灰色系统理论及其应用--讲义汇总

合集下载

第一章灰色系统的概念和基本原理资料ppt课件

第一章灰色系统的概念和基本原理资料ppt课件
2
第一篇灰色系统理论论文发表
1982年邓聚龙教授的第一篇灰色系统论文在国际期刊发
表 : “The Control problem of grey systems ”,
3
System & Control Letter 。
新兴横断学科—灰色系统理论问世
BACK
8
第一章 灰色系统的概念与基本原理
1.1灰色系统理论的产生与发展
可能用一般手段知道其质量的确切值。
22、2、、仅仅仅有有有上上上界界界的的的灰灰灰数数数
例4:
有有有上上上界界界而而而无无无下下下界界界的的的灰灰灰数数数记记记为为为(((,a, a,]a],],,
有上界而无下界的灰数是一类取负数但 其绝对值难以限量的灰数,是有下界而
其其其中中中aa是a是是灰灰灰数数数的的的上上上确确确界界界。。。
只知道取值范围而不知其 确切值的数 。
预计200-300亿。若年底结算存 款余额为275亿,即为真值。
例பைடு நூலகம்:
•灰数的背景信息表现不完 某成年男子的身高为一灰数;
未测量之前估计其身高约为1.8-
全。
1.9米,通过测量得到该男子身
•人们认知能力有限。
高为1.86米,即为该男子身高
的真值。
BACK
27
第一章 灰色系统的概念与基本原理
1.1 灰色系统理论的产生与发展
几种不确定性方法比较分析
项目
研究对象 基础集合 方法依据 途径手段 数据要求 侧重 目标 特色
灰色系统 概率统计 模糊数学 粗糙集理论
贫信息不确定 随机不确定 认知不确定 边界不清晰
灰数集
康托集 模糊集 近似集
信息覆盖 映射

《灰色模型讲义》PPT课件

《灰色模型讲义》PPT课件
X 1 ( D x ( 1 ) d 1 ,x ( 2 ) d 1 , ,x ( n ) d 1 ) 其中
x i( k ) d 1 x i( k )/x i( 1 )k ; 1 ,2 , ,n
则称 D 1 为初值化算子,X i 为原像,X i D1 为 X i 在初值化算子 D 1 下的像,简称初值像。
灰色系统研究的是“部分信息明确,部分信息未知”
ppt课件
3
的“小样本,贫信息”不确定性系统,它通过对已知“部 分”
信息的生成去开发了解、认识现实世界。着重研究“外延
明确,内涵不明确”的对象。
项目
灰色系统
概率统计
模糊数学
研究对象
贫信息不确定 随机不确定 认知不确定
基础集合
灰色朦胧集 康托集
模糊集
方法依据 信息覆盖
其中
k
x(0)(k)d x(0)(i)k ;1,2, ,n
i1
则称D为 X (0) 的一次累加生成算子,记为1-AGO
(Accumulating Generation Operator),称r阶算子D r 为 X (0) 的r次
累加生成算子,记为r-AGO,习惯上,我们记
X ( 0 ) D X ( 1 ) ( x ( 1 ) ( 1 ) d ,x ( 1 ) ( 2 ) d , ,x ( 1 ) ( n ) d ))
次累减生成算子。
定理 3.5.1 累减算子是累加算子ppt课的件逆算子。
12
ppt课件
13
一般的抽象系统都包含有许多影响因素,多种因素共同作用的结果 决定了系统的发展态势。我们希望从众多的因素中判断出,哪些是 主要因素、哪些是次要因素。这些属于系统分析的内容,数理统计 中的回归分析、方差分析、主成分分析等都可以用来进行系统分析。 这些方法的不足之处是:

灰色系统分析讲义(精)

灰色系统分析讲义(精)

数学建模讲稿-------灰色系统分析五步建模思想研究一个系统,一般应首先建立系统的数学模型,进而对系统的整体功能、协调功能以及系统各因素之间的关联关系、因果关系、动态关系进行具体的量化研究。

这种研究必须以定性分析为先导,定量与定性紧密结合。

系统模型的建立,一般要经历思想开发、因素分析、量化、动态化、优化五个步骤,故称为五步建模。

第一步:开发思想,形成概念,通过定性分析、研究,明确研究的方向、目标、途径、措施,并将结果用准确简练的语言加以表达,这便是语言模型。

第二步:对语言模型中的因素及各因素之间的关系进行剖析,找出影响事物发展的前因、后果,并将这种因果关系用框图表示出来(见图1)。

(a) (b)图1一对前因后果(或一组前因与一个后果)构成一个环节。

一个系统包含许多这样的环节。

有时,同一个量既是一个环节的前因,又是另一个环节的后果,将所有这些关系连接起来,便得到一个相互关联的、由多个环节构成的框图(如图2所示),即为网络模型。

图1第三步:对各环节的因果关系进行量化研究,初步得出低层次的概略量化关系,即为量化模型。

第四步:进一步收集各环节输入数据和输出数据,利用所得数据序列,建立动态GM模型,即动态模型。

动态模型是高层次的量化模型,它更为深刻地揭示出输入与输出之间的数量关系或转换规律,是系统分析、优化的基础。

第五步:对动态模型进行系统研究和分析,通过结构、机理、参数的调整,进行系统重组,达到优化配置、改善系统动态品质的目的。

这样得到的模型,称之为优化模型。

五步建模的全过程,是在五个不同阶段建立五种模型的过程:网络模型优化模型在建模过程中,要不断地将下一阶段中所得的结果回馈,经过多次循环往复,使整个模型逐步趋于完善。

