第1章流体力学PPT课件

合集下载

流体力学完整1章PPT课件

流体力学完整1章PPT课件

第一阶段(16世纪以前):流体力学形成的萌芽阶段 第二阶段(16世纪文艺复兴以后-18世纪中叶)流体力
学成为一门独立学科的基础阶段 第三阶段(18世纪中叶-19世纪末)流体力学沿着两个
方向发展——欧拉、伯努利 第四阶段(19世纪末以来)流体力学飞跃发展
返回
可编辑课件
4
第一阶段(16世纪以前):流体力学形成的萌芽阶段
1686年 牛顿——牛顿内摩擦定律
1738年 伯努利——理想流体的运动方程即伯努利方程
1775年 欧拉——理想流体的运动方程即欧拉运动微分 方程
返回
可编辑课件
8
帕斯卡
发现帕斯卡定律,指封闭容器中 的静止流体的某一部分发生的压 强变化,将毫无损失地传递至流 体的各个部分和容器壁压强等于 作用力除以作用面积。根据帕斯 卡原理,在水力系统中的一个活 塞上施加一定的压强,必将在另 一个活塞上产生相同的压强增量。 如果第二个活塞的面积是第一个 活塞的面积的10倍,那么作用 于第二个活塞上的力将增大为第 一个活塞的10倍,而两个活塞 上的压强仍然相等。水压机就是 帕斯卡原理的实例。它具有多种 用途,如液压制动等。
流体力学
建筑环境与设备工程专业 王浩 2010-8
可编辑课件
1
绪论
流体力学是研究流体机械运动规律及其 应用的科学,是力学的一个重要分支。
流体力学研究的对象——液体和气体。
可编辑课件
2
流体力学发展简史 流体力学的研究方法 作用在流体上的力 流体的主要力学性质 流体力学的模型
可编辑课件
3
流体力学发展简史
理论 1823年纳维,1845年斯托克斯分别提出粘性流体运
动方程组(N-S方程)
返回
可编辑课件

流体力学课件(全)

流体力学课件(全)
X 1 p 0 x
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。

流体力学ppt

流体力学ppt

概念引入: 概念引入:
位置水头 :z 压强水头 :p/γ 测压管水头 :z+p/γ=C 同一容器内静止液体中, 同一容器内静止液体中, 测压管水头均相等。 测压管水头均相等。
三、压强的表示方法和度量单位
1、表示方法
(1)绝对压强Pj:以绝对真空为零点。 绝对压强P 以绝对真空为零点。 相对压强P 以大气压P 为零点。 (2)相对压强P: 以大气压Pa为零点。 工程中,通常采用相对压强, 可正可负。 工程中,通常采用相对压强,P可正可负。 绝对压强与相对压强的关系: 绝对压强与相对压强的关系:P=Pj–Pa P 为正值时: 称为正压(表压, P为正值时:Pj>Pa,称为正压(表压,即压力表 读数)。 读数)。 为负值时: 称为负压( P为负值时:Pj<Pa,称为负压(负压的绝对值称 真空度,即真空表读数)。 真空度,即真空表读数)。 真空度(只能是正值) 真空度(只能是正值):Pk=Pa-Pj=-P
§1-1 流体的主要力学性质 -
一、惯性
定义:惯性是物体维持原有运动状态的性质。 定义:惯性是物体维持原有运动状态的性质。 质量:表征惯性的物理量。 质量:表征惯性的物理量。 流体的质量:常以密度来反映。 流体的质量:常以密度来反映。 密度:对于均质流体, 密度:对于均质流体,单位体积的质量称为密度 ρ = m /V ,即: 重度:对于均质流体, 重度:对于均质流体,单位体积的流体所受的重 力称为流体的重力密度,简称重度。 力称为流体的重力密度,简称重度。 即:
h= p
γ
一标准大气压: 一标准大气压: 三种压强换算关系: 三种压强换算关系: 压强换算关系
101325 N / m 2 h= = 10.33m 3 9807 N / m

