接地变压器的电流保护

合集下载

第六节 变压器的零序电流保护

第六节  变压器的零序电流保护

二、变电所多台变压器的零序电流保护每台变压器都装有同样的零序电流保护,它是由电流元件和电压元件两部分组成。

正常时零序电流及零序电压很小,零序电流继电器及零序电压继电器皆不动作,不会发出跳闸脉冲。

发生接地故障时,出现零序电流及零序电压,当它们大于起动值后,零序电流继电器及零序电压继电器皆动作。

电流继电器起动后,常开触点闭合,起动时间继电器KT1。

时间继电器的瞬动触点闭合,给小母线A接通正电源,将正电源送至中性点不接地变压器的零序电流保护。

不接地的变压器零序电流保护的零序电流继电器不会动作,常闭触点闭合。

小母线A的正电源经零序电压继电器的常开触点、零序电流继电器的常闭触点起动有较短延时的时间继电器KT2经较短时限首先切除中性点不接地的变压器。

若接地故障消失,零序电流消失,则接地变压器的零序电流保护的零序电流继电器返回,保护复归。

若接地故障没有消失,接地点在接地变压器处,零序电流继电器不返回,时间继电器KT1一直在起动状态,经过较长的延时KT1跳开中性点接地的变压器。

零序电流保护的整定计算:动作电流:(1)与被保护侧母线引出线零序电流第三段保护在灵敏度上相配合,所以(2)与中性点不接地变压器零序电压元件在灵敏度上相配合,以保证零序电压元件的灵敏度高于零序电流元件的灵敏度。

设零序电压元件的动作电压为U dz.0,则U dz.0=3I0X0.T零序电流元件的动作电流为动作电压整定:按躲开正常运行时的最大不平衡零序电压进行整定。

根据经验,零序电压继电器的动作电压一般为5V。

当电压互感器的变比为nTV时,电压继电器的一次动作电压为U dz.0=5n TV变压器零序电流保护作为后备保护,其动作时限应比线路零序电流保护第三段动作时限长一个时限阶段。

即灵敏度校验:按保证远后备灵敏度满足要求进行校验返回第二节微机保护的硬件框图简介微机保护硬件示意框图如下图所示。

一、电压形成回路微机保护要从被保护的电力线路或设备的电流互感器、电压互感器或其他变换器上取得信息,但这些互感器的二次数值、输入范围对典型的微机电路却不适用,故需要降低和变换。

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理(2007-01-07 22:41:40)转载▼分类:工作目前大电流接地系统普遍采用分级绝缘的变压器,当变电站有两台及以上的分级绝缘的变压器并列运行时,通常只考虑一部分变压器中性点接地,而另一部分变压器的中性点则经间隙接地运行,以防止故障过程中所产生的过电压破坏变压器的绝缘。

为保证接地点数目的稳定,当接地变压器退出运行时,应将经间隙接地的变压器转为接地运行。

由此可见并列运行的分级绝缘的变压器同时存在接地和经间隙接地两种运行方式。

为此应配置中性点直接接地零序电流保护和中性点间隙接地保护。

这两种保护的原理接线如图23所示中性点直接接地零序电流保护:中性点直接接地零序电流保护一般分为两段,第一段由电流继电器1、时间继电器2、信号继电器3及压板4组成,其定值与出线的接地保护第一段相配合,0.5s切母联断路器。

第二段由电流继电器5、时间继电器6、信号继电器7和8压板9和10等元件组成,。

定值与出线接地保护的最后一段相配合,以短延时切除母联断路器及主变压器高压侧断路器,长延时切除主变压器三侧断路器。

中性点间隙接地保护:当变电站的母线或线路发生接地短路,若故障元件的保护拒动,则中性点接地变压器的零序电流保护动作将母联断路器断开,如故障点在中性点经间隙接地的变压器所在的系统中,此局部系统变成中性点不接地系统,此时中性点的电位将升至相电压,分级绝缘变压器的绝缘会遭到破坏,中性点间隙接地保护的任务就是在中性点电压升高至危及中性点绝缘之前,可靠地将变压器切除,以保证变压器的绝缘不受破坏。

