高中化学选修《物质结构与性质》知识点提纲,

合集下载

高中化学选修3-物质结构与性质-全册知识点总结

高中化学选修3-物质结构与性质-全册知识点总结

高中化学选修3-物质结构与性质-全册知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。

②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。

③任一能层,能级数等于能层序数。

④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。

⑤能层不同能级相同,所容纳的最多电子数相同。

(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。

2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。

(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。

(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E (5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。

原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。

根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。

(5)基态和激发态①基态:最低能量状态。

处于最低能量状态的原子称为基态原子。

②激发态:较高能量状态(相对基态而言)。

基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。

处于激发态的原子称为激发态原子。

③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。

高中化学物质结构与性质专题知识点总结

高中化学物质结构与性质专题知识点总结

高中化学选修 3 知识点总结一、原子结构1、能层和能级(1)能层和能级的划分! 在同一个原子中,离核越近能层能量越低。

"同一个能层的电子,能量也可能不同,还可以把它们分成能级s 、p 、 d 、f ,能量由低到高依次为 s 、p 、d 、f 。

# 任一能层,能级数等于能层序数。

$ s 、p 、d 、f ⋯⋯可容纳的电子数依次是 1、3、5、7⋯⋯的两倍。

% 能层不同能级相同,所容纳的最多电子数相同。

2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。

(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主 要依据之一。

(3)不同能层的能级有交错现象,如 E (3d )>E (4s )、E (4d )> E ( 5s )、 E ( 5d )>E ( 6s )、 E ( 6d )> E ( 7s )、 E ( 4f )> E ( 5p )、 E ( 4f )> E ( 6s )等。

原子轨道的能 量关系是: ns <( n-2)f < (n-1 )d < np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应 着每个周期的元素数目。

根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n 2 ;最外层不超过 8 个电子;次外层不超过 18 个电子;倒数第三层不超过 32 个电子。

( 5)基态和激发态 ①基态:最低能量状态。

处于 最低能量状态 的原子称为 基态原子 。

" 激发态:较高能量状态(相对基态而言)。

基态原子的电子吸收能量后,电子跃迁至 较高能级时的状态。

处于激发态的原子称为激发态原子 。

# 原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态) 和放出(激发态 →&'()*(+*,-./0123456()7892:;<-=>?5&@&A5@?()2B ='C5较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。

高中化学选修三 物质结构与性质知识点总结

高中化学选修三 物质结构与性质知识点总结

《选修三物质结构与性质》知识点总结第一节原子结构与性质知识点一原子核外电子排布原理1.能层和能级(1)能层:原子核外电子是分层排布的,根据电子的能量差异,可将核外电子分成不同的能层。

(2)能级:在多电子原子中,同一能层的电子,能量也可能不同,不同能量的电子分成不同的能级。

(3)能层一二三四五……符号K L M N O……能级1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p……最多电子数2 2 6 2 6 10 2 61014 2 6……电子离核远近近→远电子能量高低低→高2.电子云与原子轨道(1)电子云①由于核外电子的概率分布图看起来像一片云雾,因而被形象地称为电子云。

②电子云轮廓图称为原子轨道。

(2)原子轨道原子轨道⎩⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧轨道形状⎩⎪⎨⎪⎧s电子的原子轨道呈球形对称p电子的原子轨道呈哑铃形各能级上的原子轨道数目⎩⎪⎨⎪⎧s能级 1 个p能级 3 个d能级5个f能级7个……能量关系⎩⎪⎨⎪⎧①相同能层上原子轨道能量的高低:n s<n p<n d<n f②形状相同的原子轨道能量的高低:1s<2s<3s<4s……③同一能层内形状相同而伸展方向不同的原子轨道的能量相等,如2p x、2p y、2p z轨道的能量相等3.基态原子核外电子排布(1)排布原则[提醒] 当能量相同的原子轨道在全满(p6、d10、f14)、半满(p3、d5、f7)、全空(p0、d0、f0)时原子的能量最低,如24Cr的电子排布式为[Ar]3d54s1,29Cu的电子排布式为[Ar]3d104s1。

(2)填充顺序——构造原理(3)表示方法以硫原子为例电子排布式1s22s22p63s23p4简化电子排布式[Ne]3s23p4电子排布图(或轨道表示式)价电子排布式3s23p44.电子的跃迁与原子光谱(1)电子的跃迁(2)不同元素的原子发生跃迁时会吸收或释放不同的光,可以用光谱仪摄取各种元素的电子的吸收光谱或发射光谱,总称原子光谱。

