球头铣刀高速铣削铣削力建模分析
基于布尔运算的球头铣刀瞬时切削厚度建模及分析
引言
在五轴铣削中,球头铣刀在自由曲面加工中有 较好的适应性,广泛应用于汽车覆盖件、航空发动机 叶片等具有复杂外形产品的生产制造中。作为铣削 加工物理仿真研究的核心内容,对加工过程中球头 铣刀的切削力进行预测是保证加工精度、提高切削 稳定性的重要基础,而对球头铣刀的瞬时切削厚度 进行精确建模则是准确预测切削力的关键。然而, 球头铣刀铣削加工过程非常复杂,存在相互关联的 加工参数,并且球头铣刀球头部分的复杂几何形状、 沿切削刃不断变化的切削特性、铣刀沿切削路径切 削时刀具与工件之间不断变化的接触面、刀具与接 触面的振动等因素使得对球头铣刀瞬时切削厚度的 准确建模变得困难[1]。
Abstract:Theestablishmentofinstantaneouscuttingthicknessmodelisoneofthekeystoaccuratelypredictthecut tingforceinthefiveaxismillingofballheadcutters.Atpresent,mostmodelsproposedbyscholarspaymoreattentionto themodelingofthecontactareabetweenthecutterandtheworkpiece.Thesemodelsonlyconsiderthecuttingthicknessof theteethcurrentlyinvolvedincutting,butignoretheinfluenceoftheteethontheworkpiecebeforecutting.Thispaperputs forwardakindofinstantaneouscuttingthicknessbasedonthetheoryofBooleanoperationmodelingmethodwhichstarts from thetheoryofinstantaneouscuttingthicknessandconsiderstheinfluenceofalltheteethoncuttingthickness.Andthe auxiliaryentitymodelcreatedbythetoothcurveoftheballendcuttertoextracttheinstantaneouscuttingthicknessisintro duced.Finally,thevalidityofthemodelisverifiedbymillingforceexperiments.
高速铣削中切削力的研究
碳纤维复合材料钻削过程中,钻削轴向力是 制孔过程中最重要的参数之一,是引起孔壁分层 、孔出入口毛刺和撕裂的主要原因。钻削碳纤维 复合材料过程中,无论是硬质合金刀具还是焊接 PCD刀具,钻削轴向力随着进给速度的增大而 增大,随着主轴转速的增加而减小,而且进给速 度对钻削轴向力的影响要远大于主轴转速对钻削 轴向力的影响,这就决定了碳纤维复合材料高质 量钻削制孔通常要采用高主轴转速、小进给速度 。
切削热来自于三个方面:切屑底层金属的摩擦挤压变形热、切削层 金属的剪切变形热和己加工表面上的摩擦挤压变形热,据此将切屑区 划分为三部分:剪切区(第1变形区)温度场、刀/屑接触区(第2变形区) 温度场和刀/工接触区(第3变形区)温度场。
切削热在切削过程中的大致分为:1)大约80%的热量是切屑变形产 生的;2) 18%的热量产生在切屑和刀具的接触面上(第2变形区);3) 2%产生在刀刃上。产生的热量有三种耗散渠道:1)大约95%以上由切屑 带走;2) 2%留在工件上;3) 3%由刀具散热。因此从以上的数据来分 析可知,切削热主要来自第1变形区的剪切热和第2变形区的摩擦热。
PCD和YG6X刀具后刀面切削刃磨损比较。在相 同刀具使用寿命下,即在钻完第48个孔 后,对两种刀具的后刀面切削刃磨损量进行观测比较。分 析发现,在主轴转速为10000r/min、进给速度 为25mm/min的条件下,普通硬质合金刀具的切削 刃磨损严重,后刀面磨损量达到了622μ m超过了工业 上刀具的磨钝标准0.6mm;而焊接PCD刀具后刀面 切削刃磨损量仅为42μ m切削刃仍比较锋利,切削轻快 。 PCD制孔刀具在加工碳纤维复合材料中的优点明显 优于硬质合金刀具,PCD刀具具有硬度高、导热性好、 耐磨性强等优点,无论在加工质量、加工效率和刀具寿命 等方面都体现出其巨大的优越性。
高速铣削过程中铣削力的建模
Abs r c t a t: The miln o c sm o ln nd sm ua in o l e d m i i n hih s e d ma h n n r c sa e sud e li g f r e dei g a i lto fbal n l ng i g p e c i i g p o es r t id.The l
且在航空航天 、 汽车工业 、 模具及轻工产品制造等重
要工 业领域 创造 了显 著 的效 益 。铣削是 应用极 为 广 泛 的一种 加工 方式 , 球头铣 刀 的刃 线形 状复 杂 , 头 球 部分 切 削条件 恶劣 , 刀具 承受 的轴 向力 较大 , 削力 铣 难 以 精 确 建 模 ,是 铣 削 过 程 仿 真 中 的 难 点 之
sedm ciigH M) 近些年 发展 起来 的先进制 造 pe ahnn , S 是 技术 , 目前发 达 国家 关于 高速加 工技 术的研 究 已经 进 人 成熟 应用 阶段 , 高速切 削加工技 术 已成为 切削加 工 的主流 。高 速加工 的相关 技术 水平 正在逐 步提 高 , 并
维普资讯
第 1卷 第 2 7 期 20 0 7年 6月
天 津 工 程 师 范 学 院 学 报 J OUR ALOF T AN I NI E I Y OF T CH N I JN U V RST E NOL OGYAND E DUC T O A IN
p e s r n cin a t g o er k c n e f n c r o sd r d t o si t emi i gfr e T eee n a r e rs u ea d f t c i n t ef ea d t a kf ea e c n ie e c n t u et l n c . h lme t f c i r o n h a a h l a o t h l o l o c mp n n s o M n h oa l n o c d la e e tb ih d o e b ss o e a o e fu d t n 、B h l n o o e t f HS a d t e ttlmi i g f r e mo e r sa ls e n t a i f t b v o n a i s y te mi i g l h h o l e p r n s i v i a e h o r cn s f h u t gf r efr r n h g p e c ii gp o e s x e me t , t a d t s ec re t e so ec t n c me i hs e d ma h n n r c s . i l t t i o o i
面向球头铣刀多轴铣削加工的铣削力系数辨识
面向球头铣刀多轴铣削加工的铣削力系数辨识王博;黎柏春;杨建宇;王宛山【摘要】提出了一种适用于球头铣刀多轴铣削加工的铣削力系数辨识方法.首先,将剪切力系数考虑为轴向位置角κ的多项式函数,推导了基于平均铣削力的铣削力系数辨识模型.然后,设计了多组刀具轴线与工件表面夹角不同的槽切铣削实验来实现铣削力系数辨识,以保证通过实验辨识得到的铣削力系数包含了球头铣刀不同姿态切削对铣削力的影响因素.最后,通过实验验证了该方法的正确性和可靠性.实验结果表明,该辨识方法相比于基于瞬时铣削力的辨识方法具有更好的抗干扰能力和更高的辨识精度,适用于球头铣刀多轴铣削加工的铣削力预测.【期刊名称】《东北大学学报(自然科学版)》【年(卷),期】2018(039)011【总页数】6页(P1630-1635)【关键词】球头铣刀;多轴铣削;铣削力;铣削力系数;系数辨识【作者】王博;黎柏春;杨建宇;王宛山【作者单位】东北大学机械工程与自动化学院,辽宁沈阳 110819;东北大学机械工程与自动化学院,辽宁沈阳 110819;东北大学机械工程与自动化学院,辽宁沈阳110819;东北大学机械工程与自动化学院,辽宁沈阳 110819【正文语种】中文【中图分类】TH164铣削力是加工过程中的重要物理参数,也是进一步研究铣削加工过程的基础和前提.早在20世纪90年代,Lee等[1]就详细论述了根据正交切削数据预测球头铣刀槽切铣削力的方法,提出的微元切削力模型沿用至今.近年随着球头铣刀多轴铣削加工的广泛应用,铣削力预测的相关研究成为热点 [2-4].可靠的铣削力预测不仅取决于准确的铣削力模型,还依赖于准确的铣削力系数.因此,铣削力系数辨识(求解)对铣削力预测至关重要.铣削力系数与铣削力模型、刀具材料、工件材料、刀具几何形状和切削状态等因素密切相关,难以直接求解,常用方法是通过实验逆解铣削力系数,即铣削力系数辨识.早期的Altintas等[1,5]推导了正交切削数据与铣削力系数之间的关系模型,并利用该关系模型进行了球头铣刀和平底铣刀的铣削力预测研究.Gonzalo等[6]提出了利用瞬时铣削力辨识得到正交铣削的铣削力系数.Cao等[7]提出了考虑铣刀倾角的铣削力系数辨识方法.Wang等[8]通过线性拟合实验测得平均铣削力数据来反解得到铣削力系数.Wojciechowski等[9]提出了根据瞬时铣削力辨识得到铣削力系数的方法.Mithilesh等[10]提出了基于平均铣削力辨识得到球头铣刀铣削力系数的方法.上述相关研究可分为基于平均铣削力和基于瞬时铣削力2种辨识方法.其中,基于平均铣削力的方法可降低干扰、误差对辨识结果的影响,但需进行多次实验测量,而基于瞬时铣削力的方法则正好相反.在基于瞬时铣削力进行面向球头铣刀多轴铣削的铣削力系数辨识研究中发现该方法受干扰较大,存在较大误差[11].因此,为了提高系数辨识的抗干扰能力,本文将在已有研究的基础上,基于平均铣削力的辨识方法进行面向球头铣刀多轴铣削加工的铣削力系数辨识建模和实验研究.1 铣削力系数辨识模型在前期研究中,完成了面向球头铣刀多轴铣削的铣削力建模,并通过实验验证该模型的正确性[11].因此,本文以该模型为基础推导基于平均铣削力的铣削力系数辨识模型.该整体铣削力模型为(1)式中相关符号变量、向量和矩阵的几何意义或计算表达式详见文献[11]中的阐述. 铣削力系数包括犁耕力系数和剪切力系数.大量研究表明,犁耕力系数Kte,Kre,Kae 一般为常数,剪切力系数Ktc,Krc,Kac则是与切削刃微元点位置有关的函数.因此,采用多项式函数的形式将剪切力系数表示为轴向位置角κ的多项式函数:(2)式中:Ktc0,Krc0,Kac0,…,Ktch,Kr ch,Kach均是待辨识的常数;h为剪切力系数多项式的阶次.根据平均铣削力的定义和式(1)所描述的铣削力模型可得到平均铣削力的预测模型为(3)式中:分别为球头铣刀旋转一周时预测的平均铣削力在刀具坐标系下的x,y,z分量;T 为刀具旋转一周的时间,即周期.通过实验测量值可由式(4)计算得到平均铣削力:(4)式中,分别为通过实验测量值计算得到的平均铣削力在刀具坐标系下的x,y,z分量;分别为测量得到的铣削力在刀具坐标系下的x,y,z分量.结合式(1)~式(4),利用预测值和测量值相等可得到铣削力系数辨识模型的基本形式:(5)式中:A为辨识系数矩阵;K为待辨识的系数.(6)(7)由式(5)~式(7)可以看出,一次槽铣的实验数据只能构成3个方程,而待辨识的系数则远多于3个,属于不定方程组.因此,需要进行多组实验以构成方程个数大于或等于待辨识系数个数的方程组为(8)式中:分别为各组槽铣实验中测量铣削力的平均值;A1,A2,…,Ag分别为各组槽铣实验所对应的待辨识系数矩阵.采用多组槽铣实验数据是提高辨识结果精度的有效方法,但同时构成超定方程组.为此可利用最小二乘法寻找最小二乘估计结果即方程组解.(9)2 铣削力系数辨识的实验研究2.1 铣削力系数辨识实验方案为了验证前述建立的铣削力系数辨识模型,选用45号钢(硬度为32HRC)作为加工材料,直径为8 mm的钨钢球头铣刀(含涂层ALTiN,详细参数如图1和表1所示)作为铣削刀具,设计多组槽切铣削加工实验,各组铣削参数如表2所示.