数学建模讲稿-------灰色系统分析灰色系统建模的基本思路可以概括为以下几点:1科学实验数据;○2经验数据;○3生产数据;○4决策数据。

(1)建立模型常用的数据有以下几种:○(2)序列生成数据是建立灰色模型的基础数据。

灰色系统理论及其应用--讲义.

灰色系统理论及其应用--讲义.

第六章灰色系统理论客观世界的很多实际问题,其内部的结构、参数以及特征并未全部被人们了解,人们不可能象研究白箱问题那样将其内部机理研究清楚,只能依据某种思维逻辑与推断来构造模型。

对这类部分信息已知而部分信息未知的系统,我们称之为灰色系统。

本章介绍的方法是从灰色系统的本征灰色出发,研究在信息大量缺乏或紊乱的情况下,如何对实际问题进行分析和解决。

§1 灰色系统概论客观世界在不断发展变化的同时,往往通过事物之间及因素之间相互制约、相互联系而构成一个整体,我们称之为系统。

按事物内涵的不同,人们已建立了工程技术、社会系统、经济系统等。

人们试图对各种系统所外露出的一些特征进行分析,从而弄清楚系统内部的运行机理。

从信息的完备性与模型的构建上看,工程技术等系统具有较充足的信息量,其发展变化规律明显、定量描述较方便、结构与参数较具体、人们称之为白色系统;对另一类系统诸如社会系统、农业系统、生态系统等,人们无法建立客观的物理原型,其作用原理亦不明确,内部因素难以辨识或之间关系隐蔽,人们很难准确了解这类系统的行为特征,因此对其定量描述难度较大,带来建立模型的困难。

这类系统内部特性部分已知的系统称之为灰色系统。

一个系统的内部特性全部未知,则称之为黑色系统。

区别白色系统与灰色系统的重要标志是系统内各因素之间是否具有确定的关系。

运动学中物体运动的速度、加速度与其所受到的外力有关,其关系可用牛顿定律以明确的定量来阐明,因此,物体的运动便是一个白色系统。

作为实际问题,灰色系统在大千世界中是大量存在的,绝对的白色或黑色系统是很少的社会、经济、农业以及生态系统一般都会有不可忽略的“噪声”(即随机干扰)。

现有的研究经常被“噪声”污染。

受随机干扰侵蚀的系统理论主要立足于概率统计。

通过统计规律、概率分布对事物的发展进行预测,对事物的处置进行决策。

现有的系统分析的量化方法,大都是数理统计法如回归分析、方差分析、主成分分析等,回归分析是应用最广泛的一种办法。

灰色系统理论及其应用

灰色系统理论及其应用

5 灰色模型
5.1 GM(1,1) 模型
将时刻 k 2,3,, n 视为连续变量t 则数列 x(1) 就可视为时间 t 的函数,x(1) x(1) (t) GM(1,1) 的白化型为:
dx(1) ax(1) (t) b dt
5 灰色模型
5.2 GM(1, N)模型
GM (1, N) :模型是一阶的,包含N个变量的灰色模型
x(1) 的灰导数为: d (k) x(0) (k) x(1) (k) x(1) (k 1), k 2,3,, n
5 灰色模型
5.1 GM(1,1) 模型
x(1) 的紧邻均值序列为: z(1) (z(1) (2), z(1) (3),, z(1) (n))
z(1) (k) 0.5x(1) (k) 0.5x(1) (k 1), k 2,3,, n
1 n
n
( k
k 1
)2
6 灰色预测
6.2 灰色预测的步骤
(5)小误差概率合格模型: 小误差概率为:
p P k 0.67445S1
给定 p0 0, p p0 称模型为小误差概率合格模型
6 灰色预测
6.2 灰色预测的步骤
常用精度等级:
6 灰色预测
6.3 Verhulst GM (2,1) DGM
2 2
可容覆盖区域:(e n1 , e n2 )
2 2
(k ) (e n1 , e n2 )
6 灰色预测
6.2 灰色预测的步骤
1.数据的检验与处理:
2 2
(k ) (e n1 , e n2 )
2 2
(k ) (e n1 , e n2 )
数据列可用为模型的预测数据 数据列需进行变换处理
平移变换