高中化学选修3物质结构与性质全册知识点总结

高中化学选修3物质结构与性质全册知识点总结

高中化学选修3知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。

②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。

③任一能层,能级数等于能层序数。

④s、p、d、f”可容纳的电子数依次是1、3、5、7”的两倍。

⑤能层不同能级相同,所容纳的最多电子数相同。

(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)每能层所容纳的最多电子数是:2n2(n:能层的序数)2、构造原理〔_ ) L A U〉(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。

(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。

(3)不同能层的能级有交错现象,如 E (3d)> E ( 4s)、E (4d)> E (5s)、E(5d) > E (6s)、E (6d) > E (7s)、E (4f )> E (5p)、E (4f )> E (6s)等。

原子轨道的能量关系是:ns v( n-2)f v ( n-1) d v叩(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。

根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2;最外层不超过8个电子;次外层不超过 18个电子;倒数第三层不超过 32个电子。

(5)基态和激发态①基态:最低能量状态。

处于最低能量状态的原子称为基态原子。

②激发态:较高能量状态(相对基态而言)。

基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。

处于激发态的原子称为激发态原子。

③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态一激发态)和放出(激发态一较低激发态或基态)不同的能量(主要是光能),产生不同的光谱一一原子光谱(吸收光谱和发射光谱)。

(完整版)物质结构与性质知识点总结

(完整版)物质结构与性质知识点总结

高中化学物质结构与性质知识点总结一.原子结构与性质.一.认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义.1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小.电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q.原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7.2.(构造原理)了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布.(1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.(2).原子核外电子排布原理.①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道.②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1.(3).掌握能级交错图和1-36号元素的核外电子排布式.①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。

②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。

高中化学选修3-物质结构与性质-全册知识点总结

高中化学选修3-物质结构与性质-全册知识点总结

高中化学选修3知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。

②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。

③任一能层,能级数等于能层序数。

④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。

⑤能层不同能级相同,所容纳的最多电子数相同。

(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。

2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。

(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。

(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E (5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。

原子轨道的能量关系是:ns<(n-2)f<(n-1)d<np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。

根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。

(5)基态和激发态①基态:最低能量状态。

处于最低能量状态的原子称为基态原子。

②激发态:较高能量状态(相对基态而言)。

基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。

处于激发态的原子称为激发态原子。

③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。

利用光谱分析可以发现新元素或利用特征谱线鉴定元素。

高中化学选修3-物质结构和性质-全册知识点总结

高中化学选修3-物质结构和性质-全册知识点总结

高中化学选修3物质结构与性质知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。

②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。

③任一能层,能级数等于能层序数。

④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。

⑤能层不同能级相同,所容纳的最多电子数相同。

(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。

2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。

(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。

(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E (5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。

原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。

根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。

(5)基态和激发态①基态:最低能量状态。

处于最低能量状态的原子称为基态原子。

②激发态:较高能量状态(相对基态而言)。

基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。

处于激发态的原子称为激发态原子。

③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。

利用光谱分析可以发现新元素或利用特征谱线鉴定元素。

高中化学选修3物质结构与性质全册知识点总结模板.doc

高中化学选修3物质结构与性质全册知识点总结模板.doc

高中化学选修3知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级( 1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。

②同一个能层的电子,能量也可能不同,还可以把它们分成能级 s 、p、d、f ,能量由低到高依次为 s 、p、 d、f 。

③任一能层,能级数等于能层序数。

④s、 p、 d、f ⋯⋯可容纳的电子数依次是 1、 3、5、 7⋯⋯的两倍。

⑤能层不同能级相同,所容纳的最多电子数相同。

( 2)能层、能级、原子轨道之间的关系2每能层所容纳的最多电子数是:2n ( n:能层的序数)。

(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。

(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。

(3)不同能层的能级有交错现象,如E(3d)> E(4s)、 E(4d)> E(5s)、 E(5d)>E( 6s)、E( 6d)>E( 7s)、E(4f )>E( 5p)、E( 4f )>E( 6s)等。

原子轨道的能量关系是: ns<( n-2 )f <(n-1 )d < np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。

