三种宇宙速度的计算方法

合集下载

三个宇宙速度

三个宇宙速度

三个宇宙速度1.三个宇宙速度的推算及其意义⑴ 三个宇宙速度的推算①第一宇宙速度(即环绕速度)计算第一宇宙速度是地球卫星的最小发射速度,也是地球卫星在近地轨道上运行时的速度.由mg R v m RMm G ==22得s m gR R GM v /109.73⨯===.例1. 已知地球与月球质量比为8:1,半径之比为3.8:1,在地球表面上发射卫星,至少需要7.9km/s 的速度,求在月球上发射一颗环绕月球表面运行的飞行物需要多大的速度?分析:地球上卫星需要的向心力来自地球的引力,月球上的飞行物需要的向心力是月球对它的引力.解答:发射环绕地球表面运行的飞行物时,有2R GmM 地地=m地地R v 2发射环绕月球表面运行的飞行物时,只有2R GmM 月月= m月月R v 2由此即可得:v 月=月地地月R R M M ⋅·v 地=8.31181⨯×7.9×103m/s =1.71×103m/s②第二宇宙速度(即脱离速度)的推算如果人造卫星进入地面附近的轨道速度等于或大于1l.2km /s ,就会脱离地球的引力,这个速度称为第二宇宙速度.为了用初等数学方法计算第二宇宙速度,设想从地球表面至无穷远处的距离分成无数小段ab 、bc 、… ,等分点对应的半径为r 1、r 2 ……,如图所示.由于每一小段ab 、bc 、cd … 极小,这一小段上的引力可以认为不变.因此把卫星从地表a 送到b 时,外力克服引力做功)11()()(111121r R GMm R r r R Mm G R r R Mm GW -=-⋅=-= 同理,卫星从地表移到无穷远过程中,各小段上外力做的功分别为)11(212r r GMm W -=)11(323r r GMm W -= …)11(1n n n r r GMm W -=-)11(∞∞-=r r GMm W n把卫星送至无穷远处所做的总功 RMm G W W W W W W n =+++++=∞ 321为了挣脱地球的引力卫星必须具有的动能为RMm G W mv ==2221所以s km gR RGMv /2.11222===例2.已知物体从地球上的逃逸速度(第二宇宙速度)v 2=RGm2,其中G 、m 、R 分别是引力常量、地球的质量和半径.已知G =6.67×10-11N·m 2/kg 2,c =2.9979×108 m/s.求下列问题:(1)逃逸速度大于真空中光速的天体叫作黑洞,设某黑洞的质量等于太阳的质量m =1.98×1030 kg ,求它的可能最大半径;(2)在目前天文观测范围内,物质的平均密度为10-27 kg/m 3,如果认为我们的宇宙是这样一个均匀大球体,其密度使得它的逃逸速度大于光在真空中的速度c ,因此任何物体都不能脱离宇宙,问宇宙的半径至少多大?解答:(1)由题目所提供的信息可知,任何天体均存在其所对应的逃逸速度v 2=RGm2,其中m 、R 为天体的质量和半径.对于黑洞模型来说,其逃逸速度大于真空中的光速 ,即 v 2>c所以R <22c Gm =283011)109979.2(1098.1107.62⨯⨯⨯⨯⨯-m=2.94×103 m即质量为1.98×1030kg 的黑洞的最大半径为2.94×103m.(2)把宇宙视为普通天体,则其质量m =ρ·V =ρ·34πR 3①其中R 为宇宙的半径,ρ为宇宙的密度,则宇宙的逃逸速度为v 2=RGm2 ②由于宇宙密度使得其逃逸速度大于光速c ,即v 2>c③则由以上三式可得R >Gc πρ832=4.01×1026 m ,即宇宙的半径至少为4.24×1010光年.③第三宇宙速度(即逃逸速度)的推算脱离太阳引力的速度称为第三宇宙速度.因为地球绕太阳运行的速度为s km v /30=地,根据推导第二宇宙速度得到的脱离引力束缚的速度等于在引力作用下环绕速度的2倍,即s km s km v /4.42/3022=⨯=地因为人造天体是在地球上,所以只要沿地球运动轨道的方向增加s km v /4.12=∆即可,即需增加动能2)(21v m ∆.所以人造天体需具有的总能量为2322221)(2121mv v m mv E =∆+= 得第三宇宙速度s km v /7.163=⑵ 宇宙速度的意义当发射速度v 与宇宙速度分别有如下关系时,被发射物体的运动情况将有所不同①当v <v 1时,被发射物体最终仍将落回地面;②当v 1≤v <v 2时,被发射物体将环绕地球运动,成为地球卫星;③当v 2≤v <v 3时,被发射物体将脱离地球束缚,成为环绕太阳运动的“人造行星”;④当v ≥v 3时,被发射物体将从太阳系中逃逸。

三大宇宙速度的推导公式

三大宇宙速度的推导公式

三大宇宙速度的推导公式
1.逃逸速度
逃逸速度是指物体在天体表面所具有的最小速度,使得物体能够完全
逃离天体的引力束缚,不再被天体所吸引。

逃逸速度的推导公式如下:逃逸速度v_e=√(2GM/r)
其中,G是引力常数,M是天体的质量,r是距离天体中心的距离。

2.第一宇宙速度
第一宇宙速度是指物体在距离天体表面一定距离的地方所具有的最小
速度,使得物体能够绕天体运动。

第一宇宙速度的推导公式如下:第一宇宙速度v_1=√(GM/r)
其中,G是引力常数,M是天体的质量,r是距离天体中心的距离。

3.第二宇宙速度
第二宇宙速度是指物体在距离天体表面一定距离的地方所具有的速度,使得物体能够克服天体引力的束缚,无限远离天体。

第二宇宙速度的推导
公式如下:
第二宇宙速度v_2=√(2GM/R)
其中,G是引力常数,M是天体的质量,R是天体的半径。

这三个宇宙速度的推导公式都基于引力定律和运动力学原理。

在推导
过程中,我们假设天体是质点,不考虑天体的自转和形状对速度的影响。

同时,我们也忽略了其他天体和物体之间的相互作用。

以上是三大宇宙速度的推导公式,它们在宇宙探索和天体运动研究中具有重要意义。

这些公式用于计算和预测宇宙飞行器的运动轨迹以及模拟天体间的相互作用。

三种宇宙速度的计算方法

三种宇宙速度的计算方法

宇宙速度的计算方法第一宇宙速度的计算方法第一宇宙速度(V 1): 航天器沿地球表面作圆周运动时必须具备的速度,也叫环绕速度。

按照力学理论可以计算出V 1=7.9km/s 。

航天器在距离地面表面数百公里以上的高空运行,地面对航天器引力比在地面时要小,故其速度也略小于V 1第二宇宙速度的计算方法1。

第二宇宙速度(V 2): 当航天器超过第一宇宙速度V 1达到一定值时,它就会脱离地球的引力场而成为围绕太阳运行的人造行星,这个速度就叫做第二宇宙速度,亦称逃逸速度。

按照力学理论可以计算出第二宇宙速度V 2=11.2 km/s 。

第三宇宙速度(V3) 从地球表面发射航天器,飞出太阳系,到浩瀚的银河系中漫游所需要的最小速度,就叫做第三宇宙速度。

按照力学理论可以计算出第三宇宙速度V 3=16.7公里/秒。

需要注意的是,这是选择航天器入轨速度与地球公转速度方向一致时计算出的V 3值;如果方向不一致,所需速度就要大于16.7公里/秒了.可以说,航天器的速度是挣脱地球乃至太阳引力的惟一要素,目前只有火箭才能突破宇宙速度设物体以第三宇宙速度抛出时具有的动能为1232E mV k =,这部分动能应该包括两部分:即脱离地球引力的动能E k1和脱离太阳引力的动能E k2.即:E k =E k1+E k2。

易知:12122E mV k =,V 2为地球第二宇宙速度。

下面再求E k2:有两点说明:①因为地球绕太阳公转的椭圆轨道的离心率很小,可以当作圆来处理。

②发射时个行星对物体的引力很小,可以忽略不计。

基于这两点简化,发射过程可以应用机械能守恒定律解题.物体随地球绕太阳的公转速率等于29。

8km/s 。

其倍应该为物体挣脱太阳引力所需的速度,即:'29.842.2/2V km s =(以太阳为参照物)。

如果准备飞出太阳系的物体在地球上的发射方向与地球绕太阳公转方向相同,便可以充分利用地球公转速度,这样物体在离开地球时只需要有相对地球的速度V ’=42.2-29。

三大宇宙速度的推导公式

三大宇宙速度的推导公式

三大宇宙速度的推导公式
夸克速度非常神奇,其定义是比光速更快的物体运动速度。

夸克速度在物理学中具有重要的意义,主要包括三大宇宙速度:光速、亚夸克速度和夸克速度。

光速作为最快的速度,它可以使物体穿越太阳系,使宇宙在短时间内发生巨大的变化。

光速的推导公式是c=λf,其中λ表示波长,f表示频率。

光速是宇宙中机
械运动的最快速度,是宇宙中最容易被测量的速度。

亚夸克速度比光速慢,但远快于人类常见速度。

它是由 Maxwell 推导而来,其推导公式是 v = (E/B)^1/3,其中 E 表示电场强度,B 表示磁场强度。

它是宇宙中穿越物质结构的最快速度。

夸克速度也被称作自由夸克速度,它的推导公式为v=Fc,其中 F 表示力学加
速度, c 表示光速。

夸克速度是宇宙中测量不准确的速度,也是宇宙中的最快速度。

宇宙中的三大宇宙速度分别代表它们不同的运动能力,以满足宇宙中生命和物质的不同需求。

光速是宇宙中最快的实际速度,可用于穿越太阳系;亚夸克速度则可以用于在宇宙结构中传播;而夸克速度则可以用于穿越天体间的时空。

这三个宇宙速度正在不断推动宇宙的发展与变化。

三大宇宙速度的推导公式

三大宇宙速度的推导公式

三大宇宙速度的推导公式首先来推导地球绕太阳公转的速度。

地球绕太阳公转的速度可以通过以下公式推导得到:F=G*(M*m)/r²其中,F表示太阳对地球的引力,G表示万有引力常量,M表示太阳的质量,m表示地球的质量,r表示地球距离太阳的距离。

太阳对地球的引力提供了地球沿着椭圆轨道绕太阳公转的向心力。

根据在圆周运动中的向心力和离心力平衡的条件,可以得到公式为:F=m*v²/r其中,v表示地球绕太阳公转的速度。

将上面两个公式联立,可以得到:G*(M*m)/r²=m*v²/r消去m,可以得到:v=√(G*M/r)这个公式表示地球绕太阳公转的速度与太阳的质量、地球与太阳的距离有关。

接下来推导地球自转的速度。

地球自转的速度可以通过以下公式推导得到:v=2πr/T其中,v表示地球自转的速度,r表示地球的半径,T表示地球自转一周所花费的时间。

地球的半径可以用平均半径r0来近似表示,T可以用地球的自转周期T0来近似表示。

因此,地球的自转速度可以近似表示为:v=2πr0/T0最后推导地球脱离太阳的逃逸速度。

地球脱离太阳的逃逸速度可以通过以下公式推导得到:E=K+U其中,E表示地球相对于太阳的总机械能,K表示地球的动能,U表示地球受到太阳引力的势能。

地球相对于太阳的总机械能为负值,因为地球处于太阳的引力场中,所以E小于0。

动能K可以用1/2mv²表示,其中m表示地球的质量,v表示地球脱离太阳的速度。

势能U可以用-GMm/r表示,其中G表示万有引力常量,M表示太阳的质量,r表示地球与太阳的距离。

将上面两个公式联立,可以得到:E = 1/2mv² - GMm/rE小于0,所以:1/2mv² < GMm/r消去m,可以得到:v²<2GM/r地球脱离太阳的逃逸速度v可以近似表示为:v=√(2GM/r)这个公式表示地球脱离太阳的逃逸速度与太阳的质量、地球与太阳的距离有关。