灰色系统理论讲稿共67页

灰色系统理论讲稿共67页

设原始数列为 x(0) x(0) (1), x(0) (2), , x(0) (n) ,令
k
x(1) (k) x(0) (i) (k 1,2, , n) i 1
(3)
则称 x(1) (k ) 为数列 x (0) 的1-次累加生成,数列
x (1) x (1) (1), x (1) (2), , x (1) (n)
• 黑色系统:一个系统的内部特性全部是未知的. • 灰色系统: 介于白色系统和黑色系统之间的.即系
统内部信息和特性是部分已知的,另一部分是未 知的.
• 客观世界中很多实际问题,其内部的结构、参 数以及特征并未全部被人们了解,人们不可能 象研究白箱问题那样将其内部机理研究清楚, 只能依据某种思维逻辑与推断来构造模型。
意因子 x j X 为比较数列,则绝对差:
ij (k) xi (k) x j (k) (k 1,2, , n; j 1,2, ,l) 。
差数列为 ij ij (1), ij (2), , ij (n) ,其比较数列 x j 对参考数
列 xi 在第 k 点的灰关联为
r(xi
(k), x
• 离散、连续。
如果 是离散灰数,则有 ~ ~ A {x(k) | k K {1,2, , n}}
如果灰数 中的白化数是按区间连续分布的,则有 ~ ~ It(a,b) {[a,b], (a,b),[a,b), (a,b]}
灰色关联分析
• 分为单因子与多因子两种情况。 • 单因子
称为数列 x (0) 的1-次累加生成数列.
类似地有
k
x(r) (k) x(r1) (i) (k 1,2, , n, r 1) i 1
称为 x (0) 的 r -次累加生成.

灰色系统理论及其应用(精)

灰色系统理论及其应用(精)

灰色系统理论及其应用第一章灰色系统的概念与基本原理1.1灰色系统理论的产生和发展动态1982年,北荷兰出版公司出版的《系统与控制通讯》杂志刊载了我国学者邓聚龙教授的第一篇灰色系统理论论文”灰色系统的控制问题”,同年,《华中工学院学报》发表邓聚龙教授的第一篇中文论文《灰色控制系统》,这两篇论文的发表标志着灰色系统这一学科诞生。

1985灰色系统研究会成立,灰色系统相关研究发展迅速。

1989海洋出版社出版英文版《灰色系统论文集》,同年,英文版国际刊物《灰色系统》杂志正式创刊。

目前,国际、国内300多种期刊发表灰色系统论文,许多国际会议把灰色系统列为讨论专题。

国际著名检索已检索我国学者的灰色系统论著3000多次。

灰色系统理论已应用范围已拓展到工业、农业、社会、经济、能源、地质、石油等众多科学领域,成功地解决了生产、生活和科学研究中的大量实际问题,取得了显著成果。

1.2几种不确定方法的比较(系统科学---系统理论)概率统计,模糊数学和灰色系统理论是三种最常用的不确定系统研究方法。

其研究对象都具有某种不确定性,是它们共同的特点。

也正是研究对象在不确定性上的区别,才派生了这三种各具特色的不确定学科。

模糊数学着重研究“认识不确定”问题,其研究对象具有“内涵明确,外延不明确”的特点。

比如“年轻人”内涵明确,但要你划定一个确定的范围,在这个范围内是年轻人,范围外不是年轻人,则很难办到了。

概率统计研究的是“随机不确定”现象,考察具有多种可能发生的结果之“随机不确定”现象中每一种结果发生的可能性大小。

要求大样本,并服从某种典型分布。

灰色系统理论着重研究概率统计,模糊数学难以解决的“小样本,贫信息”不确定性问题,着重研究“外延明确,内涵不明确”的对象。

如到2050年,中国要将总人口控制在15亿到16亿之间,这“15亿到16亿之间“是一个灰概念,其外延很清楚,但要知道具体数值,则不清楚。

三种不确定性系统研究方法的比较分析1.3灰色系统理论的基本概念定义1.3.1信息完全明确的系统称为白色系统。

灰色系统分析讲义(精)

灰色系统分析讲义(精)

数学建模讲稿-------灰色系统分析五步建模思想研究一个系统,一般应首先建立系统的数学模型,进而对系统的整体功能、协调功能以及系统各因素之间的关联关系、因果关系、动态关系进行具体的量化研究。