图1 球头铣刀的几何形状Fig.1 Geometrical shape of a ball-end milling cutter表1 球头铣刀的几何参数Table 1 Geometrical parameters of a ball-end cutter名称数值名称数值直径/mm8锥角/(°)0球头半径/mm4刃长/mm14刀长/mm60刃数245°处的端刃法前角/(°)5周刃前角/(°)545°处的端刃法后角/(°)5周刃后角/(°)10第一后角面宽/mm0.4公称螺旋角/(°)30表2 铣削参数Table 2 Milling parameters序号主轴转速nr·min-1铣削深度apmm进给速率vfmm·min-1每齿进给量fzmm·z-1倾斜角λf(°)111940.5119.40.0590211940.5238.80.190311941.0119.40.0590411941. 0238.80.190511940.5119.40.0575611940.5238.80.175711941.0119.40.0575 811941.0238.80.175911940.5119.40.05601011940.5238.80.1601111941.011 9.40.05601211941.0238.80.160表2中的倾斜角为铣削时刀具轴线与工件表面的夹角,其详细的几何关系如图2所示.该倾斜角的设置是为了保证铣削力系数辨识过程中球头表面上的切削刃能得到充分考虑,以符合多轴铣削加工时刀轴方向任意变化的情况.2.2 铣削力系数辨识实验设备本文用于铣削力系数辨识实验的设备主要包括机床和铣削力测量系统:机床则采用实验室现有的DMG-DMU50五轴数控机床;铣削力测量系统主要是由Kistler9275三向压电测力仪、Kistler5070电荷放大器和Kistler2855A5数据采集卡组成.各实验设备和铣削力测量系统的连接原理,如图3所示.图2 铣削参数的几何意义Fig.2 Geometrical meaning of milling parameters 图3 实验设备Fig.3 Experimental equipment2.3 铣削力系数辨识实验的测量结果和辨识结果根据上述方案进行槽切实验,图4为进行数次槽切实验后的工件.同时,以4 776 Hz 的采样频率测得表2所对应的12组槽切实验的铣削力数据.由于篇幅所限,此处给出表2中第4组铣削实验测得的铣削力数据如图5所示.图4 实验工件Fig.4 An experimental workpiece对图5所描述的铣削力测量值以及其他的铣削力测量值,进行初步分析和讨论. 1) 根据前述的进给速度(119.4 mm·min-1或238.8 mm·min-1)、槽切行程(40 mm)和刀具半径(4 mm)可计算得到每次槽切铣削的耗时为22.11 s或11.06 s.该耗时即为存在铣削力的时间区域,显然图5中测量铣削力的时间区域与此相符.图5 第4组槽切铣削实验测得的铣削力Fig.5 The forth group of the milling forces acquired in slot milling experiments2) 根据铣削加工的特点可知,槽切铣削是一种周期性的切削过程,其周期为刀具旋转一周的耗时与刀具齿数的比值,由此可计算得到文中槽切实验的周期应为0.025 13 s.该值正是图5中测量铣削力所体现的周期大小.3) 根据文献[11]中建立铣削力模型的论述可定性推断本文的槽铣实验过程中铣削力在测力仪坐标系下的基本情况为:铣削力在y轴上的分量必为负值,在z轴上的分量必为正值.显然图5中的测量值符合该情况.4) 在槽切铣削过程中,由于刀具切入和切出工件时切削状态存在从无到有和从有到无的过程,因此铣削力应在切削开始阶段存在逐渐增大,切削结束阶段存在逐渐减小的情况.显然图5中的铣削力测量值在开始和结束阶段均存在逐渐变化过程.5) 由于测量系统中存在的随机干扰信号以及切削过程中的振动,使得测量的铣削力存在一定的局部波动,但铣削力信号远大于这些局部波动,因此测量铣削力的整体趋势并未受到影响,具有较高的可靠度.综合上述的分析和讨论,铣削力测量值具有较高的可信度,可代入辨识模型中进行铣削力系数辨识.但由于测量铣削力是工件所受作用力在测力仪坐标系下的分量,而辨识模型中的铣削力是刀具所受作用力在刀具坐标系下的分量,为此需根据坐标系之间的变换关系以及作用力和反作用力的原理将计算测量铣削力平均值的式(4)改写为(10)式中,为测力仪坐标系到刀具坐标系的旋转变换矩阵,可根据测力仪坐标系和刀具坐标系的位置关系直接得到(11)将各组测量铣削力分别代入式(10)中可计算出相应的平均铣削力如表3所示.表3 平均铣削力Table 3 Average of milling forces N序号FexFeyFez189.999810.004270.72322129.336012.504799.81593120.076738. 371388.42234194.254659.0185137.4547571.028442.930241.50226104.4495 61.981257.11077130.472472.250859.00208168.0017110.837480.7492935.3 10866.966821.52741047.217297.541429.329311100.1543109.194537.38061 2147.7859174.811253.3666表3为12组槽切铣削实验的平均铣削力,按照表中平均铣削力分量的个数,理论上可辨识得到36个系数,即剪切力系数的多项式可为10次多项式.但为了降低干扰和误差,保证辨识结果的精度,本文取剪切力系数为轴向位置角的4次多项式函数.至此,将实验数据代入辨识模型中可解得铣削力系数为式(12).2.4 铣削力系数辨识结果的实验验证为了验证文中铣削力系数辨识结果的正确性,可将辨识得到的铣削力系数用于多轴铣削的铣削力仿真预测中,同时进行相应的铣削实验,测量实际的铣削力,以实现定量地对比分析和判断.实验验证的铣削仍然以45号钢(硬度为32HRC)作为加工材料,以及直径为 8 mm 的钨钢球头铣刀(含涂层ALTiN,其详细参数如图1和表1所示)作为加工刀具.铣削方式为单向刀具轨迹,顺铣,主轴转速为1 194 r/min,进给速度为119.4 mm/min,切深为0.5 mm.为了考虑多轴铣削,特将工件设计为圆柱曲面,铣削过程以车铣复合的形式进行.由于进行车铣复合的铣削,涉及工作台的旋转,因此平板测力仪已不适用于铣削力的测量.鉴于此,本文选用Kistler 9123C1111压电测力平台对刀具所受的铣削力进行测量,测量过程中设定铣削力信号的采样频率为4 776 Hz.图6为实验中的工件、实验加工效果以及测力仪平台.(12)图6 多轴铣削实验Fig.6 A multi-axis milling experiment根据上述的铣削参数,将本章辨识得到的铣削力系数代入铣削力模型中,可计算得到铣削力的仿真预测值.将仿真预测值和实验测量值进行对比分析,其结果如图7所示. 图7为铣削加工时刀具所受作用力的仿真预测值和测量值在刀具坐标系下的分量.从图中可以看出,虽然铣削力的仿真预测值和实验测量值存在一定误差,但是在整体趋势上具有较高的吻合度.为了进一步定量比较两者之间的误差大小,可根据图7中的数据计算得到预测值和测量值之间的平均铣削力误差为:各轴分量的平均铣削力误差均在几N左右,其误差在合理范围之内.而且相比于文献[11]中基于瞬时铣削力的辨识结果,具有更好的抗干扰能力,提高了辨识结果精度.综合预测值和实验值的吻合度,以及平均铣削力的误差大小可以得出:通过本文建立的铣削力系数辨识模型及设计的铣削力系数辨识实验,可以得到具有较高精度和可靠性的铣削力系数,适用于球头铣刀多轴铣削加工的铣削力预测.图7 铣削力的仿真预测值和实验测量值Fig.7 Simulated and measured milling forces(a)—x方向的铣削力; (b)—y方向的铣削力; (c)—z方向的铣削力.3 结论1) 根据球头铣刀多轴铣削的整体铣削力模型,同时将剪切力系数考虑为切削刃微元点轴向位置角的多项式,建立了基于平均铣削力的铣削力系数辨识模型来提高辨识过程抗干扰能力和辨识精度,取得了良好的效果.2) 本文在设计铣削力系数辨识实验时,引入了铣削力倾斜角来保证在铣削力系数辨识实验过程中球面上的切削刃均能参与切削,从而进一步保证辨识得到的铣削力系数适用于球头铣刀多轴铣削的铣削力预测.3) 通过铣削力系数辨识实验,以及多轴铣削的铣削力仿真预测值和测量值的对比实验,验证了本文的铣削力系数辨识建模和实验研究的正确性和可靠性.同时,实验结果表明,本文的铣削力系数辨识方法适用球头铣刀多轴铣削加工的铣削力预测,具有较好的预测精度.参考文献:【相关文献】[1] Lee P,Altinta Y.Prediction of ball-end milling forces from orthogonal cuttingdata[J].International Journal of Machine Tools and Manufacture,1996,36(9):1059-1072. [2] Abainia S,Bey M,Moussaoui N,et al.Prediction of milling forces by integrating a geometric and a mechanistic model[C]//Proceedings of the World Congress on Engineering.London,2012:4-6.[3] Tuysuz O,Altintas Y,Feng H Y.Prediction of cutting forces in three and five-axis ball-end milling with tool indentation effect[J].International Journal of Machine Tools and Manufacture,2013,66:66-81.[4] Geng L,Liu P L,Liu K.Optimization of cutter posture based on cutting force prediction for five-axis machining with ball-end cutters[J].The International Journal of Advanced Manufacturing Technology,2015,78(5/6/7/8):1289-1303.[5] Altinta Y,Armarego E J A.Prediction of milling force coefficients from orthogonal cutting data[J].Transactions of the ASME,1996,118:216-224.[6] Gonzalo O,Beristain J,Jauregi H,et al.A method for the identification of the specific force coefficients for mechanistic milling simulation[J].International Journal of Machine Tools and Manufacture,2010,50(9):765-774.[7] Cao Q,Zhao J,Han S,et al.Force coefficients identification considering inclination angle for ball-end finish milling[J].Precision Engineering,2012,36(2):252-260.[8] Wang M,Gao L,Zheng Y.An examination of the fundamental mechanics of cutting force coefficients[J].International Journal of Machine Tools and Manufacture,2014,78:1-7. [9] Wojciechowski S.The estimation of cutting forces and specific force coefficients during finishing ball end milling of inclined surfaces[J].International Journal of Machine Tools and Manufacture,2015,89:110-123.[10] Dikshit M K,Puri A B,Maity A,et al.Determining cutting force coefficients from instantaneous cutting forces in ball end milling[J].International Journal of Machining and Machinability of Materials,2016,18(5/6):552-571.[11] 黎柏春,王振宇,王国勋,等.基于瞬时铣削力的球头铣刀铣削力系数辨识[J].东北大学学报(自然科学版),2016,37(5):678-682.(Li Bai-chun,Wang Zhen-yu,Wang Guo-xun,et ling force coefficient identification of ball-end milling based on instantaneous milling forces[J].Journal of Northeastern University(Natural Science),2016,37(5):678-682.)。
