流体力学实验分析答案
自己写的流体力学综合实验答案

一.实验目的1. 熟悉离心泵的构造和操作。
2. 测定离心泵在一定转速下的特性曲线。
二.基本原理离心泵的主要性能参数有流量Q 、压头H 、效率η和轴功率Na ,通过实验测出在一定的转速下H-Q 、Na-Q 及η-Q 之间的关系,并以曲线表示,该曲线称为离心泵的特性曲线。
特性曲线是确定泵的适宜操作条件和选用离心泵的重要依据。
1. 流量Q 的测定 在一定转速下,用出口阀调节离心泵的流量Q ,用涡轮流量计计量离心泵的流量Q (m 3/h )2. 压头H 的测定 离心泵的压头是指泵对单位重量的流体所提供的有效能量,其单位为m 。
在进口真空表和出口压力表两测压点截面间列机械能衡算式得gu u h g P g P H 2212212-++-=ρρ(m 液柱) (1) 4. 离心泵的效率η 泵的效率为有效功率与轴功率之比aeN N =η (3) 式中:e N ——用kW 来计量,则:,102100081.9ρρρe e e e QH QH g QH N =⨯== a e N QH 102ρη= (4)5. 转速改变时的换算特性曲线是某指定转速下的特性曲线,如果实验时转速与指定转速有差异,应将实验结果换算为指定转速下的数值:泵的特性曲线是在定转速下的实验测定所得。
但是,实际上感应电动机在转矩改变时,其转速会有变化,这样随着流量Q 的变化,多个实验点的转速n 将有所差异,因此在绘制特性曲线之前,须将实测数据换算为某一定转速n ′下(可取离心泵的额定转速2900rpm )的数据。
换算关系如下:)(11n n Q Q =;211)(n n H H =;311)(nnN N = 三.实验装置流程和主要设备 1. 实验装置流程离心泵性能测定实验装置的流程如下图所示。
1-离心泵;2-进口压力变送器;3-铂热电阻(测量水温);4-出口压力变送器;5-电气仪表控制箱;6-均压环;7-粗糙管;8-光滑管(离心泵实验中充当离心泵管路);9-局部阻力管;10-管路选择球阀;11-涡轮流量计;12 -局部阻力管上的闸阀;13-电动调节阀;14-差压变送器;15-水箱五.实验数据记录与处理心崩子型号=MS60/0.5J 额定流量=60L/min 额定扬程=19.5m 额定功率=2850r/min泵进出口测压点高度差H0=0m 流体温度=29.4℃四.实验步骤1.实验准备:(1)实验用水准备:清洗水箱,并加装实验用水。
流体力学实验分析答案

流体力学实验思考题解答(一)流体静力学实验1、 同一静止液体内的测压管水头线是根什么线? 答:测压管水头指γpZ +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
从表1.1的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
2、 当0<B p 时,试根据记录数据确定水箱的真空区域。
答:以当00<p 时,第2次B 点量测数据(表1.1)为例,此时06.0<-=cm p Bγ,相应容器的真空区域包括以下3三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小杯的液面作一水平面,测压管4中该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度为0∇-∇=H AP γ的一段水注亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等,均为0∇-∇=H AP γ。
3、 若再备一根直尺,试采用另外最简便的方法测定0γ。
答:最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度w h 和o h ,由式o o w w h h γγ=,从而求得o γ。
4、 如测压管太细,对测压管液面的读数将有何影响?答:设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算γθσd h cos 4= 式中,σ为表面张力系数;γ为液体的容重;d 为测压管的内径;h 为毛细升高。
常温C t ︒=20)的水,mm dyn /28.7=σ或m N /073.0=σ,3/98.0mm dyn =γ。
水与玻璃的浸润角θ很小,可认为0.1cos =θ。
于是有dh 7.29= ()mm d h 单位均为、 一般说来,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。
流体力学实验思考题解答(全)

流体力学课程实验思考题解答(一)流体静力学实验1、 同一静止液体内的测压管水头线是根什么线? 答:测压管水头指γpZ +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
从表1.1的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
2、 当0<B p 时,试根据记录数据确定水箱的真空区域。
答:以当00<p 时,第2次B 点量测数据(表1.1)为例,此时06.0<-=cm p Bγ,相应容器的真空区域包括以下3三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小杯的液面作一水平面,测压管4中该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度为0∇-∇=H A P γ的一段水注亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等,均为0∇-∇=H AP γ。
3、 若再备一根直尺,试采用另外最简便的方法测定0γ。
答:最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度w h 和o h ,由式o o w w h h γγ=,从而求得o γ。
4、 如测压管太细,对测压管液面的读数将有何影响?答:设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算γθσd h cos 4= 式中,σ为表面张力系数;γ为液体的容重;d 为测压管的内径;h 为毛细升高。
常温(C t ︒=20)的水,mm dyn /28.7=σ或m N /073.0=σ,3/98.0mm dyn =γ。
水与玻璃的浸润角θ很小,可认为0.1cos =θ。
于是有 dh 7.29= ()mm d h 单位均为、 一般说来,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。
流体力学实验思考题解答