这种研究必须以定性分析为先导,定量与定性紧密结合。

系统模型的建立,一般要经历思想开发、因素分析、量化、动态化、优化五个步骤,故称为五步建模。

第一步:开发思想,形成概念,通过定性分析、研究,明确研究的方向、目标、途径、措施,并将结果用准确简练的语言加以表达,这便是语言模型。

第二步:对语言模型中的因素及各因素之间的关系进行剖析,找出影响事物发展的前因、后果,并将这种因果关系用框图表示出来(见图1)。

(a) (b)图1一对前因后果(或一组前因与一个后果)构成一个环节。

一个系统包含许多这样的环节。

有时,同一个量既是一个环节的前因,又是另一个环节的后果,将所有这些关系连接起来,便得到一个相互关联的、由多个环节构成的框图(如图2所示),即为网络模型。

图1第三步:对各环节的因果关系进行量化研究,初步得出低层次的概略量化关系,即为量化模型。

第四步:进一步收集各环节输入数据和输出数据,利用所得数据序列,建立动态GM模型,即动态模型。

动态模型是高层次的量化模型,它更为深刻地揭示出输入与输出之间的数量关系或转换规律,是系统分析、优化的基础。

第五步:对动态模型进行系统研究和分析,通过结构、机理、参数的调整,进行系统重组,达到优化配置、改善系统动态品质的目的。

这样得到的模型,称之为优化模型。

五步建模的全过程,是在五个不同阶段建立五种模型的过程:网络模型优化模型在建模过程中,要不断地将下一阶段中所得的结果回馈,经过多次循环往复,使整个模型逐步趋于完善。

数学建模讲稿-------灰色系统分析灰色系统建模的基本思路可以概括为以下几点:1科学实验数据;○2经验数据;○3生产数据;○4决策数据。

(1)建立模型常用的数据有以下几种:○(2)序列生成数据是建立灰色模型的基础数据。

《灰色系统建模》PPT课件

《灰色系统建模》PPT课件

5
0.778 0.538 0.538 1.000 0.778 0.368 0.778
6
0.778 1.000 0.467 0.636 0.538 0.412 0.778
7.分别计算每个人各指标关联系数的均值(关联序):
8.如到r0果劣1 不依0考次.7虑为781各号指1,.标050权号0重, (30号.7认,7为86各号0指,.67标23号6同,等04重号.46要.7),0.六33个3 被 1评.0价00对象0由.7好13
18987529 27875738 39796647 46888436 58669838 68957648
3.确定参考数据列:
4.计算 {x0} {9,, 见下9表, 9, 9, 8, 9, 9}
x0(k) xi (k)
编号 专业 外语 教学 科研 论文 著作 出勤 量
1
10123702
2
1
2
xi k , i xi 1
0 ,1,
, n;k
s
(4)采用内插法使各指标数据取值范围(或数量级)相同.
1, 2 ,
, m.
例如,某地县级医院病床使用率最高为90%,最低为60%,我们可以将90%转 化10,60%转化为1,其它可以通过内插法确定其转化值.如80%转化为多少?可 进行如下计算:
解之得,即80%转化为7.
1
0.778 1.000 0.778 0.636 0.467 0.333 1.000
2
0.636 0.778 0.636 0.467 0.636 0.368 0.778
3
1.000 0.636 1.000 0.538 0.538 0.412 0.636
4
0.538 0.778 0.778 0.778 0.412 0.368 0.538

第6章 灰色系统理论

第6章 灰色系统理论

为因素 的行为横向X 序i列 (x i(1 ),x i(2 ), ,x i(n ))
Xi
精选可编辑ppt
22
无论是时间序列数据、指标序列数据还是横向序列数据,都可 以用来做关联分析。 定义3.1.2 设 X i (x i(1 ),x i(2 ), ,x i(n )) 为因素 X i 的
行为序列, D 1为序列算子,且 X iD 1 ( x i( 1 ) d 1 ,x i( 2 ) d 1 ,,x i( n ) d 1 ) 其中
,简称逆化像。
•作为实际系统,灰色系统在世界中是大量存
在的,绝对的白色或黑色系统是很少的,例
如人体结构与功能、粮食作物的生产等。
精选可编辑ppt
2
目录
1 灰色系统介绍 2 序列算子与灰色序列生成 3 灰色关联分析 4 灰靶理论 5 灰色预测分析
精选可编辑ppt
3
1 灰色系统介绍
灰色系统理论的提出
➢ 著名学者邓聚龙教授于20世纪70年代末、80年代 初提出;
定义 它是对原序列中的数据依次累加以得到
生成序列。令 X ( 0 )为原序列
X ( 0 ) x ( 0 )1 ,x ( 0 )2 , ,x ( 0 )n
当且仅当
X ( 1 ) x ( 1 )1 ,x ( 1 )2 , ,x ( 1 )n
k
并满足 x(1)(k) x(0)(m) (k1,2, ,n) m1
确”的对象。例如:2050年中国人口控制在15亿
到16亿之间、树精高选可在编辑2p0pt米至30米。
8
• 灰色系统是通过对原始数据的收集与整理来寻求 其发展变化的规律。如何通过散乱的数据系列去 寻找其内在的发展规律显得特别重要。灰色系统 理论认为,一切灰色序列都能通过某种生成弱化 其随机性的模型而呈现本来的规律,也就是通过 灰色数据序列建立系统反应模型,并通过该模型 预测系统的可能变化状态。