基于自由曲面类零件的球头立铣刀切削力建模
基于自由曲面类零件的球头立铣刀切削力建模蔡永林; 鞠楠【期刊名称】《《北京交通大学学报》》【年(卷),期】2019(043)004【总页数】7页(P109-115)【关键词】自由曲面; 切削力模型; 球头刀; 刀轴矢量; 切削实验【作者】蔡永林; 鞠楠【作者单位】北京交通大学机械与电子控制工程学院北京100044【正文语种】中文【中图分类】TG702自由曲面类零件主要应用于模具、航空航天、汽车制造等领域,此类零件由于几何结构复杂,主要在多轴数控机床上采用切削加工的方式完成加工.在切削过程中,刀具和工件之间的切削力直接影响切削热的产生、刀具的磨损及表面质量.因此研究切削力的产生机理,并建立切削力预测模型,进而掌握切削力的变化规律对切削加工中的刀具、夹具选择以及工艺参数优化可以起到一定的指导作用.为了建立切削力模型,研究参数对切削力的影响规律,国内外学者进行了大量的研究工作.Lee等[1-2]通过一系列正交切削实验测得了切削过程中的剪切屈服应力、前刀面上的平均摩擦力系数以及剪切角等参数,采用经典的斜角切削变换方法得到了球头立铣刀切削刃上切削力的分布情况;姚继铭[3]基于剪切变形理论和摩擦理论,并根据直角切削基本原理以及斜角切削模型,由刀具几何参数、剪切角、摩擦角和切削材料屈服极限推导出了切向、轴向、径向切削力的理论模型;罗智文等[4]针对曲线端铣加工工艺,提出了一种以斜角切削为基础的切削力建模方法,根据最小能量原理,构建了微元刃中力矢量、速度矢量、流屑角、法向摩擦角、法向剪切角及剪应力等切削参数之间的约束;Hendriko等[5]使用解析边界模拟的方式建立了仿真系统,用于计算采用环形刀加工时的切屑几何体以及切削力;Nishida等[6]建立了一种用于球头刀切削力预测的仿真平台,通过体素模型表达刀具切削刃和工件在当前时刻的几何形状,并计算出加工过程中未变形切屑厚度的离散值,进而得到切削力;Irgolic等[7]通过人工神经网络模型对切削深度、进给速度等工艺参数和切削力的关系进行建模;王立涛等[8]通过多因素正交铣削实验,得到了航空铝合金7050-T7451的切削力经验公式模型.综上,对于切削力建模主要有理论分析法、有限元仿真法、神经网络模型法以及经验公式法.理论分析往往需要对实际问题进行大量简化,因此得到的切削力模型必然存在偏差;采用有限元仿真计算切削力通常需要的计算量大,且当加工对象改变时必须重新进行计算;神经网络模型法和经验公式法本质上都属于一种数据拟合的方式,区别在于二者采用的拟合函数不同,但为了保证模型的可靠性都需要进行大量的切削实验以获取切削力数据.本文作者采用的切削力模型认为切削力和切削载荷存在比例关系,比例系数即为切削力系数,该系数可通过少量实验获得,所得到的切削力模型具有较大的使用价值,可以用于切削工艺参数的优化.1 刀具几何模型的精确数学描述切削力在刀具刃线上的分布规律和刀具的几何结构有关,为了建立描述球头刀铣削过程的切削力模型,需要对球头刀的刃线进行数学建模.首先以刀尖点为原点,刀具轴线为Z轴,以经过刀尖点并和刀具刃线相切的直线为X轴,建立刀具局部坐标系,并在该坐标系下采用广义螺旋运动理论描述刀具球刃部分曲线.根据球头刀的几何特征,可以沿轴线将其划分成圆柱体和球头两部分.刀具球头部分刃线的几何抽象如图1所示,对于半径为R的球头刀,将刀具球刃视为点Q绕某个固定回转轴做广义螺旋运动形成的轨迹.图1 刃线几何结构Fig.1 Cutting edge geometry点Q处于其轨迹上任意位置时都可以将此时的速度v分解成3个正交分量,即v=vt+vr+va(1)式中:vt、vr和va分别为Q点的周向、径向和轴向速度;ω为Q点的角速度.对于恒定导程球头刀,刃线的导程为定值l,根据运动学关系有(2)式中:P为诱导导程,是和刃线导程有关的常数,表示点Q转过单位角度上升的高度.刀具的局部螺旋角β定义为刃线上一点的切线和经过该点的回转面母线的夹角,任意时刻Q点的瞬时转动半径为ρ,且3个速度分量满足(3)局部螺旋角β满足(4)回转半径ρ和点Q的纵坐标z满足(5)将式(5)代入式(4)中可得tan β=[R2-(R-z)2]/RP(6)对于恒定导程球头刀,刃线上任意一点的局部螺旋角β只与该点的纵坐标z有关,当z=0时,局部螺旋角β=0,当z≥R时,局部螺旋角β达到最大并且保持不变.2 切削力模型的建立计算加工过程中的切削力的步骤为:1)将刀具沿刀轴划分成切削微元,对于任意一个纵坐标为z的微元,其厚度为dz;2)根据切削力模型计算参切区域中每个微元的微元切削力矢量;3)计算刃线上参与切削的区域;4) 对微元切削力进行矢量数值积分得到切削力合力,积分限由参切区域确定.2.1 计算微元切削力微元切削力如图2所示,对于刀刃线上一点Q,作用在其上的微元切削力可以分解成3个正交分量dFr、dFa和dFt,其中k是点Q对应的轴向位置角.图2 微元切削力Fig.2 Micro-cutting force根据微元切削力模型各切削力分量满足关系[9](7)式中:dS表示微元切削刃长度;db表示微元切削刃宽度;Kie和Kis分别为两组与刀具几何结构以及材料有关的切削力系数,需通过实验确定,i=r,a,t;tn表示未变形切屑厚度,在数值上等于已加工表面和刀齿下一刀即将加工出的表面的径向距离.作广义螺旋运动的点Q在t时刻的速度分解图如图3所示,其中vr以及va的合速度为vs,vs和v的夹角即为此时的局部螺旋角β,经过长度为dt的微小时间段之后Q在v和vs方向上的位移分别为dS和db,即(8)图3 广义螺旋运动速度分解Fig.3 Velocity decomposition of generalized spiral motion对于平面类零件该参数可通过几何推导得出,加工平面类零件且刀具垂直工件表面的情况下切屑的形成过程见图4.刀具从已加工表面出发,沿进给方向运动到下一个刀位点,刃线的扫略面和工件实体围成的区域构成了即将形成的切屑几何体.图4 平面类零件切屑形成过程Fig.4 Cutting forming process of plane partsO1为当前刀具刀心点,O2为刀心点下一位置,两点之间的距离即为每齿进给量fz.刀具半径为R,对于切削刃上一点D,其轴向位置角为k,切入角为θ,过O1做AB的垂线得交点O3.由几何关系可知(9)过AB作垂直于平面xO2y的剖面,连接O2D得交点C,CD的长度即为tn.经过几何推导可得(10)可知,tn的长度由刃线上点的位置确定.但对于自由曲面类零件,由于刀轴矢量可以处于任意姿态,不能直接得到tn的解析解.故而提出了一种适用于自由曲面类零件的快速计算tn的算法,可以将切削力模型推广到加工任意形状零件的情况.实际加工具有复杂曲面的零件时,刃线上点的运动是刀具自传、平移以及姿态变换的叠加,相邻刀位点之间刃线的扫略面如图5所示,图5中直线为刀具进给方向,螺旋曲线表示刀具刃线,刃线扫掠面几何结构复杂.考虑到刀具的自传速度远大于进给速度,因此可以用球面近似代替图中的扫掠面求解此时的tn,并且将刀具的每次进给等效成加工微小斜面.根据式(10)可知,tn每齿进给量fz以及刃线上点在工件局部坐标系内的位置决定.加工自由曲面类零件时刀具坐标系Ot-XtYtZt和工件局部坐标系Ow-XwYwZw之间的位姿关系如图6所示.Ow-XwYwZw以刀触点为原点,刀触点法矢量为Z轴,进给方向为X轴,通过右手定则确定Y轴.Ot-XtYtZt以刀尖点为原点,刀轴矢量为Z轴,通过刀轴矢量与Ow-XwYwZw中坐标系的矢量叉乘确定其余坐标轴.图5 刀具刃线扫略面Fig.5 Sweeping surface of cutting edge图6 坐标变换Fig.6 Coordinate transformation定义Ot-XtYtZt和Ow-XwYwZw之间的变换矩阵为Mt,该矩阵由刀轴矢量的姿态确定.刃线上任意一点Q,其在Ot-XtYtZt内的坐标为[x1,y1,z1]T,且有:(11)式中:φ0表示z1=0时,刃线的切线与坐标系X轴的夹角;r为中间变量.根据变换矩阵可知Q点在Ow-XwYwZw内的坐标满足[x2,y2,z2]T=Mt[x1,y1,z1]T(12)则在Ow-XwYwZw中可以计算出对应的切入角θ和轴向位置角k满足(13)将式(13)代入式(10)中即可得到适合求解自由曲面类零件加工的未变形切屑厚度tn 的算法.2.2 计算刃线参与切削区域图7 自由曲面类零件切屑形成过程Fig.7 Cutting forming process of free-form surface parts计算刃线参切区域的目的是确定矢量积分的积分限.刀具对工件进行切削加工过程中,在任意时刻刃线上只有部分微元参与了切削,所有参与切削的微元构成了此时的刃线参切区域,该区域的范围因受到刀轴矢量、切深等因素的影响会发生动态变化.为了确定这一区域,可以采用实体求交或者Z-map[9-10]等方式,但计算效率偏低,在实际应用中受到限制.本文通过分析切屑形成过程,得到了刃线参切区域满足的几何条件,可以快速确定积分限.加工任意形状零件时切屑的形成过程如图7所示.其中Ti,j为刀具位于第i行刀轨的第j个刀位点时的刀轴矢量,相邻两行刀轨之间的距离为ae,切削深度为ap,刀具每齿进给量为fz,切屑几何体是由切深平面、已加工表面和待加工表面所围成的区域.刀具处于Ti+1,j+1位姿时,刃线上只有一部分微元参与切削,且该部分曲线位于待加工表面上.对于刃线上任意一点Q,其在工件局部坐标系Ow-XwYwZw内的表示为[x2,y2,z2]T,根据切屑几何体的约束条件可知,坐标须满足(14)刃线上的参切区域和切屑几何体外表面存在两个交点,可通过二分法确定,两点之间的曲线段构成了参切区域.3 切削力系数识别实验3.1 切削力系数识别原理切削力系数反映了刀具的几何结构以及刀具和工件的材料组合对切削力的影响,与工件的几何特征无关.为建立完整的切削力模型,需要确定模型中的切削力系数Kie 和Kis,切削力模型的可靠性在很大程度上取决于切削力系数的准确性,即模型中的切削力系数是否能准确反映实际加工状态.切削力系数识别可归纳为3种方式:1)平均切削力常系数.假设切削力系数为常数,但对于球头刀,在刀具球头部分其有效切削半径随切削刃高度而变化,将切削力系数视为常数得到的模型精度较差.2)正交切削刀斜角切削系数变换.通过几何变换将正交切削的系数变换到斜角切削,这种转换是在大量简化假设下建立的,并且需要了解刀具详细的几何参数以及材料的物理性能,在实际应用中受到限制.3)平均切削力变系数.