高中物理万有引力定律在天文学上的应用

高中物理万有引力定律在天文学上的应用

1、基本方法:①把天体的运动看成匀速圆周运动,其所需向心力由万有引力提供:②在忽略天体自转影响时,天体表面的重力加速度:,R为天体半径。

2、环绕天体的绕行速度,角速度、周期与半径的关系。

①由得∴r越大,②由得∴r越大,③由得∴r越大,3、三种宇宙速度①第一宇宙速度():v1= km/s,人造卫星在地面附近环绕地球做匀速圆周运动的速度。

②第二宇宙速度():v2= km/s,使物体挣脱地球束缚,在地面附近的最小发射速度。

③第三宇宙速度():v3= km/s,使物体挣脱太阳引力束缚,在地面附近的最小发射速度。

4、同步卫星的特点:①同步卫星的周期T=②同步卫星的高度H=③同步卫星的线速度V=④同步卫星一定都处在赤道上空(可证明)。

5、万有引力和重力:重力是由万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,由于纬度的变化,物体做圆周运动的向心力F向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g随纬度变化而变化,从赤道到两极逐渐增大.通常的计算中因重力和万有引力相差不大,而认为两者相等,即m2g=G, g =GM/r2常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g随物体离地面高度的增大而减小,即g h=GM/(r+h)2,比较得g h=()2·g在赤道处,物体的万有引力分解的两个分力F向和m2g 刚好在一条直线上,则有F=F向+m2g,所以m2g=F-F向=G-m2Rω自2因地球自转角速度很小G>>m2Rω自2,所以m2g= G假设地球自转加快,即ω自变大,由m2g=G-m2Rω自2知物体的重力将变小,当G=m2Rω自2时,m2g=0,此时地球上物体无重力,但是它要求地球自转的角速度ω自=,比现在地球自转角速度要大得多.典型例题1、万有引力定律及其适用条件:例1、如图所示,在一个半径为R、质量为M的均匀球体中,紧贴球的边缘挖去一个半径为R/2的球形空穴后,对位于球心和空穴中心连线上、与球心相距d的质点m的引力是多大?分析:把整个球体对质点的引力看成是挖去的小球体和剩余部分对质点的引力之和,即可得解.(1)有部分同学认为,如果先设法求出挖去球穴后的重心位置,然后把剩余部分的质量集中于这个重心上,应用万有引力公式求解.这是不正确的.万有引力存在于宇宙间任何两个物体之间,但计算万有引力的简单公式却只能适用于两个质点或均匀球体,挖去球穴后的剩余部分已不再是均匀球体了,不能直接使用这个公式计算引力.(2)如果题中的球穴挖在大球的正中央,根据同样道理可得剩余部分对球外质点m的引力上式表明,一个均质球壳对球外质点的引力跟把球壳的质量(7M/8)集中于球心时对质点的引力一样.解析:完整的均质球体对球外质点m的引力这个引力可以看成是:m挖去球穴后的剩余部分对质点的引力F1与半径为R/2的小球对质点的引力F2之和,即F=F1+F2.因半径为R/2的小球质量M/为,则,所以挖去球穴后的剩余部分对球外质点m的引力。

