 Sin 2α
显然: σβs= -σas,这说明两个互相垂直的斜截面上的
切应力大小相等、方向相反,而且它们总是同时出现的,之和
“软”和“硬”用于区分模量的低或高,“弱”和“强”是指
强度的大小,“脆”是指无屈服现象而且断裂伸长很小,“韧”
是指其断裂伸长和断裂应力都较高的情况,有时可将断裂功作
为“韧性”的标志。
学习培训
26
表1 五种应力-应变曲线的特征
类型
模量
拉伸
强度
屈服点
伸长率
曲线下
面积
实例
硬而脆
高
中
无
小(2%)
小
PS、PMMA、
和剪切应力下的分子链滑移(b)
学习培训
高分子物理-第七章-屈服和强度
银纹和剪切带
均有分子链取向,吸收能量,呈现屈服现象
主要区别
形
变
曲线特征
体
积
力
结
果
剪切屈服
45o
90o
a
抵抗外力的方式
两
种
抗张强度:抵抗拉力的作用
0
aan
aas
0 /2
抗剪强度:抵抗剪力的作用
0o
45o
90o
抗张强度什么面最大? a=0, an=0
抗剪强度什么面最大? a=45, as=0/2
当应力0增加时,法向应力和切向应力增大的幅度不同
在45o时, 切向应力最大
泊松比: 在拉伸实验中,材料横向应变
与纵向应变之比值的负数
m
v
l
m0
l0
T
常见材料的泊松比
泊松比数值
解
释
0.5
不可压缩或拉伸中无体积变化
0.0
没有横向收缩
0.49~40
塑料的典型数值
E, G, B and
E2
G
(1
)
EB
3 (1
2
第 一 期 的 入 党积极 分子培 训课将 要结束 了,在 培训期 间,通 过尊敬 的合江 县府王
督 学 、 学 院 党委王 书记及 学院党 办邬主 任和相 关领导 、教授 对党章 ,党课 及现阶
段 国 内 外 形 式的讲 解,以 及通过 参加学 院开展 的颂歌 献给党 、喜迎 十八大 歌咏比
赛 及 参 观 了 武警合 江中队 和合江 县清代 考试院 、合江 县汉代 石棺陈 列馆等 活
韧性断裂 ductile fracture
各种情况下的应力-应变曲线
高分子科学-第8章 聚合物的屈服与断裂讲解
聚合物的断裂
脆性断裂 :屈服点前断裂 韧性断裂 :屈服点后断裂
12
8.1.2 影响应力-应变曲线的因素
1. 温度
1
曲线1: T《Tg ,硬玻璃态,键长 键角的变化,形变小,高模量——
2
3
T
脆性断裂
4
曲线2.3: Tb<T<Tg,软玻璃态:
出现强迫高弹形变,外力除
16
玻璃态聚合物与结晶聚合物的拉伸比较
相似:
都经历弹性形变、屈服、发展大形变、应变硬化、断裂等阶段。
其中大形变在室温时都不能自发回复,加热后可回复,故本质 上两种拉伸造成的大形变都是强迫高弹形变——“冷拉”。
区别:
(1)产生冷拉的温度范围不同,
非晶态Tb~Tg
结晶态Tb~Tm
(2)玻璃态聚合物在冷拉过程中凝聚态只发生分子链的 取向不发生相变;晶态聚合物还包含结晶的破坏、取向 和再结晶等过程(相变)。
屈服
(链段开 始运动)
应变硬化
(分子链沿 外力取向形 变不可回复)
应变软化
(链段运动)
冷拉(强
迫高弹形变)
7
强迫高弹形变
玻璃态高聚物在屈服点后大外力作用下发生的大形变,本质与橡胶的高弹 形变一样都是链段运动引起的,并不是分子链的滑移,只不过表现形式有差别。 由于聚合物处在玻璃态,形变在停止拉伸后无法自动恢复,但是如果让温度升 到Tg附近形变又可恢复。
(1)温度:Tb~Tg
0
exp
E
RT
温度越低
链段运动的松 强迫高弹形变 弛时间τ越大
必须使用更 大外力
存在一个特征温度Tb,如果低于该温度,玻璃态高聚物不 能发生强迫高弹形变,而只会发生脆性断裂,该温度称为
高分子物理第八章
试样受冲击载荷而折断时单位面积 所吸收的能量。
E i A
摆锤式冲击实验:简支梁;悬臂梁。 单位 :KJ/m2;J/m
北京理工大学
(4)硬度
