人教版 初中数学 七年级上册尺规作图_练习1
新人教版七年级上数学13.4.1尺规作图重点讲解及习题
学习目标:1.掌握三种尺规作图的方法及一般步骤,并能熟练掌握基本作图语言。
2.通过动手操作、合作探究,培养作图能力、语言表达能力、逻辑思维和推理能力。
3.激情投入,全力以赴,认识到尺规作图与实际生活的紧密联系,激发学习兴趣 重点:掌握作线段等于已知线段,作一个角等于已知角,作已知角的平分线的作法。
难点:尺规作图的理论依据 教学过程 一导入预习课本尺规作图定义: 二..作一条线段等于已知线段。
已知:线段MN =a ,求作一条线段等于a.作法:(1) (2) (3)三.作一个角等于已知角 已知:∠AOB 求作一个角等于∠AOB. 作法:(1)作 O 1P 1;(2)以O 为圆心,以 作弧, 交 ,交 ;(3)以 为圆心,以 作弧,交 ; (4)以 为圆心,以 半径作弧,交 ;(5)经过 作 。
则 即为所求的角。
想一想:为什么两个角相等?你会证明吗?13.4.1尺规作图ODCBAaM NaMNA CB四做已知角的角平分线已知:∠AOB ,求作∠AOB 的平分线.作法:(1)以O 为圆心,以适当长为半径画弧,交OA于C 点,交OB 于D 点;(2)分别以C、D 两点圆心,以大于CD长为半径画弧,两弧相交于P 点;(3)过O、P 作射线OP ,即为所求作的角平分线.五练习(尺规作图)1.任意画出两条线段AB和CD,再作一条线段,使它等于AB+2CD2.任意画出两个角∠1和∠2,使∠1 > ∠2,再作一个角,使它等于∠1—∠23 把下图所示的角四等分4 已知:线段a和b(a>b)求作:一个等腰△ABC,使它的腰长等于线段a,底边长等于b。
OOBA21OBAPCD5 任意画一个(锐角、钝角)和直角三角形,画出三个内角的角平分线.,并总结规律(不写画法,保留作图痕迹)13.4.1尺规作图(2)学习目标:1.掌握三种尺规作图的方法及一般步骤,并能熟练掌握基本作图语言。
2.通过动手操作、合作探究,培养学生的作图能力、语言表达能力、逻辑思维和推理能力。
数学人教版七年级上册尺规作图
5、已知线段AC = 1,BC = 3则线段AB的长度 是( D ). A .4 B.2 C. 2或4 D. 以上答案都不对
变式:已知A、B、C是同一条直线上的三
点,且线段AC = 1,BC = 3,则线段AB的
长度是( C ).
现有A、B两个村庄位于小河边,要修一水 库,供应村民饮用水,请问该水库应当修 在哪里,费用最少?
间的距离.
A
B
C
D
线段AC的中点
A B C
你记住什么 是线段的中 点了吗?
定义:把一条线段分成相等的两条线段的点, 叫做这条线段的中点.
数量关系: AB + BC=AC 如上图,若AB=2cm,
1 AC 2
AB = BC=
则线段AC= 4 cm,
线段BC= 2 cm.
AC=2AB=2BC
例3 如图,点P是线段AB的中点,点C、D
6
∴ AB=6PC=6×1.5=9(cm) 即 AB的长是9cm.
例2 已知线段a、b,画一条线段c,使它 的长度等于两条已知线段的长度的和.
a b
画法: 1、画射线AD. 2、用圆规在射线AD上截取AB=a.
3、用圆规在射线BD上截取BC=b.
c a b B C D
A
线段AC就是所求的线段c.
线段c的长度是线段a、b的长度的和, 我们就说线段c是线段a、b的和, 记做c=a+b,即AC=AB+BC.
把线段AB三等分.已知线段CP的长为1.5cm, 求线段AB的长.
A C P
1.5cm
D
B
?
∵ 解:
点P是线段AB的中点,
1 ∴ AP=PB= AB. 2 ∵ 点 C、D把线 段AB三等分,
人教版初中数学七年级(上)期末综合练习(2)及答案
人教版初中数学7年级(上)期末综合练习(二)一.选择题(共8小题)1.有理数a ,b 在数轴上的位置如图所示, 则下列各式:①0a b +>;②0a b ->;③||b a >;④0ab <. 一定成立的是( )A .①②③B .③④C .②③④D .①③④2.下列各组数中, 互为相反数的一组是( )A .32-与3(2)-B .2(2)--与22-C .23-与2(3)-D .3|2|-与3|2|3.如果2x <-,那么|1|1||x -+等于( )A .2x --B .2x +C .xD .x -4.下列两项中,属于同类项的是( )A .26与2xB .4ab 与4abcC .20.2x y 与20.2xyD .nm 和mn - 5.某商店经销一批衬衣,每件进价为a 元,零售价比进价高%m ,后因市场变化,该商把零售价调整为原来零售价的%n 出售.那么调整后每件衬衣的零售价是( )A .(%)(%)a l m l n +-元B .%(1%)am n -元C .(%)%a l m n +元D .(%%)a l m n +元 6.若方程53ax x =+的解为5x =,则a 的值是( )A .14B .4C .16D .807.将一个正方体的表面沿某些棱剪开, 展成的平面图形可以是下图中的( )A .B .C .D .8.钟表上 12 时 15 分钟时, 时针与分针的夹角为( )A .90︒B .82.5︒C .67.5︒D .60︒二.填空题(共10小题)9.2009-的相反数是 . 10.x 是实数, 那么|1||1||5|x x x -++++的最小值是 .11.一个数的倒数是8-,那么这个数是 .12.若26m n a b ++与42a b 是同类项,m n -= .13.代数式223a 的系数是 . 14.已知:25x y +=,347x y +=,则26x y += .15.代数式4a 可表示的实际意义是 .16.“节能减排, 低碳经济”是我国未来发展的方向, 某汽车生产商生产有大、 中、 小三种排量的轿车, 正常情况下的小排量的轿车占生产总量的30%,为了积极响应国家的号召, 满足大众的消费需求准备将小排量轿车的生产量提高, 受其产量结构调整的影响, 大中排量汽车生产量只有正常情况下的90%,但生产总量比原来提高了7.5%,则小排量轿车生产量应比正常情况增加 %.17.如图, 立方体的每个面上都写有一个自然数, 并且相对两个面所写出二数之和相等, 若 10 的对面写的是质数a , 12 的对面写的是质数b , 15 的对面写的是质数c ,则222a b c ab ac bc ++---= .18.如图所示, 已知4CB cm =,8DB cm =,且点D 是AC 的中点, 则AC = cm .三.解答题(共6小题)19. (1)295(6)(4)(8)-+⨯---÷- (2)432134()(2)[(2)(2)]213⨯-+-÷---. 20.如图所示是一个数表,现用一个矩形在数表中任意框出4个数,则(1)a 、c 的关系是: ; (2)当32a b c d +++=时,a = .21.已知m 满足的条件为:代数式5123m m --的值与代数式72m -的值的和等于5;||||a b n a b =+,试求mn 的值.22.在一条东西走向的马路旁, 有青少年宫、 学校、 商场、 医院四家公共场所, 已知青少年宫在学校东300m 处, 商场在学校西200m 处, 医院在学校东500m 处, 若将马路近似地看作一条直线, 以学校为原点, 向东方向为正方向, 用 1 个单位长度表示100m .(1) 在数轴上表示出四家公共场所的位置;(2) 列式计算青少年宫与商场之间的距离 .23.如图, 已知线段AB ,延长AB 到C ,使12BC AB =,D 为AC 的中点,3DC cm =,求BD 的长 .24.保护环境,市政府计划在连接A 、B 两居民区的公路北侧1500米处修建一座污水处理厂,设计时要求该污水处理厂到A 、B 两居民区的距离相等.(1)若要以1:50000的比例尺画设计图,求污水处理厂到公路的图上距离;(2)在图中画出污水处理厂的位置P .(要求:用尺规作图,并写出已知和求作)参考答案与试题解析一.选择题(共8小题)【解答】解: 由数轴可得,0a >,0b <,||||b a >,故可得:0a b ->,||b a >,0ab <;即②③④正确 .故选:C .【解答】解:A 、328-=-,3(2)-,8=-,32∴-与3(2)-相等, 故本选项错误; B 、2(2)4--=-,224-=-,2(2)∴--与22-相等, 故本选项错误;C 、239-=-,2(3)9-=,23∴-与2(3)-互为相反数, 故本选项正确;D 、3|2|8-=,3|2|8=,3|2|∴-与3|2|相等, 故本选项错误 .故选:C .【解答】解:2x <-|1|1|||11|2x x x ∴-+=++=--,故选:A .【解答】解:A 、26与2x 字母不同不是同类项;B 、4ab 与4abc 字母不同不是同类项;C 、20.2x y 与20.2xy 字母的指数不同不是同类项;D 、nm 和mn -是同类项.故选:D .【解答】解:每件进价为a 元,零售价比进价高%m ,∴零售价为:(1%)a m +元,要零售价调整为原来零售价的%n 出售.∴调整后每件衬衣的零售价是:(1%)%a m n +元.故选:C .【解答】解:将5x =代入方程得:520a =解得:4a =.故选:B .【解答】解: 由四棱柱四个侧面和上下两个底面的特征可知,A 、只有 5 个面, 不是正方体的展开图, 不符合题意;出现了田字格, 故不能;B 、D 、出现了田字格, 故不是正方体的展开图, 不符合题意;C 、可以拼成一个正方体, 符合题意 .故选:C .【解答】解:时针在钟面上每分钟转0.5︒,分针每分钟转6︒,∴钟表上 12 时 15 分钟时, 时针与分针的夹角可以看成时针转过 12 时0.5157.5︒⨯=︒,分针在数字 3 上 .钟表 12 个数字, 每相邻两个数字之间的夹角为30︒,12∴时 15 分钟时分针与时针的夹角907.582.5︒-︒=︒.故选:B .二.填空题(共10小题)【解答】解:2009-的相反数是2009.【解答】答: 当1x =时,|1||1||5|8x x x -++++=,当1x =-时,|1||1||5|6x x x -++++=,当5x =-时,|1||1||5|10x x x -++++=.所以当1x =-时,|1||1||5|x x x -++++取最小值 6 .故答案为: 6 .【解答】解:18()18-⨯-=, ∴这个数是18-. 故答案为:18-. 【解答】解:26m n a b ++与42a b 是同类项,24m ∴+=,62n +=,2m ∴=,4n =-,2(4)6m n ∴-=--=.故答案为 6 .【解答】解: 由题意可得223a 的系数是23. 故答案为23.【解答】解: 将已知两等式联立得:25347x y x y +=⎧⎨+=⎩, 解得:13515x y ⎧=⎪⎪⎨⎪=-⎪⎩, 则1312626455x y +=⨯-⨯=.故答案为: 4【解答】解:答案不唯一.如:每支钢笔4元,买了a 支钢笔所需的钱数,或正方形的边长为a ,它的周长是4a .【解答】解: 设小排量轿车生产量应比正常情况增加的百分数为x ,汽车原总量为a . 则可得方程:30%(1)70%90%(17.5%)a x a a ++⨯=+,化简得:0.30.30.70.910.075x ++⨯=+,解得48.3%x ≈.故填 48.3 .【解答】解: 根据相对的两个面的数字和相等, 得101215a b c +=+=+,则2a b -=,5a c -=,3b c -=. 则原式222()()()192a b b c a c -+-+-==.故答案为 19 .【解答】解:4CB cm =,8DB cm =,844CD DB CB cm ∴=-=-=, D 是AC 的中点,2248AC CD cm ∴==⨯=.故答案为: 8 .三.解答题(共6小题)【解答】解: (1) 原式95(6)16(8)=-+⨯--÷-9302=--+37=-;(2) 原式134()16[84]213=⨯-+÷-- 216(12)=-+÷-423=-- 103=-. 【解答】解:(1)当a 为4时,9c =,5c a ∴-=,即5a c =-, 当9a =时,14c =,5c a ∴-=,即5a c =-,a ∴、c 的关系是:5a c =-;(2)设a x =,则1b x =+,5c x =+,6d x =+,32a b c d +++=,15632x x x x ∴++++++=,解得5x =,5a ∴=.【解答】解:根据题意,5172532m m m ---+=, 去分母得,122(51)3(7)30m m m --+-=,去括号得,1210221330m m m -++-=,移项得,1210330221m m m --=--,合并同类项得,7m -=,系数化为1得,7m =-,a 、b 同号时,112n =+=或1(1)2n =-+-=-,a 、b 异号时,0n =,所以,当7m =-、2n =时,(7)214mn =-⨯=-,当7m =-,2n =-时,(7)(2)14mn =-⨯-=,当7m =-,0n =时,(7)00mn =-⨯=,综上所述,mn 的值为14-或14或0.【解答】解: (1) 如图所示: 点A 表示商场, 点C 表示青少年宫, 点D 表示医院, 原点表示学校;(2) 依题意得青少年宫与商场之间的距离为300(200)500()m --=. 答: 青少年宫与商场之间的距离为500m .【解答】解:D 为AC 的中点,3DC cm =,26AC DC cm ∴==, 12BC AB =, 123BC AC cm ∴==, 1BD CD BC cm ∴=-=.【解答】解:(1)比例尺为1:50000实际距离为1500米 ∴图上距离为150000500003cm ÷=;(2)已知:直线L 到AB 的距离为1500米,设计图比例尺为1:50000在L 上求作点P ,使P 到A 、B 的距离相等.作法:找到AB 的中点,过中点作AB 的垂线,交L 于点P , 则P 点为所求.。