根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2;最外层不超过8 个电子;次外层不超过18 个电子;倒数第三层不超过32 个电子。

( 5)基态和激发态①基态:最低能量状态。

处于最低能量状态的原子称为基态原子。

②激发态:较高能量状态(相对基态而言)。

基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。

处于激发态的原子称为激发态原子。

③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。

物质结构与性质总结

物质结构与性质总结

立体结 杂化轨道理论简介 构 配合物理论简介 键的极性和分子的极性 分子的 范德华力及其对物质性质的影响 性质 氢键及其对物质性质的影响 溶解性
手性 含氧酸分子的酸性
晶 体 结 构 与 性 质
晶体和非晶体 晶体常识 晶体中重复出现的最 晶胞 基本的结构单元 分子晶 体与原 子晶体 分子晶体 原子晶体 简单立方 钾型
化学竞赛辅导课件
高中化学选修3《物质结构与性质》 高中化学选修 《物质结构与性质》 知识点归纳
原子结构 物 质 结 构 与 性 质 原子结构与性质 原子结构与元素性质 共价键 分子结构与性质 分子的立体结构 分子的性质 晶体常识 晶体结构与性质 分子晶体与原子晶体 金属晶体 离子晶体
掉一个电子成为+ 价气 掉一个电子成为+1价气 能量最低原理、基态与激发态、 能量最低原理、基态与激发态、光谱 子 态阳离子所需要消耗的 电子云与原子轨道 结 能量, 能量,称为第一电离能 构 );依次类推 依次类推。 (I1);依次类推。 用来描述不同元素的 与 原子对键合电子吸引力 性 的大小, 的大小,电负性越大的 质 原子结 原子结构与元素周期表 原子对键合电子的吸引 原子半径 构与元 力越大。 力越大。

能层与能级 原子 构造原理 从元素的气态原子去 结
共价键 共价键 分 子 结 构 与 性 质 键参数
键和π σ键和π键 一类是中心原子上
的价电子都用于形成共 键能、 键能、键长与键角
价键, 价键, 形形色色的分子 第二类是中心原子 上有孤电子对 上有孤电子对 分子的 价层电子对互斥模型
金属键 金属晶体 金属晶体的原 子堆积模型 铜型和镁型 离子晶体 离子晶体 气态离子形成1mol离 气态离子形成 离 晶格能
子晶体释放的能量

高中化学选修三物质结构与性质知识点大全

高中化学选修三物质结构与性质知识点大全

物质结构与性质知识点大全原子核外电子排布原理1.能层、能级与原子轨道(1)能层(n):在多电子原子中,核外电子的能量是不同的,按照电子的能量差异将其分成不同能层。

通常用K、L、M、N……表示,能量依次升高。

(2)能级:同一能层里电子的能量也可能不同,又将其分成不同的能级,通常用s、p、d、f等表示,同一能层里,各能级的能量按s、p、d、f的顺序依次升高,即:E(s)<E(p)<E(d)<E(f)。

(3)原子轨道:电子云轮廓图给出了电子在核外经常出现的区域。

这种电子云轮廓图称为原子轨道。

【特别提示】(1)任一能层的能级总是从s能级开始,而且能级数等于该能层序数。

(2)以s、p、d、f……排序的各能级可容纳的最多电子数依次为1、3、5、7……的二倍。

(3)构造原理中存在着能级交错现象。

由于能级交错,3d轨道的能量比4s轨道的能量高,排电子时先排4s轨道再排3d轨道,而失电子时,却先失4s轨道上的电子。

(4)前四周期的能级排布(1s、2s、2p、3s、3p、4s、3d、4p)。

第一能层(K),只有s能级;第二能层(L),有s、p两种能级,p能级上有三个原子轨道p x、p y、p z,它们具有相同的能量;第三能层(M),有s、p、d三种能级。

(5)当出现d轨道时,虽然电子按ns,(n-1)d,np顺序填充,但在书写电子排布式时,仍把(n-1)d放在ns前。

(6)在书写简化的电子排布式时,并不是所有的都是[X]+价电子排布式(注:X 代表上一周期稀有气体元素符号)。

2.基态原子的核外电子排布(1)能量最低原理电子尽可能地先占有能量低的轨道,然后进入能量高的轨道,使整个原子的能量处于最低状态。

如图为构造原理示意图,即基态原子核外电子在原子轨道上的排布顺序图。

注意:所有电子排布规则都需要满足能量最低原理。

(2)泡利原理每个原子轨道里最多只能容纳2个电子,且自旋状态相反。

(3)洪特规则。

高中化学选修3-物质结构与性质-全册知识点总结

高中化学选修3-物质结构与性质-全册知识点总结

高中化学选修3知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级( 1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。