衡量材料表面抵抗机械压力的能力。 与材料的抗张强度和弹性模量有关。 硬度实验方法很多,加荷方式有动载法和静载法两类。 有布氏、洛氏和邵氏等名称。
实验是以平稳的载荷将直径D一定的 硬刚球压入试样表面,保持一定时间 使材料充分变形,并测量压入深度h, 计算试样表面凹痕的表面积,以单位 面积上承受的载荷公斤/毫米2)为材 料的布氏硬度
第八章 聚合物的屈服和断裂(Yielding and fracture of polymers )
主要内容
前言 8.1 聚合物的塑性和屈服 8.2 聚合物的断裂和强度
教学Байду номын сангаас容:
聚合物的应力—应变曲线 聚合物的屈服 聚合物的断裂与强度
重点要求:
会从聚合物应力——应变曲线获取信息;掌握屈服和断裂现象 及其机理;韧性和强度的影响因素及增韧、增强方法和机理。
15
试样在拉伸过程的变化过程
颈缩阶段:“细颈”扩张,应力变化很小,应变大幅度增加
弹性形变-屈服-应变软化-冷拉-应变硬化-断裂
高模量、小变形 键长、键角运动
可恢复
受迫高弹形变
链段运动
粘流 分子链运动
玻璃态,不可恢复,需Tg以上退火处理恢复。
受迫高弹形变
1)定义:玻璃态高聚物在大外力的作用下发生的大形变; 2)条件:在Tg以下10℃(或更低)左右 3)机理:在大外力的帮助下,玻璃态高聚物本来被冻结的 链段开始运动,即在外力的帮助下,高分子链的伸展提供 了大变形,这时由于在Tg以下,即使外力除去也不能自发回 复。
E i A
摆锤式冲击实验:简支梁;悬臂梁。 单位 :KJ/m2;J/m
北京理工大学
(4)硬度
衡量材料表面抵抗机械压力的能力。 与材料的抗张强度和弹性模量有关。 硬度实验方法很多,加荷方式有动载法和静载法两类。 有布氏、洛氏和邵氏等名称。
实验是以平稳的载荷将直径D一定的 硬刚球压入试样表面,保持一定时间 使材料充分变形,并测量压入深度h, 计算试样表面凹痕的表面积,以单位 面积上承受的载荷公斤/毫米2)为材 料的布氏硬度
第八章 聚合物的屈服和断裂(Yielding and fracture of polymers )
主要内容
前言 8.1 聚合物的塑性和屈服 8.2 聚合物的断裂和强度
教学Байду номын сангаас容:
聚合物的应力—应变曲线 聚合物的屈服 聚合物的断裂与强度
重点要求:
会从聚合物应力——应变曲线获取信息;掌握屈服和断裂现象 及其机理;韧性和强度的影响因素及增韧、增强方法和机理。
15
试样在拉伸过程的变化过程
颈缩阶段:“细颈”扩张,应力变化很小,应变大幅度增加
弹性形变-屈服-应变软化-冷拉-应变硬化-断裂
高模量、小变形 键长、键角运动
可恢复
受迫高弹形变
链段运动
粘流 分子链运动
玻璃态,不可恢复,需Tg以上退火处理恢复。
受迫高弹形变
1)定义:玻璃态高聚物在大外力的作用下发生的大形变; 2)条件:在Tg以下10℃(或更低)左右 3)机理:在大外力的帮助下,玻璃态高聚物本来被冻结的 链段开始运动,即在外力的帮助下,高分子链的伸展提供 了大变形,这时由于在Tg以下,即使外力除去也不能自发回 复。
聚合物的力学性能ppt课件
பைடு நூலகம்呈发亮的银色条纹,因此称为银纹。
25
第八章 聚合物的力学性能
2.银纹与裂缝的区别:裂缝是空的,内部无聚合物;而裂纹内
部并不是完全空的,含有40%左右的聚合物仍然具有强度和
粘弹现象-称为银纹质-联系起两银纹面的树状或者片状高度
取向聚合物。银纹处的密度低,折光指数低,故在界面上出现
全反射现象。
26
第八章 聚合物的力学性能
29
第八章 聚合物的力学性能
8.6影响聚合物实际强度的因素
凡是有利于提高材料的弹性模量、有利于增加断裂过程的表面
功和增加分子稳定性的因素,都使材料的强度提高;凡是使材
料形成弱点而增加应力分布的不均匀性的因素,都使材料的强
度下降。