流体力学实验思考题解答(一)流体静力学实验1、 同一静止液体内的测压管水头线是根什么线? 答:测压管水头指γpZ +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
从表1.1的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
2、 当0<B p 时,试根据记录数据确定水箱的真空区域。
答:以当00<p 时,第2次B 点量测数据(表1.1)为例,此时06.0<-=cm p Bγ,相应容器的真空区域包括以下3三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小杯的液面作一水平面,测压管4中该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度为0∇-∇=H AP γ的一段水注亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等,均为0∇-∇=H AP γ。
3、 若再备一根直尺,试采用另外最简便的方法测定0γ。
答:最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度w h 和o h ,由式o o w w h h γγ=,从而求得o γ。
4、 如测压管太细,对测压管液面的读数将有何影响?答:设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,σ为表面张力系数;γ为液体的容重;d 为测压管的内径;h 为毛细升高。
常温(C t ︒=20)的水,mm dyn /28.7=σ或m N /073.0=σ,3/98.0mm dyn =γ。
水与玻璃的浸润角θ很小,可认为0.1cos =θ。
于是有一般说来,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。
另外,当水质不洁时,σ减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角θ较大,其h 较普通玻璃管小。
土木工程流体力学实验报告实验分析与讨论答案

管路沿程阻力系数测定实验1. 为什么压差计的水柱差就是沿程水头损失?如实验管道安装成倾斜,是否影响实验成果?现以倾斜等径管道上装设的水银多管压差计为例说明(图中A —A 为水平线): 如图示O —O 为基准面,以1—1和2—2为计算断面,计算点在轴心处,设21v v =,∑=0jh,由能量方程可得⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=-γγ221121p Z p Z h f111222216.136.13H H h h H h h H p p +∆-∆-∆+∆+∆-∆+-=γγ112226.126.12H h h H p +∆+∆+-=γ∴ ()()122211216.126.12h h H Z H Z h f ∆+∆++-+=- )(6.1221h h ∆+∆=这表明水银压差计的压差值即为沿程水头损失,且和倾角无关。
2.据实测m 值判别本实验的流动型态和流区。
f h lg ~v lg 曲线的斜率m=1.0~1.8,即fh 与8.10.1-v 成正比,表明流动为层流(m=1.0)、紊流光滑区和紊流过渡区(未达阻力平方区)。
3.本次实验结果与莫迪图吻合与否?试分析其原因。
通常试验点所绘得的曲线处于光滑管区,本报告所列的试验值,也是如此。
但是,有的实验结果相应点落到了莫迪图中光滑管区的右下方。
对此必须认真分析。
如果由于误差所致,那么据下式分析d和Q的影响最大,Q有2%误差时,就有4%的误差,而d有2%误差时,可产生10%的误差。
Q的误差可经多次测量消除,而d值是以实验常数提供的,由仪器制作时测量给定,一般< 1%。
如果排除这两方面的误差,实验结果仍出现异常,那么只能从细管的水力特性及其光洁度等方面作深入的分析研究。
还可以从减阻剂对水流减阻作用上作探讨,因为自动水泵供水时,会渗入少量油脂类高分子物质。
总之,这是尚待进一步探讨的问题。
管路局部阻力系数测定实验三、实验分析与讨论1.结合实验成果,分析比较突扩与突缩在相应条件下的局部损失大小关系: 1)不同R e 的突扩ξe 是否相同?2)在管径比变化相同的条件下,其突扩ξe 是否一定大于突缩ξs ? 由式gv h j 22ζ= 及()21d d f =ζ表明影响局部阻力损失的因素是v 和21d d 。
流体力学实验-参考答案

设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造 成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体容量;为测压管的内径;为毛细升高。 常温的水,,。水与玻璃的浸润角很小,可以认为。于是有
从流动仪可见,突扩段的漩涡主要发生在突扩断面以后,而且与扩 大系数有关,扩大系数越大,漩涡区也越大,损失也越大,所以产生突 扩局部阻力损失的主要部位在突扩断面的后部。而突缩段的漩涡在收缩 断面均有。突缩前仅在死角区有小漩涡,且强度较小,而突缩的后部产 生了紊动度较大的漩涡环区。可见产生突缩水头损失的主要部位是在突 缩断面后。
因为计算流量是在不考虑水头损失情况下,即按理想液体推导的, 而实际流体存在粘性必引起阻力损失,从而减小过流能力,,即 〈1.0。 3.文丘里流量计能否倾斜安装,为什么? 如图所示
根据流体静力学方程 得 则
由图可知 式中,、、、分别为各测压管的液面读数。
因此,无论文丘里流量计是否倾斜安装,对测压管读数都不影 响。 4.文丘里管喉颈处容易产生真空,允许最大真空度为6-7mH2O。工程 中应用文丘里管时,应检验其最大真空度是否在允许范围内。根据你 的实验成果,分析本实验文丘里管喉颈处最大真空值为多少?
,相应容器的真空区域包括以下三个部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2 及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以 上由密封的水、气所占区域,均为真空区域。 (2)同理,过箱顶小不杯的液面作一水平面,测压管4中,该平面 以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区域。这 段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于 小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定。
流体力学实验思考题解答(全)