②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、 d、 f。

③任一能层,能级数等于能层序数。

④ s、 p、 d、 f,, 可容纳的电子数依次是1、 3、 5、7,, 的两倍。

⑤能层不同能级相同,所容纳的最多电子数相同。

( 2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2( n:能层的序数)。

2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。

(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。

(3)不同能层的能级有交错现象,如E( 3d)> E( 4s)、 E( 4d)> E( 5s)、 E(5d)> E(6s)、 E( 6d)> E(7s)、 E( 4f )> E( 5p)、 E( 4f )> E( 6s)等。

原子轨道的能量关系是: ns<( n-2) f <( n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。

根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8 个电子;次外层不超过18 个电子;倒数第三层不超过32 个电子。

( 5)基态和激发态①基态:最低能量状态。

处于最低能量状态的原子称为基态原子。

②激发态:较高能量状态(相对基态而言)。

基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。

处于激发态的原子称为激发态原子。

③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。

高中化学选修物质结构与性质知识点提纲

高中化学选修物质结构与性质知识点提纲

【高中化学选修?物质构造及性质?学问点提纲】一.原子构造及性质.一.相识原子核外电子运动状态,理解电子云、电子层〔能层〕、原子轨道〔能级〕的含义.1.电子云:用小黑点的疏密来描绘电子在原子核外空间出现的时机大小所得的图形叫电子云图.离核越近,电子出现的时机大,电子云密度越大;离核越远,电子出现的时机小,电子云密度越小.电子层〔能层〕K、L、M、N、O、P、Q.原子轨道〔能级即亚层〕:处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形态的轨道,s轨道呈球形、p轨道呈纺锤1、3、5、7.2.(构造原理〕理解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布. (1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方一直进展描绘.在含有多个核外电子的原子中,不存在运动状态完全一样的两个电子.(2).原子核外电子排布原理.①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道.②.泡利不相容原理:每个轨道最多包容两个自旋状态不同的电子.③.洪特规那么:在能量一样的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态一样.洪特规那么的特例:在等价轨道的全充溢〔p6、d10、f14〕、半充溢〔p3、d5、f7〕、全空时(p0、d0、f024[]3d54s1、29[]3d104s1.(3).驾驭能级交织图和1-36号元素的核外电子排布式.①依据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的依次。

②依据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次上升;在同一能级组内,从左到右能量依次上升。

基态原子核外电子的排布按能量由低到高的依次依次排布。

3.元素电离能和元素电负性第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所须要的能量叫做第一电离能。

常用符号I1表示,单位为。

高中化学第十一章 物质结构与性质知识点总结

高中化学第十一章  物质结构与性质知识点总结

第十一章物质结构与性质(选修)第一讲原子结构与性质考点1原子核外电子排布原理1.能层、能级与原子轨道之间的关系2.原子轨道的能量关系(1)轨道形状①s电子的原子轨道呈球形。

②p电子的原子轨道呈哑铃形。

(2)能量关系①相同能层上原子轨道能量的高低:n s<n p<n d<n f。

②形状相同的原子轨道能量的高低:1s<2s<3s<4s……③同一能层内形状相同而伸展方向不同的原子轨道的能量相等,如n p x、n p y、n p z轨道的能量相等。

3.基态原子核外电子排布的三个原理(1)能量最低原理:电子优先占有能量低的轨道,然后依次进入能量较高的轨道,使整个原子的能量处于最低状态。

即原子的核外电子排布遵循构造原理能使整个原子的能量处于最低状态。

如图为构造原理示意图:(2)泡利原理:在一个原子轨道中,最多只能容纳2个电子,并且它们的自旋状态相反。

(3)洪特规则:当电子排布在同一能级的不同轨道时,基态原子中的电子总是优先单独占据一个轨道,而且自旋状态相同。

洪特规则特例:当能量相同的原子轨道在全满(p6、d10、f14)、半满(p3、d5、f7)和全空(p0、d0、f0)状态时,体系的能量最低,如:24Cr的电子排布式为1s22s22p63s23p63d54s1。