数学建模——灰色系统理论及其应用

数学建模——灰色系统理论及其应用
2 r 1 r 1 r
x
r
k x k , k 1,2,, n
r x r k r 1 x r k r 1 x r k 1







四、灰色预测的步骤
1.数据的检验与处理
首先,为了保证建模方法的可行性,需要对已知数据列做必要的检验处理。 设参考数据为 x(0) ( x(0) (1), x(0) (2),...,x(0) (n)),计算数列的级比
2 n 1 2 n2
(0)
y (0) (k ) x(0) (k ) c, k 1,2,...,n
五、灰色预测计算实例
例4 北方某城市1986~1992 年道路交通噪声平均声级数据见表6 表6 市近年来交通噪声数据[dB(A)]
第一步: 级比检验 建立交通噪声平均声级数据时间序列如下:
(三)、主要内容
灰色系统理论经过 10 多年的发展,已基本 建立起了一门新兴学科的结构体系,其主 要内容包括以“灰色朦胧集”为基础的理 论体系、以晦涩关联空间为依托的分析体 系、以晦涩序列生成为基础的方法体系, 以灰色模型( G,M)为核心的模型体系。 以系统分析、评估、建模、预测、决策、 控制、优化为主体的技术体系。
x i
1
0 与 x i 之间满足下述关系,即


x 1 k x 0 m
为数列 i x x i 则称数列
1
0
m 1
k
的一次累加生成数列。
显然,
r
次累加生成数列有下述关系:
x r k x r k 1 x r 1 k
(四)、应用范畴
灰色系统的应用范畴大致分为以下几方面: (1)灰色关联分析。 (2)灰色预测:人口预测;初霜预测; 灾变预测….等等。 (3)灰色决策。 (4)灰色预测控制。

灰色系统理论及其应用(精)

灰色系统理论及其应用(精)

灰色系统理论及其应用第一章灰色系统的概念与基本原理1.1灰色系统理论的产生和发展动态1982年,北荷兰出版公司出版的《系统与控制通讯》杂志刊载了我国学者邓聚龙教授的第一篇灰色系统理论论文”灰色系统的控制问题”,同年,《华中工学院学报》发表邓聚龙教授的第一篇中文论文《灰色控制系统》,这两篇论文的发表标志着灰色系统这一学科诞生。

1985灰色系统研究会成立,灰色系统相关研究发展迅速。

1989海洋出版社出版英文版《灰色系统论文集》,同年,英文版国际刊物《灰色系统》杂志正式创刊。

目前,国际、国内300多种期刊发表灰色系统论文,许多国际会议把灰色系统列为讨论专题。

国际著名检索已检索我国学者的灰色系统论著3000多次。

灰色系统理论已应用范围已拓展到工业、农业、社会、经济、能源、地质、石油等众多科学领域,成功地解决了生产、生活和科学研究中的大量实际问题,取得了显著成果。

1.2几种不确定方法的比较(系统科学---系统理论)概率统计,模糊数学和灰色系统理论是三种最常用的不确定系统研究方法。

其研究对象都具有某种不确定性,是它们共同的特点。

也正是研究对象在不确定性上的区别,才派生了这三种各具特色的不确定学科。

模糊数学着重研究“认识不确定”问题,其研究对象具有“内涵明确,外延不明确”的特点。

比如“年轻人”内涵明确,但要你划定一个确定的范围,在这个范围内是年轻人,范围外不是年轻人,则很难办到了。

概率统计研究的是“随机不确定”现象,考察具有多种可能发生的结果之“随机不确定”现象中每一种结果发生的可能性大小。

要求大样本,并服从某种典型分布。

灰色系统理论着重研究概率统计,模糊数学难以解决的“小样本,贫信息”不确定性问题,着重研究“外延明确,内涵不明确”的对象。

如到2050年,中国要将总人口控制在15亿到16亿之间,这“15亿到16亿之间“是一个灰概念,其外延很清楚,但要知道具体数值,则不清楚。

三种不确定性系统研究方法的比较分析1.3灰色系统理论的基本概念定义1.3.1信息完全明确的系统称为白色系统。

灰色系统理论及应用

灰色系统理论及应用
所谓非邻均值生成, 就是对于非等时距的数列,或虽为 等时距数列,但剔除异常值之后出现空穴的数列,用空 穴两边的数据求平均值构造新的数据以填补空穴,即若
有原始数据X [ x(1), x(2), ,(k), x(k 1), , x(n)], 这 里 (k)为空穴,记k点的生成值为z(k),且z(k) 0.5x(k 1)
lim
dt t0
t
当t很小时并且取很小的1单位时, 则近似地有
x(t 1) x(t) x t
写成离散形式为
x x(k 1) x(k) (1)( x(k 1)) t
这表示 x 是x(k 1)的一次累减生成,因此 x 是
t
t
x(k 1)和x(k)二元组合等效值,则称x(k 1)与x(k)
(2 1)
则称为一次累加生成,记为1 AGO( Accumulating
பைடு நூலகம்
Generation Operator )
r次累加生成有下述关系 :
k
x(r ) (k ) x(r1) (i ) i 1
(2 2)
从(2 2)式,又有r 1次到r次的累加为:
k 1
x(r ) (k ) x(r1) (i) x(r1) (k ) x(r1) (k 1) x(r1) (k ) i 1
但是无论是现代控制理论还是经典控制理论, 它们都要依赖正确而精确的数学模型,否则, 一切都很难取得满意的结果。然而,在现实生 活中,有许多情况不大可能求得精确的数学模 型,如工业系统、生物系统、经济系统、社会 系统等。若得不出精确的数学模型,现代控制 理论的方法和手段就无法施行,因而,现代控 制理论对一些研究对象也鞭长莫及。