流体力学教学资料 1-PPT精选文档25页

流体力学教学资料 1-PPT精选文档25页

第五节 表面张力

a
n
气体

表面张力:是液体自由面上分子引力
液体
a 大于斥力而产生的沿表面每单位长度

切向拉力 [N/m]
二维液体表面张力
p p 0 R 2s in 2 2 2
a
气体
pp0/R 曲率半径
液体
n

a
毛细现象 是接触角,与液体,固体性质有关
900
900
gd2hdcos
4
h 4 cos gd
毛细管液体爬高

水银
毛细现象不仅与液体性质、固壁材料、液面上方气体性 质等因素有关,也与管径的大小有关。管径越小,毛细 现象越明显。
谢谢!
xiexie!
流体微团(流体质点)是大量流体分子的集合, 在宏观上是无限小体积。
1 mm 3 体积有 3.31019 个水分子,2.71016 气体分子 以工程的尺度观察,1 mm 3 流体微团 非常微小 以水分子的尺度观察,1 mm 3 流体微团 非常巨大
流体由分子组成,分子不断地运动并且相互碰撞,分 子的运动是不规律的。
如果对微小流体团里所有分子的物理参数进行统计平 均,并把统计平均值作为流体微团的相应物理参数, 只要这样的微团相对于物理参数宏观变化的特征尺寸 足够小,微团上和微团间的参数变化就能够充分反映 出流体的宏观运动特征。
流体力学测量仪器能够反映出来的也正是这样一些宏 观物理参数,而这些宏观物理参数表征的是许许多多 个分子上相应物理参数的统计平均值。
流体力学的任务:在一定的空间体积里,研究流体微团宏 观运动、受力和能量变化的规律。
失效情况:稀薄气体 激波 微尺度流动 (厚度与气体分子平均自由程同量级)

流体力学第1章绪论幻灯片PPT

流体力学第1章绪论幻灯片PPT
流体力学第1章绪论幻灯片 PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
1.1 流体力学的研究对象及意义
1.1.1 研究对象 流体(Fluid),包括液体(Liquid)和气体(Gas)。
江苏科技大学
1.1.3 工程应用
流体力学已广泛用于国民经济的各个领域。
在水利建设中:如防洪、灌溉、航运、水力发电、河道整治等;
在航空航天中:如航天飞机、人造卫星等;
在国民经济的其他技术部门中:如机械工程中的润滑、液压传动; 船舶的行波阻力;市政工程中的通风、通水,高层建筑的受风作用; 铁路、公路隧道中的压力波传播、汽车的外形与阻力的关系;血液在 人体内的流动;污染物在大气中的扩散等。
得到很大发展,已形成专门的学科 ——计算流体力学。
1.1 流体力学的研究对象及意义
江 苏 科 技大 学
5)流体力学的发展史
流体力学的萌芽,是自距今约2200年希腊学者阿基米德的《论浮 体》一文开始的。他对静止流体的性质作了第一次科学总结。
流体力学的主要发展,是从牛顿时代开始的,1687年牛顿的名著 《原理》讨论了流体的阻力、波浪运动等问题,使流体力学开始变为力 学中的一个独立分支。此后,流体力学的发展主要经历了四个阶段:
4、二十世纪六十年代以后,由于计算机的发明与普及,出现了在理论 分析和实验观察的基础上拟定计算方案,利用计算机编程求解数值解的 流体力学研究方法,即“计算流体力学“。现代测量技术如激光测速仪 等的应用和计算机在实验数据的监测、采集等中的应用,都促进了工程 流体力学的发展。

流体力学(共64张PPT)

流体力学(共64张PPT)

1) 柏努利方程式说明理想流体在管内做稳定流动,没有
外功参加时,任意截面上单位质量流体的总机械能即动能、
位能、静压能之和为一常数,用E表示。
即:1kg理想流体在各截面上的总机械能相等,但各种形式的机
械能却不一定相等,可以相互转换。
2) 对于实际流体,在管路内流动时,应满足:上游截面处的总机械能大于下游截面
p g 1z12 u 1 g 2W g ep g 2z22 u g 2 2g hf
JJ
kgm/s2
m N
流体输送机械对每牛顿流体所做的功