4.原子(离子)核外电子排布式(图)的书写(1)核外电子排布式:按电子排入各能层中各能级的先后顺序,用数字在能级符号右上角标明该能级上排布的电子数的式子。

如Cu:1s22s22p63s23p63d104s1,其简化电子排布式为[Ar]3d104s1。

(2)价电子排布式:如Fe原子的电子排布式为1s22s22p63s23p63d64s2,价电子排布式为3d64s2。

价电子排布式能反映基态原子的能层数和参与成键的电子数以及最外层电子数。

(3)电子排布图:方框表示原子轨道,用“↑”或“↓”表示自旋方向不同的电子,按排入各能层中的各能级的先后顺序和在轨道中的排布情况书写。

(完整版)高中化学选修3物质结构与性质全册知识点总结

(完整版)高中化学选修3物质结构与性质全册知识点总结

a hingsintheirbei 高中化学选修3知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。

②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。

③任一能层,能级数等于能层序数。

④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。

⑤能层不同能级相同,所容纳的最多电子数相同。

(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。

t h i ng si nt he i rb ei n ga re go od fo rs 2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。

(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。

(3)不同能层的能级有交错现象,如E (3d )>E (4s )、E (4d )>E (5s )、E (5d )>E (6s )、E (6d )>E (7s )、E (4f )>E (5p )、E (4f )>E (6s )等。

原子轨道的能量关系是:ns <(n-2)f < (n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。

根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n 2;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。

(5)基态和激发态①基态:最低能量状态。

处于 最低能量状态 的原子称为 基态原子 。

②激发态:较高能量状态(相对基态而言)。

基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。

处于激发态的原子称为激发态原子 。

高中化学《选修三 物质结构与性质》知识归纳

高中化学《选修三 物质结构与性质》知识归纳

《选修三物质结构与性质》知识归纳一、能层与能级1、能层(电子层:n):在多电子原子中,核外电子的能量是不同的,按照电子的能量差异将其分成不同能层。

由里向外,分别用字母:K、L、M、N、O、P、Q表示相应的第一、二、三、四、五、六、七能层。

各能层最多容纳的电子数为2n2;在同一个原子中,离核越近,电子能量越低2、能级:同一能层里的电子的能量也可能不同,又将其分成不同的能级,通常用s、p、d、f等表示,同一能层里,各能级的能量按s、p、d、f的顺序升高,即:E(s)<E(p)<E(d)<E(f)①K层指包含一个能级,即s能级;L层包含两个能级,s和p能级;M层包含三个能级,s、p和d能级;N层包含四个能级,s、p、d、f能级②每个能层中,能级符号的顺序是ns、np、nd、nf……③s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍④同一能级容纳的电子数相同3、电子云:原子核外电子绕核高速运动是没有确定的轨道的,就好像一团“带负电荷的云雾”笼罩在原子核周围,这种“带负电荷的云雾”称之为电子云。

电子云密集(单位体积内小黑点多)的地方,电子出现的机会多;反之,电子云稀疏(单位体积内小黑点少)的地方,电子出现的机会少。

即电子云表示电子在核外单位体积内出现几率的大小,而非表示核外电子多少4、原子轨道:不同能级上的电子出现概率约为90%的电子云的空间轮廓图称为原子轨道(1)原子轨道的形状①s电子的原子轨道都是球形的,每个s能级各有1个原子轨道,能层序数越大,s原子轨道的半径越大;能量:E1s<E2s<E3s,随着能层序数的增大,电子在离核更远的区域出现的概率减小,电子云越来越向更大的空间扩展②p电子的原子轨道是纺锤形(哑铃形),每个p能级有3个轨道,它们互相垂直,分别以p x、p y、p z为符号。

p原子轨道的平均半径也随能层序数增大而增大③能级与原子轨道数和容纳的电子数的关系能级s(球形)p(纺锤形)d f原子轨道1357容纳的电子数261014二、基态原子的核外电子排布式1、构造原理:多电子的核外电子排布总是按照能量最低原理,由低能级逐步填充到高能级。

高中化学选修3物质结构与性质全册知识点总结

高中化学选修3物质结构与性质全册知识点总结

高中化学选修3知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。

②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。

③任一能层,能级数等于能层序数。

④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。

⑤能层不同能级相同,所容纳的最多电子数相同。

(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。

2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。

(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。

(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E (4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E (4f)>E(5p)、E(4f)>E(6s)等。