将Kie视为常数,考虑到刀具切削半径的变化,将Kis视为切削微元轴向位置z的多项式函数.故本文采用该方法进行切削力系数识别.采用几何参数已知的球头刀对钛合金平板进行槽切加工,根据不同切削参数的组合可采集到对应切削状态下的切削力.为减少实验误差,对于每种切削状态计算其对应的平均切削力,然后通过切削力模型计算相同切削条件下的理论值,二者建立等量关系,即可求得模型中切削力系数.Kis和切削微元高度z的关系可表示为(15)实验的目的即确定式中的多项式系数,设多项式系数组成的列向量为g,通过理论计算得到g的系数矩阵为A,实验测得的平均切削力为列向量F,则有Ag=F(16)可求得切削力系数列向量g为g=(ATA)-1ATF(17)理论上高次多项式的拟合能力较强,可以采用任意高次多项式表达切削力系数,但这会造成ATA趋于病态矩阵,使得实验结果过拟合,综合考虑以上因素,本次实验采用二次多项式表达Kis,同时将Kie等效成常数.3.2 钛合金槽切实验实验所需硬件条件有:1)五轴数控加工中心;2)Kistler(9129AA)测力仪以及相关采集设备;3)TC4钛合金毛坯;4)直径为8 mm的双齿球头刀,公称螺旋角30°.由于槽切加工时,刀具轴线垂直工件表面,刀具和工件接触区域的几何结构简单,同时可以减少刀具偏心对实验结果的影响,因此设计了9组不同切削参数组合的槽切切削实验,实验中选用的切削参数如表1所示.表1 切削参数Tab.1 Cutting parameters序号主轴转速/(r/min)切削深度/mm每齿进给量/mm12 0001.20.02522 5002.00.02033 0003.00.017425001.20.02053 0002.00.01762 5003.00.02072 0002.00.02583 0001.20.01793 0002.50.017切削力系数识别所使用的实验装置如图8所示,毛坯通过紧固螺栓和测力仪连接,刀具按照一定的切深沿直线进给.刀具和毛坯之间的切削力信号通过测力仪的压电传感器被接收设备采集.图8 实验装置Fig.8 Experimental device实验得到的不同切削参数下的平均切削力如表2所示.根据1~7组实验平均切削力的实验值可得到切削力系数为(18)至此,得到了适合自由曲面类零件加工的完整切削力模型.表2 实验结果Tab.2 Experimental results N序号FXFYFZ133.09-10.5169.99249.53-24.7992.34382.42-92.94137.90440.05-15.9585.45571.40-81.31179.206142.70-155.00313.107101.30-119.20267.10854.07-33.41109.809124.20-79.47173.603.3 切削力模型验证为了验证得到的切削力模型是否能真实反映实际切削加工中的切削力变化情况.选取第8、9组实验的数据,通过对比切削力的实验值和模型理论值验证模型的准确性.按照切削力模型可计算出刀具处于任意位姿时的切削力合力,但实际加工中由于不能确定在某一时刻刀具转过的角度,因此不能确定模型中的切入角θ,但可计算出刀具处于某个位姿时可能达到的最大切削力,故可通过对比切削力合力的最大值验证模型.以第8组实验的数据为例进行分析实验数据的变化规律.实验采集到切削力分量FX、FY和FZ随时间的变化以及切削力合力的统计分布如图9所示,由实验结果可知合力呈双峰分布.切削力分量的空间分布如10(a)所示,以模型计算出的当前切削条件下的切削力最大值Fmax为半径,原点为球心作球面得图10(b),该球面是切削力点云数据的一个紧界,计算可知91%的数据位于边界内部,说明切削力系数可靠,切削力模型达到了较好的精度.图9 实验结果数据Fig.9 Data of experimental results图10 切削力空间分布Fig.10 Spatial distribution of cutting force4 结论1)将切削时力计算模型推广到了加工自由曲面类零件的情况,通过钛合金的切削实验得到模型中的切削力系数,计算结果表明模型计算的理论值和实验数据相符. 2)刀轴矢量的变化影响未变形切屑厚度,从而改变切削力的大小和方向.可根据切削力模型在进行刀具轨迹规划时优化每个刀位点的刀轴矢量,以减小切削力和加工变形,提高加工质量.参考文献【相关文献】[1] LEE P, ALTINTA Y. Prediction of ball-end milling forces from orthogonal cutting data[J]. International Journal of Machine Tools and Manufacture, 1996, 36(9): 1059-1072.[2] ALTINTA Y, LEE P. A general mechanics and dynamics model for helical end mills[J]. CIRP Annals, 1996, 45(1): 59-64.[3] 姚继铭.薄壁构件铣削加工过程力学建模及其稳定性分析[D].天津:天津大学,2017.YAO Jiming. Mechanical modeling and stability analyze for the milling process of thin-walled work-piece[D]. Tianjin: Tianjin University, 2017. (in Chinese)[4] 罗智文, 赵文祥, 焦黎, 等. 基于斜角切削的曲线端铣切削力建模[J]. 机械工程学报, 2016,52(9): 184-192.LUO Zhiwen, ZHAO Wenxiang, JIAO Li, et al.Cutting force modeling in end milling of curved geometries based on oblique cutting process[J]. Journal of Mechanical Engineering, 2016,52(9): 184-192.(in Chinese)[5] HENDRIKO H, KISWANTO G, ISTIYANTO J, et al. Implementation of analytical boundary simulation method for cutting force prediction model in five-axis milling[J]. Machining Science and Technology, 2018, 22(1): 163-179.[6] NISHIDA I, OKUMURA R, SATO R, et al. Cutting force simulation in minute time resolution for ball end milling under various tool posture[J]. Journal of Manufacturing Science and Engineering, 2018, 140(2): 021009.[7] IRGOLIC T, CUS F, PAULIC M, et al. Prediction of cutting forces with neural network by milling functionally graded material[J]. Procedia Engineering, 2014, 69: 804-813.[8] 王立涛, 柯映林, 黄志刚. 航空铝合金7050-T7451铣削力模型的实验研究[J]. 中国机械工程, 2003, 14(19): 1684-1686.WANG Litao,KE Yinglin,HUANG Zhigang.Experimental study on milling-force model inaviation aluminum-alloy 7050-T7451[J].China Mechanical Engineering,2003,14(19):1684-1686.(in Chinese)[9] WEI Z C, WANG M J, ZHU J N, et al. Cutting force prediction in ball end milling of sculptured surface with Z-level contouring tool path[J]. International Journal of Machine Tools and Manufacture, 2011, 51(5): 428-432.[10] LIU L,YAN G R,WANG Z J,et al.Empty tracks optimization based on Z-Mapmodel[J].IOP Conference Series:Materials Science and Engineering,2017,274:012019.。
考虑刀具变形的球头铣刀铣削力建模与仿真
1 参与切削 的切削刃段信息的提取
参与切削的切削刃段的数 目和分布是决定铣削
力 大 小和 方 向的一 个 关 键 因 素 。在 复杂 曲面加 工
中,为准确抽取该信息,需要采用适当的方法对被 加工工件、刀具、被切除材料等实体进行描述和运 算。实体造型技术为三维物体提供了准确、完整、 无二义性的描述手段,采用以实体造型技术为基础 的直接布尔运算法进行加工过程几何仿真 ,通用性 好 ,精度高口。因此,本文选用 以商用 C DC M 】 A /A 软件 U I GI 为平台的实体造型方法确定铣刀上参与 切削的部分。 算法的基本过程如下: 通过交互操作、 数据 文 件( 转换和 ) 递或执 行 用户 程序 自动 生成 的 传 方法产生被加工工件的初始模型,用 曲线拟台的方 法 将球头铣 刀上的各部 分切削刃统一以分段三次 N R S 曲线表示 ;对于刀位文件中的每一走刀路 U B 径,用 多个 简单实体 的布尔并运 算产 生刀具扫描 体,用 原工件 实体和该刀具扫描体进行布尔差运
空、航天以及模具制造业中,球头刀具铣削过程分 析和铣削力仿真对加工精度预测、铣削过程适应控 制 以及工艺参数优化都有非常重要 的意义。复杂曲 面产品的加工 ,往往需要采用 “ 长径 比”较大的细
长刀具 ,在铣 削力 的作用 下 ,刀具的变 形及其 对 切
了抽取参与切削切削刃段信息的实体造型方法 ,给 出了刀具进给速 度 的三维 描述方 案 ,推 导 了三维 进 给运动下考虑刀具变形的瞬时切厚计算公式,建立 了三分量的球头铣刀铣削力模型,构造了改进的铣 削力收敛算法。在此基础上,开发了完善的球 头刀 具三轴铣削过程铣削力仿真系统,和 以往的研究相 比,具有完整、精确、合理、通用的特点。
二刃球头铣刀铣削力建模与仿真研究
() c
7一
() d
第一作者简介 : 高庆伟( 9 8 ) 男 , 17 一 , 山东苍 山人 , 湖南湘 潭大学 机 制专业学士 , 助理 工 程 师 , 究 方 向 : 械传 动 系 统设 计 及 机 械 研 机
CAD/ CAE。
图 2 球头铣 刀微元 离散模型
r J
( ]= )
Ni N| Ni
式 ( ) :F 1 中 Ci (
,,) 常数 ;z 为微 元 层 厚 y 为 d=
Ni
i
度 为 每齿 进 给 量 ; 转 速 ; 、 n、 为修 正 n为 K K K
系数 。 离散刀 刃 点 在 不 同刀 具 转 角 位 置 的 每齿 进 给
I n  ̄ 2I r
CF h
某一 时刻 给定 刀具 转 角位 置 为 , 用在 刀 具 上 的 作
c n
 ̄ ] 2n r
() 1
瞬 时切 削 合 力 在 、, z 方 向 的 分 量 ( ) l和 、
F ( 、 ( 可 以表示 为 : y ) )
[ ( ) F ( y )
的重 要 刀具 , 是数控 机 床 和加 工 中心 等 数 控设 备 最 常见 的刀具 ¨ 。 , 汽车 、 _ j在 航空 航天 及机 械 电子 等 制
元层 厚 度 , r为球 头 铣 刀半 径 , F 、 F 、 F 为微 径 d d 。 d , 向力 、 切 向力 和微轴 向 力 。 微
⑥
2 1 SiT c. nn. 0 0 c eh E gg .