HeW ge,
Hf ghf
p g 1z12 u 1 g 2H ep g 2z22 ug 2 2 H f
静压头
位压头
动压头 泵的扬程( 有效压头) 总压头
处的总机械能。
22
3)g式中z各、项 的2u 2物、理 意p 义处于g 某Z 个1 截u 2 1 面2上的p 1流 W 体e本 身g Z 所2具u 有2 22 的 能p 量2 ; hf
We和Σhf: 流体流动过程中所获得或消耗的能量〔能量损失〕;
We:输送设备对单位质量流体所做的有效功;
Ne:单位时间输送设备对流体所做的有效功,即有效功率;
u2 2
u22 2
u12 2
p v p 2 v 2 p 1 v 1
Ug Z 2 u2 pQ eW e
——稳定流动过程的总能量衡算式 18
UgZ 2 u2pQ eW e
2、流动系统的机械能衡算式——柏努利方程
1) 流动系统的机械能衡算式〔消去△U和Qe 〕
UQ'e vv12pdv热力学第一定律
26
五、柏努利方程应用
三种衡算基准

流体力学基本知识 ppt课件

流体力学基本知识 ppt课件
〈1〉温度升高,液体的粘度减小(因为T上 升,液体的内聚力变小,分子间吸引力减 小;)
〈2〉温度升高,气体的粘度增大(气体的内 聚力很小,它的粘滞性主要是分子间动量 交换的结果。当T上升,作相对运动的相邻 流层间的分子的动量交换加剧,使得气体 的粘度增大。)
流体力学基本知识
6
三、流体的压缩性和热胀性
一、流体运动的基本概念
(一)压力流与无压流 1.压力流:流体在压差作用下流动时,流体 整个周围都和固体壁相接触,没有自由表 面。 2.无压流:液体在重力作用下流动时,液体 的部分周界与固体壁相接触,部分周界与 气体接触,形成自由表面。
流体力学基本知识
14
(三)流线与迹线
1.流线:流体运动时,在流速场中画出某时 刻的这样的一条空间曲线,它上面所有流 体质点在该时刻的流速矢量都与这条曲线 相切,这条曲线就称为该时刻的一条流线。
流体力学基本知识
26
四、沿程阻力系数λ和流速系数C的确定
沿程阻力系数λ 是反映边界粗糙情况和流态 对水头损失影响的一个系数。1933年尼古 拉兹表发表了其反映圆管流运情况的实验 结果,得出了一些结论:
1.层流区 2.层流转变为紊流的过渡区 3.紊流区
流体力学基本知识
27
(一)沿程阻力系数λ的经验公式 1.水力光滑区 2.水力过渡区 3.粗糙管区
2.迹线:流体运动时,流体中某一个质点在 连续时间内的运动轨迹称为迹线。流线与 迹线是两个完全不同的概念。非恒定流时 流线与迹线不相重合,在恒定流时流线与 迹线相重合。
流体力学基本知识
15
(二)恒定流与非恒定流
1.恒定流:流体运动时,流体中任一位置的 压强,流速等运动要素不随时间变化的流 动称为恒定流动。

第1章流体力学基本知识-PPT精品

第1章流体力学基本知识-PPT精品

(二)恒定流与非恒定流
2 .非恒定流:流体运动时,流体中任一 位置的压强、流速等运动要素随时间的 变化而变动的流动。如水位随水放出不 断改变的水流运动。
自然界中都是非恒定流,建筑设备工程 中取为恒定流。
(三)流线与迹线: 1.流线:是流体中同一瞬间由许多质点组成的
曲线。在该曲线上所有各点的速度向量都与 该曲线相切。

该关系式表达了流量(Q)、过流断面(ω)和 平均流速(v)三者之间的关系。
二、恒定流的连续性方程式
如图所示,在恒定总流中任取一元流,元流 在1-1过流断面上的面积为dω1,流速为u1;在 2-2过流断面上的面积为dω2,流速为u2。
二、恒定流的连续性方程式
应用质量守恒定律,在dt时段内流入的质量 与流出的质量相等:
静压。 rv2/2g--工程上称动压。
p12vg12 p22vg22h12
p + rv2/2g--过流断面的静压与动 压之和,工程上称全压。
rhω1-2--1-2两过流断面间压强损 失。
第4节 流:
本节的任务:计算水头损失(或压强损失、流 动阻力)和计算管段。
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介
本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。
z1、z2:位置水头,表示单位 p1/γ、 p2/γ:重压量强的水位头置。势P能为。相
对压强(静压)。
α1v12/2g、 α2v22/2g:流 速水头(动