流体力学课程实验思考题解答(一)流体静力学实验1、 同一静止液体内的测压管水头线是根什么线? 答:测压管水头指γpZ +.即静水力学实验仪显示的测压管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
从表1.1的实测数据或实验直接观察可知.同一静止液面的测压管水头线是一根水平线。
2、 当0<B p 时.试根据记录数据确定水箱的真空区域。
答:以当00<p 时.第2次B 点量测数据(表1.1)为例.此时06.0<-=cm p Bγ.相应容器的真空区域包括以下3三部分:(1)过测压管2液面作一水平面.由等压面原理知.相对测压管2及水箱内的水体而言.该水平面为等压面.均为大气压强.故该平面以上由密封的水、气所占的空间区域.均为真空区域。
(2)同理.过箱顶小杯的液面作一水平面.测压管4中该平面以上的水体亦为真空区域。
(3)在测压管5中.自水面向下深度为0∇-∇=H A P γ的一段水注亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等.亦与测压管4液面高于小水杯液面高度相等.均为0∇-∇=H A P γ。
3、 若再备一根直尺.试采用另外最简便的方法测定0γ。
答:最简单的方法.是用直尺分别测量水箱内通大气情况下.管5油水界面至水面和油水界面至油面的垂直高度w h 和o h .由式o o w w h h γγ=.从而求得o γ。
4、 如测压管太细.对测压管液面的读数将有何影响?答:设被测液体为水.测压管太细.测压管液面因毛细现象而升高.造成测量误差.毛细高度由下式计算γθσd h cos 4= 式中.σ为表面张力系数;γ为液体的容重;d 为测压管的内径;h 为毛细升高。
常温(C t ︒=20)的水.mm dyn /28.7=σ或m N /073.0=σ.3/98.0mm dyn =γ。
水与玻璃的浸润角θ很小.可认为0.1cos =θ。
于是有 dh 7.29= ()mm d h 单位均为、 一般说来.当玻璃测压管的内径大于10mm 时.毛细影响可略而不计。
流体力学实验报告答案

流体力学实验报告答案实验名称:流体力学实验实验目的:1. 理解流体的性质以及流体流动规律;2. 掌握流速的测量方法;3. 学习流量计的使用,以及流量变化对管道流速和压力分布的影响;4. 探究雷诺数、流量和管道直径对管道压力、阻力系数的影响;5. 分析和计算流量、瞬时和平均流速、雷诺数等相关参数。
实验原理:1. 流体的性质:流体是一种没有固定形状、没有固定容积的物质。
它具有流动性、分子间的粘性、不可压缩性、容积变化、分子热运动等性质。
2. 流体流动规律:当流体沿管道流动时,由于慣性力、黏性力和壓力差等因素的作用,会产生压力、速度、流量等变化。
3. 测量方法流速的测量方法有瞬时法和积分法两种。
瞬时法适合于流速变化较慢的流体,积分法适用于流速变化较快的流体。
4. 流量计流量计是一种用于测量流量的设备,常用的有容积式流量计和速度式流量计两种。
5. 雷诺数雷诺数是衡量流体流动状态的重要参数,在流体流动中一般提到的雷诺数是指惯性力与黏性力之比。
实验装置:1. 管道:10m长、直径为50mm的圆管。
2. 流量计:速度式流量计。
3. 压力表:用于测量管道内的压力。
4. 流速计:用于测定流速。
5. 计时器:用于测定流量。
实验步骤:1. 打开水泵,将水从水箱中抽到管道中。
2. 连接流量计和压力表,记录不同流速下的压力、流量和流速。
3. 记录不同管道直径下的雷诺数、流量和压降。
4. 绘制压力和流量、流速和雷诺数的关系图。
5. 计算并分析实验数据,讨论雷诺数、管道直径、流量等变化对压力、阻力系数的影响。
实验结果:1. 流速计测量管道流速方式有瞬时测量和积分测量,经过比较后选择使用瞬时测量。
2. 测量不同流量下的压力和流量,发现流量与管道内压力呈线性关系,而流速则随流量的增加而减小。
3. 测定不同管道直径下的雷诺数、流量和压降,结果表明,当管道直径增大时,雷诺数减小,压降也相对减小。
4. 从实验结果分析,可知管道内的压力、流量和流速与雷诺数、管道直径、流量之间存在着密切的关系。
流体力学综合实验思考题答案