矿 冶 技 术
二 刃球 头 铣 刀铣 削 力建 模 与 仿真 研 究
高庆 伟 刘辞英h
具有加工倾角的球头铣刀切削力模型(中英)
Journal of Materials Processing Technology189 (2007) 85–96Modelling of cutting forces in ball-end milling with tool–surface inclination Part II.Influence of cutting conditions,run-out,ploughing and inclination angleM.Fontaine∗,A.Devillez,A.Moufki,D.DudzinskiLaboratoire de Physique et M´e canique des Mat´e riaux,UMR CNRS7554,ISGMP,Universit´e de Metz,Ile du Saulcy,57045Metz,FranceReceived in revised form12December2006;accepted12January2007AbstractThis study focuses on the influence of tool–workpiece inclination on cutting forces in ball-end milling.Cutting forces calculated from a thermomechanical modelling,presented in part I of this paper[M.Fontaine,A.Moufki,A.Devillez,D.Dudzinski,Modelling of cutting forces in ball-end milling with tool–surface inclination.Part I.Predictive force model and experimental validation,J.Mater.Process.Technol.189 (2007)73–84],are here discussed in detail and compared to experimental results.The proposed modelling of ball-end milling was applied to machining operations with straight tool paths and various tool–surface inclinations.Both ramping and contouring configurations were studied.The experimental results were obtained from ball-end milling tests performed on a three-axis CNC equipped with a Kistler dynamometer.The attention is here pointed on the shape and level of the cutting forces signals.The evolution of the maximum values of cutting forces acting on the tool is investigated in order to identify the optimum inclination angle.Influences of cutting conditions,radial run-out and ploughing on cutting forces and cutting stability are discussed.© 2007 Elsevier B.V. All rights reserved.Keywords:Ball-end milling;Cutting forces;Cutting conditions;Tool run-out;Ploughing;Tool–surface inclination1.IntroductionMany authors have proposed efficient models to predict cut-ting forces in milling operations.Some experimental results are available for steels[2–15],aluminium alloys[14–18],zinc alloys[19,20]or aeronautical alloys[6,21–23].However,the factors which influence these results are rarely discussed.It is well known that some parameters influence significantly the cut-ting forces level and evolution,and it is important to consider them in machining models.In ball-end milling,the main param-eters are the cutting conditions,the tool run-out,the ploughing phenomenon and the tool–surface inclination.They are treated separately in some works but never considered together.In the literature,the experimental cutting forces results for ball-end milling operations are often relative to a small set of cutting conditions(spindle frequency,feed values,depths∗Corresponding author.Tel.:+33381666721;fax:+33381666700.E-mail addresses:fontaine@univ-metz.fr,michael.fontaine@ens2m.fr(M.Fontaine).of cut,cutting mode).The main reason is that experimental tests require a lot of time and are expensive.Many experi-mental works present results for various cutting speed values associated tofixed feed rate[3,4,6,11,13,15,18,19,21],oth-ers study the effects of both feed rate and spindle frequency [7,11,12,16,17,22].The usual device to measure cutting force is piezoelectric dynamometer,however for high speed milling, its use is limited by the dynamic response of the used sen-sors.Then,only a reduced number of studies deal with high cutting speeds[6,7,12,22].Some authors propose results for different axial depths of cut[7,15,19,21],various radial depths of cut[13,17]or both axial and radial depths of cut [3,4,6,12,16,20,22].The down-cutting mode is widely used in these works but it is rarely compared to the up-cutting mode [10].The tool run-out is classically modelled for face milling oper-ations,only some authors propose solutions to take into account of this kinematical default in ball-end milling.In this way,the run-out is usually considered as a radial eccentricity only(radial run-out)[3,14]and the tilt angle(axial run-out)is rarely taken into account.In ball-end milling,the usual limited diameter0924-0136/$–see front matter© 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jmatprotec.2007.01.00786M.Fontaine et al./Journal of Materials Processing Technology 189 (2007) 85–96and length of the tool reduce its influence.It is interesting to introduce this axial run-out to calculate accurately the work-piece/cutter engagement domain in a completefive-axis milling force model[22].These previous works showed that radial run-out has a huge influence on the edges engagement and on the cutting forces level,especially for high cutting speeds and small chip thicknesses.Non-shearing phenomena occur around the cutting edge and create additional forces acting on the tool.They can be deter-mined and modelled with a slip-line approach in orthogonal cutting[24,25].In ball-end milling,they are implicitly taken into account in mechanistic models but without a specific identifica-tion.Nevertheless,some authors separate the shearing process from the edge phenomena by the use of shearing and edge coef-ficients identified from turning tests[21]or directly from milling tests by inverse method and last square adjustment or convolu-tion integral approach[8,15,18,26,27].Ploughing seems to be the main edge phenomenon influencing cutting forces,and its identification should be realized from an analytical modelling in order to identify properly the cutting forces due to localised shearing.The tool–surface inclination in ball-end milling was the pur-pose of many studies during the last10years.It allows to control the cutting forces level and their repartition on the tool by avoiding the tool tip where occurs geometric and kinetic problems and by changing the contact zone between tool and workpiece.This inclination can be used in every ball-end milling operations even for sculptured surface machining but it is commonly studied from the cases of plane or round sur-faces.Many authors approach this optimisation parameter from experimental tests and milling models to analyse its influence on cutting forces[5,6,8–10,15,17,19,20],on tool or part deflection and machining error[4,10,11,28–30],on surface topography [8–10,29,31,32],on tool life[7],and even on tool/workpiece contact area[10,11,15,19]and on chip geometry[8,10].Some reference inclination angles can be extracted from these studies but the obtained values depend on the optimisation procedure. Finally,to control the process,the main points seem to be the global cutting forces level,the process stability and the surface integrity.In order to study the role played by the cutting parameters in ball-end milling,the cutting forces predicted from a ther-momechanical model[1]and obtained from experimental tests are compared and discussed.The model is applied to ball-end milling of inclined plane surfaces on a three-axis machine in order to simplify the observation and to compare the results with those available in literature.The machined material was a 42CrMo4steel,typically used in plastic injection moulds manu-facturing.Its characteristics such as strain hardening,strain rate sensitivity and thermal softening are known.Some results are presented for the four reference strategies in slotting and the influences of cutting conditions,radial run-out,ploughing phe-nomenon and tool–surface inclination angle are discussed from the whole experimental data obtained for the model validation presented in part I[1].Some inclination values are presented to give information about optimisation of global forces level and ploughing ling tests and simulationsThe proposed experimental and calculated results and the discussions correspond mainly to slotting tests with a path inter-val superior to the nominal diameter of the mill( p>12mm). These tests appear to be the most appropriate to analyse the influ-ence of each parameter separately because the full tool radial immersion stabilizes the process and creates important values of cutting forces;hence,the measures quality is optimum and some parasitic dispersions are avoided.2.1.Cutting strategiesFig.1presents the reference surfaces and the four tested cutting strategies for slotting.There are two strategies in ramp-ing with two different directions of tool path along Z-axis: upward ramping or up-ramping(Fig.1(a)),downward ramping or down-ramping(Fig.1(b));and two strategies in contouring with two different main cutting modes:down-cutting contouring (Fig.1(c)),and up-cutting contouring(Fig.1(d)).The uncut surface is a inclined plane with respect to the hor-izontal reference plane(X,Y)around Y-axis,and the inclination angle is denotedδ(Fig.1).The tool Z-axis and the machine Z-axis are merged(three-axis milling configuration).The refer-ence point of the global coordinate system(GCS)is taken at the intersection of three solid planes at a corner of the workpiece, point O in Fig.1.The local coordinate system(LCS)associated to the tool isfixed at the tool tip E.2.2.Experimental setupThe tests were conducted on a42CrMo4steel(equivalent to AISI4142)under dry conditions on a vertical three-axis CNC milling machine.A six-components Kistler dynamome-ter(model9265B)has been used to measure cutting forces components.The output signals were recorded and stocked on a PC Dewetron console through a height-channel Kistler charge amplifier.The signals were selected at the middle of the workpiece and the voltage/time signals were transformed into force/rotation angle ones.A spectrum analysis was con-ducted for each experimental signal to check the stability.Then, some signals were lightly low-passfiltered to suppress some accelerometer noise due to vibrations.A twofluted ball-end mill(referenced51221)from Diager-Industrie company with a nominal diameter of12mm,a nominal helix angle of17◦,and a normal rake angle of0◦on ball part was used in the experiments:R0=6mm;i0=17◦;αn=0◦.The spindle frequency and the feed rate werefixed at the fol-lowing values,respectively:Ω=5000rpm,f t=0.05mm/tooth and per revolution.The Kistler dynamometer was clamped in an inclined position on the machine table(Fig.2(a)).Five values of inclination angle were chosen:δ=0◦,5.07◦,10.43◦,15.26◦and20.17◦.The specimen was a parallelepiped with a height of 20mm,a length and a width of50mm(Fig.2(b)).The normal depth of cut was taken constant:d n=1.5mm.Slot tests were conducted with a path interval of p=15mm.M.Fontaine et al./Journal of Materials Processing Technology 189 (2007) 85–9687Fig.1.Tool path directions in three-axis ball-end milling of an inclined surface.