原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。

根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。

(5)基态和激发态①基态:最低能量状态。

处于最低能量状态的原子称为基态原子。

②激发态:较高能量状态(相对基态而言)。

基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。

处于激发态的原子称为激发态原子。

③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。

利用光谱分析可以发现新元素或利用特征谱线鉴定元素。

高中化学选修3物质结构与性质重点知识归纳

高中化学选修3物质结构与性质重点知识归纳

高中化学选修3物质结构与性质重点知识归纳第一章重点知识归纳一、原子结构1.能层、能级与原子轨道(1)能层(n):在多电子原子中,核外电子的能量是不同的,按照电子的能量差异将其分成不同能层。

通常用K、L、M、N……表示,能量依次升高。

(2)能级:同一能层里电子的能量也可能不同,又将其分成不同的能级,通常用s、p、d、f等表示,同一能层里,各能级的能量按s、p、d、f的顺序依次升高,即:E(s)<E(p)<E(d)<E(f)。

(3)电子云:电子在核外空间做高速运动,没有确定的轨道。

因此,人们用“电子云”模型来描述核外电子的运动。

“电子云”描述了电子在原子核外出现的概率密度分布,是核外电子运动状态的形象化描述。

(4)原子轨道:电子云轮廓图给出了电子在核外经常出现的区域,这种电子云轮廓图称为原子轨道。

同一能层内形状相同而伸展方向不同的原子轨道的能量相等,如n p x、n p y、n p z轨道的能量相等。

2.原子核外电子的排布规律(1)能量最低原理:即电子尽可能地先占有能量低的轨道,然后进入能量高的轨道,使整个原子的能量处于最低状态,所有电子排布规则都需要满足能量最低原理。

下图为构造原理示意图,即基态原子核外电子在原子轨道上的排布顺序图,由构造原理可知,从第三能层开始各能级不完全遵循能层顺序,产生了能级交错排列,即产生“能级交错”现象,能级交错指电子层数较大的某些能级的能量反而低于电子层数较小的某些能级的能量的现象,如:4s<3d、6s<4f <5d,一般规律为n s<(n-2)f<(n-1)d<n p。

注意排电子时先排4s轨道再排3d轨道,而失电子时,却先失4s轨道上的电子。

(2)泡利原理:每个原子轨道里最多只能容纳2个电子,且自旋状态相反。

如2s轨道上的电子排布为,不能表示为。

因为每个原子轨道最多只能容纳2个电子且自旋方向相反,所以从能层、能级、原子轨道、自旋方向四个方面来说明电子的运动状态是不可能有两个完全相同的电子的。

高中化学选修3知识点全部归纳(物质的结构与性质)

高中化学选修3知识点全部归纳(物质的结构与性质)

高中化学选修3知识点全部归纳(物质的结构与性质)第一章原子结构与性质。

一、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义.1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小.电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层。

原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q。

原子轨道(能级):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂。

各轨道的伸展方向个数依次为1、3、5、7.2.(构造原理)了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布.(1)。

原子核外电子的运动特征可以用电子层、原子轨道和自旋方向来进行描述。

在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.(2)。

原子核外电子排布原理。

①。

能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道。

②。

泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同。

洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性。

如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1.(3)。

掌握能级交错图和1-36号元素的核外电子排布式。

3。

元素电离能和元素电负性第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。

常用符号I1表示,单位为kJ/mol。

(1)。

原子核外电子排布的周期性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【高中化学选修《物质结构与性质》知识点提纲】一.原子结构与性质.一.认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义.1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小.电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q.原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7.2.(构造原理)了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布. (1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.(2).原子核外电子排布原理.①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道.②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同.洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1.(3).掌握能级交错图和1-36号元素的核外电子排布式.①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。

②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。

基态原子核外电子的排布按能量由低到高的顺序依次排布。

3.元素电离能和元素电负性第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。

常用符号I1表示,单位为kJ/mol。

(1).原子核外电子排布的周期性.随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化:每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到ns2np6的周期性变化.(2).元素第一电离能的周期性变化.随着原子序数的递增,元素的第一电离能呈周期性变化:★同周期从左到右,第一电离能有逐渐增大的趋势,稀有气体的第一电离能最大,碱金属的第一电离能最小;★同主族从上到下,第一电离能有逐渐减小的趋势.说明:①同周期元素,从左往右第一电离能呈增大趋势。