《尺规作图》专题复习
尺规作图专题训练【复习回顾】A.SSSB.SASC.AASD. ASAA.20B.18C.16D.12A. ①②③B. ①②④C. ①③④D. ②③④4.到三角形三条边距离相等的点在( )的交点上. A.三条中点 B.三条角平分线 C.三条高线 D.三条垂直平分线第1题图目标一:根据题目的要求,尺规作图作垂线例1. 对于直线l ,点P 在直线外,点Q 在直线上,用尺规作图法分别过点P 、Q 作直线l 的垂线.(不写作图方法,保留作图痕迹)练习1.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8.(1) 用尺规作图作出AB 边上的高线CD ,垂足为D.(2) 求CD 的长.目标二:根据题目要求,用尺规作图作角平分线例2. 如图,在∠ABC 内部,用尺规作图法找一条射线BP ,使得射线BP 上任意一点到BA 和BC 的距离都相等.(保留作图痕迹,不写作法)目标三:用尺规作图作出线段的垂直平分线练习3.(番禺执信段测题23)如图在△ABC 中,AB=AC ,∠DAC 是△ABC 的一个外角.根据要求作图,并在图中标明相应字母.(1)作∠DAC 的平分线AM ;(2)作线段AC 的垂直平分线,与AM 交于点F ,与BC 边交于点E ,连接AE 、CF. 判断四边形AECF 的形状并加以证明.目标四:学会复制自己涂脏的图形有时候,解几何题过程中,我们把图形画脏,又或者题目图形不够标准,那么我们需要学会自己复制图形,重新画出来。
例4 如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB与点E,若AC=6,(1)求DE的长.(2)求△ADB的面积.练习4:请根据例4的题意,自己绘制题目中涂脏的图形,并将图形放大.。
初中数学专题尺规作图(含答案)
第28课时尺规作图◆考点聚焦1.掌握基本作图,尺规作图的要求与步骤.2.利用基本作图工具画三角形、四边形、圆以及简单几何体的三视图,•对简单的作图能叙述作法.3.运用基本作图、结合相关的数学知识(平移、旋转、对称、•位似)等进行简单的图案设计.4.运用基本作图解决实际问题.◆备考兵法1.熟练掌握基本作图.2.在画几何体的三视图时,要注意其要求,•即“长对正”“高平齐”“宽相等”.3.认真分析题意,善于把实际问题转化为基本作图.◆识记巩固1.尺规作图的定义:_____________.2.基本作图包括:_______,_______,________,________,_______.3.三角形三边的垂直平分线的交点叫三角形的外心,•三角形三内角平分线的交点叫三角形的内心,外心到三角形的_______的距离相等,内心到三角形_______的距离相等.识记巩固参考答案:1.限定只能使用圆规和没有刻度的直尺作图2.作线段作角作线段的垂直平分线过一点作已知直线的垂线作角平分线3.顶点三边◆典例解析例1 (2008,新疆建设兵团)(1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上.(保留作图痕迹)(2)写出你的作法.解析(1)所作菱形如图①,②所示.说明:作法相同的图形视为同一种,例如类似图③,•图④的图形视图与图②是同一种.①②③④(2)图①的作法:作矩形A1B1C1D1四条边的中点E1,F1,G1,H1,连结H1E1,E1F1,G1F1,G1H1.四边形E1F1G1H1即为菱形.图②的作法:在B2C2上取一点E2,使E2C2>A2E2且E2不与B2重合,连结A2E2.以A2为圆心,A2E2为半径画弧,交A2D2于H2;以E2为圆心,A2E2为半径画弧,交B2C2于F2;连结H2F2,则四边形A2E2F2H2为菱形.例2 如图,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画∠AOB的平分线(请保留画图痕迹).解析连结AB.因为OA=OB,因此△ABO为等腰三角形.要作出∠AOB的平分线,•只要确定出AB的中点即可.因AEBF为矩形,因此连结AB,EF,相交于M.根据矩形的性质,M即为AB的中点.连结OM,射线OM即为所求的角平分线.例3台球是一项高雅的体育运动,其中包含了许多物理学,几何学知识.如图是一个台球桌,目标球F与本球E之间有一个G球阻挡,现在击球者想通过击打E球先撞击球台的AB边,经过一次反弹后再撞击F球,他应将E球打到AB边上的哪一点?•请在图中用尺规作图这一点H,并作出E球的运行路线(不写画法,保留作图痕迹).解析作点E关于直线AB的对称点E1,连结E1F,E1F与AB相交于点H,球E•的运动路线是EH→HF.点评本例是把实际问题通过抽象,把求H点的问题先转化为作E•点关于直线AB的对称点问题加以解决.数学课程标准对尺规作图提出了明确要求,是中考的重要内容之一,在复习时要掌握基本作图,要善于把具体问题的作图转化为基本作图.•学会对作图问题进行分析,归纳,掌握画法.◆中考热身1.(2008,江苏镇江)如图,在△ABC中,作∠ABC的平分线BD,交AC于D,作线段BD 的垂直平分线EF,分别交AB于E,BC于F,垂足为O,连结DF,在所作图中,寻找一对全等三角形,并加以证明.(不定作法,保留作图痕迹)2.(2008,山西太原)如图,在△ABC中,∠BAC=2∠C.(1)在图中作出△ABC的内角平分线AD;(要求:尺规作图,保留作图痕迹,•不写证明)(2)在已作出的图形中,写出一对相似三角形,并说明理由.3.(2008,四川成都)如图,已知点A是锐角∠MON内的一点,试分别在OM,ON上确定点B,点C,使ABC•的周长最小,写出你作图的主要步骤并标明你所确定的点_________.(要求画出草图,保留作图痕迹)◆迎考精练一、基础过关训练1.在Rt△ABC中,已知∠C=90°,AD是∠BAC的平分线.以AB上一点O为圆心,AD•为弦作⊙O(不写作法,保留作图痕迹).2.请你画出一个以BC为底边的等腰△ABC,使底边上的高AD=BC.(1)求tanB和sinB的值.(2)在你所画的等腰△ABC中,假设底边BC=5米,求腰上的高BE.3.作一条直线,平分如图所示图形的面积:4.现有m,n两堵墙,两个同学分别站在A处和B处,请问小明在哪个区域内活动才不会被任何一个同学发现?(画图,用阴影表示)5.按下列要求作图,不写画法,要保留作图痕迹.(1)在图1中,作出AB的中点M,作出∠BCD的平分线CN,延长CD到点P,使DP=2CD;(2)如图2是一个破损的机器部件,它的残留边缘是圆弧,请作图找出圆弧所在的圆心.图1 图26.如图,Rt△ABC的斜边AB=5,cosA=35.(1)用尺规作图作线段AC的垂直平分线(保留作图痕迹,不要求写作法,证明);(2)若直线L与AB,AC分别相交于D,E两点,求DE的长.7.成绵高速公路OA和绵广高速公路OB在绵阳市相交于点O,在∠AOB•内部有两个城镇C,D,若要修一个大型农贸市场P,使P到OA与OB的距离相等,且PC=PD,用尺规作出市场P的位置.(不写作法,保留作图痕迹)二、能力提升训练8.已知正方形ABCD的面积为S.(1)求作:四边形A1B1C1D1,使得点A1和点A关于点B对称,点B1和点B关于点C 对称,点C1和点C关于点D对称,点D1和点D关于点A对称;(只要求画出图形,不要求写作法)(2)用S1表示(1)中所作出的四边形A1B1C1D1的面积;(3)若将已知条件中的正方形改为任意四边形,面积仍为S,并按(1)•的要求作出一个新的四边形,面积为S2,则S1与S2是否相等?为什么?参考答案:中考热身1.解:(1)画角平分线,线段的垂直平分线.(2)△BOE≌△BOF≌△DOF.证明(略)2.解:(1)如图,AD即为所求(2)△ABD∽△CBA,理由如下:∵AD平分∠BAC,∠BAC=2∠C,∴∠BAD=∠BCA.又∵∠B=∠B,∴△ABD∽△CBA.3.分别作点A关于OM,ON的对称点A′,A″;连结A′A″,分别交OM,ON于点B,点C,则点B,点C即为所求作图略迎考精练基础过关训练1.点拨:作AD的垂直平分线与AB的交点即为圆心,OA为半径.(作图略)2.解:①画线段BC:②作BC的垂直平分线MN与BC相交于D;③在DM上截取DA=BC;④连结AB,AC,△ABC即为所求.(1)tanB=2,sinB=255,(2)BE=25米.3.点拨:过几何体中心的任一条直线均可将该图形分成面积相等的两部分.(•如图)4.解:小明在图中的阴影部分区域就不会被两个同学发现.5.(1)作图略.(2)点拨:在残片的圆弧上任选两条弦,分别作它们的中垂线,其交点即为圆心.6.点拨:(1)①分别以A,C为圆心,以大于12AC为半径画弧,两弧相交于M,N;•②连结MN,过MN的直线即为所求的直线L.(2)DE=2. 7.点拨:(1)作∠AOB的角平分线OE;(2)作DC的垂直平分线MN;(3)MN 交OE 于P 点,P 即为所求. 能力提升训练8.解:(1)如图1.图1 图2 (2)设正方形ABCD 的边长为a ,∴S=a 2. 依题意A 1D 1=A 1B 1=B 1C 1=C 1D 15. 易证A 1B 1C 1D 1是正方形, ∴S 1111A B C D =5a 2,∴S 1=5S . (3)S 1=S 2.证明如下:如图2,连结BD 1,BD .在△BDD 1中,AB 是中线, ∴S △ABD =S △ABD1.在△AA 1D 1中,BD 1是中线, ∴S △ABD1=S △A1BD1,S △AA1D1=2S △ABD1, 同理S △OC1B1=2S △CBD , ∴S △AA1D1+S △OC1B1=2S . 同理S △DD1C1+S △BA1B1=2S , ∴S 四边形1111A B C D =5S=S 2, ∴S 1=S 2.。
尺规作图练习1