间隙接地保护包括零序电流保护和零序过电压保护,两种保护互为备用。

零序电流保护由电流继电器12、时间继电器13、信号继电器14和压板15组成。

一次启动电流通常取100A 左右,时间取0.5s。

110kV变压器中性点放电间隙长度根据其绝缘可取115~ 158mm ,击穿电压可取63kV(有效值)。

接地变压器的原理及作用

接地变压器的原理及作用

接地变压器的原理及作用
接地变压器是一种用于系统接地的设备,其主要作用是将系统中的接地电流引入地下,以保护设备和人员免受电击的危害。

接地变压器的原理和作用对于电力系统的安全运行至关重要,下面我们就来详细了解一下接地变压器的原理及作用。

首先,接地变压器的原理是利用变压器的工作原理,将系统中的接地电流引入地下。

在电力系统中,接地变压器一般是通过将中性点接地,将系统中的接地电流引入地下,以保护设备和人员免受电击的危害。

接地变压器通常由高压绕组、低压绕组和中性点接地装置组成。

当系统中出现接地故障时,接地变压器可以将接地电流引入地下,防止电流漫射,保护设备和人员的安全。

其次,接地变压器的作用主要是用于系统接地。

在电力系统中,接地变压器可以有效地将系统中的接地电流引入地下,防止电流漫射,保护设备和人员的安全。

此外,接地变压器还可以提高系统的绝缘水平,减小系统的接地电阻,提高系统的运行可靠性。

因此,接地变压器在电力系统中起着非常重要的作用。

总的来说,接地变压器的原理是利用变压器的工作原理,将系统中的接地电流引入地下,以保护设备和人员免受电击的危害;接地变压器的作用主要是用于系统接地,可以有效地将系统中的接地电流引入地下,防止电流漫射,保护设备和人员的安全,提高系统的绝缘水平,减小系统的接地电阻,提高系统的运行可靠性。

综上所述,接地变压器的原理和作用对于电力系统的安全运行至关重要。

通过对接地变压器的原理及作用的了解,可以更好地保护电力系统的安全运行,保障设备和人员的安全。

希望本文的内容能够对大家有所帮助,谢谢阅读!。

用于变压器接地保护的电流互感器的正确安装_田秉忠

用于变压器接地保护的电流互感器的正确安装_田秉忠
,
6 k V


,
单 相 接 地 电流 经 电 流 互 感 器
,
二 次 侧 感应
电流 使继 电器 动 作

接通 掉 闸 回 路 达 到 保 护 目

如图 l

2 所示
6 kV
8 3
” v
/
2
瞥二 _
图 3
_ _
`
_
( 收 稿 日期 1 9 9 0 一 3 一 2 6 )
380 v
/
图 l
·
下期 要 目
六 度 区构 筑 物 震 害 分析 双 台 子 河穿 越 工 程 的 爆 破 成 沟设 计
·
s so v
/
·
二二 _
_ 一
~
去一
6 kV
石 油化 工 工 程 焊接 技 术 的 现 状 和 发 展 趋
势 (续 )
·
盐 碱 地 区 交 联 电缆 敷 设方 式 的 探 讨
·
长输 管 道 的 电热 解凝 项 目法 施 工 在 工 程 上的 应 用
用 纤 维 素 外 加 剂 配 制 新 型 水 中硷 的 研 究
·
·
·
射线 照 相 的 几 何 因 素
年第







用 于 变压 器接 地 保 护 的 电 流 互 感 器 的 正 确 安 装
田秉 忠
中石 化 总 公 司 鞍 山 炼油 厂
厂 用 变压器 低 压 侧为 三 相 四 线 制 系统 在 变 压器 低压 侧 零 线 中装 设 电 流 互 感 器
压 侧 发 生 单 相 接 地时 使 继电 器动作

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成目前大电流接地系统普遍采用分级绝缘的变压器,当变电站有两台及以上的分级绝缘的变压器并列运行时,通常只考虑一部分变压器中性点接地,而另一部分变压器的中性点则经间隙接地运行,以防止故障过程中所产生的过电压破坏变压器的绝缘。

为保证接地点数目的稳定,当接地变压器退出运行时,应将经间隙接地的变压器转为接地运行。

由此可见并列运行的分级绝缘的变压器同时存在接地和经间隙接地两种运行方式。

为此应配置中性点直接接地零序电流保护和中性点间隙接地保护。

这两种保护的原理接线如图E-127所示中性点直接接地零序电流保护:中性点直接接地零序电流保护一般分为两段,第一段由电流继电器1、时间继电器2、信号继电器3及压板4组成,其定值与出线的接地保护第一段相配合,0.5s切母联断路器。