《流体力学》课件-(第1章 绪论)

《流体力学》课件-(第1章 绪论)

流体力学
流体
强调水是主要研究对象 比较偏重于工程应用 土建类专业常用
力学
宏观力学分支 遵循三大守恒原 理
水力学

力学
§1.1.1 流体力学的任务和研究对象
二、研究对象 流体 指具有流动性的物体,包括气体和 液体二大类。
流动性
•即 任 一 微 小 剪
切力都能使流体 发生连续的变形

流体的共性特征
基本特征:具有明显的流动性;气体的流动性大于液体。 流体只能承受压力,不能承受拉力,在即使是很小剪切力
二. 表面力 是指作用在所研究的流体表面上的力,它是相邻流 体之间或固体壁面与流体之间相互作用的结果。 它的大小与流体的表面积成正比; 方向可分解为切向和法向。
• 设 面 积 为 ΔA 的 流 体
nFLeabharlann 面元,法向为 n ,指 向表面力受体外侧, 所受表面力为 ΔF ,则 应力
F f n lim A0 A
第一阶段:古典流体力学阶段 奠基人是瑞士数学家伯努利(Bernoulli,D.)和他的 亲密朋友欧拉(Euler,L.)。1738年,伯努利推导出了著 名的伯努利方程,欧拉于1755年建立了理想流体运动微分 方 程 , 以 后 纳 维 (Navier,C .H.) 和 斯 托 克 斯 (Stokes , G.G.)建立了粘性流体运动微分方程。拉格朗日 (Lagrange)、拉普拉斯(Laplace)和高斯(Gosse)等人, 将欧拉和伯努利所开创的新兴的流体动力学推向完美的分 析高度。
第1章 绪论 第2章 流体静力学 第3章 一元流体动力学理论基础 第4章 流动阻力与能量损失 第5章 孔口、管嘴出流和有压管流 第6章 量纲分析与相似原理
第一章 绪论

第一章 流体力学基础ppt课件(共105张PPT)

第一章 流体力学基础ppt课件(共105张PPT)


力〔垂直于作用面,记为 ii〕和两个切向 应力〔又称为剪应力,平行于作用面,记为

ij,i j),例如图中与z轴垂直的面上受
到的应力为 zz〔法向)、 zx和 zy〔切
电 向),它们的矢量和为:


件 τ zzix zjy zkz
返回
前页
后页
主题
西
1.1 概述

交 • 3 作用在流体上的力
大 化
子 课 件
返回
前页
后页
主题
西
1.2.3 静力学原理在压力和压力差测量上的应用


大 思索:若U形压差计安装在倾斜管路中,此时读数 R反
化 映了什么?
工 原
理 p1p2
p2
p1 z2
电 子
(0)gR(z2z1)g z1

R

A A’
返回
前页
后页
主题
西 1.2.3 静力学原理在压力和压力差测量上的应用

交 大

2.压差计
化 • (2〕双液柱压差计
p1
p2
工•
原•

电•
子•


又称微差压差计适用于压差较小的场合。
z1
1
z1
密度接近但不互溶的两种指示
液1和2 , 1略小于 2 ;
R
扩p 大1 室p 内2 径与2 U 管1 内g 径之R 比应大于10 。 2
图 1-8 双 液 柱 压 差 计
返回

交 大

1.压力计
化 • (2〕U形压力计
pa
工 • 设U形管中指示液液面高度差为RA,1 指• 示液

流体力学基础 ppt课件

流体力学基础  ppt课件
6
流体的研究意义
流体的输送:根据生产要求,往往要将流体按照生产程序 从一个设备输送到另一个设备,从而完成流体输送的任务, 实现生产的连续化。
压强、流速和流量的测量:以便更好的掌握生产状况。
为强化设备提供适宜的流动条件:为了降低传递阻力,减 小设备尺寸,材料生产中的传热、传质过程以及化学反应大 都是在流体流动下进行的。流体流动状态对这些操作有较大 影响。
➢静压头:
式中的第二项 p/ρg 称为静压头,又称为单位重量流体 的静压能。
29
静压头的意义:

ห้องสมุดไป่ตู้
如图所示:密闭容器,内盛 有液体,液面上方压力为p。
图 静压能的意义 说明Z1处的液体对于大气压力来说,具有上升一定高度的能力。
30
Z+ p 常数
g
位压头+静压头=常数
也可将上述方程各项均乘以g,可得
gZ p 常数
上式为单位质量流体的静力学基本方程式
31
3 流体静力学基本方程式的应用
一、压强测量
1 U型管液柱压差计 指示液密度 ρ0,被测流体密度
为ρ,图中 a、b两点的压力是相
等的,因为这两点都在同一种静 止液体(指示液)的同一水平面 上。通过这个关系,便可求出p1
-p2的值。
注:指示剂的选择
Ar1% (均为体积%)。试求干空气在压力为
9.81×104Pa、温度为100℃时的密度。
18
解: 首先将摄氏度换算成开尔文:
100℃=273+100=373K
1)求干空气的平均分子量:
Mm = M1y1 + M2y2 + … + Mnyn
=32 × 0.21+28 ×0.78+39.9 × 0.01
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比:
d vv d0, 即 d vv d
体积弹性模量可写为:E dp dp (N/m2) d d
当E较大,则流体不容易被压缩,反之当E较小则流体容易被压缩。液体的E 一般较大,通常可视为不可压缩流体,气体的E通常较小,且与热力过程有关, 故 气体具有压缩性。对具体流动问题是否应考虑空气压缩性要看流动产生的压 强变化是否引起密度显著变化,一般情况下,当空气流动速度较低时,压强变化 引起的密度变化很小,可不考虑空气压缩性对流动特性的影响。
流体在受压时其体积发生改变的性质称为流体的压缩性,而流体抵
抗压缩变形的能力和特性称为弹性。类似于材料力学,用弹性模量
(这里是体积弹性模量)度量流体的弹性。
体积弹性模量定义为产生单位相对体积变化所需的压强增高:
E dp dv v
其中E为体积弹性模量,v为流体体积,负号是因为当受压时dp>0体
积Байду номын сангаас小dv<0,考虑到一定质量的流体 m=ρv = 常数, 其密度与体积成
的物体(如飞行器)的任何一个尺寸 L 相比较都是微乎 其微的, l / L < < 1
1.1.1 连续介质的概念
当受到物体扰动时,流体或空气所表现出的是大量分子运动体现 出的宏观特性变化如压强、密度等,而不是个别分子的行为。
如果我们将流体的最小体积单位假设为具有如下特征的流体微团: 宏观上充分小,微观上足够大,则可以将流体看成是由连绵一片的、 彼此之间没有空隙的流体微团组成的连续介质,这就是连续介质假设
当飞行速度远小于音速时(低速飞行),扰动在空气里传播速度 相对于飞行速度而言是很快的,这时流动性很好。
而当飞行速度超过音速之后,扰动传播的速度仍是声速,相对于 飞行速度而言,它就慢了,飞机没有飞到跟前,空气微团是没有预感 的,只是飞到跟前时才突然地被推开,这时流动性就很差了。
飞行速度再大上去,到了高超音速范围,空气简直像没有流动性 一样,而像固体的粒子那样向飞行器打来 。
θ
θ2
t1 t2
F
θ1
F
固体
流体
然而如果对流体(例如甘油)也作类似实验将发现,流体的角变 形量不仅将与剪切应力τ大小有关,而且与剪切应力τ的持续时间长短 有关。
因此,不论所加剪切应力τ多么小,只要不等于零,流体都将在剪
应力作用下持续不断的产生变形运动(流动),这种特性称为流体的易 流性。
1.1.3 流体的压缩性与弹性、空气的流动性
一般用努生数即分子平均自由程与物体特征尺寸之比来判断流体 是否满足连续介质假设