尺规作图练习118.下面是小明设计的“作平行四边形的高”的尺规作图过程已知:平行四边形ABCD..求作:AE BC⊥,垂足为点E.作法:如图,①分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于P,Q两点;②作直线PQ,交AB于点O;③以点O为圆心,OA长为半径做圆,交线段BC于点E;④连接AE.所以线段AE就是所求作的高.根据小明设计的尺规作图过程(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:AP=BP, AQ= ,∴PQ为线段AB的垂直平分线.∴O 为AB 中点.AB 为直径,⊙O 与线段BC 交于点E,∴AEB ∠= ︒.( )(填推理的依据)∴AE BC ⊥.21.下面是小元设计的“过圆上一点作圆的切线”的尺规作图过程.已知:如图,⊙O 及⊙O 上一点P .求作:过点P 的⊙O 的切线.作法:如图,① 作射线OP ;② 在直线OP 外任取一点A ,以点A 为圆心,AP 为半径作⊙A ,与射线OP 交于另一点B ;③ 连接并延长BA 与⊙A 交于点C ; ④ 作直线PC ; 则直线PC 即为所求. 根据小元设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明:证明:∵ BC 是⊙A 的直径,∴ ∠BPC =90°(____________)(填推理的依据). ∴ OP ⊥PC .又∵ OP 是⊙O 的半径,∴ PC 是⊙O 的切线(____________)(填推理的依据).16.阅读下面材料:在数学课上,老师请同学们思考如下问题:小亮的作法如下:老师问:“小亮的作法正确吗?”请回答:小亮的作法______(“正确”或“不正确”),理由是_________. 17.下面是小飞设计的“过圆外一点作圆的切线”的尺规作图过程.已知:P 为⊙O 外一点. 求作:经过点P 的⊙O 的切线.作法:如图,①连接OP ,作线段OP 的垂直平分线 交OP 于点A ;②以点A 为圆心,OA 的长为半径作圆, 交⊙O 于B ,C 两点; ③作直线PB ,PC .所以直线PB ,PC 就是所求作的切线. 根据小飞设计的尺规作图过程,(1)使用直尺和圆规补全图形(保留作图痕迹); (2)完成下面的证明(说明:括号里填写推理的依据). 证明:连接OB ,OC ,∵PO 为⊙A 的直径,∴PBO PCO ∠=∠= ( ). ∴PB OB ⊥,PC OC ⊥.P∴PB,PC为⊙O的切线().20.尺规作图:如图,AD为⊙O的直径.(1)求作:⊙O的内接正六边形ABCDEF.(要求:不写作法,保留作图痕迹);(2)已知连接DF,⊙O的半径为4,求DF的长.小明的做法如下,请你帮助他完成解答过程.在⊙O中,连接OF.∵正六边形ABCDEF内接于⊙O∴AB BC CD DE EF AF=====∴∠AOF=60°∴∠ADF=12∠AOF=30°____________________________ (填推理的依据)∵AD为⊙O直径∴∠AFD=90°∵cos30°=DFAD=2∴DF=____________.19.下面是小松设计的“做圆的内接等腰直角三角形”的尺规作图过程. 已知:⊙O.求作:⊙O的内接等腰直角三角形.作法:如图,①作直径AB;②分别以点A, B为圆心,以大于12AB的同样长为半径作弧,两弧交于M , N两点;③作直线MN交⊙O于点C,D;④连接AC,BC.所以△ABC就是所求作的三角形.DA根据小松设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:∵AB 是直径, C 是⊙O 上一点∴ ∠ACB = ( ) (填写推理依据) ∵AC=BC ( )(填写推理依据)∴△ABC 是等腰直角三角形.22.下面是小东设计的“在三角形一边上求作一个点,使这点和三角形的两个顶点构成的三角形与原三角形相似”的尺规作图过程. 已知: △ABC .求作: 在BC 边上求作一点P, 使得△P AC ∽△ABC .作法:如图,①作线段AC 的垂直平分线GH ;②作线段AB 的垂直平分线EF,交GH 于点O ; ③以点O 为圆心,以OA 为半径作圆;④以点C 为圆心,CA 为半径画弧,交⊙O 于点D(与点A 不重合); ⑤连接线段AD 交BC 于点P. 所以点P 就是所求作的点. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明: ∵CD=AC , ∴CD = . ∴∠ =∠ . 又∵∠ =∠ ,∴△P AC ∽△ABC ( )(填推理的依据).ABC18.已知:直线l 和l 外一点C. 求作:经过点C 且垂直于l 的直线. 作法:如图,(1)在直线l 上任取点A ;(2)以点C 为圆心,AC 为半径作圆,交直线l 于点B ; (3)分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧相交于点D ; (4)作直线CD .所以直线CD 就是所求作的垂线.(1)请使用直尺和圆规,补全图形(保留作图痕迹); (2)完成下面的证明.证明:连接AC ,BC ,AD ,BD . ∵AC=BC , = ,∴CD ⊥AB (依据: ).19.下面是小明同学设计的“过圆外一点作圆的切线”的尺规作图的过程.已知:如图1,⊙O 和⊙O 外的一点P . 求作:过点P 作⊙O 的切线. 作法:如图2,① 连接OP ;② 作线段OP 的垂直平分线MN ,直线MN 交OP 于C ; ③ 以点C 为圆心,CO 为半径作圆,交⊙O 于点A 和B ; ④ 作直线PA 和PB .则PA ,PB 就是所求作的⊙O 的切线.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形; (2)完成下面的证明: 证明:连接OA ,OB ,∵ 由作图可知OP 是⊙C 的直径, ∴ ∠OAP =∠OBP = 90°, ∴ OA ⊥PA ,OB ⊥PB ,又∵ OA 和OB 是⊙O 的半径,∴ PA ,PB 就是⊙O 的切线( )OP图1图2OPNMC18. 下面是小西“过直线外一点作这条直线的垂线”的尺规作图过程. 已知:直线l 及直线l 外一点P . 求作:直线PQ ,使得PQ ⊥l . 做法:如图,①在直线l 的异侧取一点K ,以点P 为圆心,PK 长为半径画弧,交直线l 于点A ,B ; ②分别以点A ,B 为圆心,大于12AB 的同样长为半径画弧,两弧交于点Q (与P 点不重合);③作直线PQ ,则直线PQ 就是所求作的直线. 根据小西设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:∵PA = ,QA = ,∴PQ ⊥l ( )(填推理的依据).20.下面是小芸设计的“过圆外一点作已知圆的切线”的尺规作图过程.已知:⊙O 及⊙O 外一点P .求作:⊙O 的一条切线,使这条切线经过点P . 作法:①连接OP ,作OP 的垂直平分线l ,交OP 于点A ;②以点A 为圆心,AO 为半径作圆, 交⊙O 于点M ;③作直线PM ,则直线PM 即为⊙O 的切线.根据小芸设计的尺规作图过程,(1) 使用直尺和圆规,补全图形;(保留作图痕迹) (2) 完成下面的证明:证明:连接OM ,由作图可知,A 为OP 中点,∴OP为⊙A直径,∴∠OMP= °,()(填推理的依据)即OM⊥PM.又∵点M在⊙O上,∴PM是⊙O的切线.()(填推理的依据)。
2020届人教版中考数学一轮复习-第17讲 尺规作图(有答案)
第十七节尺规作图【知识点梳理】一)尺规作图1.定义只用没有刻度的直尺和圆规作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【课堂练习】一.选择题(共8小题)1.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.2.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于12EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF 【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.3.如图,已知线段AB,分别以A、B为圆心,大于12AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.4.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④【考点】N2:作图—基本作图.【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P作已知直线的垂线的作法进而判断得出答案.【解答】解:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故选:C.5.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于12BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.8【考点】N2:作图—基本作图;KO:含30度角的直角三角形.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC=4可知AB=2BC=8,再由作法可知BC=CD=4,CE 是线段BD的垂直平分线,故CD是斜边AB的中线,据此可得出BD的长,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故选B.6.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A.以点F为圆心,OE长为半径画弧B.以点F为圆心,EF长为半径画弧C.以点E为圆心,OE长为半径画弧D.以点E为圆心,EF长为半径画弧【考点】N2:作图—基本作图.【分析】根据作一个角等于一直角的作法即可得出结论.【解答】解:用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,第二步的作图痕迹②的作法是以点E为圆心,EF长为半径画弧.故选D.7.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据已知条件可知直线BC是线段AD的垂直平分线,由此一一判定即可.【解答】解:A、正确.如图连接CD、BD,∵CA=CD,BA=BD,∴点C、点B在线段AD的垂直平分线上,∴直线BC是线段AD的垂直平分线,故A正确.B、错误.CA不一定平分∠BDA.C、错误.应该是S△ABC=•BC•AH.D、错误.根据条件AB不一定等于AD.故选A.8.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.【考点】N2:作图—基本作图.【分析】过点A作BC的垂线,垂足为D,则AD即为所求.【解答】解:过点A作BC的垂线,垂足为D,故选B.二.填空题(共5小题)9.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于12MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.10.如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于12DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为.【考点】N2:作图—基本作图.【分析】直接根据角平分线的作法即可得出结论.【解答】解:∵由作法可知,OC是∠AOB的平分线,∴∠AOC=∠AOB=20°.故答案为:20°.11.如图,依据尺规作图的痕迹,计算∠α=°.【考点】N2:作图—基本作图.【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF 是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故答案为:56.12.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.【考点】N2:作图—基本作图;D5:坐标与图形性质;J5:点到直线的距离.【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.13.图1是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是.【考点】N3:作图—复杂作图;MA:三角形的外接圆与外心.【分析】由于90°的圆周角所对的弦是直径,所以Rt△ABC的外接圆的圆心为AB的中点,然后作AB的中垂线得到圆心后即可得到Rt△ABC的外接圆.【解答】解:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所对的弦是直径.故答案为到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一直线;90°的圆周角所对的弦是直径;圆的定义.三.解答题(共8小题)14.如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【考点】N2:作图—基本作图;S9:相似三角形的判定与性质.【分析】(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.