(a)Up-ramping,(b)down-ramping,(c)down-cutting contouring,and (d)up-cutting contouring.The tool run-out was measured with a dial indicator fixed on the machine table and touching the cylindrical part of the mill.2.3.ModellingThe geometrical and thermomechanical models used to cal-culate the cutting forces were presented in the Part I of this work[1].The model parameters are here reminded:•Shear angle coefficients:A 1=40◦;A 2=0.5.•Main friction coefficient:μf =1.04(λf =46◦).•Parameters of the Johnson–Cook constitutive law:A =612MPa;B =436MPa;˙γ0=0.001s −1;n =0.15;m =0.008;ν=1.46;T r =T w =293K;T m =1793K.Fig.2.Ball-end milling tests on a specific inclined workpiece device.(a)Dynamometer in inclined position and (b)detail of test workpiece and tool.88M.Fontaine et al./Journal of Materials Processing Technology 189 (2007) 85–96•Other useful material parameters:ρ=7800kg/m 3;c =500J/(kg K);β=0.9.•Primary shear zone thickness:h =parison between calculated and experimental resultsFigs.3–6present the measured and predicted cutting forces acting on the tool for the four different milling strategies men-tioned above (Fig.1):upward ramping (or up-ramping)(Fig.3),downward ramping (or down-ramping)(Fig.4),contouring by the left (or down-cutting contouring)(Fig.5),and contouring by the right (or up-cutting contouring)(Fig.6).The presented values of inclination angle δare quite high:15◦for the ramp-ing tests and 20◦for the contouring ones.Due to a tool change,the run-out parameters (eccentricity e and position angle ψe ),measured with a dial indicator,are different in ramping and in contouring tests.The curves shapes of the measured and predicted cutting forces are very similar for all the configurations with a good reproduction of the tool entries and exits in the workpiece mate-rial.The discrepancy in cutting forces level between the two teeth due to tool run-out is well reproduced by the model.The specific influence of this offset is discussed in the next section.The forces level slightly differs;smaller values were obtained from the simulation.The cutting forces level was always well predicted for F x and F y cutting force components (offset under 15%),but a more important amplitude offset appears on F z in particular for the case of down-ramping (up to 30%)(Fig.4).The amplitude offsets are mainly due to the repetitive entries of the cutting edges in the workpiece material,which induce cutting instability.The used low pass filtering does not suppress all per-turbations because all the representative harmonics of the spindle frequency must be conserved.This instability can be observed on the curves around the zero force value.It is not well reproduced by the simulation because the used cutting model is based on continuous cutting process.It can be noticed that the measured signals along the Z -axis are lightly more unstable than along X -or Y -axis.Some deformation phenomena occurring around the cutting edge and on its clearance face,in particular ploughing effects,are also responsible of these existing discrepancies.This phenomenon and its influence are presentedbelow.Fig.3.Measured and predicted cutting forces for up-ramping.Ω=5000rev/min,f t =0.05mm/tooth, p =12mm,e =0.01mm,ψe =80◦,and δ=15◦.M.Fontaine et al./Journal of Materials Processing Technology 189 (2007) 85–9689Fig.4.Measured and predicted cutting forces for down-ramping.Ω=5000rev/min,f t=0.05mm/tooth, p=12mm,e=0.01mm,ψe=80◦,andδ=15◦.3.Influence of cutting conditions,tool run-out and ploughing3.1.Influence of cutting conditionsThe global level of cutting forces decreases with increasingvalues of cutting velocity V,and high values of V tend to stabilizethe process and the signals.The thermomechanical approachadopted here gives better results at higher cutting speed[33]andthe discrepancy between measured and calculated forces tendsto decrease when V increases.It can be noted that the feed ratevariation affects directly the cutting forces,indeed these valuesdepends proportionally on the undeformed chip thickness t0.The highest tested value of feed rate(0.2mm/rev)tends to limitthe ploughing effect but may increase tool deflection and toolwear(directly linked to the cutting forces level).Decreasing tool path interval p naturally reduces the cut-ting forces values but the recorded signals for small values of p(semi-finishing operations)are more often unstable.These experimental signals could be compared to calculated onesobtained by using an enhanced version of the model taken into account of tool deflection and chatter vibration.Neverthe-less,these semi-finishing results underline the discrepancy of forces repartition between“up”strategies(up-ramping and up-contouring[1])and the others:in these favourable cases,the global cutting forces level decreases and the repartition is more uniform on the different axes.This fact is very important to consider for the tool deflection limitation.Finally,the down-cutting configuration tends to stabilize the cutting process like it can be seen on the measured signals and to provide better surfacefinish,particularly for small values of tool path interval p.The up-cutting configuration is more efficient when the tool tip is widely used for cutting(downward ramping typically)by limiting edge phenomena,and for high values of path interval p(slotting or roughing).3.2.Influence of tool run-outTool deflection and vibrations are avoidable by limiting and controlling the cutting conditions and by choosing stiff tools and tool-holders.But there is another problem,which is difficult to control:the tool run-out.In milling,this geometrical default can90M.Fontaine et al./Journal of Materials Processing Technology189 (2007) 85–96Fig.5.Measured and predicted cutting forces for down-cutting contouring (+Y ).Ω=5000rev/min,f t =0.05mm/tooth, p =12mm,e =0.008mm,ψe =110◦,and δ=20◦.be due to tool itself (wear,asymmetry,insert setting,dynamic imbalance and thermal deformation)but it is mainly due to the offset between the position of the tool rotation axis and the spin-dle rotation axis.The consequence is a tool rotation around the spindle axis with an eccentricity.This eccentricity modifies the tool engagement and the local cutting conditions (cutting veloc-ity and angles).Then,the run-out has a direct effect on the cutting forces level and variation.It depends on the geometrical quality of the spindle and tool holder.Its effect is particularly significant when the undeformed chip thickness t 0reaches small values,and in this case,one or several cutting edges may be out of any working position (no cutting).Without run-out modelling,the forces predicted by the model are average values and a calculation error is introduced.This error can reach 15%in some tests corresponding to a cutting force discrepancy of 30%between the two teeth.Introduce the radial tool run-out in the modelling reduces significantly the discrepancy between predicted and measured maximum force values.The cutting forces level is influenced by this geometrical default especially when the inclination angle grows up.The proposed modelling reproduces the same tendency.The run-out is also responsible of a chatter excitation,which degrades the surface quality and reduces the process stability.More-over,the tests corresponding to high values of eccentricity e and of inclination angle δpresent very unstable signals and poor surface quality.The influence of a radial offset increases with the inclination,then,using the tool–surface inclination as an optimisation parameter must be done for limited values of run-out.Tool wear is also greatly influenced by this default.Some observations in optical microscopy confirmed an evident dif-ference in wear patterns between the two teeth for high values of eccentricity,in particular when the run-out location angle is closed to 0◦or 90◦.The discrepancy between the cutting forces acting on each tooth gives information about this wear asym-metry.The tool life is then reduced on one tooth and may be increased on the other.M.Fontaine et al./Journal of Materials Processing Technology 189 (2007) 85–9691Fig.6.Measured and predicted cutting forces for up-cutting contouring(−Y).Ω=5000rev/min,f t=0.05mm/tooth, p=12mm,e=0.008mm,ψe=110◦,and δ=20◦.3.3.Influence of ploughingThe materialflow occurring around the cutting edge affects mainly the F z force component.This materialflow is neglected in the modelling approach,in particular,the cutting edge is supposed to be perfectly sharp.In fact,the materialflow and associated shearing occurring at the clearance face lead to an additional ploughing force.The ploughing force level becomes very significant around the tool tip when cutting velocity and undeformed chip thickness tend to zero;in this region the resul-tant ploughing force value is high.The ploughing force is mainly normal to the tool envelope(e r-direction)and at the tool tip its direction is closed to the z-direction.In consequence,the F z com-ponent is more affected by this phenomenon and the predicted F z values are sometimes lower than the measured ones.The downward ramping configuration presents the more important discrepancy between the calculated and experimental F z compo-nent values.In this configuration,the tool tip was widely used and then the resultant ploughing force was increased.Hence,the observed difference between measured and predicted forces is proportional to the existing ploughing force.The existence of this phenomenon is probably the reason why the simulation results are often better in down-ramping than in up-ramping (Figs.3and4).The less influenced force component seems to be the one associated to the feed direction axis(F x in ramping and F y in contouring).The cutting edge sharpness influences directly the efficiency of cutting and then the ploughing effect.Tool wear tends to increase the main cutting force and the ploughing force.It is dif-ficult to enhance tool life and limit edge effects simultaneously when selecting tool rake angle,clearance angle,helix angle and edge radius.For the chosen mill,the rake and clearance angles were at small values and the influence of ploughing was probably amplified.If ploughing increases the cutting forces,it also affects the surface integrity(surface roughness and residual stresses grow up)and reduces the tool life.This phenomenon should be avoided as much as possible.The ploughing effect can be92M.Fontaine et al./Journal of Materials Processing Technology 189 (2007) 85–96limited by increasing the tool–surface inclination in order to keep the