l/L<<1
对于常规尺寸的物体只有到了外层大气中, l / L 才可能等于甚至 大于 1,这时气体分子就会像雨点般稀疏的流向物体
一旦满足连续介质假设,就可以把流体的一切物理性质如密度、 压强、温度及宏观运动速度等表为空间和时间的连续可微函数,便于 用数学分析工具来解决问题。
1.1.3 流体的压缩性与弹性、空气的流动性
飞行器的飞行速度 v 和扰动的传播速度 a 的比值称为马赫数 Ma:
v Ma a 由于气体的弹性决定于声速,因此马赫数的大小可以看成是气体相对 压缩性的一个指标
当飞行速度远小于音速时(低速飞行),即马赫数较小时 ,可以 认为此时流动的弹性影响相对较大,即压缩性影响相对较小,从而低速 气体有可能被当作不可压缩流动来处理。
1.1.4 流体的粘性
1.1.1 连续介质的概念
在连续介质的前提下,流体介质的密度可以表达为
平均密度 某点P的密度
m
P
limm,
0
其中 为流体空间的体积,m 为其中所包含的流体质量
下图为 0 时平均密度的变化情况(设p点周围密度较p点为大):
y
•p
p
z
x
0
当微团体积趋于宏观上充分小的某体积 ( )0 时,密度达到稳定值, 但当体积继续缩小达到分子平均自由程量级时,其密度就不可能保持为 常数。因此流体力学和空气动力学中所说的微团,在数学上可以看成一 个点,但在物理上具有宏观上充分小,微观上足够大 的特征
而当马赫数较大之后,可以认为此时流动的弹性影响相对较小,即 压缩性影响相对较大,从而气体就不能被当作不可压缩流动来处理,而 必须考虑流动的压缩性效应。
可以证明,近似划分气体压缩性影响的马赫数界线为 Ma≈ 0.3 ,
即当马赫数小于0.3时,气体的压缩性影响可以忽略不计,或者换言之, 此时流动速度的变化不会引起气体密度的显著变化。
1.1.1 连续介质的概念
密度的单位kg/m3
空气 1.225 水 1000
1.1.2 流体的易流性
流体与固体在力学上最本质的区别在于二者承受剪应力和产生剪 切变形能力上的不同,如下图所示,固体能够靠产生一定的剪切角变
形量θ来抵抗剪切应力 θ = τ / G
其中剪切应力 τ = F/A, A 为固体与平板相连接的面积,G为剪切弹性模 量(上式即固体的剪切虎克定律)
1.1 流体属性 1.1.1 连续介质的概念
流体力学和空气动力学是从宏观上研究流体(空气) 的运动规律和作用力(流体内部和流体对物体)的规律的 学科,流体力学和空气动力学常用“介质”一词表示它所 处理 的流体,流体包含液体和气体
从微观的角度而言不论液体还是气体其分子与分子之 间都是存在间隙的,例如海平面条件下,空气分子的平均 自由程为 l =10-8 mm,但是这个距离与我们宏观上关心
1.1.3 流体的压缩性与弹性、空气的流动性
后面讲到高速流动时会证明,这里的
dp d
等于声速的平方。所以气体的弹性决定于它的密度和声速。 气体是流体的一种,它具有流动性。 气体受到扰动后,扰动的影
响将会以波动的形式传播开去,扰动传播的速度即为声速,因此扰动 的传播与气体的弹性有关。
对于飞行器而言,单说空气的流动性就不够了,而必须在飞行器 的飞行速度和扰动的传播速度的比值之下来谈流动性。
第1章 流体属性和流体静力学
1.1 流体属性 1.1.1连续介质的概念 1.1.2 流体的易流性 1.1.3 流体的压缩性与弹性、气体的流动性 1.1.4 流体的粘性
1.2 作用在流体微团上力的分类 1.3 理想流体内一点的压强及其各向同性 1.4 流体静平衡微分方程 1.5 重力场静止液体中的压强分布规律 1.6 液体的相对平衡问题 1.7 标准大气
相关文档
最新文档