食品工程原理流体力学综合实验思考题答案汇总(河南工业大学粮油食品)1、实验中冷流体和蒸汽的流向,对传热效果有何影响?答:无影响。
因为Q=αA△tm,不论冷流体和蒸汽是迸流还是逆流流动,由于蒸汽的温度不变,故△tm不变,而α和A不受冷流体和蒸汽的流向的影响,所以传热效果不变2、在计算空气质量流量时所用到的密度值与求雷诺数时的密度值是否一致?它们分别表示什么位置的密度,应在什么条件下进行计算。
答:不一致。
计算空气质量流量时所用到的密度值是冷流体进口温度下对应的密度;求雷诺数时的密度值时是冷流体进出口算术平均温度对应的密度。
3、实验过程中,冷凝水不及时排走,会产生什么影响?如何及时排走冷凝水?如果采用不同压强的蒸汽进行实验,对α关联式有何影响?答:冷凝水不及时排走,附着在管外壁上,增加了一项热阻,降低了传热速率。
在外管最低处设置排水口,若压力表晃动,则及时打开排冷凝水阀门,让蒸汽压力把管道中的冷凝水带走在不同压强下测试得到的数据,将会对α产生影响,因为PV=nRT,P与V是变量,P变化后T也随之改变,T改变后,蒸汽进口处的温度就会改变,△tm也会改变1.在对装置做排气工作时,是否一定要关闭流程尾部的出口阀?为什么?答可以不关闭,因为流量调节阀的作用是调节流量的平衡的,避免压缩空气出现大的波动2.为什么排气?如何检测管路中的空气已经被排除干净?答:若测压管内存有气体,在测量压强时,水柱因含气泡而虚高,使压强测得不准确。
排气后的测压管一端通静止的小水箱中(此小水箱可用有透明的机玻璃制作,以便看到箱内的水面),装有玻璃管的另一端抬高到与水箱水面略高些,静止后看液面是否与水箱中的水面齐平,齐平则表示排气已干净3.以水做介质所测得的λ~Re关系能否适用于其它流体?如何应用?答:可以用于牛顿流体的类比,牛顿流体的本构关系一致。
应该是类似平行的曲线,但雷诺数本身并不是十分准确,建议取中间段曲线,不要用两边端数据。
雷诺数本身只与速度,粘度和管径一次相关,不同流体的粘度可以查表。
流体力学实验-参考答案

流体力学实验思考题参考答案流体力学实验室静水压强实验1.同一静止液体内的测压管水头线是根什么线 测压管水头指p z +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。
2.当0〈B p 时,试根据记录数据,确定水箱内的真空区域。
0〈B p ,相应容器的真空区域包括以下三个部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。
(2)同理,过箱顶小不杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区域。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定0γ。
最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h 和0h ,由式00h h w w γγ= ,从而求得0γ。
4.如测压管太细,对于测压管液面的读数将有何影响设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算γθσd h cos 4= 式中,σ为表面张力系数;γ为液体容量;d 为测压管的内径;h 为毛细升高。
常温的水,m N 073.0=σ,30098.0m N =γ。
水与玻璃的浸润角θ很小,可以认为0.1cos =θ。
于是有 d h 7.29= (h 、d 均以mm 计)一般来说,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。
另外,当水质不洁时,σ减小,毛细高度亦较净水小;当采用有机下班玻璃作测压管时,浸润角θ较大,其h 较普通玻璃管小。
如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。
因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。
流体实验答案

流体力学实验思考题解答(一)流体静力学实验1、 当0<B p 时,试根据记录数据确定水箱的真空区域。
答:以当00<p 时,第2次B 点量测数据(表1.1)为例,此时06.0<-=cm p Bγ,相应容器的真空区域包括以下3三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小杯的液面作一水平面,测压管4中该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度为0∇-∇=H A P γ的一段水注亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等,均为0∇-∇=H A P γ。
2、 若再备一根直尺,试采用另外最简便的方法测定0γ。
答:最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度w h 和o h ,由式o o w w h h γγ=,从而求得o γ。
3、 如测压管太细,对测压管液面的读数将有何影响?答:设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算γθσd h cos 4= 式中,σ为表面张力系数;γ为液体的容重;d 为测压管的内径;h 为毛细升高。
常温(C t ︒=20)的水,mm dyn /28.7=σ或m N /073.0=σ,3/98.0mm dyn =γ。
水与玻璃的浸润角θ很小,可认为0.1cos =θ。
于是有 dh 7.29= ()mm d h 单位均为、 一般说来,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。
另外,当水质不洁时,σ减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角θ较大,其h 较普通玻璃管小。
如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。
流体实验答案