物理-人造卫星宇宙速度

物理-人造卫星宇宙速度

人造卫星 宇宙速度物理考点 1.会比较卫星运动的各物理量之间的关系.2.理解三种宇宙速度,并会求解第一宇宙速度的大小.3.会分析天体的“追及”问题.考点一 卫星运行参量的分析基础回扣1.天体(卫星)运行问题分析将天体或卫星的运动看成匀速圆周运动,其所需向心力由万有引力提供.2.基本公式:(1)线速度:G =m ⇒v =Mmr 2v 2r GM r (2)角速度:G =mω2r ⇒ω=Mmr 2GMr 3(3)周期:G =m 2r ⇒T =2πMmr 2(2πT )r 3GM(4)向心加速度:G =ma ⇒a =Mmr 2GMr 2结论:r 越大,v 、ω、a 越小,T 越大.技巧点拨1.公式中r 指轨道半径,是卫星到中心天体球心的距离,R 通常指中心天体的半径,有r =R +h .2.近地卫星和同步卫星卫星运动的轨道平面一定通过地心,一般分为赤道轨道、极地轨道和其他轨道,同步卫星的轨道是赤道轨道.(1)近地卫星:轨道在地球表面附近的卫星,其轨道半径r =R (地球半径),运行速度等于第一宇宙速度v =7.9 km/s(人造地球卫星的最大运行速度),T =85 min(人造地球卫星的最小周期).(2)同步卫星①轨道平面与赤道平面共面.②周期与地球自转周期相等,T =24 h.③高度固定不变,h =3.6×107 m.④运行速率均为v =3.1×103 m/s. 卫星运行参量与轨道半径的关系例1 (2020·浙江7月选考·7)火星探测任务“天问一号”的标识如图1所示.若火星和地球绕太阳的运动均可视为匀速圆周运动,火星公转轨道半径与地球公转轨道半径之比为3∶2,则火星与地球绕太阳运动的( )图1A .轨道周长之比为2∶3B .线速度大小之比为∶32C .角速度大小之比为2∶323D .向心加速度大小之比为9∶4答案 C解析 轨道周长C =2πr ,与半径成正比,故轨道周长之比为3∶2,故A 错误;根据万有引力提供向心力有=m ,得v =,得==,故B 错误;由万有引力提供GMmr 2v 2r GMr v 火v 地r 地r 火23向心力有=mω2r ,得ω=,得==,故C 正确;由=ma ,得GMm r 2GMr 3ω火ω地r 地3r 火32233GMmr 2a =,得==,故D 错误.GMr 2a 火a 地r 地2r 火249 同步卫星、近地卫星及赤道上物体的比较例2 (2019·青海西宁市三校联考)如图2所示,a 为放在赤道上相对地球静止的物体,随地球自转做匀速圆周运动,b 为沿地球表面附近做匀速圆周运动的人造卫星(轨道半径约等于地球半径),c 为地球的同步卫星.下列关于a 、b 、c 的说法中正确的是( )图2A .b 卫星转动线速度大于7.9 km/sB .a 、b 、c 做匀速圆周运动的向心加速度大小关系为a a >a b >a cC .a 、b 、c 做匀速圆周运动的周期关系为T a =T c <T bD .在b 、c 中,b 的线速度大答案 D解析 b 为沿地球表面附近做匀速圆周运动的人造卫星,根据万有引力定律有G =m ,MmR 2v 2R 解得v =,又=mg ,可得v =,与第一宇宙速度大小相同,即v =7.9 km/s ,故GMR GMmR 2gR A 错误;地球赤道上的物体与同步卫星具有相同的角速度,所以ωa =ωc ,根据a =rω2知,c 的向心加速度大于a 的向心加速度,根据a =得b 的向心加速度大于c 的向心加速度,GMr 2即a b >a c >a a ,故B 错误;卫星c 为地球同步卫星,所以T a =T c ,根据T =2π得c 的周r 3GM 期大于b 的周期,即T a =T c >T b ,故C 错误;在b 、c中,根据v =,可知b 的线速度GMr 比c 的线速度大,故D 正确.1.(卫星运行参量的比较)(2020·浙江1月选考·9)如图3所示,卫星a 、b 、c 沿圆形轨道绕地球运行.a 是极地轨道卫星,在地球两极上空约1 000 km 处运行;b 是低轨道卫星,距地球表面高度与a 相等;c 是地球同步卫星,则( )图3A .a 、b 的周期比c 大B .a 、b 的向心力一定相等C .a 、b 的速度大小相等D .a 、b 的向心加速度比c 小答案 C解析 根据万有引力提供向心力有=m =mω2r =m r =ma ,可知v =,ω=GMmr 2v 2r 4π2T 2GM r,T =,a =,由此可知,半径越大,线速度、角速度、向心加速度越小,周GM r 32πr 3GM GMr 2期越长,因为a 、b 卫星的半径相等,且比c 小,因此a 、b 卫星的线速度大小相等,向心加速度比c 大,周期小于卫星c 的周期,选项C 正确,A 、D 错误;由于不知道三颗卫星的质量关系,因此不清楚向心力的关系,选项B 错误.2.(同步卫星)关于我国发射的“亚洲一号”地球同步通信卫星的说法,正确的是( )A .若其质量加倍,则轨道半径也要加倍B .它在北京上空运行,故可用于我国的电视广播C .它以第一宇宙速度运行D .它运行的角速度与地球自转角速度相同答案 D解析 由G =m 得r =,可知轨道半径与卫星质量无关,A 错误;同步卫星的轨道Mmr 2v 2r GMv 2平面必须与赤道平面重合,即在赤道上空运行,不能在北京上空运行,B 错误;第一宇宙速度是卫星在最低圆轨道上运行的速度,而同步卫星在高轨道上运行,其运行速度小于第一宇宙速度,C 错误;所谓“同步”就是卫星保持与赤道上某一点相对静止,所以同步卫星的角速度与地球自转角速度相同,D 正确.3.(卫星运动分析)(2016·全国卷Ⅰ·17)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( )A .1 hB .4 h C .8 h D .16 h 答案 B解析 地球自转周期变小,卫星要与地球保持同步,则卫星的公转周期也应随之变小,由开普勒第三定律=k 可知卫星离地球的高度应变小,要实现三颗卫星覆盖全球的目的,则卫r 3T 2星周期最小时,由数学几何关系可作出卫星间的位置关系如图所示.卫星的轨道半径为r ==2R Rsin 30°由=得r 13T 12r 23T 22=(6.6R )3242(2R )3T 22解得T 2≈4 h .考点二 宇宙速度的理解和计算基础回扣第一宇宙速度(环绕速度)v 1=7.9 km/s ,是物体在地面附近绕地球做匀速圆周运动的最大环绕速度,也是人造地球卫星的最小发射速度第二宇宙速度(脱离速度)v 2=11.2 km/s ,是物体挣脱地球引力束缚的最小发射速度第三宇宙速度(逃逸速度)v 3=16.7 km/s ,是物体挣脱太阳引力束缚的最小发射速度技巧点拨1.第一宇宙速度的推导方法一:由G =m ,得v 1== m/s ≈7.9×103MmR 2v 12R GMR 6.67×10-11×5.98×10246.4×106m/s.方法二:由mg =m 得v 1== m/s ≈7.9×103 m/s.v 12R gR 9.8×6.4×106第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2π=5 078 s ≈85 min.Rg 2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球表面做匀速圆周运动.(2)7.9 km/s<v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆.(3)11.2 km/s ≤v 发<16.7 km/s ,卫星绕太阳运动的轨迹为椭圆.(4)v 发≥16.7 km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间.例3 (2020·北京卷·5)我国首次火星探测任务被命名为“天问一号”.已知火星质量约为地球质量的10%,半径约为地球半径的50%,下列说法正确的是( )A .火星探测器的发射速度应大于地球的第二宇宙速度B .火星探测器的发射速度应介于地球的第一和第二宇宙速度之间C .火星的第一宇宙速度大于地球的第一宇宙速度D .火星表面的重力加速度大于地球表面的重力加速度答案 A解析 火星探测器需要脱离地球的束缚,故其发射速度应大于地球的第二宇宙速度,故A正确,B 错误;由G =m 得,v 火===v 地,故火星的第一宇宙速MmR 2v 2R GM 火R 火0.1M 地G0.5R 地55度小于地球的第一宇宙速度,故C 错误;由=mg 得,g 火=G =G =0.4gGMmR 2M 火R 火20.1M 地(0.5R 地)2地,故火星表面的重力加速度小于地球表面的重力加速度,故D 错误.4.(第一宇宙速度的计算)地球的近地卫星线速度大小约为8 km/s ,已知月球质量约为地球质量的,地球半径约为月球半径的4倍,下列说法正确的是( )181A .在月球上发射卫星的最小速度约为8 km/s B .月球卫星的环绕速度可能达到4 km/s C .月球的第一宇宙速度约为1.8 km/sD .“近月卫星”的速度比“近地卫星”的速度大答案 C解析 根据第一宇宙速度v =,月球与地球的第一宇宙速度之比为GMR ===,月球的第一宇宙速度约为v 2=v 1=×8 km/s ≈1.8 km/s ,在月球上v 2v 1M 2R 1M 1R 2481292929发射卫星的最小速度约为1.8 km/s ,月球卫星的环绕速度小于或等于1.8 km/s ,“近月卫星”的速度为1.8 km/s ,小于“近地卫星”的速度,故C 正确.5.(宇宙速度的理解和计算)宇航员在一行星上以速度v 0竖直上抛一质量为m 的物体,不计空气阻力,经2t 后落回手中,已知该星球半径为R .求:(1)该星球的第一宇宙速度的大小;(2)该星球的第二宇宙速度的大小.已知取无穷远处引力势能为零,物体距星球球心距离为r 时的引力势能E p =-G .(G 为万有引力常量)mMr 答案 (1) (2)v 0Rt 2v 0R t解析 (1)由题意可知星球表面重力加速度为g =v 0t由万有引力定律知mg =m v 12R解得v 1==.gR v 0Rt (2)由星球表面万有引力等于物体重力知=mgGMmR 2又E p =-G mMR解得E p =-m v 0Rt 由机械能守恒有m v 22-=012m v 0R t 解得v 2=.2v 0Rt 考点三 天体的“追及”问题1.相距最近两卫星的运转方向相同,且位于和中心连线的半径上同侧时,两卫星相距最近,从运动关系上,两卫星运动关系应满足(ωA -ωB )t =2n π(n =1,2,3…).2.相距最远当两卫星位于和中心连线的半径上两侧时,两卫星相距最远,从运动关系上,两卫星运动关系应满足(ωA -ωB )t ′=(2n -1)π(n =1,2,3…).例4 当地球位于太阳和木星之间且三者几乎排成一条直线时,称之为“木星冲日”,2016年3月8日出现了一次“木星冲日”.已知木星与地球几乎在同一平面内沿同一方向绕太阳近似做匀速圆周运动,木星到太阳的距离大约是地球到太阳距离的5倍.则下列说法正确的是( )A .下一次的“木星冲日”时间肯定在2018年B .下一次的“木星冲日”时间肯定在2017年C .木星运行的加速度比地球的大D .木星运行的周期比地球的小答案 B解析 地球公转周期T 1=1年,由T =2π可知,土星公转周期T 2=T 1≈11.18r 3GM 125年.设经时间t ,再次出现“木星冲日”,则有ω1t -ω2t =2π,其中ω1=,ω2=,解得2πT 12πT 2t ≈1.1年,因此下一次“木星冲日”发生在2017年,故A 错误,B 正确;设太阳质量为M ,行星质量为m ,轨道半径为r ,周期为T ,加速度为a .对行星由牛顿第二定律可得G =ma =m r ,解得a =,T =2π,由于木星到太阳的距离大约是地球到太阳Mmr 24π2T 2GMr 2r 3GM 距离的5倍,因此,木星运行的加速度比地球的小,木星运行的周期比地球的大,故C 、D 错误.6.(天体的“追及”问题)(多选)(2020·山西太原市质检)如图4,在万有引力作用下,a 、b 两卫星在同一平面内绕某一行星c 沿逆时针方向做匀速圆周运动,已知轨道半径之比为r a ∶r b =1∶4,则下列说法中正确的有( )图4A .a 、b 运动的周期之比为T a ∶T b =1∶8B .a 、b 运动的周期之比为T a ∶T b =1∶4C .从图示位置开始,在b 转动一周的过程中,a 、b 、c 共线12次D .从图示位置开始,在b 转动一周的过程中,a 、b 、c 共线14次答案 AD解析 根据开普勒第三定律:半径的三次方与周期的二次方成正比,则a 、b 运动的周期之比为1∶8,A 对,B 错;设图示位置ac 连线与bc 连线的夹角为θ<,b 转动一周(圆心角为π22π)的时间为T b ,则a 、b 相距最远时:T b -T b =(π-θ)+n ·2π(n =0,1,2,3…),可知2πTa 2πTb n <6.75,n 可取7个值;a 、b 相距最近时:T b -T b =(2π-θ)+m ·2π(m =0,1,2,3…),可2πTa 2πTb 知m <6.25,m 可取7个值,故在b 转动一周的过程中,a 、b 、c 共线14次,C 错,D 对.课时精练1.(2020·天津卷·2)北斗问天,国之夙愿.如图1所示,我国北斗三号系统的收官之星是地球静止轨道卫星,其轨道半径约为地球半径的7倍.与近地轨道卫星相比,地球静止轨道卫星( )图1A.周期大B.线速度大C.角速度大D.加速度大答案 A解析 根据万有引力提供向心力有G=m()2r、G=m、G=mω2r、G=maMmr22πTMmr2v2rMmr2Mmr2可知T=2π、v=、ω=、a=,因为地球静止轨道卫星的轨道半径大于近r3GMGMrGMr3GMr2地轨道卫星的轨道半径,所以地球静止轨道卫星的周期大、线速度小、角速度小、向心加速度小,故选项A正确.2.(2020·四川泸州市质量检测)我国实施空间科学战略性先导科技专项计划,已经发射了“悟空”“墨子”“慧眼”等系列的科技研究卫星,2019年8月31日又成功发射一颗微重力技术实验卫星.若微重力技术实验卫星和地球同步卫星均绕地球做匀速圆周运动时,微重力技术实验卫星的轨道高度比地球同步卫星低,下列说法中正确的是( )A.该实验卫星的周期大于地球同步卫星的周期B.该实验卫星的向心加速度大于地球同步卫星的向心加速度C.该实验卫星的线速度小于地球同步卫星的线速度D.该实验卫星的角速度小于地球同步卫星的角速度答案 B解析 万有引力提供向心力,由G=m2r=m=mω2r=ma,解得:v=,T=2πMmr2(2πT)v2rGMr ,ω=,a=.实验卫星的轨道半径小于地球同步卫星的轨道半径,可知该实验r3GMGMr3GMr2卫星周期比地球同步卫星的小,向心加速度、线速度、角速度均比地球同步卫星的大,故选项B 正确,A 、C 、D 错误.3.(2019·天津卷·1)2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”,如图2.已知月球的质量为M 、半径为R .探测器的质量为m ,引力常量为G ,嫦娥四号探测器围绕月球做半径为r 的匀速圆周运动时,探测器的( )图2A .周期为B .动能为4π2r 3GM GMm2RC .角速度为D .向心加速度为Gmr 3GMR 2答案 A解析 嫦娥四号探测器环绕月球做匀速圆周运动时,万有引力提供其做匀速圆周运动的向心力,由=mω2r =m =m r =ma ,解得ω=、v =、T =、a =,GMmr 2v 2r 4π2T 2GMr 3GMr 4π2r 3GM GMr 2则嫦娥四号探测器的动能为E k =m v 2=,由以上可知A 正确,B 、C 、D 错误.12GMm2r 4.(2019·北京卷·18)2019年5月17日,我国成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星).该卫星( )A .入轨后可以位于北京正上方B .入轨后的速度大于第一宇宙速度C .发射速度大于第二宇宙速度D .若发射到近地圆轨道所需能量较少答案 D解析 同步卫星只能位于赤道正上方,A 项错误;由=知,卫星的轨道半径越大,GMmr 2m v 2r 卫星做匀速圆周运动的线速度越小,因此入轨后的速度小于第一宇宙速度(近地卫星的速度),B 项错误;同步卫星的发射速度大于第一宇宙速度,小于第二宇宙速度,C 项错误;若发射到近地圆轨道,所需发射速度较小,所需能量较少,D 正确.5.(多选)(2020·江苏卷·7改编)甲、乙两颗人造卫星质量相等,均绕地球做圆周运动,甲的轨道半径是乙的2倍.下列应用公式进行的推论正确的有( )A .由v =可知,甲的速度是乙的倍gr 2B .由a =ω2r 可知,甲的向心加速度是乙的2倍C .由F =G 可知,甲的向心力是乙的Mm r 214D .由=k 可知,甲的周期是乙的2倍r 3T 22答案 CD解析 人造卫星绕地球做圆周运动时有G =m ,即v =,因此甲的速度是乙的Mmr 2v 2r GMr 倍,故A 错误;由G =ma 得a =,故甲的向心加速度是乙的,故B 错误;由22Mmr 2GMr 214F =G 知甲的向心力是乙的,故C 正确;由开普勒第三定律=k ,绕同一天体运动,k Mmr 214r 3T 2值不变,可知甲的周期是乙的2倍,故D 正确.26.(2020·全国卷Ⅲ·16)“嫦娥四号”探测器于2019年1月在月球背面成功着陆,着陆前曾绕月球飞行,某段时间可认为绕月做匀速圆周运动,圆周半径为月球半径的K 倍.已知地球半径R 是月球半径的P 倍,地球质量是月球质量的Q 倍,地球表面重力加速度大小为g .则“嫦娥四号”绕月球做圆周运动的速率为( )A. B. C. D.RKg QP RPKgQ RQgKP RPgQK答案 D解析 在地球表面有G =mg ,“嫦娥四号”绕月球做匀速圆周运动时有M 地mR 2G =m ′,根据已知条件有R =PR 月,M 地=QM 月,联立以上各式解得v =M 月m ′(KR 月)2v 2KR 月,故选D.RPgQK 7.如图3,甲、乙两颗卫星以相同的轨道半径分别绕质量为M 和2M 的行星做匀速圆周运动.下列说法正确的是( )图3A .甲的向心加速度比乙的小B .甲的运行周期比乙的小C .甲的角速度比乙的大D .甲的线速度比乙的大答案 A8.星球上的物体脱离星球引力所需要的最小速度称为第二宇宙速度.星球的第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=v 1.已知某星球的半径为r ,它表面的重力加速度为地2球表面重力加速度g 的.不计其他星球的影响.则该星球的第二宇宙速度为( )16A. B.gr 3gr 6C. D.gr 3gr 答案 A解析 该星球的第一宇宙速度满足:G =m ,在该星球表面处万有引力等于重力:G Mmr 2v 12r =m ,由以上两式得v 1=,则第二宇宙速度v 2=×=,故A 正确.Mmr 2g6gr62gr6gr39.(2019·安徽宣城市第二次模拟)有a 、b 、c 、d 四颗地球卫星,卫星a 还未发射,在地球赤道上随地球表面一起转动,卫星b 在地面附近近地轨道上正常运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图4,则有( )图4A .a 的向心加速度等于重力加速度gB .b 在相同时间内转过的弧长最长C .c 在4 h 内转过的圆心角是π6D .d 的运动周期有可能是20 h 答案 B解析 同步卫星的周期、角速度与地球自转周期、角速度相同,则知a 与c 的角速度相同,根据a =ω2r 知,c 的向心加速度大于a 的向心加速度.由G =mg ,解得:g =,卫星Mmr 2GMr 2的轨道半径越大,向心加速度越小,则c 的向心加速度小于b 的向心加速度,而b 的向心加速度约为g ,则a 的向心加速度小于重力加速度g ,故A 错误;由G =m ,解得:v =Mmr 2v 2r ,卫星的半径r 越大,速度v 越小,所以b 的速度最大,在相同时间内转过的弧长最长,GMr故B 正确;c 是地球同步卫星,周期是24 h ,则c 在4 h 内转过的圆心角是×4=,故C 2π24π3错误;由开普勒第三定律=k 可知:卫星的半径r 越大,周期T 越大,所以d 的运动周期r 3T 2大于c 的周期24 h ,即不可能是20 h ,故D 错误.10.(多选)(2019·贵州毕节市适应性监测(三))其实地月系统是双星模型,为了寻找航天器相对地球和月球不动的位置,科学家们作出了不懈努力.如图5所示,1767年欧拉推导出L 1、L 2、L 3三个位置,1772年拉格朗日又推导出L 4、L 5两个位置.现在科学家把L 1、L 2、L 3、L 4、L 5统称地月系中的拉格朗日点.中国“嫦娥四号”探测器成功登陆月球背面,并通过处于拉格朗日区的“嫦娥四号”中继卫星“鹊桥”把信息返回地球,引起众多师生对拉格朗日点的热议.下列说法正确的是( )图5A .在拉格朗日点航天器的受力不再遵循万有引力定律B .在不同的拉格朗日点航天器随地月系统运动的周期均相同C .“嫦娥四号”中继卫星“鹊桥”应选择L 1点开展工程任务实验D .“嫦娥四号”中继卫星“鹊桥”应选择L 2点开展工程任务实验答案 BD解析 在拉格朗日点的航天器仍然受万有引力,在地球和月球的万有引力作用下绕地月双星系统的中心做匀速圆周运动,A 错误;因在拉格朗日点的航天器相对地球和月球的位置不变,说明它们的角速度一样,因此周期也一样,B 正确;“嫦娥四号”探测器登陆的是月球的背面,“鹊桥”要把探测器在月球背面采集的信息传回地球,L 2在月球的背面,因此应选在L 2点开展工程任务实验,所以C 错误,D 正确.11.经长期观测发现,A 行星运行轨道的半径近似为R 0,周期为T 0,其实际运行的轨道与圆轨道存在一些偏离,且周期性地每隔t 0(t 0>T 0)发生一次最大的偏离,如图6所示,天文学家认为形成这种现象的原因可能是A 行星外侧还存在着一颗未知行星B ,已知行星B 与行星A 同向转动,则行星B 的运行轨道(可认为是圆轨道)半径近似为( )图6A .R =R 0B .R =R 03t 02(t 0-T 0)2t 0t 0-T 0C .R =R 0D .R =R 0t 03(t 0-T 0)3t 0t 0-T 0答案 A解析 A 行星运行的轨道发生最大偏离,一定是B 对A 的引力引起的,且B 行星在此时刻对A 有最大的引力,故此时A 、B 行星与恒星在同一直线上且位于恒星的同一侧,设B 行星的运行周期为T ,运行的轨道半径为R ,根据题意有t 0-t 0=2π,所以T =,由开2πT 02πT t 0T 0t 0-T 0普勒第三定律可得=,联立解得R =R 0,故A 正确,B 、C 、D 错误.R 03T 02R 3T 23t 02(t 0-T 0)212.(2019·河南郑州市第一次模拟)“玉兔号”月球车与月球表面的第一次接触实现了中国人“奔月”的伟大梦想.“玉兔号”月球车在月球表面做了一个自由下落实验,测得物体从静止自由下落h 高度的时间为t ,已知月球半径为R ,自转周期为T ,引力常量为G .求:(1)月球表面重力加速度的大小;(2)月球的质量和月球的第一宇宙速度的大小;(3)月球同步卫星离月球表面高度.答案 (1) (2) (3)-R2ht 22R 2hGt 22hRt 23T 2R 2h2π2t 2解析 (1)由自由落体运动规律有:h =gt 2,所以有:g =.122ht 2(2)月球的第一宇宙速度为近月卫星的运行速度,根据重力提供向心力mg =m ,v 12R 所以:v 1==gR 2hRt 2在月球表面的物体受到的重力等于万有引力,则有:mg =GMm R 2所以M =.2R 2hGt 2(3)月球同步卫星绕月球做匀速圆周运动,根据万有引力提供向心力有:=m (R +h ′)GMm(R +h ′)24π2T 2解得h ′=-R .3T 2R 2h2π2t 213.(多选)(2019·全国卷Ⅰ·21)在星球M 上将一轻弹簧竖直固定在水平桌面上,把物体P 轻放在弹簧上端,P 由静止向下运动,物体的加速度a 与弹簧的压缩量x 间的关系如图7中实线所示.在另一星球N上用完全相同的弹簧,改用物体Q 完成同样的过程,其a -x 关系如图中虚线所示.假设两星球均为质量均匀分布的球体.已知星球M 的半径是星球N 的3倍,则( )图7A .M 与N 的密度相等B .Q 的质量是P 的3倍C .Q 下落过程中的最大动能是P 的4倍D .Q 下落过程中弹簧的最大压缩量是P 的4倍答案 AC解析 设物体P 、Q 的质量分别为m P 、m Q ;星球M 、N 的质量分别为M 1、M 2,半径分别为R 1、R 2,密度分别为ρ1、ρ2;M 、N 表面的重力加速度分别为g 1、g 2.在星球M 上,弹簧压缩量为0时有m P g 1=3m P a 0,所以g 1=3a 0=G ,密度ρ1==;在星球N 上,M 1R 12M 143πR 139a 04πGR 1弹簧压缩量为0时有m Q g 2=m Q a 0,所以g 2=a 0=G ,密度ρ2==;因为M 2R 22M 243πR 233a 04πGR 2R 1=3R 2,所以ρ1=ρ2,选项A 正确;当物体的加速度为0时有m P g 1=3m P a 0=kx 0,m Q g 2=m Q a 0=2kx 0,解得m Q =6m P ,选项B 错误;根据a -x 图线与x轴围成图形的面积和质量的乘积表示合外力做的功可知,E km P =m P a 0x 0,E km Q =m Q a 0x 0,所32以E km Q =4E km P ,选项C 正确;根据运动的对称性可知,Q 下落时弹簧的最大压缩量为4x 0,P 下落时弹簧的最大压缩量为2x 0,选项D 错误.。