第二段由电流继电器5、时间继电器6、信号继电器7和8压板9和10等元件组成,。

定值与出线接地保护的最后一段相配合,以短延时切除母联断路器及主变压器高压侧断路器,长延时切除主变压器三侧断路器。

中性点间隙接地保护:当变电站的母线或线路发生接地短路,若故障元件的保护拒动,则中性点接地变压器的零序电流保护动作将母联断路器断开,如故障点在中性点经间隙接地的变压器所在的系统中,此局部系统变成中性点不接地系统,此时中性点的电位将升至相电压,分级绝缘变压器的绝缘会遭到破坏,中性点间隙接地保护的任务就是在中性点电压升高至危及中性点绝缘之前,可靠地将变压器切除,以保证变压器的绝缘不受破坏。

间隙接地保护包括零序电流保护和零序过电压保护,两种保护互为备用。

零序电流保护由电流继电器12、时间继电器13、信号继电器14和压板15组成。

一次启动电流通常取100A左右,时间取0.5s。

110kV变压器中性点放电间隙长度根据其绝缘可取115~158mm,击穿电压可取63kV(有效值)。

当中性点电压超过击穿电压(还没有达到危及变压器中性点绝缘的电压)时,间隙击穿,中性点有零序电流通过,保护启动后,经0.5s延时切变压器三侧断路器。

变压器保护整定中的零序电流保护配置要点

变压器保护整定中的零序电流保护配置要点

变压器保护整定中的零序电流保护配置要点在变压器保护整定中,零序电流保护是一项关键的配置要点。

零序电流是指正、负序电流和零序电流的矢量和。

它的存在可能意味着线路中存在故障或其他问题,因此保护系统需要能够准确地检测和识别零序电流,并采取适当的措施来解决问题。

本文将介绍一些重要的变压器保护整定中的零序电流保护配置要点。

1. 零序电流保护原理变压器保护系统中的零序电流保护是通过使用差动保护装置来实现的。

差动保护装置监测变压器两侧电流的差异,当存在零序电流时,差异将超过设定的阈值,触发保护系统采取相应的动作。

因此,正确配置差动保护装置是实现零序电流保护的关键。

2. 零序电流保护配置要点在变压器保护整定中,配置零序电流保护时需要考虑以下要点:a. 阈值的选择零序电流保护的阈值应根据变压器的额定容量和特性进行选择。

通常情况下,阈值设置在变压器额定容量的1-2%之间。

但在实际应用中,也需要根据具体情况进行调整。

b. 动作延时设置为了避免误动作和滤除瞬态零序电流,保护系统应该设置适当的动作延时。

动作延时的设置应该根据变压器的特性和负载情况进行调整,以确保保护系统的准确性和可靠性。

c. 灵敏度设置正确设置零序电流保护的灵敏度对于及时检测故障和准确识别零序电流至关重要。

灵敏度设置应根据变压器的特性和所需保护水平进行调整,以确保保护系统的可靠性和灵活性。

3. 零序电流保护的其他考虑因素除了以上的配置要点外,还有一些其他考虑因素应该被纳入变压器保护整定中的零序电流保护:a. 双重地锁定零序电流保护应采用双重地锁定,以确保保护系统在地故障发生时能够正确地动作。