tool tip outside of cutting position.According to the fact that ploughing occurs mainly on F z force component, which is less relevant for tool deflection,chatter and surface finish prediction in ball-end milling,it was not taken into account of this phenomenon in this modelling approach.4.Influence of inclination angleFigs.7–10present the three force components F x,F y and F z(experimental and calculated)maximum values versus the inclination angleδor surface slope.The four milling strate-gies previously presented(Fig.1)are considered.The measured values correspond to average values,and in the calculation the tool run-out was not taken into account.The objective is to determine the most favourable orientation of the tool with regard to the workpiece surface in order to limit deflection, chatter vibrations and tool breakage,and the maximum val-ues reported in the mentionedfigures are absolute values.The inclination of the dynamometer in the clamping device was lim-ited,then the experimental values were obtained until a surface slope ofδ=20◦,while the model results were calculated until δ=45◦.4.1.Ramping configurationsIn upward ramping(or up-ramping)(Fig.7),the values deduced from simulation show very good correlation with the experimental tendencies.The discrepancy between the two series of values is acceptable and it decreases when inclination angle increases.For the valuesδ=15◦and20◦,the results are very similar.The evolutions obtained by simulation data over20◦are in the same trend and they may be considered as acceptable prediction.The discrepancy between measured and calculated values is very small on F x component(<10%)(Fig.7(a)),reason-able on F y component(<15%)(Fig.7(b)),and more accentuated on F z component(<25%)(Fig.7(c)),particularly for small values of inclination angleδ.As explained previously,the dis-crepancy on F z is due to ploughing phenomenon,which is quite important for small values of inclination angleδ,and vanishes progressively with increasing values ofδ.The tool–surface incli-nation avoids the use of the tool tip for cutting and limits the resultant ploughing force acting mainly on Z-axis.The varia-tions of F x and F y force components are small with apparently minimal values for an inclination of about20◦,the F z component decreases continuously with the increasing inclination.Then, high values of the inclination angle are favourable for tool life but to avoid tool deflection and chatter a value ofδ=20◦should be preferred.It can be noted that for this value,the ploughing influence on F z is reduced.In downward ramping(or down-ramping)(Fig.8),the same tendencies are retrieved on F x(Fig.8(a))and F y(Fig.8(b)).The discrepancies between calculated and measured values are more important but remain moderate(<15%on X-axis and<20%on Y-axis).The agreement seems to be very good for an inclination angleδ=20◦.However,the discrepancy on the Z-axis compo-nent(Fig.8(c))is still important and increases with increasing inclination(33–55%).In down-ramping,the tool tip is always in cutting position then the ploughing effect is always acting on the tool.The ploughing force direction varies with the contact zone location between tool envelope and workpiece.No exper-imental results are available for an inclination angle superior to20◦.Nevertheless,for slope values superior to30◦the dis-crepancy between experiments and model should increasefor Fig.7.Influence of surface inclination angleδon measured and predicted cutting forces for up-ramping:(a)maximum value of F x function ofδ,(b)maximum value of F y function ofδ,and(c)maximum value of F z function ofδ.M.Fontaine et al./Journal of Materials Processing Technology 189 (2007) 85–9693Fig.8.Influence of surface inclination angleδon measured and predicted cutting forces for down-ramping:(a)maximum value of F x function ofδ,(b)maximum value of F y function ofδ,and(c)maximum value of F z function ofδ.F x and F y and decrease for F z.The optimum inclination angle seems to beδ=25◦for tool deflection(small force values on X-and Z-axis)but not probably for tool life and surface integrity because of high values of F z component and of ploughing force. Poor surface quality was in fact observed forδ=15◦and20◦. Small values of inclination seem to be preferable for controlling cutting forces acting on tool axis z.In this configuration,the choice of the inclination angle depends more on optimisation objectives.These results indicate that the upward strategy in ramping provides a better repartition of cutting forces on the tool and limits the ploughing effect around the tool tip.It allows mainly an improvement of cutting stability and surface quality.The results also confirm that the F x component,whichcorresponds Fig.9.Influence of surface inclination angleδon measured and predicted cutting forces for down-cutting contouring(+Y):(a)maximum value of F x function ofδ, (b)maximum value of F y function ofδ,and(c)maximum value of F z function ofδ.94M.Fontaine et al./Journal of Materials Processing Technology189 (2007) 85–96Fig.10.Influence of surface inclination angle δon measured and predicted cutting forces for up-cutting contouring (−Y ):(a)maximum value of F x function of δ,(b)maximum value of F y function of δ,and (c)maximum value of F z function of δ.to the main feed direction of the tool,is less influenced by the ploughing phenomenon.4.2.Contouring configurationsIn contouring by the left (or down-cutting contouring)(Fig.9),the tool–surface inclination also favours the model rele-vance.The discrepancy between measured and predicted values is of the same order as previously (<20%)on X -axis (Fig.9(a))and Y -axis (Fig.9(b)),even if the convergence seems to occur later for the F y component.The discrepancy on the F z com-ponent is more accentuated (<30%)and decreases slowly.For the normal depth of cut of 1.5mm,the inclination angle has to take values up to 30◦to avoid the use of the tool tip for cutting.Then,in regard of ramping results,the influence of ploughing is extended but its distribution on the three axes is very similar.The optimum inclination angle seems to occur between 0◦and 10◦to limit tool deflection and between 20◦and 30◦to reduce edge phenomena.In contouring by the right (or up-cutting contouring)(Fig.10),the predicted values are correct and improve with increasing values of δ,and the discrepancy is similar (<20%)than in down-cutting contouring on the F x and F y components (Fig.10(a)and (b),respectively).Nevertheless,it can be noticed a small discrep-ancy and a quicker convergence on Y -axis.The F z component presents more offset (<35%)and a similar evolution than in the previous configuration.The increase of discrepancy between 15◦and 20◦is difficult to analyse because of absence of experi-mental data after the inclination of 20◦.In comparison with the down-cutting configuration,the curves slopes are similar but the maximum level of F y force is higher and the F x force tends to decrease continuously.Here,an inclination angle δof 15◦seems to be favourable to control both cutting forces level and ploughing effect.These results for the contouring configurations indicate that the cutting forces distributions on the tool are less uniform than in ramping and that the influence of ploughing is averaged.They also underline the specificity of each cutting mode even if the semi-finishing tests provide more information in this field because of the limited path interval ( p =1.5mm)and then the limited chips length.5.Global discussionThe influence of cutting conditions was studied and some usual tendencies were retrieved:•the global forces level tends to decrease with increasing cut-ting speed;•the cutting forces are proportionally affected by the feed velocity;•the down-cutting mode is more favourable for small path intervals and depths of cut;•the up cutting is more favourable for some slotting tests par-ticularly when the tool end is widely engaged in workpiece material.It has been also observed a more favourable distribution of cutting forces in up-ramping and up-contouring strategies even for small values of path interval.The influence of radial tool run-out on cutting forces level is well reproduced and that validates the modelling of run-out with a radial eccentricity only.The force discrepancy between the two teeth can reach 30%for slotting tests and 50%for semi-。
球头铣刀铣削的虚拟仿真及其切削参数优化算法研究
球头铣刀铣削的虚拟仿真及其切削参数优化算法研究袁森;何林;柳飞【摘要】为了深入分析在不同切削环境下球头铣刀的应力变化及刀具变形问题,借助对刀刃的离散化处理及其切削力模型分析,建立了平均铣削力模型,并对单切削因素下的刀具变形与应力变化进行仿真分析,最后建立遗传算法得到了球头刀具铣削加工参数的优化途径.研究结果表明基于离散化处理的切削力模型,有利于球头铣刀加工过程的深入分析,并为后续的加工参数优化与实验验证提供有效的思路.【期刊名称】《广西大学学报(自然科学版)》【年(卷),期】2018(043)005【总页数】9页(P1738-1746)【关键词】球头铣刀;切削力模型;仿真;遗传算法【作者】袁森;何林;柳飞【作者单位】贵州大学机械工程学院,贵州贵阳 550025;贵州理工学院机械工程学院,贵州贵阳 550003;贵州大学机械工程学院,贵州贵阳 550025;六盘水师范学院矿业与土木工程学院,贵州六盘水 553004;贵州大学机械工程学院,贵州贵阳550025【正文语种】中文【中图分类】TG54;TH16球头铣刀是立铣刀中的一种,有效刀刃大,常用于加工各种成形表面和规定变化曲率的切削面,得到了模具等制造行业的广泛应用。
常见的球头铣刀加工产品包括蜗杆,冲压模型,飞机零件和复杂外形零部件[1-7]。
近年来,国内外学界对球头铣刀加工中的切削力、动力学模型、刀具结构、外形尺寸、切削振动、工件表面质量、切削热及工艺参数等方面开展了广泛研究,得到大量研究成果[8-12]。
在相关研究中,球头铣刀加工的动力学模型始终是研究重点,根据该模型可以推导铣削加工的切削力、刀具的寿命、切削振动、工件表面质量等内容,为后续的提高生产效率,设备状态监控和工艺路线规划等方面构建基础。
1 切削力模型构建1.1 力学坐标系设定球头铣刀的S曲线是多个刀刃点拟合形成的正交螺旋线,位于刀具顶端的球面表面,由前角的前刀面和后角的后刀面组成[7]。
Deform3D软件支持的球头铣刀铣削仿真分析_程凤军
在球头铣刀铣削过程数值仿真中,切屑分离是
以因材料高温和大变形造成计算区域网格畸变的程
度作为判据准则,需要结合单元自适应网格重划技
术对发生了大畸变的计算区域网格重新进行网格划
分,以使得有限元分析能够进行。本文中提出的分
离准则为: 当工件与尚未分离的切屑之间的接触节
点的应力( 通过网格畸变转化而来) 大于 0. 1 MPa
图 1 球头铣刀( 刀齿) 的模型
考虑到球头铣刀铣削的代表性,故选取加工等 腰直角斜面为例。出于计算工作量和效率约束的考 虑,在不影响加工区域边界条件情况下,截取直角斜 块中包含加工区域的一部分作为计算区域,以此形 成的工件几何模型如图 2 所示。为了反映出前一次 切削的影响并保证切屑的形状与实际相符,在进行 本次切削时,图 2 所示几何模型给出了前一次切屑
表面层单元尺寸取为 0. 015 mm,工件计算区域的最
大和最小单元尺寸比率也为 10。
为防止铣削仿真过程中单元畸变造成计算终止,
采用自适应网格重划技术,使工件上的网格根据应变
梯度、应变率梯度和温度梯度的分布情况自动重划和
加密网格。考虑到可能存在的网格重划过程因单元
尺寸变化造成的部分分析结果丢失,在工件计算区域
Deform 3D 软件支持的球头铣刀铣削仿真分析
程凤军,陈国定,王 涛
程凤军
( 西北工业大学 机电学院,西安 710072)
摘 要: 球头铣刀铣削过程包含复杂的多物理场耦合作用,且球头铣刀刀刃特殊,分析较为困难。
在商业有限元软件 Deform 3D 前处理器中建立了球头铣刀铣削有限元模型,运用可靠的材料模型
以采用 Cooper[9]提出的各向同性粗糙表面之间的
接触换热系数计算公式进行计算,即
球头铣刀铣削球面的表面形貌建模与仿真研究
振动,在此基础上建立了薄壁件铣削表面形貌的仿
基 于 NG
bu
f
f
e
r的模拟模型,并研
究了相关参 数 对 3D 表 面 形 貌 及 表 面 粗 糙 度 的 影
响.赵军等
[
8]
通过考虑刀具偏转和刀具跳动来评
估球头铣刀铣削曲面表面的形貌,该研究方法可用
于优化球头铣刀铣削过程中的切削条件和参数.
床主轴 OAZA 旋转.
()
(
4) 第 j 个 刀 齿 的 局 部 坐 标 系 {
STj }
()
() () ()
()
() ()
(
O Tj X Tj YTj ZTj ).坐标系{
STj }的 O Tj ZTj 轴
正向与刀具坐标系{
SC}的 OCZC 轴正向一致.
出的球面尺寸受 人 为 因 素 影 响 较 大,不 适 于 批 量
球头铣刀铣削表 面 形 貌 的 仿 真 建 模 方 法,预 测 铣
削表面形貌,对表 面 质 量 的 控 制 和 加 工 效 率 的 提
高有着积极的意 义,相 关 研 究 学 者 对 此 进 行 了 大
收稿日期:
2019 09 09
基金项目:国家自然科学基金资助项目(
51675422)
2924
0
0
êê
ë 0
0
θ 会增加一个 Δθ,再循环上述加工过程,直至θ 增
大到 360
°,即可得到所需球面,如图 3 所示.
