数据拟合方法研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据拟合方法研究
中文摘要
在我们实际的实验和勘探中,都会产生大量的数据。为了解释这些数据或者根据这些数据做出预测、判断,给决策者提供重要的依据。需要对测量数据进行拟合,寻找一个反映数据变化规律的函数。
本文介绍了几种常用的数据拟合方法,线性拟合、二次函数拟合、数据的n次多项式拟合等。并着重对曲线拟合进行了研究,介绍了线性与非线性模型的曲线拟合方法,最小二乘法、牛顿迭代法等。在传统的曲线拟合基础上,为了提高曲线拟合精度,本文还研究了多项式的摆动问题,从实践的角度分析了产生这些摆动及偏差的因素和特点,总结了在实践中减小这些偏差的处理方法。采用最小二乘法使变量转换后所得新变量离均差平方和最小,并不一定能使原响应变量的离均差平方和最小,所以其模型的拟合精度仍有提高的空间。本文以残数法与最小二乘法相结合,采用非线性最小二乘法来得到拟合效果更好的曲线模型。随着计算机技术的发展,实验数据处理越来越方便。但也提出了新的课题,就是在选择数据处理方法时应该比以往更为慎重。因为稍有不慎,就会非常方便地根据正确的实验数据得出不确切的乃至错误的结论。所以提高拟合的准确度是非常有必要的
关键词:数据拟合、最小二乘法、曲线拟合、多项式摆动、残数法
Data Fitting Method
Abstract
In our experiments and exploration, it will produce large amounts of data. In order to explain these data to make predictions based on these data to determine, provide an important basis for policy makers .Need to fit the measured data to find a function to reflect data changes in the law.This article describes several commonly used data fitting methods, and focused on a nonlinear curve fitting of the model.
This paper introduces some commonly used data fitting method, linear fitting, secondary function fitting, data n times polynomial fitting etc. T And focuses on the curve fitting, introduced the linear and nonlinear model of curve fitting method, the least square method, Newton iterative method, etc. In the traditional curve fitting basis, in order to improve the curve fitting precision, this paper also studies the polynomial swing, from the perspective of the practice the oscillation and deviation of factors and characteristics, and summarizes the decrease in practice the treatment method of these deviations. The least square method to variable after converting from new variables are the sum of squared residuals minimum, not necessarily make the original response from all the variables of the sum of squared residuals minimum, so the model fitting precision still has room to improve.Based on the number of residual method and least square method, and the combination of nonlinear least square method to get better fitting effect of curve model.With the development of computer technology, the experiment
data processing more and more convenient. But also put forward the new subject, which is in the data processing method of choice should be more careful than ever before.Because carelessly a bit, it can be very easily according to the correct experimental data that not the exact and even the wrong conclusion. Therefore, to raise the fitting accuracy is very necessary
Key words:Data Fitting ; Least square method; Curve fitting; Polynomial swing; Residual method