【解答】解:(1)如图所示,射线CM即为所求;(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即=,∴AD=4.15.如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.【考点】N2:作图—基本作图;KO:含30度角的直角三角形.【分析】(1)根据作已知线段的垂直平分线的方法,即可得到线段AC的垂直平分线DE;(2)根据Rt△ADE中,∠A=30°,AE=,即可求得a的值,最后化简T=(a+1)2﹣a(a﹣1),再求T的值.【解答】解:(1)如图所示,DE即为所求;(2)由题可得,AE=AC=,∠A=30°,∴Rt△ADE中,DE=AD,设DE=x,则AD=2x,∴Rt△ADE中,x2+()2=(2x)2,解得x=1,∴△ADE的周长a=1+2+=3+,∵T=(a+1)2﹣a(a﹣1)=3a+1,∴当a=3+时,T=3(3+)+1=10+3.16.如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).【考点】N3:作图—复杂作图;KX:三角形中位线定理.【分析】作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【解答】解:如图,△ABC的一条中位线EF如图所示,方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.17.如图,已知△ABC,∠B=40°.(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求∠EFD的度数.【考点】N3:作图—复杂作图;MI:三角形的内切圆与内心.【分析】(1)直接利用基本作图即可得出结论;(2)利用四边形的性质,三角形的内切圆的性质即可得出结论.【解答】解:(1)如图1,⊙O即为所求.(2)如图2,连接OD,OE,∴OD⊥AB,OE⊥BC,∴∠ODB=∠OEB=90°,∵∠B=40°,∴∠DOE=140°,∴∠EFD=70°.18.在数学课本上,同学们已经探究过“经过已知直线外一点作这条直线的垂线“的尺规作图过程:已知:直线l和l外一点P求作:直线l的垂线,使它经过点P.作法:如图:(1)在直线l上任取两点A、B;(2)分别以点A、B为圆心,AP,BP长为半径画弧,两弧相交于点Q;(3)作直线PQ.参考以上材料作图的方法,解决以下问题:(1)以上材料作图的依据是:(3)已知,直线l和l外一点P,求作:⊙P,使它与直线l相切.(尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【考点】N3:作图—复杂作图;MD:切线的判定.【分析】(1)根据线段垂直平分线的性质,可得答案;(2)根据线段垂直平分线的性质,切线的性质,可得答案.【解答】解:(1)以上材料作图的依据是:线段垂直平分线上的点到线段两端点的距离相等,故答案为:线段垂直平分线上的点到线段两端点的距离相等;(2)如图.19.“直角”在初中几何学习中无处不在.如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).【考点】N3:作图—复杂作图;KS:勾股定理的逆定理;M5:圆周角定理.【分析】(1)根据勾股定理的逆定理,可得答案;(2)根据圆周角定理,可得答案.【解答】解:(1)如图1,在OA,OB上分别,截取OC=4,OD=3,若CD的长为5,则∠AOB=90°(2)如图2,在OA,OB上分别取点C,D,以CD为直径画圆,若点O在圆上,则∠AOB=90°.20.如图,已知正七边形ABCDEFG,请仅用无刻度的直尺,分别按下列要求画图.(1)在图1中,画出一个以AB为边的平行四边形;(2)在图2中,画出一个以AF为边的菱形.【考点】N3:作图—复杂作图;L5:平行四边形的性质;L8:菱形的性质.【分析】(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM是平行四边形.(2)连接AF、DF,延长DC交AB的延长线于M,四边形AFDM是菱形.【解答】解:(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM是平行四边形.(2)连接AF、DF,∠延长DC交AB的延长线于M,四边形AFDM是菱形.21.图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.【考点】N4:作图—应用与设计作图;KI:等腰三角形的判定;KK:等边三角形的性质;L6:平行四边形的判定.【分析】(1)根据等腰三角形的定义作图可得;(2)根据平行四边形的判定作图可得.【解答】解:(1)如图①、②所示,△ABC和△ABD即为所求;(2)如图③所示,▱ABCD即为所求.。
初中数学专题尺规作图(含答案)
- 1 -第28课时 尺规作图◆考点聚焦1.掌握基本作图,尺规作图的要求与步骤..掌握基本作图,尺规作图的要求与步骤.2.利用基本作图工具画三角形、四边形、圆以及简单几何体的三视图,.利用基本作图工具画三角形、四边形、圆以及简单几何体的三视图,••对简单的作图能叙述作法.图能叙述作法.3.运用基本作图、结合相关的数学知识(平移、旋转、对称、.运用基本作图、结合相关的数学知识(平移、旋转、对称、••位似)等进行简单的图案设计.图案设计.4.运用基本作图解决实际问题..运用基本作图解决实际问题. ◆备考兵法1.熟练掌握基本作图..熟练掌握基本作图.2.在画几何体的三视图时,要注意其要求,.在画几何体的三视图时,要注意其要求,••即“长对正”“高平齐”“宽相等”. 3.认真分析题意,善于把实际问题转化为基本作图..认真分析题意,善于把实际问题转化为基本作图. ◆识记巩固1.尺规作图的定义:.尺规作图的定义:_______________________________________..2.基本作图包括:.基本作图包括:_____________________,,______________,,________________,,________________,,______________..3.三角形三边的垂直平分线的交点叫三角形的外心,.三角形三边的垂直平分线的交点叫三角形的外心,••三角形三内角平分线的交点叫三角形的内心,外心到三角形的三角形的内心,外心到三角形的_____________________的距离相等,内心到三角形的距离相等,内心到三角形的距离相等,内心到三角形_____________________的距离相等.的距离相等.的距离相等. 识记巩固参考答案:1.限定只能使用圆规和没有刻度的直尺作图.限定只能使用圆规和没有刻度的直尺作图2.作线段.作线段 作角作角作角 作线段的垂直平分线作线段的垂直平分线作线段的垂直平分线 过一点作已知直线的垂线过一点作已知直线的垂线过一点作已知直线的垂线 作角平分线作角平分线作角平分线 3.顶点.顶点 三边三边三边 ◆典例解析例1 (20082008,新疆建设兵团),新疆建设兵团),新疆建设兵团)(1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上.(保留作图痕迹)(保留作图痕迹)(2)写出你的作法.)写出你的作法.解析解析 (1)所作菱形如图①,②所示.)所作菱形如图①,②所示.说明:作法相同的图形视为同一种,例如类似图③,说明:作法相同的图形视为同一种,例如类似图③,••图④的图形视图与图②是同一种.种.① ②③ ④ (2)图①的作法:作矩形A 1B 1C 1D 1四条边的中点E 1,F 1,G 1,H 1,连结H 1E 1,E 1F 1,G 1F 1,G 1H 1.四边形E 1F 1G 1H 1即为菱形.即为菱形.图②的作法:在B 2C 2上取一点E 2,使E 2C 2>A 2E 2且E 2不与B 2重合,连结A 2E 2. 以A 2为圆心,A 2E 2为半径画弧,交A 2D 2于H 2; 以E 2为圆心,A 2E 2为半径画弧,交B 2C 2于F 2; 连结H 2F 2,则四边形A 2E 2F 2H 2为菱形.为菱形.例2 如图,已知∠如图,已知∠AOB AOB AOB,,OA=OB OA=OB,点,点E 在OB 边上,四边形AEBF 是矩形.请你只用无刻度的直尺在图中画∠刻度的直尺在图中画∠AOB AOB 的平分线(请保留画图痕迹).解析解析 连结连结AB AB.因为.因为OA=OB OA=OB,因此△,因此△,因此△ABO ABO 为等腰三角形.要作出∠为等腰三角形.要作出∠AOB AOB 的平分线,的平分线,••只要确定出AB 的中点即可.因AEBF 为矩形,为矩形,因此连结因此连结AB AB,,EF EF,,相交于M .根据矩形的性质,M 即为AB 的中点.连结OM OM,射线,射线OM 即为所求的角平分线.即为所求的角平分线.例3 台球是一项高雅的体育运动,其中包含了许多物理学,几何学知识.如图是一台球是一项高雅的体育运动,其中包含了许多物理学,几何学知识.如图是一个台球桌,目标球F 与本球E 之间有一个G 球阻挡,现在击球者想通过击打E 球先撞击球台的AB 边,经过一次反弹后再撞击F 球,他应将E 球打到AB 边上的哪一点?边上的哪一点?••请在图中用尺规作图这一点H ,并作出E 球的运行路线(不写画法,保留作图痕迹).解析解析 作点作点E 关于直线AB 的对称点E 1,连结E 1F ,E 1F 与AB 相交于点H ,球E•E•的运动的运动路线是EH EH→→HF HF..点评点评 本例是把实际问题通过抽象,把求本例是把实际问题通过抽象,把求H 点的问题先转化为作E•E•点关于直线点关于直线AB 的对称点问题加以解决.数学课程标准对尺规作图提出了明确要求,是中考的重要内容之一,在复习时要掌握基本作图,要善于把具体问题的作图转化为基本作图.在复习时要掌握基本作图,要善于把具体问题的作图转化为基本作图.••学会对作图问题进行分析,归纳,掌握画法.进行分析,归纳,掌握画法. ◆中考热身1.(20082008,江苏镇江)如图,在△,江苏镇江)如图,在△,江苏镇江)如图,在△ABC ABC 中,作∠中,作∠ABC ABC 的平分线BD BD,交,交AC 于D ,作线段BD 的垂直平分线EF EF,分别交,分别交AB 于E ,BC 于F ,垂足为O ,连结DF DF,在所作图中,寻找一,在所作图中,寻找一对全等三角形,并加以证明.(不定作法,保留作图痕迹)(不定作法,保留作图痕迹)2.(20082008,山西太原)如图,在△,山西太原)如图,在△,山西太原)如图,在△ABC ABC 中,∠中,∠BAC=2BAC=2BAC=2∠∠C .(1)在图中作出△在图中作出△ABC ABC 的内角平分线AD AD;;(要求:(要求:尺规作图,尺规作图,尺规作图,保留作图痕迹,保留作图痕迹,保留作图痕迹,••不写证明) (2)在已作出的图形中,写出一对相似三角形,并说明理由.)在已作出的图形中,写出一对相似三角形,并说明理由.3.(20082008,四川成都)如图,已知点,四川成都)如图,已知点A 是锐角∠是锐角∠MON MON 内的一点,试分别在OM OM,,ON 上确定点B ,点C ,使ABC•ABC•的周长最小,的周长最小,写出你作图的主要步骤并标明你所确定的点写出你作图的主要步骤并标明你所确定的点___________________________..(要求画出草图,保留作图痕迹)求画出草图,保留作图痕迹)◆迎考精练 一、基础过关训练1.在Rt Rt△△ABC 中,已知∠中,已知∠C=90C=90C=90°,°,°,AD AD 是∠是∠BAC BAC 的平分线.以AB 上一点O 为圆心,为圆心,AD•AD•AD•为为弦作⊙弦作⊙O O (不写作法,保留作图痕迹).2.请你画出一个以BC 为底边的等腰△为底边的等腰△ABC ABC ABC,使底边上的高,使底边上的高AD=BC AD=BC.. (1)求tanB 和sinB 的值.的值.(2)在你所画的等腰△)在你所画的等腰△ABC ABC 中,假设底边BC=5米,求腰上的高BE BE..3.作一条直线,平分如图所示图形的面积:.作一条直线,平分如图所示图形的面积:4.现有m ,n 两堵墙,两个同学分别站在A 处和B 处,请问小明在哪个区域内活动才不会被任何一个同学发现?(画图,用阴影表示)被任何一个同学发现?(画图,用阴影表示)5.按下列要求作图,不写画法,要保留作图痕迹..按下列要求作图,不写画法,要保留作图痕迹.