三个宇宙速度的推导

三个宇宙速度的推导
意义
第二宇宙速度是航天器脱离地球引力的关键,只有达到或超过 这个速度,航天器才能摆脱地球的束缚,飞向太阳系外。
第三宇宙速度
定义
第三宇宙速度是指航天器摆 脱太阳系引力束缚所需的最 小速度,也被称为逃逸速度

计算公式
第三宇宙速度的计算公式为 v3=√(2GM/r),其中 G 是万 有引力常数,M 是太阳质量, r 是航天器与太阳中心的距离。
地球观测卫星
第一宇宙速度有助于地球观测卫 星获取高精度的地理信息和气象 数据,因为低轨道卫星具有更高 的分辨率和更快的图像更新频率。
04
三个宇宙速度的物理意 义
第二宇宙速度的物理意义
1 2
第二宇宙速度(逃逸速度)
指航天器能够完全摆脱地球引力束缚,飞离地球 所需的最小初始速度。
计算公式
第二宇宙速度 = sqrt(2 * 地球质量 * 地球半径 * 重力加速度常数)
3
物理意义
第二宇宙速度是航天器离开地球引力场,进入更 广阔宇宙空间的重要条件。
第三宇宙速度的物理意义
01
第三宇宙速度(逃 逸速度)
指航天器能够完全摆脱太阳系引 力束缚,飞出太阳系所需的最小 初始速度。
计算公式
02
03
物理意义
第三宇宙速度 = sqrt(2 * 太阳质 量 * 地球公转半径 * 重力加速度 常数)
第一宇宙速度推导
总结词
第一宇宙速度是物体绕地球做匀速圆周运动 所需的最小速度,其推导基于牛顿第二定律 、万有引力定律和向心力公式。
详细描述
第一宇宙速度,也称为环绕速度,是物体绕 地球做匀速圆周运动所需的最小速度。根据 牛顿第二定律、万有引力定律和向心力公式, 当物体以一定的初速度v0在平行于地心方向 上持续加速时,其受到的地球引力将提供物 体做匀速圆周运动的向心力,直到达到环绕 速度v环绕时,物体将保持匀速圆周运动。环 绕速度v环绕可以通过以下公式计算:v环绕 = sqrt(GM/r),其中G为万有引力常数,M为

宇宙速度计算公式

宇宙速度计算公式

宇宙速度是指物质在宇宙中的运动速度,由于宇宙的无限广阔,各种天体之间的距离非常遥远,速度的计算相对复杂。

本文将介绍几种常见的宇宙速度计算公式。

一、地球轨道速度计算公式
地球每秒绕太阳公转的速度称为地球轨道速度。

其计算公式为:V = 2πr / T,其中V表示地球的轨道速度,r表示地球到太阳的距离,T表示地球公转一周的时间。

二、光速与光年计算公式
光速是光在真空中每秒钟传播的距离,通常表示为c=299792458m/s。

而光年则是指光在一年中传播的距离,其计算公式为:1光年= 9.46 x 10^12 km。

换算公式为:1光年=365.25日x24小时x3600秒xc
三、引力加速度计算公式
引力加速度是指物体在地球表面受到地球引力作用下的加速度。

其计算公式为:g=G M/r^2,其中g是引力加速度,G是万有引力常数,M为地球的质量,r为物体到地心的距离。

四、太阳系脱离速度计算公式
太阳系脱离速度指一个星球具有足够的速度离开太阳系的速度。

其计算公式是Vesc=√2GM/r,其中Vesc为太阳系对速,G为万有引力常数,M为太阳的质量,r为行星和太阳之间的距离。

五、哈勃常数计算公式
哈勃常数用来衡量宇宙在膨胀,其计算公式为:H=v/d,其中H为哈勃常数,v是星系的移动速度,d 为星系之间的距离。

在实际应用中,以上公式都需要考虑到各种参数及单位的换算,需要根据具体情况来设置参数,在反复实验和检验之后才能得到准确的结果。

了解这些宇宙速度计算公式,可以更好地理解宇宙中各种物质的运动轨迹和演化规律,是探索宇宙奥秘的重要基础。

三种宇宙速度的计算方法

三种宇宙速度的计算方法

三种宇宙速度的计算方法宇宙速度(escape velocity)是指一个物体需要达到的速度,以便克服引力场的吸引,从最低点或者一个天体表面抛射出去,并最终飞离该天体的速度。

宇宙速度的计算方法主要有三种,分别是地心逃逸速度、地球逃逸速度和太阳逃逸速度。

1. 地心逃逸速度(escape velocity from Earth's center):地心逃逸速度指的是从地球表面抛射物体所需达到的速度,以克服地球引力的吸引,进入宇宙空间。

地心逃逸速度的计算方法如下:Ve=√(2GM/R)其中,Ve为地心逃逸速度,G为万有引力常数,M为地球质量,R为地球半径。

2. 地球逃逸速度(escape velocity from Earth's surface):地球逃逸速度指的是从地球表面抛射的物体所需达到的速度,以克服地球引力的吸引,进入宇宙空间。