流体力学实验思考题解答(一)流体静力学实验1、 当0<B p 时,试根据记录数据确定水箱的真空区域。
答:以当00<p 时,第2次B 点量测数据(表1.1)为例,此时06.0<-=cm p Bγ,相应容器的真空区域包括以下3三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小杯的液面作一水平面,测压管4中该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度为0∇-∇=H A P γ的一段水注亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等,均为0∇-∇=H A P γ。
2、 若再备一根直尺,试采用另外最简便的方法测定0γ。
答:最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度w h 和o h ,由式o o w w h h γγ=,从而求得o γ。
3、 如测压管太细,对测压管液面的读数将有何影响?答:设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,σ为表面张力系数;γ为液体的容重;d 为测压管的内径;h 为毛细升高。
常温(C t ︒=20)的水,mm dyn /28.7=σ或m N /073.0=σ,3/98.0mm dyn =γ。
水与玻璃的浸润角θ很小,可认为0.1cos =θ。
于是有一般说来,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。
另外,当水质不洁时,σ减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角θ较大,其h 较普通玻璃管小。
如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。
因为测量高、低压强时均有毛细现象,但在计算压差时。
相互抵消了。
4、 过C 点作一水平面,相对管1、2、5及水箱中液体而言,这个水平是不是等压面?哪一部分液体是同一等压面?答:不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。
流体力学实验报告思考题答案

流体力学实验报告思考题答案实验三流量测量2、为什么Q计算与Q实际不相等?因为Q计算是在不考虑水头损失情况下,即按理想液体推导的,而实际流体存在粘性必引起阻力损失,从而减小过流能力。
3、本实验中,影响文透利管流量系数大小的参数及因素有哪些?哪个参数最敏感?实验五恒定流能量方程实验1、测压管水头线和总水头线的变化趋势有何不同?为什么?测压管水头线沿程可升可降,线坡可正可负。
总水头线沿程只降不升,线坡恒为正。
水在流动过程中,依据一定边界条件,动能和势能可相互转换。
2、流量增加,测压管水头线有何变化?为什么?3、测点2.、3和测点10、11的测压管读数分别说明了什么问题?测点2、3位于均匀流断面,表明均匀流各断面上,其动水压强按静水压强规律分布。
测点10、11在弯管的急变流断面上,表明急变流断面上离心惯性力对测压管水头影响很大。
4、答案:(1)减小流量、(2)增大喉管管径(3)降低相关管线的安装高程(4)改变水箱中的液体高度管道喉管的测压管水头随水箱水位同步升高,但水箱水位的升高对提高喉管的压强效果不明显。
实验七管道局部阻力系数测定实验产生突扩局部阻力损失的主要部位在突扩断面的后部。
产生突缩水头损失的主要部位是在突缩断面后。
为了减小局部阻力损失,在设计变断面管道几何边界形状时应流线型化或实验八管道沿程阻力系数测定实验1、为什么压差计的水柱差就是沿程水头损失?实验管道向下倾斜安装,是否影响实验结果?在管道中的水头损失直接反应与水头压力,测力水头两端压差就等于水头损失。
不影响实验结果。
但压差计应垂直,如果在特殊情况下无法垂直,可乘以倾斜角度转化值。
3、实际工作中的钢管中的流动,大多为光滑紊流或紊流过渡区,而水电站泄洪洞的流动,大多为紊流阻力平方区,其原因何在?4、管道的当量粗糙度如何测得?5、本次实验结果与莫迪图吻合与否?试分析其原因。
实验九雷诺实验2、雷诺数的物理意义是什么?为什么雷诺数可以用来判别流态?雷诺数等号右边的分子分母部分分别反映了流动流体的惯性力和粘滞力的大小,是惯性力对粘滞力的比值。
流体实验答案

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载流体实验答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容流体力学实验思考题解答(一)流体静力学实验当时,试根据记录数据确定水箱的真空区域。
答:以当时,第2次B点量测数据(表1.1)为例,此时,相应容器的真空区域包括以下3三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小杯的液面作一水平面,测压管4中该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度为的一段水注亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等,均为。
若再备一根直尺,试采用另外最简便的方法测定。
答:最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度和,由式,从而求得。
如测压管太细,对测压管液面的读数将有何影响?答:设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容重;为测压管的内径;为毛细升高。
常温()的水,或,。
水与玻璃的浸润角很小,可认为。
于是有一般说来,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。
另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其较普通玻璃管小。
如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。
因为测量高、低压强时均有毛细现象,但在计算压差时。
相互抵消了。
过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平是不是等压面?哪一部分液体是同一等压面?答:不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。
流体力学实验思考题解答

流体力学实验思考题解答(一)流体静力学实验1、 同一静止液体内的测压管水头线是根什么线? 答:测压管水头指γpZ +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
从表1.1的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
2、 当0<B p 时,试根据记录数据确定水箱的真空区域。
答:以当00<p 时,第2次B 点量测数据(表1.1)为例,此时06.0<-=cm p Bγ,相应容器的真空区域包括以下3三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小杯的液面作一水平面,测压管4中该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度为0∇-∇=H AP γ的一段水注亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等,均为0∇-∇=H AP γ。
3、 若再备一根直尺,试采用另外最简便的方法测定0γ。
答:最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度w h 和o h ,由式o o w w h h γγ=,从而求得o γ。
4、 如测压管太细,对测压管液面的读数将有何影响?答:设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,σ为表面张力系数;γ为液体的容重;d 为测压管的内径;h 为毛细升高。
常温(C t ︒=20)的水,mm dyn /28.7=σ或m N /073.0=σ,3/98.0mm dyn =γ。
水与玻璃的浸润角θ很小,可认为0.1cos =θ。
于是有一般说来,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。
另外,当水质不洁时,σ减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角θ较大,其h 较普通玻璃管小。
流体力学实验思考题解答(全)