b. 高阻抗接地系统的特殊配置在一些特殊情况下,变压器的中性点可能采用高阻抗接地系统。

此时,对零序电流保护的配置要求更为复杂,需要根据实际情况进行详细分析和设计。

4. 零序电流保护的实施与测试零序电流保护的实施和测试是保证其有效性和可靠性的重要环节。

在实施过程中,应确保电流传感器的正确安装和连接,保护装置的正确配置和设定。

变压器保护配置

变压器保护配置

变压器保护配置
变压器保护配置主要包括过流保护、差动保护、接地保护、过流保护及欠压保护等多重保护,以下为各个保护的配置要点。

1. 过流保护
过流保护是针对变压器发生短路事故的保护。

在发生短路事故时,电流会迅速增加,如果快速切断故障电流,可以避免损坏变压器。

过流保护包括基本过流保护和高比过流保护两种,基本过流保护一般采用时间定值方式,而高比过流保护则主要采用电流比率定值方式。

2. 差动保护
差动保护是针对变压器内部绕组之间短路的保护。

在变压器两侧各装置一个差动保护装置,当两侧电流不平衡时,将发生差动电流,差动保护可及时断开保护范围内的变压器。

差动保护主要采用数码式差动保护装置,具备检测灵敏度高、速度快、可靠性好等特点。

3. 接地保护
变压器接地保护主要是为了防止变压器一侧或两侧出现接地故障而产生的电流损伤,可避免因电压振荡或变压器内部故障造成的第一次或第二次单相接地故障。

接地保护一般采用零序电流保护,若零序电流达到设定值,保护零序导线及相关设备将立即切断故障电路,时限较短,保护性能更高。

4. 过流保护及欠压保护
过电流保护和欠压保护是保证变压器正常运行的关键保护。

过电流保护用于检测变压器运行时电流的异常变化,及时发现故障电路并作出限制保护,防止变压器过热或烧毁。

欠压保护用于检测变压器的电压是否低于设定值,如果是,则及时切断电源,保护变压器。

变压器常用的保护方式是什么

变压器常用的保护方式是什么

变压器常用的保护方式是什么Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998变压器常用的保护方式是什么变压器的不正常工作状态主要是过负荷、外部短路从而引起的过电流、外部接地的短路引起中性点过电压、油箱漏油而引起的油面降低或冷却系统故障造成的温度升高等。

此外,大容量变压器,由于它的额定工作磁通密度较高,工作磁密与电压频率是成正比,在过电压或低频率下运行的时候,可能会引起变压器的过励磁故障等。

针对以上情况,大型变压器一般采用的方式为以下几种:一、瓦斯保护:保护变压器的内部短路和油面降低的故障。

二、差动保护、电流速断保护:保护变压器绕组或引出线各相的相间短路、大接地电流系统的接地短路以及绕组匝间短路。

三、过电流保护:保护外部相间短路,并作为瓦斯保护和差动保护(或电流速断保护)的后备保护。

四、零序电流保护:保护大接地电流系统的外部单相接地短路。

五、过负荷保护:保护对称过负荷,仅作用于信号。

六、过励磁保护:保护变压器的过励磁不超过允许的限度。

变压器瓦斯保护反应变压器油箱内部各种故障和油面降低。

及以上油浸式变压器和及以上车间内油浸式变压器,均应装设瓦斯保护。

当油箱内故障产生轻微瓦斯或油面下降时,应瞬时动作于信号;当产生大量瓦斯时,应动作于断开变压器各侧断路器。

带负荷调压的油浸式变压器的调压装置,亦应装设瓦斯保护。

变压器一般采用的保护方式二:纵联差动保护或电流速断保护反应变压器引出线、套管及内部短路故障的纵联差动保护或电流速断保护。

保护瞬时动作于断开变压器的各侧断路器。

1. 对以下厂用变压器和并列运行的变压器,以及10MVA以下厂用备用变压器和单独运行的变压器,当后备保护时间大于时,应装设电流速断保护。

2. 对及以上厂用工作变压器和并列运行的变压器,10MVA及以上厂用备用变压器和单独运行的变压器,以及2MVA及以上用电流速断保护灵敏性不符合要求的变压器,应装设纵联差动保护。