地球逃逸速度计算方法如下:Ves = √(2gR)其中,Ves为地球逃逸速度,g为地球表面的重力加速度,R为地球半径。

3. 太阳逃逸速度(solar escape velocity):太阳逃逸速度指的是从太阳表面抛射的物体所需达到的速度,以克服太阳引力的吸引,进入宇宙空间。

太阳逃逸速度的计算方法如下:Vesun = √(2GM/R)其中,Vesun为太阳逃逸速度,G为万有引力常数,M为太阳质量,R 为太阳半径。

这三种宇宙速度计算方法的基本原理均为将引力势能转化为动能。

根据动能定理,物体的总机械能等于其动能与势能之和,当物体达到宇宙速度时,其动能正好等于势能。

计算出的宇宙速度即为克服引力场所需的最低速度。

需要注意的是,这些计算方法是基于理想条件下的计算,不考虑空气阻力、非球形物体影响等实际因素。

此外,太阳逃逸速度也是相对于太阳的逃逸速度,而不是从地球到太阳的速度。

总之,地心逃逸速度、地球逃逸速度和太阳逃逸速度是计算宇宙速度的三种方法,每种方法都可以在给定引力场和物体质量、半径的条件下计算出宇宙速度。

宇宙速度计算公式

宇宙速度计算公式

宇宙速度计算公式宇宙速度是指一个物体需要达到的最低速度,以能够逃脱地球或其他天体的引力。

在物理学中,宇宙速度通常用来描述离开地球的速度。

下面将详细介绍宇宙速度的计算公式:宇宙速度的计算公式基于引力和动能的平衡。

当一个物体以足够大的速度远离地球时,其动能能够克服地球对其的引力,从而摆脱地球的吸引并进入宇宙空间。

首先,我们需要知道地球的质量(M)和地球的半径(R)。

这些参数可以通过地球物理学的观测数据来确定。

地球的质量通常用千克(kg)或克(g)来表示,地球的半径通常用米(m)表示。

然后,我们需要知道需要离开地球的物体的质量(m)。

这可以是一个人、一个火箭或其他任何物体的质量。

质量也通常用千克(kg)或克(g)来表示。

根据牛顿的引力定律,地球对物体的引力可以通过以下公式计算:F=G*(M*m)/R^2其中,F是地球对物体的引力,G是普遍引力常量(6.67 × 10^-11 N·m^2/kg^2)。

当物体离开地球表面时,它需要动能来克服地球的引力。

动能可以通过以下公式计算:K=0.5*m*v^2其中,K是物体的动能,m是物体的质量,v是物体的速度。

为了达到宇宙速度,物体的动能必须与地球对其的引力相等。

因此,将上述两个公式联立解方程组:K=F0.5*m*v^2=G*(M*m)/R^2通过对这个方程进行简化和变形,可以得到宇宙速度的计算公式:v = sqrt((2 * G * M) / R)。

其中,sqrt表示开平方。

这个公式告诉我们,为了离开地球进入宇宙,一个物体需要达到的最低速度为sqrt((2 * G * M) / R)。

需要注意的是,这个公式假定了没有其他因素影响物体的运动,如空气阻力或其他天体的引力。

在实际情况中,这些因素可能会对速度产生一定的影响。

总结起来,宇宙速度的计算公式为v = sqrt((2 * G * M) / R),其中v是宇宙速度,G是普遍引力常量,M是地球的质量,R是地球的半径。

三种宇宙速度

三种宇宙速度
(备注: V1既是最小发射速度,也是最大环绕速 度。)
第二宇宙速度:飞行器绕太阳运动可以看作是距离 地球无穷远处,以无穷远处为零势能面,发射的最 小速度即使飞行器刚好到达零势能面。
根据机械能守恒定 律 1/2V^2-GM/R=0 代入数值得 V2=11.2公里/秒。
第三宇宙速度:只需把第二宇宙速度方程中地球 的质量换成太阳的质量,地球半径换成地球公转 轨道半径即可。
三种宇宙速度
一、定义
• 从研究两个质点在万有引力作用下的运动规律出 发,人们通常把航天器达到环绕地球、脱离地球 和飞出太阳系所需要的最小速度,分别称为第一 宇宙速度、第二宇宙速度和第三宇宙速度。
二、计算
第一宇宙速度:此时万有引力提供向心力。 GM/R^2=V^2/2 代入数值得V1=7.9公里/秒。(实际应略小于)
V3=16.7公里/秒。
三、应用
人造卫星的变轨: 地球表面卫星发射的速度v>v1。 此时万有引力小于卫星以v绕地表做圆周 运动所需的向心力 ,故从此时开始卫星将 做离二次点火, 以达到预定的圆轨 。
谢谢观看