影响聚合物材料强度因素有内因和外因两个因素。
30
第八章 聚合物的力学性能
原因:取向后分子沿外力的方向有序排列,断裂时主价键比
塑性形变
Strain hardening
应变硬化
B
y
图2 非晶态聚合物在玻璃态的应力-应变曲线
5
聚合物的力学性能
6
聚合物的力学性能
从分子运动解释非结晶聚合物应力-应变曲线
(Molecular motion during tensile test 拉伸过程中高分子链的运动)
I Elastic deformation
这是时-温等效原理在高分子力学行为中的体现。
23
第八章 聚合物的力学性能
8.4.2 断裂的裂缝理论
实验证明目前的工艺水平不能保证材料的表面和结构中不存在
裂缝和缺陷基于此断裂理论认为:这些裂缝和缺陷会使应力集
中于裂缝的尖端处,而远远高于试样所受的平均应力,当它达
25
第八章 聚合物的力学性能
2.银纹与裂缝的区别:裂缝是空的,内部无聚合物;而裂纹内
部并不是完全空的,含有40%左右的聚合物仍然具有强度和
粘弹现象-称为银纹质-联系起两银纹面的树状或者片状高度
取向聚合物。银纹处的密度低,折光指数低,故在界面上出现
全反射现象。
26
第八章 聚合物的力学性能
29
第八章 聚合物的力学性能
8.6影响聚合物实际强度的因素
凡是有利于提高材料的弹性模量、有利于增加断裂过程的表面
功和增加分子稳定性的因素,都使材料的强度提高;凡是使材
料形成弱点而增加应力分布的不均匀性的因素,都使材料的强
度下降。
影响聚合物材料强度因素有内因和外因两个因素。
30
第八章 聚合物的力学性能
原因:取向后分子沿外力的方向有序排列,断裂时主价键比
塑性形变
Strain hardening
应变硬化
B
y
图2 非晶态聚合物在玻璃态的应力-应变曲线
5
聚合物的力学性能
6
聚合物的力学性能
从分子运动解释非结晶聚合物应力-应变曲线
(Molecular motion during tensile test 拉伸过程中高分子链的运动)
I Elastic deformation
这是时-温等效原理在高分子力学行为中的体现。
23
第八章 聚合物的力学性能
8.4.2 断裂的裂缝理论
实验证明目前的工艺水平不能保证材料的表面和结构中不存在
裂缝和缺陷基于此断裂理论认为:这些裂缝和缺陷会使应力集
中于裂缝的尖端处,而远远高于试样所受的平均应力,当它达
高分子物理第八章 聚合物的屈服和断裂
冷拉伸包括晶区与非晶区两部分形变,非晶态部分先发生,然
后球晶产生形变。晶区形变是应力作用使原有的结晶结构破坏,
球晶、片晶被拉开分裂成更小的结晶单元,分子链从晶体中被 拉出、伸直,沿着拉伸方向排列形成的
第八章 聚合物的屈服和断裂
影响拉伸行为的外部因素
结晶的影响
结晶度
球晶大小
第八章 聚合物的屈服和断裂
第八章 聚合物的屈服和断裂
剪切带屈服机理
( 1 )剪切带是韧性聚合物在单向拉伸至屈服点 时出现的与拉伸方向成约 45°角倾斜的剪切滑移 变形带。 (2)剪切带的厚度约1µ m,在剪切带内部,高分 子链沿外力方向高度取向,剪切带内部没有空隙, 因此,形变过程没有明显的体积变化。 ( 3 )剪切带的产生与发展吸收了大量能量。同 时,由于发生取向硬化,阻止了形变的进一步发 展。 第八章 聚合物的屈服和断裂
第八章 聚合物的屈服和断裂
影响拉伸行为的外部因素
应变速率的影响
时温等效原理:
拉伸速度快 = 时间短
=温度低
第八章 聚合物的屈服和断裂
8.1.1.2 晶态聚合物
在Tm以下,适 当的拉伸速率下 拉伸得到的晶态 聚合物典型的应 力-应变曲线
成颈or冷拉
第八章 聚合物的屈服和断裂
结晶聚合物应力-应变曲线
8.1.5 银纹现象
银纹现象是聚合物在张应力的作用下,于材料某些薄弱部位出现
应力集中而产生局部的塑性形变和取向,以至在材料表面或者内