流体力学课程实验思考题解答(一)流体静力学实验1、 同一静止液体内的测压管水头线是根什么线 答:测压管水头指γpZ +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
从表的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
2、 当0<B p 时,试根据记录数据确定水箱的真空区域。
答:以当00<p 时,第2次B 点量测数据(表)为例,此时06.0<-=cm p Bγ,相应容器的真空区域包括以下3三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小杯的液面作一水平面,测压管4中该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度为0∇-∇=H AP γ的一段水注亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等,均为0∇-∇=H AP γ。
3、 若再备一根直尺,试采用另外最简便的方法测定0γ。
答:最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度w h 和o h ,由式o o w w h h γγ=,从而求得o γ。
4、 如测压管太细,对测压管液面的读数将有何影响答:设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算γθσd h cos 4=式中,σ为表面张力系数;γ为液体的容重;d 为测压管的内径;h 为毛细升高。
常温(C t ︒=20)的水,mm dyn /28.7=σ或m N /073.0=σ,3/98.0mm dyn =γ。
水与玻璃的浸润角θ很小,可认为0.1cos =θ。
于是有dh 7.29=()mm d h 单位均为、 一般说来,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。
最新流体力学实验思考题解答

流体力学实验思考题解答(一)流体静力学实验1、 同一静止液体内的测压管水头线是根什么线? 答:测压管水头指γpZ +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
从表1.1的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
2、 当0<B p 时,试根据记录数据确定水箱的真空区域。
答:以当00<p 时,第2次B 点量测数据(表1.1)为例,此时06.0<-=cm p Bγ,相应容器的真空区域包括以下3三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小杯的液面作一水平面,测压管4中该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度为0∇-∇=H AP γ的一段水注亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等,均为0∇-∇=H A P γ。
3、 若再备一根直尺,试采用另外最简便的方法测定0γ。
答:最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度w h 和o h ,由式o o w w h h γγ=,从而求得o γ。
4、 如测压管太细,对测压管液面的读数将有何影响?答:设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算γθσd h cos 4= 式中,σ为表面张力系数;γ为液体的容重;d 为测压管的内径;h 为毛细升高。
常温(C t ︒=20)的水,mm dyn /28.7=σ或m N /073.0=σ,3/98.0mm dyn =γ。
水与玻璃的浸润角θ很小,可认为0.1cos =θ。
于是有dh 7.29= ()mm d h 单位均为、 一般说来,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。
流体力学答案解析