《灰色系统理论》课件

《灰色系统理论》课件
GM(1,1)模型适用于具有指数增长或衰减规律 的数据序列,能够有效地处理不完全信息,预 测精度较高。
Verhulst模型
Verhulst模型是灰色系统理论中的另一个重要模型,主要用于描述和预测系统中的阻滞、饱和机制,模拟系统的自我调节和限制因素对系统发 展的影响。
在社会领域中,灰色 系统预测模型可用于 人口预测、城市化进 程、社会治安等方面 的研究。
在环境领域中,灰色 系统预测模型可用于 预测污染物排放、生 态保护、气候变化等 方面的问题。
在工程领域中,灰色 系统预测模型可用于 机械故障诊断、交通 流量预测、能源消耗 等方面的研究。
04
灰色系统理论的实 际应用
交通规划
通过建立灰色预测模型,对城市交通 流量、拥堵状况等进行预测和管理, 为交通规划提供依据。
05
灰色系统理论的未 来发展
灰色系统与其他系统的融合
灰色系统与模糊系统融合
通过模糊数学的方法,将灰色系统中的灰色信息转化为模糊信息,提高信息处理的精度和准确性。
灰色系统与神经网络融合
利用神经网络的自学习、自组织和适应性,对灰色系统中的非线性、不确定性问题进行建模和分析。
灰色决策分析的步骤
确定决策问题、建立决策模型、求解决策问题、评估决策效果。
03
灰色系统建模方法
GM(1,1)模型
GM(1,1)模型是灰色系统理论中最为经典的模 型之一,用于对具有不完全信息系统的数学模 拟和预测。
它通过累加生成序列的方式,将原始数据转化 为具有指数规律的递增序列,然后利用最小二 乘法对参数进行估计,建立微分方程模型。
在经济领域的应用
金融市场预测
利用灰色系统理论对股票、期货 等金融市场数据进行处理和分析 ,预测市场走势,为投资决策提 供依据。

灰色系统理论与其灰色建模在材料中的应用概要PPT课件

灰色系统理论与其灰色建模在材料中的应用概要PPT课件
第15页/共40页
2.3.3灰关系
灰关系,指信息不完全的关系。比如多种 经济成分并存的经济关系,一国两制的政 治关系;一种商品价格浮动导致其他商品 价格波动的“撞击关系”等均为灰关系。
显然,灰色系统中往往包含灰数,灰元, 灰关系。
第16页/共40页
2.3.4灰度
➢ 任何事物或事物的状态,都是有序与无 序在不同程度的辩证统一,这种统一的测 度就是灰度。在灰色系统中,“灰度”代 表系统“灰”的程度,或者说,用灰度来 度量系统“灰”的程度。
第24页/共40页
(4)
其中
(5)
而(5)式中
(i=1,2,3…n)
(6)
那么,方程(3)的解的离散形式就是GM(1,1)预测 模型
(7)
第25页/共40页
• 对(7)式进行一次累减生成还原得到原始序列 x(0)(i+1)的预测值 (i=1,2,3…n) (8)
第26页/共40页
3.灰色建模预测应用
灰色系统
既无经验,数据又少的不确定 性问题,即“少数据不确定性” 问题提出的。
第7页/共40页
2.灰色系统的基本内容
2.1 灰色系统的定义 2.2 灰色系统理论的基本原理 2.3 灰色系统理论的基本概念 2.4 灰色系统建模预测方法
第8页/共40页
2.1灰色系统的定义
黑色系统 灰色系统 白色系统
灰色系统与概率模糊的对比21灰色系统的定义22灰色系统理论的基本原理23灰色系统理论的基本概念24灰色系统建模预测方法21灰色系统的定义informationunknownacknowledge黑色系统灰色系统白色系统未知部分明确部分不明从信息上看从表象上看在过程上在性质上在方法上在态度上从结果看未知不完全完全若明若暗明朗混沌多种成分否定扬弃肯定放纵宽容严厉无解非惟一解惟一解概念视角灰概念的引申第10页共40页22灰色系统的基本原理差异信息原理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章灰色系统理论客观世界的很多实际问题,其内部的结构、参数以及特征并未全部被人们了解,人们不可能象研究白箱问题那样将其内部机理研究清楚,只能依据某种思维逻辑与推断来构造模型。