接地变压器的原理及作用

接地变压器的原理及作用

接地变压器的原理及作用
接地变压器是一种用于给电力系统提供电气保护的设备。

它的作用是通过将系统中的电流转化为瞬时变化的电磁力,以便在电路出现故障时,能够将这些故障电流迅速地引导到地面上,从而起到保护人身安全和防止设备损坏的作用。

接地变压器的原理是基于法拉第电磁感应定律和接地故障电流的特性。

当系统发生接地故障时,故障电流会通过接地变压器的一侧绕线圈,从而在绕线圈内产生变化的磁场。

根据法拉第电磁感应定律,这个变化的磁场会引起绕线圈中的感应电流产生,产生的感应电流会产生与故障电流相反的电磁力。

这个电磁力会抵消掉故障电流产生的电磁力,使得接地变压器的一侧不产生任何电磁力,从而保护人身安全和设备不受损坏。

除了对电路中的故障电流进行引导和隔离之外,接地变压器还可以用于测量和监测系统中的接地电流和接地电阻。

通过接地变压器,可以观察电路中的接地电流的大小和方向,从而判断系统中可能存在的接地故障。

此外,接地变压器还可以用于消除干扰信号,提高电力系统的工作稳定性和质量。

总之,接地变压器通过利用电磁感应原理,实现了对电力系统中的故障电流的引导和隔离,保护人身安全和设备不受损坏的作用。

它在电力系统中的应用极为广泛,是一项非常重要的电气保护设备。

变压器保护原理和试验方法

变压器保护原理和试验方法

变压器保护原理和试验方法一、变压器保护原理变压器是电力系统中重要的电力设备,其正常运行对电力系统的稳定性和安全性具有重要影响。

为了保证变压器的安全运行,需要对其进行保护。

变压器保护的原理是根据变压器内部故障的类型和特点,通过对其电气参数的监测和计算,以及对跳闸保护装置的触发和动作,实现对变压器故障的精确定位和快速切除电源,从而保护变压器免受损坏。

常见的变压器保护原理包括过流保护、差动保护、接地保护和过温保护。

1.过流保护:变压器内部出现短路故障时,会引起过电流,过流保护能够监测电流,一旦电流超过设定值,即可触发跳闸保护装置,切断变压器电源。

2.差动保护:变压器差动保护通过比较变压器的输入和输出电流,计算差值,并与设定值进行比较。

如果差值超过设定值,说明有故障发生,即可触发跳闸保护装置,切断变压器电源。

3.接地保护:变压器接地保护用于监测变压器的接地电流,一旦接地电流超过设定值,说明有设备或线路发生接地故障,即可触发跳闸保护装置,切断变压器电源。

4.过温保护:变压器内部由于负载过重或环境温度上升等因素,会导致过热现象。

过温保护通过温度传感器监测变压器的温度,一旦温度超过设定值,即可触发跳闸保护装置,切断变压器电源。

以上是变压器常见的保护原理,可以根据具体情况选择相应的保护方式。

二、变压器保护试验方法为了验证变压器保护装置的可靠性和准确性,需要进行相应的保护试验。

保护试验的目的是模拟实际故障情况,检测保护装置的动作和动作时间,以确保保护装置在电力系统故障发生时的可靠性。

常见的变压器保护试验方法包括:1.过流保护试验:通过在变压器的高、低侧加入外部电阻或使用特殊的电源,增大变压器的负荷电流,触发过流保护装置的动作,测试保护装置的动作时间和准确性。

2.差动保护试验:通过在变压器的输入和输出侧加入外部电阻,模拟变压器的输入和输出电流,并调节电流大小,计算差值,触发差动保护装置的动作,检测保护装置的动作时间和准确性。

接地变压器的电流保护最新

接地变压器的电流保护最新

接地变压器的保护一.接地变的保护分析1.接地变的电源开关接地变作为一种特殊的变压器,也需要考虑保护,一般而言接地变的电源来源有几下几种方式:A.专用断路器B.负荷开关+熔断器C.和线路合用断路器一般而言,我们推荐使用专用断路器进行保护,主要基于以下原因,A.使用负荷开关保护需要带有缺相保护,可靠性不高,而且一旦缺相运行,中性点会产生0.5Ue电压,导致过电压B.备件的配备和熔断器的更换比较麻烦C.对于合用断路器时,保护需要兼考虑线路和接地变,难以完全兼顾2.常规接地变的负荷对于接地变和普通变压器不同,普通变压器一般容量为100/100,100/100/100,100/100/50,100/50/100等几种,而接地变的容量有以下几种A.带所用变额定容量比为100/(5,8,10,15,20,30)等多种,一次二次容量相差较大。