2024届高考一轮复习物理教案(新教材粤教版):人造卫星 宇宙速度

2024届高考一轮复习物理教案(新教材粤教版):人造卫星 宇宙速度

第2讲人造卫星宇宙速度目标要求1.会比较卫星运行的各物理量之间的关系.2.理解三种宇宙速度,并会求解第一宇宙速度的大小.3.会分析天体的“追及”问题.考点一卫星运行参量的分析1.基本公式(1)线速度:由G Mmr 2=m v 2r得v =GMr .(2)角速度:由G Mmr2=mω2r 得ω=GMr 3.(3)周期:由GMm r 2=m (2πT)2r 得T =2πr 3GM.(4)向心加速度:由GMm r 2=ma 得a =GMr 2.结论:同一中心天体的不同卫星,轨道半径r 越大,v 、ω、a 越小,T 越大,即越高越慢.2.“黄金代换式”的应用忽略中心天体自转影响,则有mg =G MmR2,整理可得GM =gR 2.在引力常量G 和中心天体质量M 未知时,可用gR 2替换GM .3.人造卫星卫星运行的轨道平面一定通过地心,一般分为赤道轨道、极地轨道和其他轨道,同步卫星的轨道是赤道轨道.(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.(2)同步卫星①轨道平面与赤道平面共面,且与地球自转的方向相同.②周期与地球自转周期相等,T=24h.③高度固定不变,h=3.6×107m.④运行速率约为v=3.1km/s.(3)近地卫星:轨道在地球表面附近的卫星,其轨道半径r=R(地球半径),运行速度等于第一宇宙速度v=7.9km/s(人造地球卫星的最大圆轨道运行速度),T=85min(人造地球卫星的最小周期).注意:近地卫星可能为极地卫星,也可能为赤道卫星.1.同一中心天体的两颗行星,公转半径越大,向心加速度越大.(×)2.同一中心天体质量不同的两颗行星,若轨道半径相同,速率不一定相等.(×) 3.近地卫星的周期最小.(√)4.极地卫星通过地球两极,且始终和地球某一经线平面重合.(×)5.不同的同步卫星的质量不一定相同,但离地面的高度是相同的.(√)1.公式中r指轨道半径,是卫星到中心天体球心的距离,R通常指中心天体的半径,有r=R +h.2.同一中心天体,各行星v、ω、a、T等物理量只与r有关;不同中心天体,各行星v、ω、a、T等物理量与中心天体质量M和r有关.考向1卫星运行参量与轨道半径的关系例1(2022·广东卷·2)“祝融号”火星车需要“休眠”以度过火星寒冷的冬季.假设火星和地球的冬季是各自公转周期的四分之一,且火星的冬季时长约为地球的1.88倍.火星和地球绕太阳的公转均可视为匀速圆周运动.下列关于火星、地球公转的说法正确的是() A.火星公转的线速度比地球的大B.火星公转的角速度比地球的大C.火星公转的半径比地球的小D.火星公转的加速度比地球的小答案D解析由题意可知,火星的公转周期大于地球的公转周期,根据G Mmr2m4π2T2r,可得T=2πr3GM,可知火星的公转半径大于地球的公转半径,故C 错误;根据G Mmr 2=m v 2r,可得v =GMr ,结合C 选项解析,可知火星公转的线速度小于地球公转的线速度,故A 错误;根据ω=2πT可知火星公转的角速度小于地球公转的角速度,故B 错误;根据G Mm r 2=ma ,可得a =GMr 2,可知火星公转的加速度小于地球公转的加速度,故D 正确.例2(2020·浙江7月选考·7)火星探测任务“天问一号”的标识如图所示.若火星和地球绕太阳的运动均可视为匀速圆周运动,火星公转轨道半径与地球公转轨道半径之比为3∶2,则火星与地球绕太阳运动的()A .轨道周长之比为2∶3B .线速度大小之比为3∶2C .角速度大小之比为22∶33D .向心加速度大小之比为9∶4答案C解析轨道周长C =2πr ,与半径成正比,故轨道周长之比为3∶2,故A 错误;根据万有引力提供向心力有GMmr 2=m v 2r,得v =GMr ,则v 火v 地=r 地r 火=23,故B 错误;由万有引力提供向心力有GMmr2=mω2r ,得ω=GMr 3,则ω火ω地=r 地3r 火3=2233,故C 正确;由GMm r 2=ma ,得a =GMr 2,则a 火a 地=r 地2r 火2=49,故D 错误.考向2同步卫星例3关于地球同步卫星,下列说法错误的是()A .它的周期与地球自转周期相同B .它的周期、高度、速度大小都是一定的C .我国发射的同步通信卫星可以定点在北京上空D .我国发射的同步通信卫星必须定点在赤道上空答案C解析地球同步卫星的周期与地球自转周期相同,选项A 正确;根据G Mm r 2=m v 2r=m 4π2T 2r 可知,因地球同步卫星的周期一定,则高度、速度大小都是一定的,选项B 正确;同步卫星必须定点在赤道上空,不可以定点在北京上空,选项C 错误,D 正确.例4常用的通信卫星是地球同步卫星,它定位于地球赤道正上方,已知某同步卫星离地面的高度为h ,地球自转的角速度为ω,地球半径为R ,地球表面附近的重力加速度为g 0,该同步卫星运动的加速度的大小为()A .g 0B .(R R +h2g 0C .ω2hD .ω(R +h )答案B解析对同步卫星,角速度等于地球自转的角速度,则GMm (R +h )2=ma =mω2(R +h ),又GMm 0R 2=m 0g 0,解得a =(R R +h)2g 0=ω2(R +h ),故选B.考向3同步卫星、近地卫星和赤道上物体比较例5(多选)如图所示,同步卫星与地心的距离为r ,运行速率为v 1,向心加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球半径为R ,则下列比值正确的是()A.a 1a 2=r RB.a 1a 2=(R r)2C.v 1v 2=r RD.v 1v 2=R r答案AD解析根据万有引力提供向心力,有G Mmr 2=m v 12r ,G Mm ′R 2=m ′v 22R ,故v 1v 2=Rr;对于同步卫星和地球赤道上的物体,其共同点是角速度相等,有a 1=ω2r ,a 2=ω2R ,故a 1a 2=rR ,故选A 、D.例6有a 、b 、c 、d 四颗地球卫星,卫星a 还未发射,在地球赤道上随地球表面一起转动,卫星b 在地面附近近地轨道上正常运行,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图,重力加速度为g ,则有()A .a 的向心加速度大小等于重力加速度大小gB .b 在相同时间内转过的弧长最长C .c 在4h 内转过的圆心角是π6D .d 的运行周期有可能是20h 答案B解析赤道上随地球自转的卫星所需的向心力大小等于万有引力的一个分力,万有引力大小近似等于重力大小,则a 的向心加速度小于重力加速度g ,故A 错误;由G Mmr 2=m v 2r ,解得v =GMr,卫星的轨道半径r 越大,速度v 越小,所以在b 、c 、d 中b 的速度最大,又由v =ωr 知a 的速度小于c 的速度,故在相同时间内b 转过的弧长最长,故B 正确;c 是地球同步卫星,周期是24h ,则c 在4h 内转过的圆心角是4h 24h ×2π=π3,故C 错误;由开普勒第三定律可知,卫星的半径r 越大,周期T 越大,所以d 的运动周期大于c 的运动周期,即大于24h ,则不可能是20h ,故D 错误.同步卫星、近地卫星及赤道上物体的比较如图所示,a 为近地卫星,轨道半径为r 1;b 为地球同步卫星,轨道半径为r2;c 为赤道上随地球自转的物体,轨道半径为r 3.比较项目近地卫星(r 1、ω1、v 1、a 1)同步卫星(r 2、ω2、v 2、a 2)赤道上随地球自转的物体(r 3、ω3、v 3、a 3)向心力来源万有引力万有引力万有引力的一个分力轨道半径r 2>r 1=r 3角速度ω1>ω2=ω3线速度v 1>v 2>v 3向心加速度a 1>a 2>a 3考点二宇宙速度第一宇宙速度(环绕速度)v 1=7.9km/s ,是物体在地球附近绕地球做匀速圆周运动的最大环绕速度,也是人造地球卫星的最小发射速度第二宇宙速度(逃逸速度)v 2=11.2km/s ,是物体挣脱地球引力束缚的最小发射速度第三宇宙速度v 3=16.7km/s ,是物体挣脱太阳引力束缚的最小发射速度1.地球的第一宇宙速度的大小与地球质量有关.(√)2.月球的第一宇宙速度也是7.9km/s.(×)3.同步卫星的运行速度一定小于地球第一宇宙速度.(√)4.若物体的发射速度大于第二宇宙速度而小于第三宇宙速度,则物体绕太阳运行.(√)1.第一宇宙速度的推导方法一:由G m 地mR 2=m v 2R ,得v =Gm 地R = 6.67×10-11×5.98×10246.4×106m/s ≈7.9×103m/s.方法二:由mg =m v 2R得v =gR =9.8×6.4×106m/s ≈7.9×103m/s.第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2πRg=2π 6.4×1069.8s ≈5075s ≈85min.正是近地卫星的周期.2.宇宙速度与运动轨迹的关系(1)v 发=7.9km/s 时,卫星绕地球表面做匀速圆周运动.(2)7.9km/s<v 发<11.2km/s ,卫星绕地球运动的轨迹为椭圆.(3)11.2km/s ≤v 发<16.7km/s ,卫星绕太阳运动的轨迹为椭圆.(4)v 发≥16.7km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间.例7(2023·广东深圳市模拟)2020年12月17日凌晨,经过23天的太空之旅后,嫦娥五号返回器携带1731克月壤样品成功着陆,这标志着我国首次月球采样返回任务圆满完成.已知月球的质量为M=7.3×1022kg.月球的半径为R=1.7×103km,引力常量G=6.67×10-11N·m2/kg2,则月球的第一宇宙速度约为()A.17m/s B.1.7×102m/sC.1.7×103m/s D.1.7×104m/s答案C解析近月球表面的卫星运行速度即第一宇宙速度,由万有引力提供向心力可得G MmR2=mv2R,解得v=GMR≈1.7×103m/s,故选C.例8(2023·广东广州市模拟)星球上的物体脱离星球引力所需的最小速度称为该星球的第二宇宙速度,第二宇宙速度v2与第一宇宙速度v1的关系是v2=2v1;某星球的半径为r,表面的重力加速度为地球表面重力加速度g的18,不计其他星球的影响,则该星球的第二宇宙速度为()A.grB.2gr2C.gr2D.14gr答案C解析近地卫星的环绕速度即第一宇宙速度,由重力提供向心力可得mg=m v12R,可得地球的第一宇宙速度为v1=gR,同理可知,该星球的第一宇宙速度为v1′=18gr,则该星球的第二宇宙速度为v2′=2v1′=gr2,C正确.考点三天体的“追及”问题例9(2023·广东中山市调研)小明站在地球赤道上某点,每经过T4时间,卫星A经过头顶上空一次,已知地球的自转周期为T,卫星A轨道平面与赤道平面重合,且运动方向与地球自转方向相同,则A卫星的运动周期为()A.T 4B.T5C.3T4D.T2答案B解析由题意可知,每经过一段时间,卫星A比地球多转一圈;设卫星的运动周期为T A,则T 4T A -T4T =1,解得T A =15T ,故选B.例10如图所示,A 、B 为地球的两个轨道共面的人造卫星,运行方向相同,A 为地球同步卫星,A 、B 两卫星的轨道半径的比值为k ,地球自转周期为T 0.某时刻A 、B 两卫星距离达到最近,从该时刻起到A 、B 间距离最远所经历的最短时间为()A.T 02(k 3+1)B.T 0k 3-1C.T 02(k 3-1)D.T 0k 3+1答案C解析由开普勒第三定律得r A 3T A 2=r B 3T B 2,设两卫星至少经过时间t 距离最远,即B 比A 多转半圈,t T B -t T A =n B -n A =12,又由A 是地球同步卫星知T A =T 0,联立解得t =T 02(k 3-1),故选C.天体“追及”问题的处理方法1.相距最近:两同心转动的卫星(r A <r B )同向转动时,位于同一直径上且在圆心的同侧时,相距最近.从相距最近到再次相距最近,两卫星的运动关系满足:(ωA -ωB )t =2π或t T A -tT B =1.2.相距最远:两同心转动的卫星(r A <r B )同向转动时,位于同一直径上且在圆心的异侧时,相距最远.从相距最近到第一次相距最远,两卫星的运动关系满足:(ωA -ωB )t ′=π或t ′T A -t ′T B=12.课时精练1.(2023·江苏海安市高三检测)神舟十三号飞船首次采用径向端口对接;飞船从空间站下方的停泊点进行俯仰调姿和滚动调姿后与天宫空间站完成对接,飞船在完成对接后与在停泊点时相比()A.线速度增大B.绕行周期增大C.所受万有引力增大D.向心加速度增大答案B解析飞船绕地球稳定运行时,万有引力提供向心力,有GMmr2=mv2r=m4π2T2r=F万=ma,解得v=GMr,T=4π2r3GM,a=GMr2,依题意,飞船从停泊点到完成对接属于从低轨到高轨,即轨道半径增大,可知线速度减小,周期增大,所受万有引力减小,向心加速度减小,故A、C、D错误,B正确.2.我国首颗量子科学实验卫星“墨子”已于酒泉卫星发射中心成功发射.“墨子”由火箭发射至高度为500km的预定圆形轨道.此前在西昌卫星发射中心成功发射了第二十三颗北斗导航卫星G7,G7属于地球静止轨道卫星(高度约为36000km),它将使北斗系统的可靠性进一步提高.关于卫星以下说法中正确的是()A.这两颗卫星的运行速度可能大于7.9km/sB.通过地面控制可以将北斗G7定点于西昌正上方C.量子科学实验卫星“墨子”的周期比北斗G7的周期小D.量子科学实验卫星“墨子”的向心加速度比北斗G7的小答案C解析根据G Mmr2=mv2r,得v=GMr,知轨道半径越大,线速度越小,北斗G7和量子科学实验卫星“墨子”的线速度均小于地球的第一宇宙速度,故A错误;北斗G7为同步卫星,只能定点于赤道正上方,故B错误;根据G Mmr2=m4π2T2r,得T=2πr3GM,所以量子科学实验卫星“墨子”的周期小,故C正确;卫星的向心加速度a=GMr2,半径小的量子科学实验卫星“墨子”的向心加速度比北斗G7的大,故D错误.3.(2023·广东茂名市模拟)如图,“嫦娥五号”、“天问一号”探测器分别在近月、近火星轨道运行.已知火星的质量为月球质量的9倍、半径为月球半径的2倍.假设月球、火星均可视为质量均匀分布的球体,忽略其自转影响,则()A.月球表面重力加速度比火星表面重力加速度大B.月球的第一宇宙速度比火星的第一宇宙速度大C.质量相同的物体在月球、火星表面所受万有引力大小相等D.“嫦娥五号”绕月周期比“天问一号”绕火星周期大答案D解析由mg=G Mmr2,可得g=GMr2,结合题意可得g月=49g火,A项错误;由mg=mv2r可知v=gr,所以v月=23v火,B项错误;由F引=G Mmr2,可知F月=49F火,C项错误;由G Mmr2=m(2πT )2r可知T=2πr3GM,所以T月=324T火,D项正确.4.(2022·河北卷·2)2008年,我国天文学家利用国家天文台兴隆观测基地的2.16米望远镜,发现了一颗绕恒星HD173416运动的系外行星HD173416b,2019年,该恒星和行星被国际天文学联合会分别命名为“羲和”和“望舒”,天文观测得到恒星羲和的质量是太阳质量的2倍,若将望舒与地球的公转均视为匀速圆周运动,且公转的轨道半径相等.则望舒与地球公转速度大小的比值为()A.22B.2 C.2 D.22答案C解析地球绕太阳公转和行星望舒绕恒星羲和公转都是由万有引力提供向心力,有G Mm r2=m v2r,解得公转的线速度大小为v=GMr,其中中心天体的质量之比为2∶1,公转的轨道半径相等,则望舒与地球公转速度大小的比值为2,故选C.5.(2023·广东珠海市模拟)2020年7月23日12时41分,火星探测器“天问一号”成功发射,标志着我国已经开启了探索火星之旅.“天问一号”首先进入圆轨道环绕火星做匀速圆周运动,然后调整姿态悬停在火星上空,再向下加速、减速,着陆火星表面并执行任务.已知地球与火星的质量比为a,地球与火星的半径比为b.则下列说法正确的是()A.地球与火星表面的重力加速度的比值为abB .地球与火星的近地卫星周期的比值为b aC .地球与火星的第一宇宙速度的比值为a bD .“天问一号”在环绕火星运动、悬停、向下加速以及减速的过程中,始终处于失重状态答案C解析对于在星体表面的物体,万有引力与重力的关系为GMm R 2=mg ,整理得g =GMR 2,则地球与火星表面的重力加速度的比值为g 地g 火=a b2,A 错误;对于近地卫星,由G Mm R 2=m 4π2T 2R ,整理得T =4π2R 3GM ,则地球与火星的近地卫星周期的比值为T 地T 火=b baB 错误;星球的第一宇宙速度为v =gR ,则地球与火星的第一宇宙速度的比值为v 地v 火=ab,C 正确;“天问一号”在环绕火星运动时处于完全失重状态,悬停时处于平衡状态,向下加速时处于失重状态,向下减速时处于超重状态,D 错误.6.如图所示,a 为地球赤道上的物体,b 为沿地球表面附近做匀速圆周运动的人造卫星,c 为地球同步卫星.关于a 、b 、c 做匀速圆周运动的说法中正确的是()A .角速度关系为ωa =ωb >ωcB .向心加速度的大小关系为a a >a b >a cC .线速度的大小关系为v b >v c >v aD .周期关系为T a =T b >T c 答案C解析卫星c 为地球同步卫星,所以T a =T c ,则ωa =ωc ;对于b 和c ,由万有引力提供向心力,有GMmr2=mω2r ,得ω=GMr 3,因为r b <r c ,可知ωc <ωb ,即ωb >ωc =ωa ,A 错误.因a 、c 有相同的角速度,由a =ω2r 得a a <a c ;对b 和c ,由万有引力提供向心力,有G Mmr 2=ma ,得a =GMr 2,因为r b <r c ,可知a b >a c ,即a b >a c >a a ,B 错误.因a 、c 有相同的角速度,由v =ωr 可知v a <v c ;对b 和c ,由万有引力提供向心力,有G Mmr 2=m v 2r,得v =GMr,因为r b <r c ,可知v b >v c ,即v b >v c >v a ,C 正确.对b 和c ,由万有引力提供向心力,有G Mm r 2=m 4π2T 2r ,得T =2πr 3GM,因为r b <r c ,可知T c >T b ,即T a =T c >T b ,D 错误.7.(2023·广东汕头市模拟)早在2012年,某公司提出将人送上火星,展开星际移民的计划.已知地球质量大约是火星质量的10倍,地球半径大约是火星半径的2倍.不考虑地球、火星自转的影响,由以上数据可推算出(取5=2.2)()A .地球的平均密度小于火星的平均密度B .地球表面重力加速度小于火星表面重力加速度C .靠近地球表面的航天器的周期与靠近火星表面的航天器的运行周期之比约为10∶11D .地球的第一宇宙速度与火星的第一宇宙速度之比约为11∶10答案C解析根据密度公式可知ρ=M43πR 3,则ρ地=54ρ火,地球的平均密度大于火星的平均密度,故A错误;根据物体在星球表面的重力等于万有引力可知GMmR 2=mg ,解得星球表面的重力加速度g =GM R 2,所以g 地=52g 火,地球表面的重力加速度大于火星表面的重力加速度,故B 错误;根据万有引力提供向心力可知GMm R 2=m 4π2T 2R ,解得星球表面航天器的运行周期T =2πR 3GM,则靠近地球表面的航天器的周期与靠近火星表面的航天器的周期之比约为10∶11,故C 正确;根据万有引力提供向心力GMmR 2=m v 2R,解得星球的第一宇宙速度v =GMR,则地球的第一宇宙速度与火星的第一宇宙速度之比约为11∶5,故D 错误.8.(多选)地月系统是双星模型,为了寻找航天器相对地球和月球不动的位置,科学家们做出了不懈努力.如图所示,欧拉推导出L 1、L 2、L 3三个位置,拉格朗日又推导出L 4、L 5两个位置.现在科学家把L 1、L 2、L 3、L 4、L 5统称地月系中的拉格朗日点.中国“嫦娥四号”探测器成功登陆月球背面,并通过处于拉格朗日区的“嫦娥四号”中继卫星“鹊桥”把信息返回地球,引起众多师生对拉格朗日点的热议.下列说法正确的是()A .在拉格朗日点航天器的受力不再遵循万有引力定律B .在不同的拉格朗日点航天器随地月系统运动的周期均相同C .“嫦娥四号”中继卫星“鹊桥”应选择L 1点开展工程任务实验D .“嫦娥四号”中继卫星“鹊桥”应选择L 2点开展工程任务实验答案BD解析在拉格朗日点的航天器仍然受万有引力,仍遵循万有引力定律,A 错误;因在拉格朗日点的航天器相对地球和月球的位置不变,说明它们的角速度一样,因此周期也一样,B 正确;“嫦娥四号”探测器登陆的是月球的背面,“鹊桥”要把探测器在月球背面采集的信息传回地球,L 2在月球的背面,因此应选在L 2点开展工程任务实验,C 错误,D 正确.9.(2023·辽宁丹东市月考)2021年10月16日,神舟十三号载人飞船顺利将翟志刚、王亚平、叶光富3名航天员送入太空,假设神舟十三号载人飞船在距地面高度为h 的轨道做圆周运动.已知地球的半径为R ,地球表面的重力加速度为g ,引力常量为G ,下列说法正确的是()A .神舟十三号载人飞船运行的周期为T =2π(R +h )3gR 2B .神舟十三号载人飞船的线速度大小为g (R +h )C .神舟十三号载人飞船轨道处的重力加速度为0D .地球的平均密度为3g 4πGR 2答案A解析根据万有引力提供向心力,可得G Mm r 2=m v 2r ,G Mm r 2=m 4π2r T 2,G Mmr 2=ma ,且在地球表面满足GMmR2=mg ,即GM =gR 2,由题意知神舟十三号载人飞船轨道半径为r =R +h ,解得周期为T =2π(R +h )3gR 2,线速度大小为v =gR 2R +h,向心加速度大小即重力加速度大小为a =gR 2(R +h )2,故A 正确,B 、C 错误;根据密度公式得地球的平均密度为ρ=M V =3gR 24πGR 3=3g 4πGR ,故D 错误.10.(2023·湖北省荆州中学模拟)设想在赤道上建造如图甲所示的“太空电梯”,站在太空舱里的宇航员可通过竖直的电梯缓慢直通太空站.图乙中r 为宇航员到地心的距离,R 为地球半径,曲线A 为地球引力对宇航员产生的加速度大小与r 的关系;直线B 为宇航员由于地球自转而产生的向心加速度大小与r 的关系.关于相对地面静止且在不同高度的宇航员,下列说法正确的有()A .随着r 增大,宇航员的角速度增大B .图中r 0为地球同步卫星的轨道半径C .宇航员在r =R 处的线速度等于第一宇宙速度D .随着r 增大,宇航员对太空舱的压力增大答案B解析宇航员站在“太空电梯”上,相对地面静止,故角速度与地球自转角速度相同,在不同高度角速度不变,故A 错误;当r =r 0时,引力加速度正好等于宇航员做圆周运动的向心加速度,即万有引力提供做圆周运动的向心力,若宇航员相当于卫星,此时宇航员的角速度跟地球的自转角速度一致,可以看作是地球的同步卫星,即r 0为地球同步卫星的轨道半径,故B 正确;宇航员在r =R 处时在地面上,除了受到万有引力还受到地面的支持力,线速度远小于第一宇宙速度,故C 错误;宇航员乘坐太空舱在“太空电梯”的某位置时,有GMmr 2-F N =mω2r ,其中F N 为太空舱对宇航员的支持力,大小等于宇航员对太空舱的压力,则F 压=F N =GMmr2-mω2r =ma 引-ma 向=m (a 引-a 向),其中a 引为地球引力对宇航员产生的加速度大小,a 向为地球自转而产生的向心加速度大小,由题图可知,在R ≤r ≤r 0时,(a 引-a 向)随着r 增大而减小,宇航员对太空舱的压力随r 的增大而减小,故D 错误.11.(多选)(2023·广东惠州市模拟)2018年7月27日,天宇上演“火星冲日”天象,此时火星离地球最近,是发射火星探测器的最佳时段.为此,洞察号火星探测器于2018年5月5日发射升空,飞行205天,于11月27日成功着陆火星.已知火星质量约为地球质量的19,半径约为地球半径的12,公转周期约为地球公转周期的2倍.则()A .火星公转轨道的半径约为地球公转轨道半径的2倍B .火星表面的重力加速度约为地球表面重力加速度的49C .洞察号绕火星做匀速圆周运动的最大运行速度约为地球第一宇宙速度的23D .下一个火星探测器的最佳发射期最早出现在2020年答案BCD解析地球和火星绕太阳公转时,都是由太阳的万有引力提供向心力,即GM太mr2=mr(2πT)2,可得r=3GM太T24π2,故火星公转轨道的半径约为地球公转轨道半径的34倍,故A错误;星球表面,万有引力近似等于重力,即GMmR2=mg,故g=GMR2,代入数据可知火星表面的重力加速度约为地球表面重力加速度的49,故B正确;洞察号绕火星做匀速圆周运动的最大运行速度即为火星的第一宇宙速度,根据第一宇宙速度的定义式v=GMR,代入数据可得洞察号绕火星做匀速圆周运动的最大运行速度约为地球第一宇宙速度的23,故C正确;设经时间t,地球公转周期为T0,火星和地球再次相距最近,则有(2πT0-2π2T0)t=2π,解得t=2T0,故下一个火星探测器的最佳发射期最早出现在2020年,故D正确.。