部垂直于应力方向上出现长度为 100um 、宽度为 10um 左右、厚 度为1um的细微凹槽或“裂纹”的现象。
第八章 聚合物的屈服和断裂
银纹
银纹的平面垂直于产生银纹的张应力,在张应力作用下,能产 生银纹的局部区域内,聚合物呈塑性形变,高分子链沿张应力 方向高度取向,并吸收能量。由于横向收缩不足以全部补偿塑 性伸长,导致银纹体内产生大量空隙。密度、折光指数降低。 第八章 聚合物的屈服和断裂
后球晶产生形变。晶区形变是应力作用使原有的结晶结构破坏,
球晶、片晶被拉开分裂成更小的结晶单元,分子链从晶体中被 拉出、伸直,沿着拉伸方向排列形成的
第八章 聚合物的屈服和断裂
影响拉伸行为的外部因素
结晶的影响
结晶度
球晶大小
第八章 聚合物的屈服和断裂
第八章 聚合物的屈服和断裂
剪切带屈服机理
( 1 )剪切带是韧性聚合物在单向拉伸至屈服点 时出现的与拉伸方向成约 45°角倾斜的剪切滑移 变形带。 (2)剪切带的厚度约1µ m,在剪切带内部,高分 子链沿外力方向高度取向,剪切带内部没有空隙, 因此,形变过程没有明显的体积变化。 ( 3 )剪切带的产生与发展吸收了大量能量。同 时,由于发生取向硬化,阻止了形变的进一步发 展。 第八章 聚合物的屈服和断裂
第八章 聚合物的屈服和断裂
影响拉伸行为的外部因素
应变速率的影响
时温等效原理:
拉伸速度快 = 时间短
=温度低
第八章 聚合物的屈服和断裂
8.1.1.2 晶态聚合物
在Tm以下,适 当的拉伸速率下 拉伸得到的晶态 聚合物典型的应 力-应变曲线
成颈or冷拉
第八章 聚合物的屈服和断裂
结晶聚合物应力-应变曲线
8.1.5 银纹现象
银纹现象是聚合物在张应力的作用下,于材料某些薄弱部位出现
应力集中而产生局部的塑性形变和取向,以至在材料表面或者内
部垂直于应力方向上出现长度为 100um 、宽度为 10um 左右、厚 度为1um的细微凹槽或“裂纹”的现象。
第八章 聚合物的屈服和断裂
银纹
银纹的平面垂直于产生银纹的张应力,在张应力作用下,能产 生银纹的局部区域内,聚合物呈塑性形变,高分子链沿张应力 方向高度取向,并吸收能量。由于横向收缩不足以全部补偿塑 性伸长,导致银纹体内产生大量空隙。密度、折光指数降低。 第八章 聚合物的屈服和断裂
屈服和断裂
思考
材料受力后的行为??? 橡胶受力后的行为??? 塑料受力后的行为??? 纤维受力后的行为???
力学性能分类
力学性能是高聚物优异物理性能的基础 如:某高聚物磨擦,磨耗性能优良,但力学性
能不好,很脆。不能用它作减摩材料 如:作电线绝缘材料的高聚物,也要求它们有
一定的力学性能:强度和韧性。如果折叠几次 就破裂,那么这种材料的电绝缘性虽好,也不 能用作电线。
力、应变分别称材料的拉伸强度(或断裂强B 度) 和断裂 伸长率 B ,它们是材料发生破坏的极限强度和极限伸长
率。 (4)曲线下的面积等于
W B d 0
相当于拉伸试样直至断裂所消耗的能量,单位为J•m-3,称断 裂能或断裂功。它是表征材料韧性的一个物理量。
断裂能 Fracture energy
真应变:
l dli l l0 i
张应力:
F
A0
真应力:
F
A
切应变:
r tg
是偏斜角
切应力:
s
F A0
压缩应变:
V V0
压力P
弹 杨氏模量: 切变模量:
性 模
E F A0 l l0
量
泊淞比:
G= s F r A0tg
m m l l
横向单向单位宽度的 纵向单位宽度的增加
柔 拉伸柔量: 切变柔量:
量
D 1
E
J1 G
机械 强度
体积模量:
B P PV0 V
可压缩度:
1 B
主要内容
7.1 聚合物的拉伸行为-聚合物的应力—应变曲线 7.2 聚合物的屈服行为 7.3 聚合物的断裂理论和理论强度 7.4 影响聚合物强度的因素
主要内容及学习线索:
材料受力后的行为??? 橡胶受力后的行为??? 塑料受力后的行为??? 纤维受力后的行为???