流体力学答案流体力学课后答案 分析答案 解答BP1.1.1 根据阿佛迦德罗定律,在标准状态下(T = 273°K ,p = 1.013×105 Pa )一摩尔空气(28.96ɡ)含有6.022×10 23个分子。
在地球表面上70 km 高空测量得空气密度为8.75×10 -5㎏/m 3。
试估算此处 10 3μm 3体积的空气中,含多少分子数n (一般认为n <106 时,连续介质假设不再成立)答: n = 1.82×10 3提示:计算每个空气分子的质量和103μm 3体积空气的质量 解: 每个空气分子的质量为 g 1081.410022.6g 96.282323-⨯=⨯=m 设70 km 处103μm 3体积空气的质量为M g 1075.8)m 1010)(kg/m 1075.8(20318335---⨯=⨯⨯=M323201082.1g1081.4g 1075.8⨯=⨯⨯==--m M n 说明在离地面70 km 高空的稀薄大气中连续介质假设不再成立。
BP1.3.1 两无限大平行平板,保持两板的间距δ= 0.2 mm 。
板间充满锭子油,粘度为μ= 0.01Pa ⋅s ,密度为ρ= 800 kg / m 3。
若下板固定,上板以u = 0.5 m / s 的速度滑移,设油内沿板垂直方向y 的速度u (y)为线性分布,试求: (1) 锭子油运动的粘度υ; (2) 上下板的粘性切应力τ1、τ2 。
答: υ= 1.25×10 – 5 m 2/s, τ1=τ2 = 25N/m 2。
提示:用牛顿粘性定侓求解,速度梯度取平均值。
解:(1 ) /s m 1025.1kg/m800/sm kg 0.0125-3⨯===ρμν (2)沿垂直方向(y 轴)速度梯度保持常数,δμμττ/21u dydu==== (0.01Ns /m 2)(0.5m/s)/(0.2×10-3m)=25N/m 2BP1.3.2 20℃的水在两固定的平行平板间作定常层流流动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体力学实验思考题解答(一)流体静力学实验1、 同一静止液体的测压管水头线是根什么线? 答:测压管水头指γpZ +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
从表1.1的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
2、 当0<B p 时,试根据记录数据确定水箱的真空区域。
答:以当00<p 时,第2次B 点量测数据(表1.1)为例,此时06.0<-=cm p Bγ,相应容器的真空区域包括以下3三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小杯的液面作一水平面,测压管4中该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度为0∇-∇=H A P γ的一段水注亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等,均为0∇-∇=H A P γ。
3、 若再备一根直尺,试采用另外最简便的方法测定0γ。
答:最简单的方法,是用直尺分别测量水箱通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度w h 和o h ,由式o o w w h h γγ=,从而求得o γ。
4、 如测压管太细,对测压管液面的读数将有何影响?答:设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算γθσd h cos 4= 式中,σ为表面力系数;γ为液体的容重;d 为测压管的径;h 为毛细升高。
常温(C t ︒=20)的水,mm dyn /28.7=σ或m N /073.0=σ,3/98.0mm dyn =γ。
水与玻璃的浸润角θ很小,可认为0.1cos =θ。
于是有 dh 7.29= ()mm d h 单位均为、 一般说来,当玻璃测压管的径大于10mm 时,毛细影响可略而不计。
另外,当水质不洁时,σ减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角θ较大,其h 较普通玻璃管小。
如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。
因为测量高、低压强时均有毛细现象,但在计算压差时。
相互抵消了。
5、 过C 点作一水平面,相对管1、2、5及水箱中液体而言,这个水平是不是等压面?哪一部分液体是同一等压面?答:不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。
因为只有全部具备下列5个条件的平面才是等压面:(1) 重力液体;(2) 静止;(3) 连通;(4) 连通介质为同一均质液体;(5) 同一水平面而管5与水箱之间不符合条件(4),因此,相对管5和水箱中的液体而言,该水平面不是等压面。
※6、用图1.1装置能演示变液位下的恒定流实验吗?答:关闭各通气阀,开启底阀,放水片刻,可看到有空气由C 进入水箱。
这时阀门的出流就是变液位下的恒定流。
因为由观察可知,测压管1的液面始终与C 点同高,表明作用于底阀上的总水头不变,故为恒定流动。
这是由于液位的的降低与空气补充使箱体表面真空度的减小处于平衡状态。
医学上的点滴注射就是此原理应用的一例,医学上称之为马利奥特容器的变液位下恒定流。
※7、该仪器在加气增压后,水箱液面将下降δ而测压管液面将升高H ,实验时,若以00=p 时的水箱液面作为测量基准,试分析加气增压后,实际压强(δ+H )与视在压强H 的相对误差值。
本仪器测压管径为0.8cm,箱体径为20cm 。
答:加压后,水箱液面比基准面下降了δ,而同时测压管1、2的液面各比基准面升高了H ,由水量平衡原理有δππ44222D H d =⨯ 则 22⎪⎭⎫ ⎝⎛=D d H δ 本实验仪 cm d 8.0=, cm D 20= 故 0032.0=H δ于是相对误差ε有0032.00032.010032.01=+=+=+=+-+=H H H H H H δδδδδδε 因而可略去不计。
对单根测压管的容器若有10≤d D 或对两根测压管的容器7≤d D 时,便可使01.0≤ε。
(二)伯诺里方程实验1、 测压管水头线和总水头线的变化趋势有何不同?为什么?测压管水头线(P-P)沿程可升可降,线坡J P 可正可负。
而总水头线(E-E)沿程只降不升,线坡J P 恒为正,即J>0。
这是因为水在流动过程中,依据一定边界条件,动能和势能可相互转换。