0 0ù
ú
0 0ú
=
1 0ú
úú
0 1û
/
/
2π(
zt) -s
zt)
i
球头立铣刀铣削力有限元分析
有限元分析(论文)球头立铣刀铣削力有限元分析专业:机械电子学生姓名:张娇学号: 201201024摘要本文从球头立铣刀的几何模型着手,建立了一个适用于球头立铣刀铣削的三维铣削力模型,分析刀具几何角度的变化对切削力的影响,作为有限元分析的基础。
应用有限元软件ANSYS,研究在不同铣削条件下(背吃刀量、每齿进给量、主轴转速、悬伸长度等)球头立铣刀的受力情况。
建立球头立铣刀仿真实体模型,进行有限元分析表明:其它铣削条件不变时,背吃量越大,球头立铣刀变形量和应力都同时增大,而且二者的增长幅度和增长趋势几乎相同;当每齿进给量增加时,球头立铣刀变形量和应力都同时增大,但是二者的增长幅度不同,球头立铣刀应力的增长更大一些;主轴转速越高,球头立铣刀变形量和应力也会越大,二者的增长趋势相同但是幅度不同,球头立铣刀变形量的改变较大。
SummaryIn the present paper,a three dimensional milling force model for ball-nose end mill Was established based on its the geometric model of cutting end edge.The influences of cutting edgeangles on cutting force were analyzed.With the assist of the finite element software“ANSYS”,real stress distributione were studied in the differen millingconditions,such as cutting depth,the feed amount of each tooth,main shaft rotation and theextended length etc.一、背景及意义机械制造业是国民经济和社会发展及国防建设的基础,其发展水平是一个国家综合实力的重要标志。
机床大讲堂第88讲:高速铣削下6061铝合金铣削力模型及影响因素
机床大讲堂第88讲:高速铣削下6061铝合金铣削力模型及影响因素高速铣削下6061铝合金铣削力模型及影响因素导读采用多因素线性回归正交试验研究建立了6061铝合金在高速铣削时铣削力与一定范围内铣削参数之间的经验公式,对该经验公式的参数进行了显著性检验,并通过实验验证了铣削力与被铣削材料的厚度、铣削层数之间的相互关系。
研究结果为分析预测加工后工件变形、残余应力的分布奠定了扎实的基础。
汽车匹配主模型检具在大批量生产和整车装配前,发挥着极为重要的作用,由于航空铝合金强度与刚度比较好,抗应力腐蚀能力强、材料较轻,所以汽车匹配主模型材料一般选用航空铝合金。
检具的加工一般采用高速铣削,由于加工完成一段时间后铝合金检具明显变形,我们通过查阅资料以及相关因素的排查分析,认为是高速铣削过程中铣削力、铣削热及装夹等因素造成了残余应力的重新分布,残余应力的释放造成了工件的变形。
在查阅铣削力模型相关资料时发现,有关理论模型方面,阎兵等将铣削力分为前刀面力、后刀面力以及刀刃上的耕犁力,提出一种新的螺旋刃铣刀铣削力模型;Altintas根据球头铣刀几何模型提出动态铣削力模型。
但这些目前流行的力学模型对于中小企业并不经济,基于正交试验的经验模型更能满足实际生产的需要。
通过参考不同文献发现,不同铣削参数范围内,铣削力经验公式相差极大,为确定符合企业实际生产时铣削参数的铣削力模型,我们采用多因素正交试验法,并通过Matlab线性回归运算得到了6061铝合金铣削力经验模型。
1试验1.1 铣削力经验公式工程中,铣削力经验公式对于不同的加工环境而言其构建形式是完全不同的,尤其是对高速铣削下铣削力模型的研究较少。
为此,需要根据实际加工环境进行切削试验,以确定模型能贴合实际。
铣削加工过程涉及4个参数,根据金属切削原理研究结论,在刀具几何参数及加工材料确定的前提下,铣削力经验公式的通用形式为:最终对实验数据进行线性回归分析处理得到式(4)中参数,进而得到铣削力模型。
球头铣刀拐角加工铣削力预测研究
球头铣刀拐角加工铣削力预测研究郑敏利;吴迪;杨琳;马卉【摘要】For inside and outside corner mold cavity milling process,analysis of ball milling straight line,inside corner,outside comer cutting layers of variation,milling force prediction model based on the establishment of machining features.Three-dimensional geometric model of the ball end mill and the workpiece are established by UG.Finite element simulation of high-speed milling Cr12MoV mold steel is conducted by DEFORM-3D simulation on the ling force of ball end mill in milling workpiece by linear path,inner comer and outer corner can be predicted.It is further predicted that the radius curvature of workpiece in the milling the inner and outer comer has effect on milling force.Mathematical model and simulation results are in good agreement,which proves the correctness of the mathematical model.High-speed milling experiments were conducted on three-axis CNC machining centers.The results showed that the simulation can consistent with experimental results,which proves the accuracy and reliability of the simulation predictions.%针对模具型腔内外拐角铣削过程,分析球头铣刀铣削直线、内拐角、外拐角的切削层变化规律,建立了基于加工特征的铣削力预测模型.利用UG绘图软件建立了球头铣刀及工件的三维几何模型,并通过DEFORM-3D仿真软件对Cr12MoV模具钢的高速铣削过程进行有限元仿真,预测了球头铣刀在铣削直线段、内拐角和外拐角的铣削力,以及内外拐角时工件曲率半径对铣削力的影响.利用三轴数控加工中心进行高速铣削实验,实验结果表明:实验所得到的铣削力与仿真结果具有很好的吻合度,证明了铣削力理论计算模型的正确性,从而验证了仿真预测的准确性和可靠性.【期刊名称】《机械设计与制造》【年(卷),期】2017(000)004【总页数】4页(P85-88)【关键词】有限元仿真;铣削力;内外拐角;曲率半径【作者】郑敏利;吴迪;杨琳;马卉【作者单位】哈尔滨理工大学机械动力工程学院,黑龙江哈尔滨150080;哈尔滨理工大学机械动力工程学院,黑龙江哈尔滨150080;哈尔滨理工大学机械动力工程学院,黑龙江哈尔滨150080;哈尔滨理工大学机械动力工程学院,黑龙江哈尔滨150080【正文语种】中文【中图分类】TH16;TG54随着我国汽车行业的不断发展,使得人们对汽车的外形和性能要求越来越高,致使用于生产的汽车覆盖件模具也越来越复杂[1]。
球头立铣刀切削特性分析
球头立铣刀切削特性分析一.球头立铣刀概述球头立铣刀是数控机床上加工复杂曲面的一种比较合理的新型结构刀具,它也是复杂三维曲面精加工中所用到的重要刀具之一,其独特的刃形(S形、螺旋型)使得球头立铣刀的加工精度高,刀具寿命长、并且可以轴向进刀,它满足了对复杂空间曲面自动加工的需要。
在模具制造、汽车制造、航天航空、电子通讯产品制造等行业有着广泛的应用。
资料表明,在模具加工中,球头立铣刀的加工量占全部加工量的70~80%,随着数控机床在我国制造业的普及,球头立铣刀的需求量越来越大,目前国内的消耗量估计在一百五十万只以上。
因此球头立铣刀的生产具有广阔市场前景。
球头立铣刀的制造一般都是采用磨制加工,其刃磨是球头立铣刀生产中的一个非常关键的工序。
目前国内采用的刃磨方法主要有两类:一类是采用简单的刃磨设备进行刃磨,这种方法不能刃磨出球头立铣刀所需的结构参数,用其加工的产品精度和质量较差,因此球头立铣刀的使用场合受到限制:另一类采用进口昂贵的五轴四联动刃磨机床进行刃磨,这种情况下投资太大,刃磨成本很高,如陕西航空硬质合金公司采用丹麦生产的US230,该机床价格达二百多万,这对于一般工具厂很难投资购买.因此对球头立铣刀进行动态特性分析以期为加工理想经济的球头立铣刀提供更多的理论依据具有重要意义。
二.球头立铣刀形状、标准及分类1.球头立铣刀的形状及标准球头立铣刀的外形如图一所示.图 1球头立铣刀最显著的特征是主切削刃的端刃(球刃)为一条“S”形空间曲线,如图2所示。
图2 S形刃球头立铣刀美国、德国、日本、英国等国家都制定了各自的标准(如ISO1641/1.1978等,我国已制定了包括模具铣刀一直柄圆柱形球头立铣刀等国家标准(GB6336.1-86)在内的多项国家标准。
直柄圆柱形球头立铣刀的结构如图3所示。
球头立铣刀刀尖形状如图:图 4球头立铣刀容屑槽形状如图:图 52.球头立铣刀的分类球头立铣刀按材料分为:高速钢球头立铣刀、硬质合金球头立铣刀两类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
球头铣刀高速铣削铣削力建模分析
摘要:本文针对球头铣刀铣削特点,运用金属切削理论等,对球头铣刀铣削力建模进行了系统深入的研究,在针对球头铣刀高速铣削力研究的整个过程中,根据原有的经验公式及切削机理,主要对铣削力进行具体研究,研究球头铣刀切削微元上所受到的切向力,径向力和轴向力的受力情况,进而沿刀刃进行积分,通过局部坐标系转换到整体坐标系,用数值积分方法建立铣削力模型。
关键词:球头铣刀;铣削力;建模
1.概述
随着全球工业市场竞争的日趋激烈,产品的复杂性和加工质量要求越来越高。
而随着CAD/CAM系统和CNC加工中心的进步,我们可应用球头铣削来满足复杂表面的加工需要。
由于在复杂曲面加工中,很难选择恰当的参数使得加工过程既能提高生产率,同时又能保证工件质量。
为了保证产品加工质量且避免刀具破损或刀具过变形等不期望结果的发生,通常做法是选择保守的加工参数。
然而,这会降低生产率。
这需要在加工参数和加工质量及加工效率之间达到一个最佳的匹配。
铣削加工过程是由“机床—刀具—工件”构成的、各种影响因素综合作用的系统。
在加工进行过程中随时会受到各种随机因素的干扰,其中的干扰因素主要包括:工件材质不均匀造成的材料微观硬度变化,刀具磨损造成的刀具几何参数的改变,切削参数变化及切削振动等,这些因素都会使加工系统转变为动态系统。
因此,球头铣削过程分析和铣削力仿真对加工精度预测、铣削过程自适应控制以及工艺参数优化都有非常重要的意义。
2.铣削力建模
2.1 局部铣削力的计算
切削力的准确建模是分析和预报切削加工性能的基础(工艺参数的选择、切削过程稳定性、刀具磨损及破损的监控等)。
由于铣削过程非常复杂,在此过程中铣削力不断变化,通常的切削理论不能趋势应用于铣削过程,因此,球头铣刀加工复杂曲面切削力模型建立的基本策略是将刀具切削刃沿轴向等间隔划分成许多很小的切削微元,每个微段相当于一个简单的斜角切削,作用在刀刃微段上的空间铣削力可以分解成微切向力、微径向力和微轴向力。
刀具受到的切削力为参加切削的切削微元的受力之和,切削微元的受力分析是根据切削力与切削负载之间的经验关系。
本文采用Lee和Altintas所提出的斜角切削的切削微元的受力公式:
在整体坐标系中,X方向为刀具的进给方向,Z方向垂直于水平面,根据右
手定则便可确定Y的方向。
在局部坐标系中,由于所加工工件表面倾斜,所以局部坐标系中所选取的倾斜面与加工件表面平行,所以在此图中等于,X方向也为刀具进给方向,Z方向垂直于倾斜面,根据右手定则便可确定Y的方向。
图2-1表示了刀具的局部坐标系和整体坐标系,和表示了其局部坐标系的位置,在局部参考系中根据切削刃位置的测量可以计算出未变形切屑的厚度。
同时,其它辅助角,和也可以运用到坐标变换的数学表达式中(并且,这些辅助角都是以和为根据的)。
所以,运用坐标转换,将局部坐标向整体坐标进行转换是非常必要的。
图2-2表示出了从局部坐标系到整体坐标系进行转换的每一步。
第一步将角绕X轴旋转,直到与平行。
用这样的方法就得到了坐标系。
第二步将角绕轴旋转,直到与平行。
这样又获得了坐标系,与整体坐标系平行。
最后,转换平移,将局部坐标系转换为整体坐标系。
这样,通过两次坐标系旋转和一次坐标系平移,便可根据微元上的切削力从而导出整体铣削力。
变换公式如下:
2.2 整体铣削力的计算
3.结论
本文密切结合先进制造技术的需要,以虚拟制造中的球头铣削作为研究课题,着重研究了球头铣削过程物理仿真中关于铣削力建模仿真的问题,在针对球头铣刀高速铣削力研究的整个过程中,根据原有的经验公式及切削机理,主要对铣削力进行具体研究,研究球头铣刀切削微元上所受到的切向力,径向力和轴向力的受力情况,进而沿刀刃进行积分,通过局部坐标系转换到整体坐标系,用数值积分方法建立铣削力模型。
参考文献:
[1]徐安平.考虑刀杆柔性的数控铣削过程物理仿真研究(博士论文),天津大学,1998,7.
[2]张延贤,刘胜利,屈文然.铣削力建模和仿真. 天津大学学报. 1991,3:73~80.
[3]倪其民,李从心,阮雪榆.基于实体造型的球头铣刀三维铣削力仿真,上海交通大学学报,2001,35(7):58~66.
[4]倪其民,李从心,阮雪榆.考虑刀具变形的球头铣刀铣削力建模与仿真,机械工程学报,2002(3),38:108~112.。