电子亚层结构为全满、半满时较相邻元素要大即第ⅡA 族、第ⅤA 族元素的第一电离能分别大于同周期相邻元素。

Be、N、Mg、P②.元素第一电离能的运用:a.电离能是原子核外电子分层排布的实验验证.b.用来比较元素的金属性的强弱. I1越小,金属性越强,表征原子失电子能力强弱.(3).元素电负性的周期性变化.元素的电负性:元素的原子在分子中吸引电子对的能力叫做该元素的电负性。

随着原子序数的递增,元素的电负性呈周期性变化:同周期从左到右,主族元素电负性逐渐增大;同一主族从上到下,元素电负性呈现减小的趋势.电负性的运用:二.化学键与物质的性质.内容:离子键――离子晶体1.理解离子键的含义,能说明离子键的形成.了解NaCl型和CsCl型离子晶体的结构特征,能用晶格能解释离子化合物的物理性质.(1).化学键:相邻原子之间强烈的相互作用.化学键包括离子键、共价键和金属键.(2).离子键:阴、阳离子通过静电作用形成的化学键.离子键强弱的判断:离子半径越小,离子所带电荷越多,离子键越强,离子晶体的熔沸点越高.离子键的强弱可以用晶格能的大小来衡量,晶格能是指拆开1mol离子晶体使之形成气态阴离子和阳离子所吸收的能量.晶格能越大,离子晶体的熔点越高、硬度越大.离子晶体:通过离子键作用形成的晶体.典型的离子晶体结构:NaCl型和CsCl型.氯化钠晶体中,每个钠离子周围有6个氯离子,每个氯离子周围有6个钠离子,每个氯化钠晶胞中含有4个钠离子和4个氯离子;氯化铯晶体中,每个铯离子周围有8个氯离子,每个氯离子周围有8个铯离子,每个氯化铯晶胞中含有1个铯离子和1个氯离子.NaCl型晶体CsCl型晶体每个Na+离子周围被6个C1—离子所包围,同样每个C1—也被6个Na+所包围。