(1)在图1中,作出AB 的中点M ,作出∠,作出∠BCD BCD 的平分线CN CN,延长,延长CD 到点P ,使DP=2CD DP=2CD;; (2)如图2是一个破损的机器部件,它的残留边缘是圆弧,请作图找出圆弧所在的圆心.图1 图26.如图,.如图,Rt Rt Rt△△ABC 的斜边AB=5AB=5,,cosA=35. (1)用尺规作图作线段AC 的垂直平分线(保留作图痕迹,不要求写作法,证明); (2)若直线L 与AB AB,,AC 分别相交于D ,E 两点,求DE 的长.的长.7.成绵高速公路OA 和绵广高速公路OB 在绵阳市相交于点O ,在∠在∠AOB•AOB•AOB•内部有两个城镇内部有两个城镇C ,D ,若要修一个大型农贸市场P ,使P 到OA 与OB 的距离相等,且PC=PD PC=PD,用尺规作出,用尺规作出市场P 的位置.(不写作法,保留作图痕迹)(不写作法,保留作图痕迹)二、能力提升训练8.已知正方形ABCD 的面积为S .(1)求作:四边形A 1B 1C 1D 1,使得点A 1和点A 关于点B 对称,点B 1和点B 关于点C 对称,点C 1和点C 关于点D 对称,点D 1和点D 关于点A 对称;(只要求画出图形,不要求写作法)求写作法)(2)用S 1表示(1)中所作出的四边形A 1B 1C 1D 1的面积;的面积; (3)若将已知条件中的正方形改为任意四边形,面积仍为S ,并按(1)•的要求作出一个新的四边形,面积为S 2,则S 1与S 2是否相等?为什么?是否相等?为什么?参考答案: 中考热身中考热身1.解:(1)画角平分线,线段的垂直平分线.)画角平分线,线段的垂直平分线. (2)△)△BOE BOE BOE≌△≌△≌△BOF BOF BOF≌△≌△≌△DOF DOF DOF.. 证明(略)证明(略)证明(略) 2.解:(1)如图,)如图,AD AD 即为所求即为所求(2)△)△ABD ABD ABD∽△∽△∽△CBA CBA CBA,理由如下:,理由如下:,理由如下: ∵AD 平分∠平分∠BAC BAC BAC,∠,∠,∠BAC=2BAC=2BAC=2∠∠C , ∴∠∴∠BAD=BAD=BAD=∠∠BCA BCA..又∵∠又∵∠B=B=B=∠∠B ,∴△,∴△ABD ABD ABD∽△∽△∽△CBA CBA CBA..3.分别作点A 关于OM OM,,ON 的对称点A ′,′,A A ″;连结A ′A ″,分别交OM OM,,ON 于点B ,点C ,则点B ,点C 即为所求即为所求 作图略作图略作图略 迎考精练迎考精练 基础过关训练基础过关训练1.点拨:作AD 的垂直平分线与AB 的交点即为圆心,的交点即为圆心,OA OA 为半径.(作图略)(作图略) 2.解:①画线段BC BC::②作BC 的垂直平分线MN 与BC 相交于D ; ③在DM 上截取DA=BC DA=BC;;④连结AB AB,,AC AC,△,△,△ABC ABC 即为所求.即为所求.(1)tanB=2tanB=2,,sinB=255,(2)BE=25米.米.3.点拨:过几何体中心的任一条直线均可将该图形分成面积相等的两部分.(•如图)4.解:小明在图中的阴影部分区域就不会被两个同学发现..解:小明在图中的阴影部分区域就不会被两个同学发现.5.(1)作图略.(2)点拨:在残片的圆弧上任选两条弦,分别作它们的中垂线,其交点即为圆心.交点即为圆心.6.点拨:(1)①分别以A ,C 为圆心,以大于12AC 为半径画弧,两弧相交于M ,N ;•②连结MN MN,过,过MN 的直线即为所求的直线L . (2)DE=2DE=2.. 7.点拨:(1)作∠)作∠AOB AOB 的角平分线OE OE;; (2)作DC 的垂直平分线MN MN;;(3)MN 交OE 于P 点,点,P P 即为所求.即为所求. 能力提升训练能力提升训练8.解:(1)如图1.图1 图2 (2)设正方形ABCD 的边长为a ,∴S=a 22. 依题意A 1D 1=A 1B 1=B 1C 1=C 1D 1=5a . 易证A 1B 1C 1D 1是正方形,是正方形,∴S 1111A B C D =5a 2,∴S 1=5S . (3)S 1=S 2.证明如下:.证明如下:如图2,连结BD 1,BD .在△BDD 1中,AB 是中线,是中线, ∴S △ABD =S △ABD1.在△AA 1D 1中,BD 1是中线,是中线, ∴S △ABD1=S △A1BD1,S △AA1D1=2S △ABD1, 同理S △OC1B1=2S △CBD , ∴S △AA1D1+S △OC1B1=2S . 同理S △DD1C1+S △BA1B1=2S , ∴S 四边形1111A B C D =5S=S 2, ∴S 1=S 2.。
尺规作图(人教版)(含答案)
尺规作图(人教版)试卷简介:本套试卷集中测试学生的几何作图能力和数学语言的精准表达。
尺规作图和规范的几何用语是学生做几何证明题需要具备的基本能力,本套试卷可以检测同学们这一块的问题,通过不断发现问题,寻找资源解决问题,提升自己的数学水平。
一、单选题(共10道,每道10分)1.尺规作图是指( )A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.用量角器和无刻度的直尺作图答案:C解题思路:尺规作图是指用没有刻度的直尺和圆规作图.“尺”指没有刻度的直尺、“规”指圆规,故选C.试题难度:三颗星知识点:尺规作图的定义2.下列关于作图的语句中正确的是( )A.画直线AB=10厘米B.画射线OB=10厘米C.已知A,B,C三点,过这三点画一条直线D.过直线AB外一点画一条直线和直线AB平行答案:D解题思路:做这类题要结合定义、定理来思考:(1)A选项:直线没有端点,向两端无限延伸,故无法度量,A错误,(2)B选项:射线有一个端点,向一端无限延伸,也无法度量,B错误;(3)C选项:两点确定一条直线,但是不能保证第3点也落在直线上,C错误;(4)D选项,经过直线外一点有且只有一条直线与已知直线平行,而且利用尺规作图可以实现.具体实现方法,同学们可以自己尝试,在尝试的基础上去学习“2013~2014八年级上册数学拔高课人教版→→初中数学全等三角形拔高课→→第1讲尺规作图→→第7题”.故选D试题难度:三颗星知识点:尺规作图——几何语言的规范使用3.下列作图语句中,不准确的是( )A.过点A,B作直线ABB.以O为圆心作弧C.在射线AM上截取AB=aD.延长线段AB到D,使DB=AB答案:B解题思路:尺规作图是指利用没有刻度的直尺和圆规作图,几何作图重在操作的准确性和几何用语的规范性。
需注意两点:①直尺必须没有刻度,所以只可以用它来将两个点连在一起,不可以在上画刻度;②圆规可以开至无限宽,但上面亦不能有刻度。
初中数学-尺规作图专项训练
……○…………装…………○…○…________姓名:___________班______……○…………装…………○…○…注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.如图,已知线段a 、b(a >b),画一条线段AD ,使它等于2a-b ,正确的画法是( )A .B .C .D .2.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2x ,y+1),则y 关于x 的函数关系为( )A .y=xB .y=-2x-1C .y=2x-1D .y=1-2x3.给出下列关于三角形的条件:①已知三边;②已知两边及其夹角;③已知两角及其夹边;④已知两边及其中一边的对角.利用尺规作图,能作出唯一的三角形的条件是( ) A .①②③ B .①②④ C .②③④ D .①③④4.尺规的作图是指( ) A .用直尺规范作图 B .用刻度尺和圆规作图C .用没有刻度的直尺和圆规作图D .直尺和圆规是作图工具5.如图,用尺规作出∠OBF=∠AOB ,作图痕迹MN̂是( )A .以点B 为圆心,OD 为半径的圆……○……………装…………………订………线……学校:___________姓名:_班级:__________……○……………装…………………订………线…… 6.用直尺和圆规作一个角等于已知角,如图,能得出∠A'O'B'=∠AOB 的依据是( )A .(SAS)B .(SSS)C .(ASA)D .(AAS)7.如图,矩形ABCD 中,AD=3AB ,O 为AD 中点,AD̂是半圆.甲、乙两人想在AD ̂上取一点P ,使得△PBC 的面积等于矩形ABCD 的面积其作法如下:(甲) 延长BO 交AD̂于P 点,则P 即为所求; (乙) 以A 为圆心,AB 长为半径画弧,交AD̂于P 点,则P 即为所求. 对于甲、乙两人的作法,下列判断何者正确?( )A .两人皆正确B .两人皆错误C .甲正确,乙错误D .甲错误,乙正确8.在学习“用直尺和圆规作一个角等于已知角”时,教科书介绍如下:作法:(1)如图所示,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ; (2)画一条射线O'A',以点O'为圆心,OC 长为半径画弧,交O'A'于点C'; (3)以点C'为圆心,CD 长为半径画弧,与第2步中所画的弧相交于点D'; (4)过点D'画射线O'B',则∠A'O'B'=∠AOB对于“想一想”中的问题,下列回答正确的是( )A .根据“边边边”可知,△C'O'D'≌△COD ,所以∠A'O'B'=∠AOB B .根据“边角边”可知,△C'O'D'≌△COD ,所以∠A'O'B'=∠AOBC .根据“角边角”可知,△C'O'D'≌△COD ,所以∠A'O'B'=∠AOB D .根据“角角边”可知,△C'O'D'≌△COD ,所以∠A'O'B'=∠AOB9.用直尺和圆规作一个角等于已知角,如图,能得出的依据是( )A .边边边B .边角边C .角边角D .角角边…○…………外…………○………订…………○…___________班级:_____考号:__________…○…………内…………○………订…………○…10.用尺规作已知角的平分线的理论依据是( ) A .SAS B .AASC .SSSD .ASA第Ⅱ卷(非选择题)二、填空题11.如图,在△ABC 中,∠C=90°,∠CAB=60°,按以下步骤作图: ①分别以A ,B 为圆心,以大于12AB 的长为半径做弧,两弧相交于点P 和Q . ②作直线PQ 交AB 于点D ,交BC 于点E ,连接AE .若CE=4,则AE=______.12.在右图的网格中,每个小正方形的边长均为1cm .请你在网格中画出一个顶点都在格点上,且周长为12cm 的三角形______.13.画线段AB ;延长线段AB 到点C ,使BC=2AB ;反向延长AB 到点D ,使AD=AC ,则线段CD=______AB .14.已知∠a 和线段m ,n ,求作△ABC ,使BC=m ,AB=n ,∠ABC=∠α,作法的合理顺序为______(填序号1,2等即可).①在射线BD 上截取线段BA=n ;②作一条线段BC=m ;③以B 为顶点,以BC 为一边,作角∠DBC=∠α;④连接AC ,△ABC 就是所求作的三角形.15.如图,正方形网格的边长为1点P 是∠AOB 的边OB 上的一点. (1)过点P 画OB 的垂线,交OA 于点C ; (2)过点P 画OA 的垂线,垂足为H ;(3)点P 到OA 的距离为______,因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC 、PH 、OC 这三条线段大小关系是______.(用“<”号连接)16.已知:如图∠AOB ,OC 是∠AOB 的角平分线,按照要求完成如下操作,并回答问题: (1)在OC 上任取一点P ,分别画出点P 到OA 、OB 的距离PD 和PE ;…………外…………装…………订…………………线……学校:___________姓名:___________考号:_____…………内…………装…………订…………………线……17.如图,在Rt △ABC 中,∠ACB=90°.(1)用尺规在边BC 上求作一点P ,使PA=PB(不写作法,保留作图痕迹) (2)连接AP ,当∠B 为______度时,AP 平分∠CAB .18.如图,线段AB 、BC 、CA .(1)画线段AB 的中点D ,并连接CD ; (2)过点C 画AB 的垂线,垂足为E ; (3)过点E 画AC 的平行线,交BC 于F ; (4)画∠BAC 的平分线,交CD 于G ;(5)△ACD 的面积______△BCD 的面积(填“=”或“≠”)19.