对这类部分信息已知而部分信息未知的系统,我们称之为灰色系统。

本章介绍的方法是从灰色系统的本征灰色出发,研究在信息大量缺乏或紊乱的情况下,如何对实际问题进行分析和解决。

§1 灰色系统概论客观世界在不断发展变化的同时,往往通过事物之间及因素之间相互制约、相互联系而构成一个整体,我们称之为系统。

按事物内涵的不同,人们已建立了工程技术、社会系统、经济系统等。

人们试图对各种系统所外露出的一些特征进行分析,从而弄清楚系统内部的运行机理。

从信息的完备性与模型的构建上看,工程技术等系统具有较充足的信息量,其发展变化规律明显、定量描述较方便、结构与参数较具体、人们称之为白色系统;对另一类系统诸如社会系统、农业系统、生态系统等,人们无法建立客观的物理原型,其作用原理亦不明确,内部因素难以辨识或之间关系隐蔽,人们很难准确了解这类系统的行为特征,因此对其定量描述难度较大,带来建立模型的困难。

这类系统内部特性部分已知的系统称之为灰色系统。

一个系统的内部特性全部未知,则称之为黑色系统。

区别白色系统与灰色系统的重要标志是系统内各因素之间是否具有确定的关系。

运动学中物体运动的速度、加速度与其所受到的外力有关,其关系可用牛顿定律以明确的定量来阐明,因此,物体的运动便是一个白色系统。

作为实际问题,灰色系统在大千世界中是大量存在的,绝对的白色或黑色系统是很少的社会、经济、农业以及生态系统一般都会有不可忽略的“噪声”(即随机干扰)。

现有的研究经常被“噪声”污染。

受随机干扰侵蚀的系统理论主要立足于概率统计。

通过统计规律、概率分布对事物的发展进行预测,对事物的处置进行决策。

现有的系统分析的量化方法,大都是数理统计法如回归分析、方差分析、主成分分析等,回归分析是应用最广泛的一种办法。

但回归分析要求大样本,只有通过大量的数据才能得到量化的规律,这对很多无法得到或一时缺乏数据的实际问题的解决带来困难。

回归分析还要求样本有较好的分布规律,而很多实际情形并非如此。

例如,我国建国以来经济方面有几次大起大落,难以满足样本有较规律的分布要求。

因此,有了大量的数据也不一定能得到统计规律,甚至即使得到了统计规律,也并非任何情况都可以分析。

另外,回归分析不能分析因素间动态的关联程度,即使是静态,其精度也不高,且常常出现反常现象。

灰色系统理论提出了一种新的分析方法—关联度分析方法,即根据因素之间发展态势的相似或相异程度来衡量因素间关联的程度,它揭示了事物动态关联的特征与程度。

由于以发展态势为立足点,因此对样本量的多少没有过分的要求,也不需要典型的分布规律,计算量少到甚至可用手算,且不致出现关联度的量化结果与定性分析不一致的情况。

这种方法已应用到农业经济、水利、宏观经济等各方面,都取得了较好的效果。

灰色系统理论建模的主要任务是根据具体灰色系统的行为特征数据,充分开发并利用不多的数据中的显信息和隐信息,寻找因素间或因素本身的数学关系。

通常的办法是采用离散模型,建立一个按时间作逐段分析的模型。

但是,离散模型只能对客观系统的发展做短期分析,适应不了从现在起做较长远的分析、规划、决策的要求。

尽管连续系统的离散近似模型对许多工程应用来讲是有用的,但在某些研究领域中,人们却常常希望使用微分方程模型。

事实上,微分方程的系统描述了我们所希望辨识的系统内部的物理或化学过程的本质。

灰色系统理论首先基于对客观系统的新的认识。

尽管某些系统的信息不够充分,但作为系统必然是有特定功能和有序的,只是其内在规律并未充分外露。

有些随机量、无规则的干扰成分以及杂乱无章的数据列,从灰色系统的观点看,并不认为是不可捉摸的。

相反地,灰色系统理论将随机量看作是在一定范围内变化的灰色量,按适当的办法将原始数据进行处理,将灰色数变换为生成数,从生成数进而得到规律性较强的生成函数。

§2 关联分析大千世界里的客观事物往往现象复杂,因素繁多。

我们往往需要对系统进行因素分析,这些因素中哪些对系统来讲是主要的,哪些是次要的,哪些需要发展,哪些需要抑制,哪些是潜在的,哪些是明显的。

一般来讲,这些都是我们极为关心的问题。

事实上,因素间关联性如何、关联程度如何量化等问题是系统分析的关键和起点。

因素分析的基本方法过去主要采取回归分析等办法。

正如前一节指出的,回归分析的办法有很多欠缺,如要求大量数据、计算量大及可能出现反常情况等。

为克服以上弊病,本节采用关联度分析的办法来做系统分析。

作为一个发展变化的系统,关联分析实际上是动态过程发展态势的量化比较分析。

所谓发展态势比较,也就是系统各时期有关统计数据的几何关系的比较。

例1 某地区1977~1983 年总收入与养猪、养兔收入资料见表1。

表 1 例1的数据1977 1978 1979 1980 1981 1982 1983 养猪 10 15 16 24 38 40 50 养兔 3 2 12 10 22 18 20 总收入18202240444860根据表 1我们可以得到更为形象的图,如图 1所示。