力学性能分类
力学性能是高聚物优异物理性能的基础 如:某高聚物磨擦,磨耗性能优良,但力学性
能不好,很脆。不能用它作减摩材料 如:作电线绝缘材料的高聚物,也要求它们有
一定的力学性能:强度和韧性。如果折叠几次 就破裂,那么这种材料的电绝缘性虽好,也不 能用作电线。
力、应变分别称材料的拉伸强度(或断裂强B 度) 和断裂 伸长率 B ,它们是材料发生破坏的极限强度和极限伸长
率。 (4)曲线下的面积等于
W B d 0
相当于拉伸试样直至断裂所消耗的能量,单位为J•m-3,称断 裂能或断裂功。它是表征材料韧性的一个物理量。
断裂能 Fracture energy
真应变:
l dli l l0 i
张应力:
F
A0
真应力:
F
A
切应变:
r tg
是偏斜角
切应力:
s
F A0
压缩应变:
V V0
压力P
弹 杨氏模量: 切变模量:
性 模
E F A0 l l0
量
泊淞比:
G= s F r A0tg
m m l l
横向单向单位宽度的 纵向单位宽度的增加
柔 拉伸柔量: 切变柔量:
量
D 1
E
J1 G
机械 强度
体积模量:
B P PV0 V
可压缩度:
1 B
主要内容
7.1 聚合物的拉伸行为-聚合物的应力—应变曲线 7.2 聚合物的屈服行为 7.3 聚合物的断裂理论和理论强度 7.4 影响聚合物强度的因素
主要内容及学习线索:
2019年整理11级高分子物理7 聚合物的屈服和断裂精品资料
8/11/2019
43
8/11/2019
26
7.3.4 聚合物的理论强度
第三种情况,断裂时部分氢 键或范德华力的破坏。
估算出氢键和范德华键的拉 伸强度分别为400MPa和 120MPa,与实际测得的高 度取向纤维的强度是同数量 级。
8/11/2019
27
7.4 影响聚合物实际强度的因素
8/11/2019
28
7.4.1 聚合物本身结构的影响
2. 纤维状填料
纤维填料中使用最早的是各种天然纤维,如棉、 麻、丝及其织物等。后来,发展了玻璃纤维。
纤维填料在橡胶轮胎和橡胶制品中,主要作为 骨架,以帮助承担负荷。通常采用纤维的网状 织物,俗称为帘子布。
在热固性塑料中常以玻璃布为填料,得到得谓 玻璃纤维层压塑料,强度可与钢铁媲美。
8/11/2019
当原子热运动的无规热涨落能量超过束缚原子间的势 垒时,会使化学键离解,从而发生断裂。
承载寿命
= 0
exp
U
0
kT
B
拉伸应力
8/11/2019
20
7.3.3 微裂纹
微裂纹也称为银纹:聚合物在张应力作用下, 出现于材料的缺陷或薄弱处,与主应力方向 垂直的长条形微细凹槽。
长100μm、宽10μm、厚1μm
2a b
8/11/2019
max 0 1 2
c
2 0
c
b2/a
锐口的应力集中系数比钝 口的大得多。
32
7.4.3 应力集中的影响
8/11/2019
33
7.4.4 增塑剂的影响
第七章+高聚物的屈服和断裂+2
F
银纹的特征
A、银纹如果得不到制止,会发展为裂缝 B、银纹具有可逆性,在Tg以上加热退火可以回缩或消失 C、银纹吸收外界作用的能量使其不至于发展成裂缝 D、伴有空化过程,有明显的体积效应 E、银纹的产生要有临界的应力和应变 如脆性聚合物PS,临界应力和应变较低,易形成银 纹; 而韧性的PC,临界应力和应变较高,形成银纹较困难。
适度的交联
高
适度的交联可以有效地增加分子链之间的联系, 适度的交联可以有效地增加分子链之间的联系,限制 分子链间的相对滑移及分子链的活动性, 分子链间的相对滑移及分子链的活动性,有利于强度的 提高。 PE,拉伸强度可提高1 提高。例PE,拉伸强度可提高1倍 过度则会使结晶度受较大影响,取向困难,强度下降。 过度则会使结晶度受较大影响,取向困难,强度下降。 例如: 例如:硫化橡胶
四、聚合物的冲击强度与增韧
1、冲击强度Impact strength 、
——是衡量材料韧性的一种指标
W σi = b⋅d
冲断试样所消耗的功 冲断试样的厚度和宽度
2、影响冲击强度的因素
韧性好坏顺序 a>b>c>d c>d>b>a d>c>b>a
因
——曲线下的面积 曲线下的面积 代表所吸收能量
•强度 强度 • 性
银纹的产生
应力银纹:张应力下,纯压缩应力不产生银纹 应力银纹:张应力下,
分 类
环境银纹
溶剂银纹
非溶剂引起的环境应力开裂
热应力开裂 氧化应力开裂
7.3.4、聚合物的理论强度
聚合物材料的破坏可能是高分子主链的化学键断裂或 是高分子分子间滑脱或分子链间相互作用力的破坏。 是高分子分子间滑脱或分子链间相互作用力的破坏。
相关主题