如图,方格图中每个小格的边长为1,仅用直尺过点C 画线段CD ,使CD ∥AB ,D 是格点,过C 作AB 的垂线CH ,垂足为H .连结BC 、AD .(1)试猜想:线段BC 与线段AD 的关系为______; (2)请计算:四边形ABCD 的面积为______;(3)若线段AB 的长为m ,则线段CH 长度为______.(用含m 的代数式表示)20.如图,在△ABC 中,AC=BC ,∠B=70°,分别以点A 、C 为圆心,大于12AC 的长为半径作弧,两弧相交于点M 、N ,作直线MN ,分别交AC 、BC 于点D 、E ,连结AE ,则∠AED 的度数是______°.………外…………………装……………订………线……学校:___________姓名:___:___________考号:………内…………………装……………订………线……三、解答题(1)在图(1)中用直尺和圆规把三角形分成两个全等的三角形; (2)在图(2)中把三角形分成三个全等的三角形(只须画出示意图);在图(3)中把三角形分成四个全等的三角形(只须画出示意图);(3)在图(4)中,P 、Q 分别是AB 、AC 上的点,BQ 、CP 交于点O ,∠BOC=120°,试说明△APC ≌△BQC .22.(0分)作图题:学过用尺规作线段与角后,就可以用尺规画出一个与已知三角形一模一样的三角形来.比如给定一个△ABC ,可以这样来画:先作一条与AB 相等的线段A'B',然后作∠B'A'C'=∠BAC ,再作线段A'C'=AC ,最后连结B'C',这样△A'B'C'就和已知的△ABC 一模一样了.请你根据上面的作法画一个与给定的三角形一模一样的三角形来.(请保留作图痕迹)23.(0分)如图,已知用尺规将三等分一个任意角是不可能的,但对于一些特殊角则可以利用作等边三角形的方法三等分,请用直尺和圆规把平角CDE 和∠AOB=45°这两个角三等分(尺规作图,要求保留作图痕迹,不必写出作法).24.(0分)已知:点A .求作:(1)⊙O ,使它经过点A ;(2)直角三角形ABC ,使它内接于⊙O ,并且∠B=90度.(说明:要求写出作法,只要求作出符合条件的一个圆和一个三角形.)…………外………○…………装………○…………订………○…………线……学___________姓名:_______班级:___________考号:________…………内………○…………装………○…………订………○…………线……25.(0分)如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD 中,点C 与A ,B 两点可构成直角三角形ABC ,则称点C 为A ,B 两点的勾股点.同样,点D 也是A ,B 两点的勾股点.(1)如图1,矩形ABCD 中,AB=2,BC=1,请在边CD 上作出A ,B 两点的勾股点(点C 和点D 除外)(要求:尺规作图,保留作图痕迹,不要求写作法);(2)矩形ABCD 中,AB=3,BC=1,直接写出边CD 上A ,B 两点的勾股点的个数;(3)如图2,矩形ABCD 中,AB=12,BC=4,DP=4,DM=8,AN=5.过点P 作直线l 平行于BC ,点H 为M ,N 两点的勾股点,且点H 在直线l 上.求PH 的长.26.(0分)如图,请你在下列各图中,过点P 画出射线AB 或线段AB 的垂线.27.(0分)已知线段a 、b(如图),用直尺和圆规画线段c ,使c=2a-b .(保留作图痕迹,写出画法)28.(0分)作出你喜欢的一个圆内接正多边形,(尺规作图,保留作图痕迹,并直接写出该正多边形的边长,假设圆的半径为r)边长用含r 代数式表示.29.(0分)作图题(要求用直尺和圆规作图,写出作法,保留作图痕迹,不要求写出证明过程) 已知:圆(如图)求作:一条线段,使它把已知圆分成面积相等的两部分. 作法:………外……………装…………○…………○…………学校:___________姓名:_________考号:___________………内……………装…………○…………○…………30.(0分)如图(1),凸四边形ABCD ,如果点P 满足∠APD=∠APB=α,且∠BPC=∠CPD=β,则称点P 为四边形ABCD 的一个半等角点.(1)在图(2)正方形ABCD 内画一个半等角点P ,且满足α≠β;(2)在图(3)四边形ABCD 中画出一个半等角点P ,保留画图痕迹(不需写出画法).31.(0分)文文和彬彬在完成作业,“如图在△ABC 中,AB=AC=10,BC=8.画出中线AD 并求中线AD 的长.”时她们对各自所作的中线AD 描述如图: 文文:“过点A 作BC 的垂线AD ,垂足为D ,AD 就是△ABC 的中线”; 彬彬:“作△ABC 的角平分线AD ,AD 就是△ABC 的中线”.那么: (1)上述作法你认为是两位同学的作法谁的较好? (2)请你根据中线作法帮她求出AD 的长?32.(0分)如图,已知E 是平行四边形ABCD 的边AB 上的点,连接DE . (1)在∠ABC 的内部,作射线BM 交线段CD 于点F ,使∠CBF=∠ADE ; (要求:用尺规作图,保留作图痕迹,不写作法和证明) (2)在(1)的条件下,求证:△ADE ≌△CBF .33.(0分)如图,在直角坐标平面中,O 为原点,点A 的坐标为(20,0),点B 在第一象限内,BO=10,sin ∠BOA=35.(1)在图中,求作△ABO 的外接圆(尺规作图,不写作法但需保留作图痕迹); (2)求点B 的坐标与cos ∠BAO 的值;……○………………○……装………………订○………线……学_____姓名:___级:________________……○………………○……装………………订○………线……34.(0分)如图,作线段d ,使得d=a+b+c .35.(0分)如图:在Rt △ABC 中,∠C=90°,BC=6,∠A=30°,边AB 的垂直平分线和AC 相交于点M ,和AB 相交于点N .(1)作出直线MN(要求用尺规作图,不写作法,保留作图痕迹); (2)求线段MN 的长.36.(0分)已知平行四边形ABCD ,AB=3,AD=5.(1)先用尺规作出∠ABC 的角平分线交边AD 于E ,再用尺规在边BC 上找出点F ,使得BF=EF . (2)若在平行四边形ABCD 做随机投一枚小针的实验,则落在△BEF 内的概率是多少?37.(0分)如图,在△ABC 中,AB=AC ,AD ⊥BC ,AE ∥BC .(1)作∠ADC 的平分线DF ,与AE 交于点F ;(用尺规作图,保留作图痕迹,不写作法) (2)在(1)的条件下,若AD=2,求DF 的长.38.(0分)如图,OA 是⊙O 的半径,OA=1.(1)求作:半径OA 的垂直平分线,与⊙O 交于点B 、C ;(保留作图痕迹,不写作法和证明) (2)求劣弧BC 的长.(结果保留π)………○……外…………○……○……订………………线…………_______班级______考号:__………○……内…………○……○……订………………线…………39.(0分)根据下列要求画图(不写画法,保留作图痕迹): (1)已知线段a 、b ,求作线段AB ,使AB=2a-b .(2)已知∠α、∠β,求作∠AOB ,使∠AOB=∠α-∠β.40.(0分) 已知△ABC 中,∠A=25°,∠B=40°.(1)求作:⊙O ,使得⊙O 经过A 、C 两点,且圆心O 落在AB 边上.(要求尺规作图,保留作图痕迹,不必写作法)(2)求证:BC 是(1)中所作⊙O 的切线.41.(0分)已知:∠α和线段m 、n .求作:△ABC ,使∠A=∠α,AB=m ,BC=n .(用尺规作图,不写作法,保留作图痕迹.)42.(0分)阅读下列材料:正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫格点三角形.数学老师给小明同学出了一道题目:在图1正方形网格(每个小正方形边长为1)中画出格点△ABC ,使AB=AC=√5,BC=√2;小明同学的做法是:由勾股定理,得AB=AC=√22+12=√5,BC=√12+12=√2,于是画出线段AB 、AC 、BC ,从而画出格点△ABC . (1)请你参考小明同学的做法,在图2正方形网格(每个小正方形边长为1)中画出格点△A'B'C'(A'点位置如图所示),使A'B'=A'C'=5,B'C'=√10.(直接画出图形,不写过程);(2)观察△ABC 与△A'B'C'的形状,猜想∠BAC 与∠B'A'C'有怎样的数量关系,并证明你的猜想.43.(0分)已知平面内两点A 、B ,请你用直尺和圆规求作一个圆,使它经过A 、B 两点.(不写作法,保留作图痕迹)……外……○…………装……○……订…………○…线………学校:________:___________班级______考号:________……内……○…………装……○……订…………○…线………44.(0分)如图,已知∠CAB 及边AC 上一点D ,在图中求作∠ADE ,使得∠ADE 与∠CAB 是内错角,且∠ADE=∠CAB .(要求:尺规作图,不写作法,保留作图痕迹)45.(0分)如图,在△ABC 中. (1)画出△ABC 中AB 边上的高CD (2)画出△ABC 中AB 边上的中线CE ;(3)试判断△ACE 和△BCE 面积的大小关系.46.(0分)如图,一块直角三角形纸片,将三角形ABC 沿直线AD 折叠,使AC 落在斜边AB 上,点C 与点E 重合,用直尺圆规作出点E 和直线AD .(要求:尺规作图,保留作图痕迹,不必写作法和证明)47.(0分)图中画出∠A ,∠B 的平分线交于点O .再画出点O 到AB 的垂线段OE ,点O 到BC 的垂线段OF ,(用圆规和三角尺作图,要求保留作图痕迹)48.(0分)已知一个三角形的两边分别为线段a 、b ,并且边a 上的中线为线段c ,求作此三角形.(要求:用尺规作图,写出已知、求作,保留作图痕迹,不写作法,要写结论)已知:求作: 结论:49.(0分)如图所示,已知:∠α、线段a ,求作等腰三角形△ABC ,使底边BC=a ,顶角∠A=∠α.(要求写出作法,并保留作图痕迹)…………线………○…__ …………线………○… 50.(0分)如图,四边形ABCD 中,AD=BC ,AB=CD ,E ,F 分别是AB ,CD 上的点,且∠DAF=∠BCE , (1)求证:AE=CF ;(2)若将此题中的条件改为:“E ,F 分别是AB ,CD 延长线上的点”,其余条件不变,此时,∠ABC=60°,∠BEC=40°,作∠ABC 的平分线BN 交AF 于M ,交AD 于N ,求∠AMN 的度数(要求:画示意图,不写画法,写推理过程)参考答案1.解:如图所示所以选:C2.解:依题意可知出:P点在第二象限的角平分线上∵点P的坐标为(2x,y+1)∴2x=-(y+1)∴y=-2x-1所以选:B3.解:①是边边边(SSS)②是两边夹一角(SAS)③两角夹一边(ASA)都成立依据三角形全等的判定,都可以确定唯一的三角形而④则不能所以选A4.解:依据尺规作图的定义可知:尺规作图是指用没有刻度的直尺和圆规作图所以选C5.解:作∠OBF=∠AOB的作法,由图可知①以点O为圆心,以任意长为半径画圆,分别交射线OA、OB分别为点C,D②以点B为圆心,以OC为半径画圆,分别交射线BO、MB分别为点E,F③以点E为圆心,以CD为半径画圆,交EF̂于点N,连接BN即可得出∠OBF,则∠OBF=∠AOB 所以选D6.解:作图的步骤①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D②任意作一点O',作射线O'A',以O'为圆心,OC长为半径画弧,交O'A'于点C'③以C'为圆心,CD长为半径画弧,交前弧于点D'④过点D'作射线O'B'所以∠A'O'B'就是与∠AOB相等的角作图完毕在△OCD与△O'C'D'{O′C′=OCO′D′=ODC′D′=CD∴△OCD≌△O'C'D'(SSS)∴∠A'O'B'=∠AOB显然运用的判定方法是SSS所以选:B7.解:要使得△PBC的面积等于矩形ABCD的面积需P甲H=P乙K=2AB故两人皆错误所以选:B8.解:由作法易得OD=O'D',OC=O'C',CD=C'D',依据SSS 可判定△COD ≌△C'O'D'.故选:A .9.