三个宇宙速度的理论推导

三个宇宙速度的理论推导

三个宇宙速度的理论推导(大庆师范大学物理与电气信息工程系,10级物理学一班,黄忠宇,201001071475)摘要:宇宙速度是指物体达到11.2千米/秒的运动速度时能摆脱地球引力束缚的一种速度。

在摆脱地球束缚的过程中,在地球引力的作用下它并不是直线飞离地球,而是按抛物线飞行。

脱离地球引力后在太阳引力作用下绕太阳运行。

若要摆脱太阳引力的束缚飞出太阳系,物体的运动速度必须达到16.7千米/秒。

那时将按双曲线轨迹飞离地球,而相对太阳来说它将沿抛物线飞离太阳。

关键词:地球引力束缚,环绕速度,逃逸速度,时空作者简介:黄忠宇(1990-),男,广西桂平人,黑龙江省大庆师范学院物理与电气信息工程系学生0引言第一宇宙速度(又称环绕速度):是指物体紧贴地球表面作圆周运动的速度(也是人造地球卫星的最小发射速度)。

大小为7.9km/s ——计算方法是V=√(gR),即是 V= sqrt(gR) (g是重力加速度,R是星球半径)第二宇宙速度(又称脱离速度):是指物体完全摆脱地球引力束缚,飞离地球的所需要的最小初始速度。

大小为11.2km/s第三宇宙速度(又称逃逸速度):是指在地球上发射的物体摆脱太阳引力束缚,飞出太阳系所需的最小初始速度。

其大小为16.7km/s。

环绕速度和逃逸速度也可应用于其他天体。

例如计算火星的环绕速度和逃逸速度,只需要把公式中的M,R,g换成火星的质量、半径、表面重力加速度即可。

第四宇宙速度1第一宇宙速度理论推导在地面上向远处发射炮弹,炮弹速度越高飞行距离越远,当炮弹的速度达到“7.9千米/秒”时,炮弹不再落回地面(不考虑大气作用),而环绕地球作圆周飞行,这就是第一宇宙速度。

第一宇宙速度第一宇宙速度也是人造卫星在地面附近绕地球做“匀速圆周运动”所必须具有的速度。

但是随着高度的增加,地球引力下降,环绕地球飞行所需要的飞行速度也降低,所有航天器都是在距地面很高的大气层外飞行,所以它们的飞行速度都比第一宇宙速度低。

关于三种宇宙速度

关于三种宇宙速度
4. ★★★★动能定理:外力对物体所做的总功等于物体动能的变化.表达式
(1)动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的.但它 也适用于变力及物体作曲线运动的情况. (2)功和动能都是标量,不能利用矢量 法则分解,故动能定理无分量式.
(3)应用动能定理只考虑初、末状态,没有守恒条件的限制,也不受力的性质 和物理过程的变化的影响.所以,凡涉及力和位移,而不涉及力的作用时间的动力 学问题,都可以用动能定理分析和解答,而且一般都比用牛顿运动定律和机械能 守恒定律简捷.
所做的功.④根据功是能量转化的量度反过来可求功.
(3)摩擦力、空气阻力做功的计算:功的大小等于力和路程的乘积.
发生相对运动的两物体的这一对相互摩擦力做的总功:W=fd(d 是两物体间的相
对路程),且 W=Q(摩擦生热)
2.功率
(1)功率的概念:功率是表示力做功快慢的物理量,是标量.求功率时一定要分
清是求哪个力的功率,还要分清是求平均功率还是瞬时功率.
的方向相同.两个动量相同必须是大小相等,方向一致.
(2)冲量:力和力的作用时间的乘积叫做该力的冲量,即 I=Ft.冲量也是矢量,
它的方向由力的方向决定.
2. ★★动量定理:物体所受合外力的冲量等于它的动量的变化.表达
式:Ft=p′-p 或 Ft=mv′-mv
(1)上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量
(4)交通工具的启动问题通常说的机车的功率或发动机的功率实际是指其牵引
力的功率.
①以恒定功率 P 启动:机车的运动过程是先作加速度减小的加速运动,后以最
大速度 v m=P/f 作匀速直线运动, .
②以恒定牵引力 F 启动:机车先作匀加速运动,当功率增大到额定功率时速

第二宇宙速度是多少

第二宇宙速度是多少

三一文库()〔第二宇宙速度是多少〕*篇一:三大宇宙速度三大宇宙速度定义:从研究两个质点在万有引力作用下的运动规律出发,人们通常把航天器达到环绕地球、脱离地球和飞出太阳系所需要的最小速度,分别称为第一宇宙速度、第二宇宙速度和第三宇宙速度。