19771978197919801981198219830102030405060年 份收 入养猪养兔总收入图 1 例1变化趋势由上图易看出,养猪曲线与总收入曲线发展趋势比较接近,而与养兔曲线 相差较大,因此可以判断,该地区对总收入影响较直接的是养猪业,而不是养兔业。

很显然,几何形状越接近,关联程度也就越大。

当然,直观分析对于稍微复杂些的问题则显得难于进行。

因此,需要给出一种计算方法来衡量因素间关联程度的大小。

2.1 数据变换技术为保证建模的质量与系统分析的正确结果,对收集来的原始数据必须进行数据变换和处理,使其消除量纲和具有可比性。

定义1 设有序列{(1),(2),,()}x x x x n =则称映射(函数):f x y →(())(),1,2,,f x k y k k n ==为序列x 到序列y 的数据变换。

常见的数据变换有如下几种。

1) 初值化变换,映射f 为()(())(),(1)0(1)x k f x k y k x x ==≠ (1)2) 均值化变换,映射f 为1()1(())(),()nk x k f x k y k x x k x n ====∑(2)3) 百分比变换,映射f 为()(())()max ()kx k f x k y k x k ==(3)4) 倍数变换,映射f 为()(())()min ()0min ()k kx k f x k y k x k x k ==≠,(4)5) 归一化变换,映射f 为00()(())(),0x k f x k y k x x ==> (5)6) 极差最大值化变换,映射f 为()min ()(())()max ()kkx k x k f x k y k x k -== (6)7) 区间值化变换,映射f 为()min ()(())()max ()min ()kkkx k x k f x k y k x k x k -==- (7)2.2 关联分析 定义2 选取参考数列00000{()|1,2,}{(1),(2),,()}x x k k n x x x n ===(8)其中k 表示时刻。

假设有m 个比较数列{()|1,2,}((1),(2),,()),1,2,,i i i i x x k k n x x x n i m i ==== (9)则称()0000min min ()()max max ()()()()()max max ()()s s iststi s stx t x t x t x t k x k x k x t x t ρξρ-+-=-+- (10)为比较数列x i 对参考数列0x 在k 时刻的关联系数,其中[]0,1ρ∈为分辨系数。

在式(10)中,称0min min ()()s stx t x t -(11)为两极最小差,称0max max ()()s stx t x t -(12)为两极最大差。

一般来讲,分辨系数ρ越大,分辨率越大;ρ越小,分辨率越小。

(10)式定义的关联系数是描述比较数列与参考数列在某时刻关联程度的一种指标,由于各个时刻都有一个关联数,因此信息显得过于分散,不便于比较,为此我们给出关联度。

定义3 称11()ni i k r k n ξ==∑(13)为数列x i 对参考数列0x 的关联度。

由(6)易看出,关联度是把各个时刻的关联系数集中为一个平均值,亦即把过于分散的信息集中处理。

下面我们来仔细研究一下关联度这个概念,并看一下它的应用。

例2 给出下述数列 0(20,22,40)x =,1(30,35,55)x =,2(40,45,43)x =,试求两极最小差与两级最大差。

解:先求两极最小差。

对于1=i ,10|3020|)1()1(,110=-=-=x x k 13|3522|)2()2(,210=-=-=x x k 15|5540|)3()3(,310=-=-=x x k所以 10)15,13,10(min =k对于2=i ,20|4020|)1()1(,120=-=-=x x k 23|4522|)2()2(,220=-=-=x x k 3|4340|)3()3(,320=-=-=x x k所以 3)3,23,20(min =k由于10)()(min 10=-k x k x k,3)()(min 20=-k x k x k,所以,0min(min ()())min(10,3)3i ikx k x k -==。

再求两极最大差:15)15,13,10max()()(max ,110==-=k x k x i k23)3,23,20max()()(max ,220==-=k x k x i k所以23)23,15max())()((max max 0==-k x k x i ki。

例2 求关联系数和关联度 求关联系数的步骤。

Step1. 先将数列作初值化处理。

即用每一个数列的第一个数)1(i x 除本身及其他数)(k x i ,这样即可使数列无量纲。

设已经给出已初值化的序列,如表 2所示。

Step 2.求差序列。

各时刻)(k x i 与)(0k x 的绝对差,如表3所示。

表. 2 数列作初值化处理1 2 3 4 5 6 0x 1 1.1 2 2.25 3 4 1x 1 1.166 1.834 2 2.34 3 2x 1 1.125 1.075 1.375 1.625 1.75 3x110.70.80.91.2表. 3 差序列1 2 3 4 5 6 |)()(|101k x k x -=∆ 0 0.066 0.166 0.25 0.66 1 |)()(|202k x k x -=∆ 0 0.025 0.925 0.875 1.375 2.25 |)(3)(|03k x k x -=∆0.11.31.452.12.8Step 3.求两极最小差与最大差。

相关文档
最新文档