解:作图的步骤①以O 为圆心,任意长为半径画弧,分别交OA 、OB 于点C 、D②作射线O'B',以O'为圆心,OC 长为半径画弧,交O'B'于点C'③以C'为圆心,CD 长为半径画弧,交前弧于点D'④过点D'作射线O'A'所以∠A'O'B'就是与∠AOB 相等的角在△O'C'D'与△OCD 中{O ′C ′=OCO ′D ′=OD C ′D ′=CD∴△O'C'D'≌△OCD(SSS)∴∠A'O'B'=∠AOB显然运用的判定方法是边边边所以选A10.解:连接NC ,MC在△ONC 和△OMC 中∵{ON =OMNC =MC OC =OC∴△ONC ≌△OMC(SSS)∴∠AOC=∠BOC所以选:C11.解:依题意可知出:PQ 是AB 的垂直平分线∴AE=BE∵在△ABC 中,∠C=90°,∠CAB=60°∴∠CBA=30°∴∠EAB=∠CAE=30°∴CE=12AE =4∴AE=8所以答案是:812.解:13.(1)画线段AB(2)延长线段AB到点C,使BC=2AB(3)反向延长AB到点D,使AD=AC由图可知,BC=2AB,AD=AC=3AB,故CD=6AB14.解:作三角形,使三角形的一角等于已知角,两边等于已知边,作图的顺序应该是2,3,1,415.解:(1)(2)如图(3)点P到OA的距离为PH长,为1在△PHC中,PH<PC,在△OPC中,PC<OC∴PH<PC<OC所以答案是:1;PH<PC<OC16.解:(1)(2)(3)测量得到:PE=PD得到的结论是:角平分线上一点到角的两边的距离相等17.解:(1)如图(2)如图∵PA=PB ∴∠PAB=∠B如果AP是角平分线,则∠PAB=∠PAC∴∠PAB=∠PAC=∠B∵∠ACB=90°∴∠PAB=∠PAC=∠B=30°∴∠B=30°时,AP平分∠CAB所以答案是:3018.解:(1)、(2)、(3)、(4),如下图所示(5)=理由:两三角形同高等底,故面积相等19.解:(1)∵AB=CD=√12+22=√5∴AB∥CD且AB=CD所以答案是:AB∥CD且AB=CD(2)S▱ABCD =3×5-12×1×2-12×1×4-12×1×2-12×1×4=15-1-2-1-2=9所以答案是:9(3)∵AB=√5,S▱ABCD=9∴AB•CH=9,即CH=√5=9√55所以答案是:9√5520.解:∵由作图可知,MN是线段AC的垂直平分线∴CE=AE∴∠C=∠CAE∵AC=BC,∠B=70°∴∠C=40°∴∠AED=50°所以答案是:5021.解:(1)(2)如图所示(3)∵△ABC是等边三角形∴AC=BC,∠A=∠ACB=60°∵∠BOC=120°∴∠QBC+∠PCB=60°∵∠PCB+∠ACP=60°∴∠QBC=∠ACP在△ACP和△BCQ中{∠A=∠BCA AC=BC∠ACP=∠CBQ∴△ACP≌△BCQ(ASA)22.解:如图所示:△A'B'C'即为所求23.解:如图所示,射线DM、DN为平角CDE的三等分线如图所示,射线OP、OQ为∠AOB=45°三等分线24.解:25.解:(1)尺规作图正确(以线段AB为直径的圆与线段CD的交点,或线段CD的中点) (2))∵矩形ABCD中,AB=3,BC=1时∴以线段AB为直径的圆与线段CD的交点有两个,加上C、D两点,总共四个点4个(3)如图,∵矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5过点P作直线l平行于BC,点H为M,N两点的勾股点,且点H在直线l上∴ME=4,NE=3∴MN=5PM=4,PH=2时,HM=2√5构成勾股数同理可得或PH=2或PH'=3PH″=13426.解:如图:27.解作出线段2a得2分,全部作出得2分,画法得2分.(其中必须指出所求作的线段)28.解答:三角形的边长为√3r;正方形的边长为√2r29.解(1)从圆上任意找两条弦(2)分别作这两条弦的垂直平分线(3)垂直平分线的交点就是圆心(4)过圆心画一条直径此直径就是所求的直线30.解(1)所画的点P在AC上且不是AC的中点和AC的端点(如图(2))(2)画点B关于AC的对称点B',延长DB'交AC于点P,点P为所求(不写文字说明不扣分)(说明:画出的点P大约是四边形ABCD的半等角点,而无对称的画图痕迹,给1分)31.解:(1)文文的作法较好(或彬彬的较好)依据三线合一的定理(2)在△ABC中,AB=AC,AD⊥BC ∴AD是△ABC的中线BD=CD=12BC=12×8=4在Rt△ABD中,AB=10,BD=4,AD2+BD2=AB2∴AD=√AB2−BD2=√102−42=2√2132.(1)解:作图基本正确即可评3分(2)证明:∵四边形ABCD是平行四边形∴∠A=∠C,AD=BC…5分∵∠ADE=∠CBF…6分∴△ADE≌△CBF(ASA)33.解:(1)如图所示(2)如图,作BH⊥OA,垂足为H在Rt△OHB中,∵BO=10,sin∠BOA=35∴BH=6∴OH=8∴点B的坐标为(8,6)∵OA=20,OH=8∴AH=12在Rt△AHB中∵BH=6∴AB=√62+122=6√5∴cos∠BAO=AHBA =2√55(3)①当BO=AO时∵AO=20∴OH=10∴点B沿x轴正半轴方向平移2个单位②当AO=AB'时∵AO=20∴AB=20过B'作B'N⊥x轴∵点B的坐标为(8,6)∴B'N=6∴AN=√202−62=2√91∴点B沿x轴正半轴方向平移2√91+20−8=2√91+12个单位③当AO=OB'时∵AO=20∴OB″=20过B″作B″P⊥x轴∵点B的坐标为(8,6)∴B″P=6∴OP=√202−62=2√91∴点B沿x轴正半轴方向平移(2√91−8)个单位34.解:如图线段AD就是所求35.解:(1)如图所示:MN即为所求(2)在Rt△ABC中,∠A=30°,BC=6∴AB=12∵MN垂直平分AB∴AN=12AB=6在Rt△AMN中,∠A=30°,AN=6∴tan30°=MNAN =MN6∴MN=2√336.解:(1)作图如下所示(2):∵BE平分∠ABC∴∠ABE=∠FBE∵四边形ABCD是平行四边形∴AD∥BC∴∠EBF=∠AEB∴∠ABE=∠AEB∴AB=AE∵AO ⊥BE∴BO=EO在△ABO 和△FBO 中{∠ABO =∠FBOBO =BO∠AOB =∠BOF∴△ABO ≌△FBO(ASA)∴AO=FO∵AF ⊥BE ,BO=EO ,AO=FO∴四边形ABFE 为菱形∴△BEF 的面积是菱形ABFE 的面积的12 ∵菱形ABFE 的面积是平行四边形ABCD 面积的35∴△BEF 的面积是平行四边形ABCD 面积的310 故落在△BEF 内的概率是31037.解:(1)如图所示,DF 就是所求作;(2)∵AD ⊥BC ,AE ∥BC∴∠DAF=90°又∵DF 平分∠ADC∴∠ADF=45°∴AD=AF ,DF=√AD 2+AF 2=√22+22=2√238.解:(1)如图所示(2)连接BO 、AB 、AC 、OC∵BC 是OA 的垂直平分线∴BO=AB ,CO=AC∵BO=AO=CO=1∴△BAO 和△CAO 都是等边三角形∴∠BOA=60°,∠COA=60°∴∠BOC=120°BC ̂=nπR 180=120π•1180=23π39.解:(1)如图线段AB就是所求(2)∠AOB就是所求40.解:(1)作图如图1(2)证明:如图2,连接OC ∵OA=OC,∠A=25°∴∠BOC=50°又∵∠B=40°∴∠BOC+∠B=90°∴∠OCB=90°∴OC⊥BC∴BC是⊙O的切线41.解:如图所示的△ABC就是所要求作的图形.42.解(1)正确画出△A'B'C'(画出其中一种情形即可)(6分)(2)猜想:∠BAC=∠B'A'C'(8分)证明:∵ABA′B′=ACA′C′=√55,BCB′C′=√2√10=√55∴ABA′B′=ACA′C′=BCB′C′,(10分)∴△ABC∽△A'B'C'∴∠BAC=∠B'A'C'(13分)43.解:如图44.解:答题图如下图45.解:(1)作图正确(2分)(2)作图正确(4分)(3)△ACE和△BCE面积相等.(5分)46.解:如图所示,直线AD和点E为所求47.解:如图,AO是所求的∠A的平分线,BO是所求的∠B的平分线OE、OF是所求的垂线段48.解:已知:线段a、b、c;(1分)求作:△ABC,使AC=b,BC=a,D是BC的中点,且AD=c;(2分) (或:求作△ABC使AC=b,BC=a,BC边上的中线AD=c)结论:如图,△ABC即为所求.(6分)49.解:作法:①作线段BC=a,BM、CN交于点A②分别以B、C为顶点作∠MBC=∠NCB=180−α2△ABC就是所要求作的三角形如图50.解:(1)∵AD=BC,AB=CD,∴四边形ABCD是平行四边形∴∠D=∠B∵∠DAF=∠BCE∴△ADF≌△CBE∴BE=DF∴AE=CF∠ABC=30°(2)∵∠ABM=∠CBM=12又∵AD∥BC∴∠MND=∠CBM=30°∵∠ABC=∠E+∠BCE∴∠BCE=∠ABC-∠E=60°-40°=20°∴∠FAD=∠BCE=20°又∵∠MND=∠FAD+∠AMN∴∠AMN=∠MND-∠FAD=30°-20°=10°。
初中数学:尺规作图一
尺规作图(一)1.阅读下面材料:在数学课上,王老师提出如下问题:小宝的作法如下:王老师说:“小宝的作法正确.”请回答:小宝的作法中判断∠ACB是直角的依据是.2..下面是“用三角板画圆的切线”的画图过程.请回答:该画图的依据是______________________________________________________.3.阅读下面材料:在数学课上,老师提出如下问题:小亮的作法如下:老师说:“小亮的作法正确.”请回答:小亮的作图依据是________________________________________. 4. 在进行垂径定理的证明教学中,老师设计了如下活动:先让同学们在圆中作了一条直径MN ,然后任意作了一条弦(非直径),如图1, 接下来老师提出问题:在保证弦AB 长度不变的情况下,如何能找到它的中点?在同学们思考作图验证后,小华说了自己的一种想法:只要将弦AB 与直径MN 保持垂直关系,如图2,它们的交点就是弦AB 的中点.请你说出小华此想法的依据是____________________ _.5. 阅读下面材料:在数学课上,老师给同学们布置了一道尺规作图题:图12请回答:小丽这样作图的依据是 .6. 数学课上,老师介绍了利用尺规确定残缺纸片圆心的方法.小华对数学老师说:“我可以用拆叠纸片的方法确定圆心”.小华的作法如下:7. 第一步:如图1,将残缺的纸片对折,使AB 的端点A 与端点B 重合,得到图2;第二步:将图2继续对折,使CB 的端点C 与端点B 重合,得到图3;第三步:将对折后的图3打开如图4,两条折痕所在直线的交点即为圆心O .老师肯定了他的作法.那么他确定圆心的依据是.7.(A )(C )(A )的直线.;的垂直平分线,垂足为点请回答:该作图的依据是.8. .在数学课上,老师请同学思考如下问题:小轩的作法如下:老师说:“小轩的作法正确.”请回答:⊙P与BC相切的依据是.9. .阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:小明的作法如下: 老师说:“小明的作法正确.”请回答:(1)点O 为△ABC 外接圆圆心(即OA =OB =OC )的依据是 ;(2)∠APB =∠ACB 的依据是.10.小亮的作法如下:老师说:“小亮的作法正确.”请你回答:小亮的作图依据是_________________________.答案1. 直径所对的圆周角是直角2. 90°的圆周角所对的弦是直径,经过半径外端并且垂直于这条半径的直线是圆的切线.3. .直径所对的圆周角是直角,经过半径外端且垂直于这条半径的直线是圆的切线.4. 半径相等(构成的三角形是等腰三角形);等腰三角形三线合一5. 半圆(或直径)所对的圆周角是直角6.弧为轴对称图形;弧的对称轴与圆的对称轴为同一条直线;圆的两条对称轴的交点为圆心.7. (1)到线段两端距离相等的点在线段的垂直平分线上; 1(2)直径所对的圆周角是直角; (2)(3)两点确定一条直线. (3)(其他正确依据也可以).8. 角平分线上的点到角两边距离相等;(1分)经过半径的外端并且垂直于这条半径的直线是圆的切线(或:如果圆心到直线的距离等于半径,那么直线与圆相切).(2分)9. (1)①线段垂直平分线上的点与这条线段两个端点的距离相等;②等量代换.(2)同弧所对的圆周角相等10. .不在同一条直线上的三个点确定一个圆;线段垂直平分线上的点到线段两个端点距离相等;两条直线交于一点.。
初中数学第7章 第5节 尺规作图
数学
基本作图
1.作一条线段等于已知线段,以及线段的和、差 . 2.作一个角等于已知角,以及角的和、差. 3.作角的平分线.