第一宇宙速度(V1)航天器沿地球表面作圆周运动时必须具备的速度,也叫环绕速度。

按照力学理论可以计算出V1=7.9公里/秒。

航天器在距离地面表面数百公里以上的高空运行,地面对航天器引力比在地面时要小,故其速度也略小于V1。

第一宇宙速度的计算:在以地球为半径的轨道上运行的速度,万有引力=向心力,GM/R^2=V^2/r第二宇宙速度(V2)当航天器超过第一宇宙速度V1达到一定值时,它就会脱离地球的引力场而成为围绕太阳运行的人造行星,这个速度就叫做第二宇宙速度,亦称脱离速度。

按照力学理论可以计算出第二宇宙速度V2=11.2公里/秒。

由于月球还未超出地球引力的范围,故从地面发射探月航天器,其初始速度不小于10.848公里/秒即可。

第二宇宙速度的计算:能脱离地球引力到达无穷远处的最小速度,此时在无穷远处总能量为零,根据机械能守恒1/2V^2(动能)-GM/R(势能,是负的)=0第三宇宙速度(V3)从地球表面发射航天器,飞出太阳系,到浩瀚的银河系中漫游所需要的最小速度,就叫做第三宇宙速度。

按照力学理论可以计算出第三宇宙速度V3=16.7公里/秒。

需要注意的是,这是选择航天器入轨速度与地球公转速度方向一致时计算出的V3值;如果方向不一致,所需速度就要大于16.7公里/秒了。

可以说,航天器的速度是挣脱地球乃至太阳引力的唯一要素,目前只有火箭才能突破该宇宙速度。

第三宇宙速度的计算:能脱离太阳的引力到达无穷远处的最小速度,这样只需把第二宇宙速度方程中地球的质量换成太阳的质量,地球半径换成地球公转轨道半径就行了,但不同的是,解出速度后,还要再减去地球的公转速度才是最终的第三宇宙速度,因为地球的公转已经提供了一定的动能了,况且发射速度都是相对于地球来说的。

宇宙速度计算公式

宇宙速度计算公式

宇宙速度计算公式宇宙速度是指一个物体在太空中运动的速率。

在宇宙中,物体通常通过速度来描述其相对于其他物体或者宇宙中的参考点的运动情况。

而宇宙速度计算公式则是用来计算一个物体在太空中的速度的数学公式。

为了更好地理解宇宙速度的计算公式,我们首先需要了解宇宙速度的含义。

宇宙速度是指一个物体相对于其他物体或者宇宙中的参考点的速度。

在太空中,没有大气阻力等因素的影响,物体的速度主要受到引力和质量的影响。

根据牛顿的运动定律,一个物体的加速度等于施加在它身上的力除以其质量。

在宇宙中,物体受到的主要力是引力。

牛顿通过研究宇宙物体的运动轨迹,发现它们是椭圆形的。

并且他提出了一套椭圆轨道方程,用来描述宇宙物体的运动。

宇宙速度的计算公式是基于这些椭圆轨道方程推导出来的。

根据这些方程,我们可以通过已知的物体质量、引力常数和物体到引力中心的距离来计算它的速度。

宇宙速度的计算公式为:v = √(GM/r)其中,v表示宇宙速度,G表示引力常数,M表示引力物体的质量,r表示物体到引力中心的距离。

通过这个公式,我们可以计算出一个物体在给定质量和距离的情况下需要具备的速度,才能够维持在一个特定的轨道上运行。

需要注意的是,宇宙速度计算公式假设了物体只受到引力的作用,并且没有考虑其他因素的影响。

在实际的宇宙环境中,还会存在其他因素,如其他物体的引力、潮汐效应等。

这些因素的存在可能会影响物体的速度,因此实际的宇宙速度并不完全符合计算公式所得。

除了上述的宇宙速度计算公式,还有一些其他的公式可以用来计算物体的速度。

例如,当物体处于圆形轨道上时,可以使用下面的公式计算它的速度:v = √(GM/r)其中,v表示速度,G表示引力常数,M表示引力物体的质量,r表示物体到引力中心的距离。

总结一下,宇宙速度计算公式是用来计算一个物体在太空中的速度的数学公式。

它基于牛顿的运动定律和椭圆轨道方程推导而来。

通过宇宙速度计算公式,我们可以计算出一个物体在给定质量和距离的情况下需要具备的速度,从而实现在特定轨道上运行。

三大宇宙速度推导公式

三大宇宙速度推导公式

三大宇宙速度推导公式三大宇宙速度的推导重力加速度: g=9.8m/s2外有引力常数: G=6.67×10−11N⋅m2/kg2地球半径:地r地=6.37×106m地球质量:地M地=5.96×1024kg太阳质量:日M日=1.99×1030kg太阳与地球之间的距离:日地r日地=1.50×1011m(1)第一宇宙速度(环绕速度)——7.9km/s物体在地面附近绕地球做匀速圆周运动的最小发射速度。

根据定义,直接由外有引力提供物体匀速圆周运动所需向心力:地地地GM地mr地2=mv12r地,从而得到:地地v1=GM地r地,根据黄金代换:地地GM地=gr地2 ,解得:地v1=gr地=7.9km/s(2)第二宇宙速度(逃逸速度)——11.2km/s物体挣脱地球引力束缚,离开地球的最小发射速度。

首先介绍引力势能公式:两物体间的外有引力势能大小为: Ep=−GMmr ,注意,引力势能为负值,物体间距离越大,引力势能越大,当距离达到无穷时,引力势能最大,为0焦耳。

因此,当物体挣脱地球引力飞向据地球无穷远处时,物体动能和势能都为0焦耳,根据机械能守恒定理,在地球上发射时动能和引力势能之和也应该为0焦耳, Ep+Ek=0 ,即:地地12mv22−GM地mr地=0化解得到:地地地v2=2GM地r地=2gr地=2v1=11.2km/s(3)第三宇宙速度推导——16.7km/s物体挣脱太阳引力的束缚,飞到太阳系以外空间的最小发射速度。

首先,我们发射卫星时可以利用地球的公转速度,因此,先求解地球绕太阳的公转速度,即:日地日地地公日地GM日M地r日地=M地v公2r日地解得:公日日地v公=GM日r日地=29.8km/s然后,我们不考虑地球影响(或假设地球不存在),以太阳为参考系,那么在地球附近的物体具有的动能与势能之和为:日日地Ek+Ep=12mv2−GM日mr日地若该物体能挣脱太阳引力,则应该满足 Ek+Ep=0 ,即:日日地12mv02=GM日mr日地解得日日地公v0=2GM日r日地=2v公=42.2km/s注意:其实在推导第一宇宙速度(环绕速度)和第二宇宙速度(逃逸速度)的时候,我们已经发现逃逸速度是环绕速度的根号2倍了。

三种宇宙速度的计算方法

三种宇宙速度的计算方法

三种宇宙速度的计算方法一、第一宇宙速度。

1.1 概念理解。

第一宇宙速度啊,那可是个很奇妙的东西。

简单来说呢,就是物体在地面附近绕地球做匀速圆周运动的速度。

想象一下啊,就像有个小卫星,紧紧地贴着地球表面飞行,但又不掉下来,这个速度就是第一宇宙速度。

从理论上讲呢,这个速度能让物体刚刚好克服地球的引力,进入到一种圆周运动的状态。

就好比一个调皮的小孩,在地球这个大操场的边缘,以刚刚好的速度跑圈,既不会飞出去,也不会掉进来。

1.2 计算方法。

那这个速度怎么算呢?咱们得用到一些物理知识。

根据万有引力提供向心力这个原理,咱们有公式G(Mm)/(R^2) = mfrac{v^2}{R}。

这里面G是引力常量,M是地球的质量,m是卫星的质量,R是地球的半径,v就是咱们要求的第一宇宙速度啦。

经过计算啊,v=√(frac{GM){R}}。

把地球的质量M = 5.97×10^24kg,地球半径R = 6371km = 6.371×10^6m,引力常量G = 6.67×10^11N· m^2/kg^2代入进去,就能算出第一宇宙速度大约是7.9km/s。

这就像是解开了一道神秘的密码,这个速度就是进入地球轨道的入门钥匙呢。

二、第二宇宙速度。

2.1 概念剖析。

第二宇宙速度呢,它比第一宇宙速度更厉害。

如果说第一宇宙速度是让物体在地球周围转圈的速度,那第二宇宙速度就是让物体彻底摆脱地球引力束缚的速度。

就像一个勇敢的探险家,想要离开地球这个家,到更广阔的宇宙空间去闯荡,那他就得达到这个速度才行。

这时候啊,物体就不再被地球的引力拉着做圆周运动了,而是可以飞向远方,“海阔凭鱼跃,天高任鸟飞”的感觉。

2.2 计算原理。

它的计算也有自己的门道。

第二宇宙速度v_2和第一宇宙速度v_1是有关系的。

实际上v_2=√(2)v_1。

咱们前面算出了第一宇宙速度v_1 = 7.9km/s,那么第二宇宙速度v_2=√(2)×7.9km/s≈11.2km/s。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宇宙速度的计算方法
第一宇宙速度的计算方法
第一宇宙速度(V1):航天器沿地球表面作圆周运动时必须具备的速度,也叫环绕速度。

按照力学理论可以计算出V1=7.9km/s。

航天器在距离地面表面数百公里以上的高空运行,地面对航天器引力比在地面时要小,故其速度也略小于V1
第二宇宙速度的计算方法
1.第二宇宙速度(V2):当航天器超过第一宇宙速度V1达到一定值时,它就会脱离地球的引力场而成为围绕太阳运行的人造行星,这个速度就叫做第二宇宙速度,亦称逃逸速度。

按照力学理论可以计算出第二宇宙速度V
=11.2 km/s。

第三宇宙速度的计算方法
第三宇宙速度(V3)从地球表面发射航天器,飞出太阳系,到浩瀚的银河系中漫游所需要的最小速度,就叫做第三宇宙速度。

按照力学理论可以计算出第三宇宙速度V3=16.7公里/秒。

需要注意的是,这是选择航天器入轨速度与地球公转速度方向一致时计算出的V3值;如果方向不一致,所需速度就要大于16.7公里/秒了。

可以说,航天器的速度是挣脱地球乃至太阳引力的惟一要素,目前只有火箭才能突破宇宙速度
设物体以第三宇宙速度抛出时具有的动能为
12
3
2
E mV
k=,这部分动能应该包括两部分:即脱离地球引
力的动能E k1和脱离太阳引力的动能E k2。

即:E k=E k1+E k2。

易知:
12 1
2
2
E mV
k=,
V2为地球第二宇宙速度。

下面再求E k2:
有两点说明:①因为地球绕太阳公转的椭圆轨道的离心率很小,可以当作圆来处理。

②发射时个行星对物体的引力很小,可以忽略不计。

基于这两点简化,发射过程可以应用机械能守恒定律解题。

物体随地球绕太阳的公转速率等于29.8km/s。

其倍应该为物体挣脱太阳引力所需的速度,即:'29.842.2/
2
V km s
=(以太阳为参照物)。

如果准备飞出太阳系的物体在地球上的发射方向与地球绕太阳公转方向相同,便可以充分利用地球公转速度,这样物体在离开地球时只需要有相对地球的速度V’=42.2-29.8=12.4km/s的速率便可以脱离太阳系。

与此相对应的动能为:
12
'
22
E mV
k=
既能摆脱地球引力也能摆脱太阳引力所需要的总动能为:
222
3122
222
32
111
'
222
'
k k k
E mV E E mV mV
V V V
==
=++
=+
可以得出第三宇宙速度:
V
3。

相关文档
最新文档