每个正离子被8个负离子包围着,同时每个负离子也被8个正离子所包围。

(3).晶胞中粒子数的计算方法--均摊法.内容:共价键-分子晶体――原子晶体2.了解共价键的主要类型σ键和π键,能用键能、键长、键角等数据说明简单分子的某些性质(对σ键和π键之间相对强弱的比较不作要求). (1).共价键的分类和判断:σ键(“头碰头”重叠)和π键(“肩碰肩”重叠)、极性键和非极性键,还有一类特殊的共价键-配位键. (2).共价键三参数.共价键的键能与化学反应热的关系:反应热= 所有反应物键能总和-所有生成物键能总和.3.了解极性键和非极性键,了解极性分子和非极性分子及其性质的差异. (1).共价键:原子间通过共用电子对形成的化学键. (2).键的极性:极性键:不同种原子之间形成的共价键,成键原子吸引电子的能力不同,共用电子对发生偏移. 非极性键:同种原子之间形成的共价键,成键原子吸引电子的能力相同,共用电子对不发生偏移. (3).分子的极性:①.极性分子:正电荷中心和负电荷中心不相重合的分子. 非极性分子:正电荷中心和负电荷中心相重合的分子.②.分子极性的判断:分子的极性由共价键的极性及分子的空间构型两个方面共同决定.极性分子易溶于极性分子溶剂中(如,非极性分子易溶于非极性分子溶剂中(如CO 2易溶于CS 2中).分子的空间立体结构(记住)常见分子的类型与形状比较分子类型分子形状键角键的极性分子极性代表物A 球形非极性He、NeA2直线形非极性非极性H2、O2AB 直线形极性极性HCl、NOABA 直线形180°极性非极性CO2、CS2ABA V形≠180°极性极性H2O、SO2A4正四面体形60°非极性非极性P4AB3平面三角形120°极性非极性BF3、SO3AB3三角锥形≠120°极性极性NH3、NCl3AB4正四面体形109°28′极性非极性CH4、CCl4AB3C 四面体形≠109°28′极性极性CH3Cl、CHCl3AB 2C2四面体形≠109°28′极性极性CH2Cl2直线三角形V形四面体三角锥V形H2O5.了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系.(1).原子晶体:所有原子间通过共价键结合成的晶体或相邻原子间以共价键相结合而形成空间立体网状结构的晶体.(2).典型的原子晶体有金刚石(C)、晶体硅(Si)、二氧化硅(SiO2).金刚石是正四面体的空间网状结构,最小的碳环中有6个碳原子,每个碳原子与周围四个碳原子形成四个共价键;晶体硅的结构与金刚石相似;二氧化硅晶体是空间网状结构,最小的环中有6个硅原子和6个氧原子,每个硅原子与4个氧原子成键,每个氧原子与2个硅原子成键.(3).共价键强弱和原子晶体熔沸点大小的判断:原子半径越小,形成共价键的键长越短,共价键的键能越大,其晶体熔沸点越高.如熔点:金刚石>碳化硅>晶体硅.6.理解金属键的含义,能用金属键的自由电子理论解释金属的一些物理性质.知道金属晶体的基本堆积方式,了解常见金属晶体的晶胞结构(晶体内部空隙的识别、与晶胞的边长等晶体结构参数相关的计算不作要求).(1).金属键:金属离子和自由电子之间强烈的相互作用.请运用自由电子理论解释金属晶体的导电性、导热性和延展性.晶体中的微粒导电性导热性延展性金属离子和自由电子自由电子在外加电场的作用下发生定向移动自由电子与金属离子碰撞传递热量晶体中各原子层相对滑动仍保持相互作用(2).①.金属晶体:通过金属键作用形成的晶体.②.金属键的强弱和金属晶体熔沸点的变化规律:阳离子所带电荷越多、半径越小,金属键越强,熔沸点越高.如熔点:Na<Mg<Al,Li>Na>K>Rb>Cs.金属键的强弱可以用金属的原子化热来衡量.7.了解简单配合物的成键情况(配合物的空间构型和中心原子的杂化类型不作要求).(1).配位键:一个原子提供一对电子与另一个接受电子的原子形成的共价键.即成键的两个原子一方提供孤对电子,一方提供空轨道而形成的共价键.(2).①.配合物:由提供孤电子对的配位体与接受孤电子对的中心原子(或离子)以配位键形成的化合物称配合物,又称络合物.②.形成条件:a.中心原子(或离子)必须存在空轨道. b.配位体具有提供孤电子对的原子.③.配合物的组成.④.配合物的性质:配合物具有一定的稳定性.配合物中配位键越强,配合物越稳定.当作为中心原子的金属离子相同时,配合物的稳定性与配体的性质有关.三.分子间作用力与物质的性质.1.知道分子间作用力的含义,了解化学键和分子间作用力的区别.分子间作用力:把分子聚集在一起的作用力.分子间作用力是一种静电作用,比化学键弱得多,包括范德华力和氢键.范德华力一般没有饱和性和方向性,而氢键则有饱和性和方向性.2.知道分子晶体的含义,了解分子间作用力的大小对物质某些物理性质的影响.(1).分子晶体:分子间以分子间作用力(范德华力、氢键)相结合的晶体.典型的有冰、干冰.(2).分子间作用力强弱和分子晶体熔沸点大小的判断:组成和结构相似的物质,相对分子质量越大,分子间作用力越大,克服分子间引力使物质熔化和气化就需要更多的能量,熔、沸点越高.但存在氢键时分子晶体的熔沸点往往反常地高.3.了解氢键的存在对物质性质的影响(对氢键相对强弱的比较不作要求).NH3、H2O、HF中由于存在氢键,使得它们的沸点比同族其它元素氢化物的沸点反常地高.影响物质的性质方面:增大溶沸点,增大溶解性表示方法:X—H……Y(N O F) 一般都是氢化物中存在四、几种比较1、离子键、共价键和金属键的比较3.物质溶沸点的比较(重点)(1)不同类晶体:一般情况下,原子晶体>离子晶体>分子晶体(2)同种类型晶体:构成晶体质点间的作用大,则熔沸点高,反之则小。

①离子晶体:离子所带的电荷数越高,离子半径越小,则其熔沸点就越高。

②分子晶体:对于同类分子晶体,式量越大,则熔沸点越高。

③原子晶体:键长越小、键能越大,则熔沸点越高。

相关文档
最新文档