利用基本作图作三角形
1.已知三边作三角形. 2.已知两边及其夹角作三角形. 3.已知两角及其夹边作三角形. 4.已知底边及底边上的高作等腰三角形. 5.已知一直角边和斜边作直角三角形.
②作直线PQ交AB于点D,交BC于点E,连接AE.若CE= 4,则AE8=____.
4.(2013·乐山)如图,已知线段AB. (1)用尺规作图的方法作出线段AB的垂直平分线l;(保留
作图痕迹,不要求写出作法) (2)在(1)中所作的直线l上任意取两点M,N(线段AB的上
方 ) , 连 接 AM , AN , BM , BN. 求 证 : ∠ MAN = ∠MBN.
与圆有关的尺规作图
1.过不在同一直线上的三点作圆(即三角形 的外接圆). 2.作三角形的内切圆. 【注意】尺规作图的工具是圆规和没有刻度 的直尺.
基本作图
【例1】(2013·兰州)如图,两条公路OA和OB相交于O点, 在∠AOB的内部有工厂C和D,现要修建一个货站P,使 货站P到两条公路OA,OB的距离相等,且到两工厂C, D的距离相等,用尺规作出货站P的位置.(要求:不写 作法,保留作图痕迹,写出结论)
A.以点C为圆心,OD为半径的弧 B.以点C为圆心,DM为半径的弧 C.以点E为圆心,OD为半径的弧 D.以点E为圆心,DM为半径的弧
2.(2013·曲靖)如图,以∠AOB的顶点O为圆心,适当长
为半径画弧,交OA于点C,交OB于点D.再分别以点C,
D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部
初中数学尺规作图题型大全
初中数学尺规作图题型大全1.已知,如图,在Rt △ABC 中,∠C=90º,∠BAC 的角平分线AD 交BC 边于D 。
(1)以AB 边上一点O 为圆心,过A ,D 两点作⊙O (不写作法,保留作图痕迹),再判断直线BC 与⊙O 的位置关系,并说明理由;(2)若(1)中的⊙O 与AB 边的另一个交点为E ,AB=6,BD=32, 求线段BD 、BE 与劣弧DE所围成的图形面积。
(结果保留根号和p )【答案】(1)如图,作AD 的垂直平分线交AB 于点O ,O 为圆心,OA 为半径作圆。
判断结果:BC 是⊙O 的切线。
连结OD 。
∵AD 平分∠BAC ∴∠DAC=∠DAB ∵OA=OD ∴∠ODA=∠DAB ∴∠DAC=∠ODA ∴OD ∥AC ∴∠ODB=∠C ∵∠C=90º∴∠ODB=90º即:OD ⊥BC ∵OD 是⊙O 的半径∴ BC 是⊙O 的切线。
(2) 如图,连结DE 。
设⊙O 的半径为r ,则OB=6-r ,在Rt △ODB 中,∠ODB=90º,∴ 0B 2=OD 2+BD 2 即:(6-r)2= r 2+(32)2 ∴r=2 ∴OB=4 ∴∠OBD=30º,∠DOB=60º∵△ODB 的面积为3223221=´´,扇形ODE 的面积为p p 322360602=´´ ∴阴影部分的面积为32—p 32。
2. 根据给出的下列两种情况,请用直尺和圆规找到一条直线,把△ABC 恰好分割成两个等腰三角形(不写做法,但需保留作图痕迹);并根据每种情况分别猜想:∠A 与∠B 有怎样的数量关系时才能完成以上作图?更多学习方法和资料免费下载,添加微信youshuxue 并举例验证猜想所得结论。
并举例验证猜想所得结论。
(1)如图①△ABC 中,∠C=90°,∠A =24°①作图:①作图: ②猜想:②猜想: ③验证:③验证:(2)如图②△ABC 中,∠C =84°,∠A =24°=24°. . ①作图:①作图: ②猜想:②猜想: ③验证:③验证:CBA(第23题图①)题图①)(第23题图②)题图②)CBA【答案】【答案】(1)①作图:痕迹能体现作线段AB(或AC 、或BC)的垂直平分线,或作∠ACD=∠A(或∠BCD=∠B)两类方法均可,类方法均可,在边AB 上找出所需要的点D ,则直线CD 即为所求………………2分 ②猜想:∠A+∠B=90°,………………4分③验证:如在△ABC 中,∠A=30°,∠B=60°时,有∠A+∠B=90°,此时就能找到一条把△ABC 恰好分割成两个等腰三角形的直线。
初中数学 尺规作图
返回目录
答图1
第七单元 图形与变换
返回目录
(2) 在 (1) 所 作 的 图 中 , 若 ∠ BAD = 45° , 且 ∠ CAD = 2 ∠ BAC , 证 明:△BEF为等边三角形.
证明:∵AC=AD,AF平分∠CAD,
∴∠CAF=∠DAF,AF⊥CD.
∴∠AFC=90°.
第七单元 图形与变换
步骤与原理
已知:直线 AB 和 AB 外一点 C,求作:AB
的垂线,使它经过点 C
过一 点作 已知 直线 的垂
线
点 在 直 线 外
作法:1.任意取点 K,使点 K 和点 C 在 AB
的两旁;2.以点 C 为圆心,CK 长为半径画
弧,交 AB 于点 D,E;3.分别以点 D,E 为
于点D和点E,若∠B=50°,则∠CAD的度数是
A.30° C.50°
B.40° D.60°
返回目录
( A)
第七单元 图形与变换
返回目录
2.如图,已知平行四边形AOBC的顶点O(0,0),B(4,0),C(5, 3 ),
∠AOB=60°,点B在x轴正半轴上,按以下步骤作图:①分别以点O,A
为圆心,大于
初中数学 尺规作图
知识梳理
河南中考
核心知识
第七单元 图形与变换
人教:七上P125-131 八上P35-42,P48-50,P62-63 北师:七下P55-57 八下P18-19,P25-26 华师:八上P85-92
返回目录
知识梳理
返回目录
第七单元 图形与变换
一、五种基本尺规作图
步骤与原理
作一条线段等 作法:1.作射线AM;2.以点A为圆
(完整)初一尺规作图题目练习
初一作图练习班别:学号:姓名:一、尺规作图例题题目一:作一条线段等于已知线段。
已知:如图,线段a .求作:线段AB,使AB = a .作法:(1)作射线AP;(2)在射线AP上截取AB=a .则线段AB就是所求作的图形。
题目二:作已知线段的中点。
已知:如图,线段MN.求作:点O,使MO=NO(即O是MN的中点).作法:(1)分别以M、N为圆心,大于12 MN的相同线段为半径画弧,两弧相交于P,Q;(2)连接PQ交MN于O.则点O就是所求作的MN的中点。
(试问:PQ与MN有何关系?)(怎样作线段的垂直平分线?)题目三:作已知角的角平分线。
已知:如图,∠AOB,求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。
作法:(1)以O为圆心,任意长度为半径画弧,分别交OA,OB于M,N;(2)分别以M、N为圆心,大于12 MN的相同线段为半径画弧,两弧交∠AOB内于P;作射线OP。
则射线OP就是∠AOB的角平分线。
题目四:作一个角等于已知角。
二、作图练习1、如图,已知线段a,b,c,用圆规和直尺画一条线段,使它等于a+b(保留作图痕迹,不要求写作法)2、如图,已知线段a,b,c,用圆规和直尺画一条线段,使它等于a+c-2b(保留作图痕迹,不要求写作法)3、如图,已知∠α,(1)画一个∠AOB=∠α(2)画∠AOB的补角(3)画∠AOB的角平分线OC(4)若∠AOC=60°35′,求∠AOB的度数α4、如图,一只蚂蚁从O点出发,沿北偏东45°的方向爬行2.5cm,碰到障碍物(记做B)后,折向北偏西60°的方向爬行3cm(此时的位置记作C)。
(1)画出蚂蚁爬行路线;(2)用量角器量出∠OBC的度数。
(保留整数)5、下图是由五块积木搭成的几何体,这5块积木都是棱长为1的正方体(1)、请画出这个图形的主视图、左视图和俯视图。
(2)、求出这个几何体的表面积。
初中人教版常见的尺规作图
(3)过P、Q作直线CD。
则直线CD就是所求作的直线
尺规作图
a
b
c
C
b
a
A
c
B
07 题目七: 已知三边作三角形
已知:如图,线段a,b,c. 求作:△ABC,使AB = c,AC = b,BC = a.
作法:
数 (1)作线段AB = c; (2)以A为圆心,以b为半径作弧,
学 以B为圆心,以a为半径作弧与前弧交于C; (3)连接AC,BC。 则△ABC就是所求作的三角形
(3)过D、Q作直线CD。
则直线CD是求作的直线
尺规作图
P
A
B
D P
B
AM
NB
Q C
06 题目六:
D
经过直线外一点作已知直线的
P
垂线
AM
NB
已知:如图,直线AB及外一点P。
求作:直线CD,使CD经过点P,且CD⊥AB
Q
数 作法:
C
(1)以P为圆心,任意长为半径画弧,交AB
学 于M、N; (2)为分半别径以画M、弧N,圆两心弧,交大于于点12QM;N长度的一半
C
α A
α A
β B
09 题目九: 已知两角及夹边作三角形
C
已知:如图,∠α,∠β,线段m . 求作:△ABC,使∠A=∠α,∠B=∠β,AB=m.
作法:
数 β
(1)作线段AB=m;
B (2)在AB的同旁
学
作∠A=∠α,作∠B=∠β, ∠A与∠B的另一边相交于C。 则△ABC就是所求作的图形(三角形)
尺规作图
a
A
B
P
01 题目一: 作一条线段等于已知线段
初中数学综合复习尺规作图部分1
初中数学综合复习尺规作图部分1一、解答题1.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).考点:作图—基本作图;平行线的判定.分析:(1)根据角平分线基本作图的作法作图即可;(2)根据角平分线的性质可得∠BDE=∠BDC,根据三角形内角与外角的性质可得∠A=∠BDE,再根据同位角相等两直线平行可得结论.解答:解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.点评:此题主要考查了基本作图,以及平行线的判定,关键是正确画出图形,掌握同位角相等两直线平行.2.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).根据同位角相等两直线平行可得结论.解答:解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.点评:此题主要考查了基本作图,以及平行线的判定,关键是正确画出图形,掌握同位角相等两直线平行.3.已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.【答案】解:正确作图; ·······························3分正确写出结论. ·······························4分4.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).a α根据同位角相等两直线平行可得结论.解答:解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.点评:此题主要考查了基本作图,以及平行线的判定,关键是正确画出图形,掌握同位角相等两直线平行.。