如图所示,测点5至测点7,管渐缩,部分势能转换成动能,测压管水头线降低,J P >0。
,测点7至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,J P <0。
而据能量方程E 1=E 2+h w1-2,h w1-2为损失能量,是不可逆的,即恒有h w1-2>0,故E 2恒小于E 1,(E-E )线不可能回升。
(E-E )线下降的坡度越大,即J 越大,表明单位流程上的水头损失越大,如图上的渐扩段和阀门等处,表明有较大的局部水头损失存在。
2、 流量增加,测压管水头线有何变化?为什么?1)流量增加,测压管水头线(P-P )总降落趋势更显著。
这是因为测压管水头222gA Q E pZ H p -=+=γ,任一断面起始的总水头E 及管道过流断面面积A 为定值时,Q 增大,g v 22就增大,则γp Z +必减小。
而且随流量的增加,阻力损失亦增大,管道任一过水断面上的总水头E 相应减小,故γpZ +的减小更加显著。
2)测压管水头线(P-P )的起落变化更为显著。
因为对于两个不同直径的相应过水断面有g A Q g A Q A Q g v g v v p Z H P 2222222212222222122ζζγ+-=+-=⎪⎪⎭⎫ ⎝⎛+∆=∆ g A Q A A 212222122⎪⎪⎭⎫ ⎝⎛-+=ζ式中ζ为两个断面之间的损失系数。
管中水流为紊流时,ζ接近于常数,又管道断面为定值,故Q 增大,H ∆亦增大,()P P -线的起落变化更为显著。
3、 测点2、3和测点10、11的测压管读数分别说明了什么问题?测点2、3位于均匀流断面,测点高差0.7cm ,γpZ H P +=均为37.1cm (偶有毛细影响相差0.1mm ),表明均匀流各断面上,其动水压强按静水压强规律分布。
测点10、11在弯管的急变流断面上,测压管水头差为7.3cm ,表明急变流断面上离心惯性力对测压管水头影响很大。
由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量力,除重力外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。
在绘制总水头线时,测点10、11应舍弃。
※4、试问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的影响情况。
下述几点措施有利于避免喉管(测点7)处真空的形成:(1)减小流量,(2)增大喉管管径,(3)降低相关管线的安装高程,(4)改变水箱中的液位高度。
显然(1)(2)(3)都有利于阻止喉管真空的出现,尤其(3)更具有工程实际意义。
因为若管系落差不变,单单降低管线位置往往就可以避免真空。
例如可在水箱出口接一下垂90度的弯管,后接水平段,将喉管高程将至基准高程0-0,比位能降至零,比压能γp 得以增大(Z ),从而可能避免点7处的真空。
至于措施(4)其增压效果是有条件的,现分析如下:当作用水头增大h ∆时,测点7断面上γpZ +值可用能量方程求得。
取基准面及计算断面1、2、3如图所示,计算点选在管轴线上(以下水拄单位均为cm )。
于是由断面1、2的能量方程(取132==αα)有21222212-+++=∆+w h g v p Z h Z γ (1) 因21-w h 可表示成 g v g v d l h c s e w 22232.12322.121ζζζλ=⎪⎪⎭⎫ ⎝⎛++=-此处2.1c ζ是管段1-2总水头损失系数,式中e ζ、s ζ分别为进口和渐缩局部损失系数。
又由连续方程有 g v d d g v 222342322⎪⎪⎭⎫ ⎝⎛= 故式(1)可变为 g v d d h Z p Z c 2232.1423122⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛-∆+=+ζγ (2) 式中g v 23可由断面1、3能量方程求得,即gv g v Z h Z c 22233.12331ζ++=∆+ (3) 3.1c ζ是管道阻力的总损失系数。
由此得 ()()3.131231/2c h Z Z g v ζ+∆+-=,代入式(2)有⎪⎪⎭⎫ ⎝⎛+∆--⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛-∆+=+3.1312.14231221c c h Z Z d d h Z p Z ζζγ (4) ()22p Z +随h ∆递增还是递减,可由()()h p Z ∆∂+∂/22加以判别。
因 ()()()3.12.14232211c c d d h p Z ζζγ++-=∆∂+∂ (5) 若()[]()01/13.12.1423>++-c c d d ζζ,则断面2上的()γp Z +随h ∆同步递增。
反之,则递减。
文丘里实验为递减情况,可供空化管设计参考。
因本实验仪137.123=d d ,501=Z ,103-=Z ,而当0=∆h 时,实验的()622=+p Z ,19.3322=g v ,42.9223=g v ,将各值代入式(2)、(3),可得该管道阻力系数分别为5.12.1=c ζ,37.53.1=c ζ。
再将其代入式(5)得 ()()0267.037.5115.137.11422>=++-=∆∂+∂h p Z γ 表明本实验管道喉管的测压管水头随水箱水位同步升高。
但因()()h p Z ∆∂+∂/22接近于零,故水箱水位的升高对提高喉管的压强(减小负压)效果不明显。
变水头实验可证明结论正确。
5、 毕托管测量显示的总水头线与实测绘制的总水头线一般都有差异,试分析其原因。
与毕托管相连通的测压管有1、6、8、12、14、16和18管,称总压管。
总压管液面的连线即为毕托管测量显示的总水头线,其中包含点流速水头。
而实际测绘的总水头是以实测的()γp Z +值加断面平均流速水头g v 22绘制的。
据经验资料,对于园管紊流,只有在离管壁约d 12.0的位置,其点流速方能代表该断面的平均流速。
由于本实验毕托管的探头通常布设在管轴附近,其点流速水头大于断面平均流速水头,所以由毕托管测量显示的总水头线,一般比实际测绘的总水头线偏高。
因此,本实验由1、6、8、12、14、16和18管所显示的总水头线一般仅供定性分析与讨论,只有按实验原理与方法测绘的总水头线才更准确。
(五)雷诺实验※1、流态判据为何采用无量纲参数,而不采用临界流速?雷诺在1883年以前的实验中,发现园管流动存在着两种流态——层流和紊流,并且存在着层流转化为紊流的临界流速'v ,'v 与流体的粘性ν、园管的直径d 有关,既 ()d f v ,'ν= (1)因此从广义上看,'v 不能作为流态转变的判据。