二次短路时一次电流可能较小;一次电流和变比、一次二次容量比,二次阻抗电压,二次短路方式等多种因数相关B.部分接地变没有二次容量C.每台接地变后面都有中性点带有消弧线圈(中性点接电阻方式另外考虑) 3.接地变的保护范围接地变的保护主要考虑二次短路、高压中性点对地短路、接地变进线短路,接地变本体内部故障(主要是匝间短路);同时需要躲开接地变的励磁涌流(包括系统过电压产生的暂态过程产生的励磁涌流)A.对于保护二次短路a.主要考虑到二次侧单相接地短路,两相短路,三相短路z对于低压侧三相短路,假设低压侧短路电流为Id,高压侧三相短路电流为Id/kz低压侧对于低压侧两相短路,假设低压侧短路电流为Id,高压侧三相短路电流为z低压侧对于低压侧单相短路,假设低压侧短路电流为Id,高压侧三相短路电流为b.保护范围主要是接地变出口到下一级电源开关进线侧,一般二次出线较粗而且线路不长,对于线路阻抗可以忽略不计;部分用户在二次出口配有空气开关或者熔丝c.对于部分一次二次容量相差较大,而且二次阻抗电压较高的接地变,可能二次短路时,一次侧电流很小,小于接地变的额定电流,无法进行有效保护;这时可以使用低压侧中性点电流或者出口电流进行保护。

中性点可能接地或不接地运行时变压器的零序电流电压保护

中性点可能接地或不接地运行时变压器的零序电流电压保护

中性点可能接地或不接地运行时变压器的
零序电流电压保护
1.全绝缘变压器
(1)全绝缘变压器零序爱护原理接线图
(2)零序电压元件的动作电压整定
按躲过在部分接地的电网中发生接地短路时爱护安装处可能消失的最大零序电压整定。

(3)爱护的动作时限t5
t5 =0.3~0.5s
2.分级绝缘变压器
(1)分级绝缘变压器零序爱护原理接线
(2)分级绝缘变压器零序爱护组成
由零序电压爱护、零序电流爱护、间隙零序电流爱护共同构成。

(3)分级绝缘变压器零序爱护原理
当系统发生一点接地,中性点接地运行的变压器由其零序电流爱护动作于切除。

若高压母线上已没有中性点接地运行的变压器,而故障仍旧存在时,中性点电位将上升,发生过电压而导致放电间隙击穿,此时中性点不接地运行的变压器将由反应间隙放电电流的零序电流爱护瞬时动作于切除。

假如中性点过电压值不足以使放电间隙击穿,
则可由零序电压爱护带0.3~0.5S的延时将中性点不接地运行的变压器切除。

4)零序电压元件的起动电压的整定
①应低于变压器中性点工频耐受电压:
②躲过电网存在中性状况下单相接地短路时的最大零序电压:
一般=180V
5)放电间隙零序电流爱护的起动电流
击穿电流依据阅历数据整定,一般一次值为100A。

电力变压器的接地保护

电力变压器的接地保护

电力变压器的接地保护
电力系统种,接地故障常常是故障的主要形式,因此,大电流接地系统中的变压器,一般要求在变压器上装设接地(零序)保护。

作为变压器本身主保护的后备保护和相邻元件接地短路的后备保护。

图1示出中性点直接接地双绕组变压器的零序电流保护原理接线图。

保护用电流互感器接于中性点引出线上。

其额定电压可选择低一级,其变比根据接地短路电流的热稳定和动稳定条件来选择。

图1中性点直接接地变压器零序电流保护原理接线图
保护的动作电流按与被保护侧母线引出线零序电流保护后备段在灵敏度上相配合
的条件来整定。


Iop0 =KcKbIop0.L
式中,Iop0——变压器零序过电流保护的动作电流;
Kc——配合系数,取1.1~1.2;
Kb——零序电流分支系数;
Iop0——引出线零序电流保护后备段的动作电流。

保护的灵敏系数按后备保护范围末端接地短路校验,灵敏系数应不小于1.2。

保护的动作时限应比引出线零序电流后备段的最大动作时限大一个阶梯时限t。

变压器单相接地保护电流

变压器单相接地保护电流

变压器单相接地保护电流
首先,我们来看一下为什么需要单相接地保护电流。

在变压器
运行过程中,如果某一相发生接地故障,会导致接地故障电流通过
变压器绕组和接地线路,可能对设备和人员造成危害。

因此,设置
适当的单相接地保护电流可以及时发现故障,并切除故障相,保护
系统的安全稳定运行。

其次,单相接地保护电流的设置需要考虑多方面因素。

首先是
变压器的额定容量和接地故障时的故障电流大小,需要根据变压器
的具体参数来确定保护电流的设置数值。

其次是考虑到系统的灵敏
度和可靠性,保护电流的设置要能够准确地检测到接地故障,同时
又要避免对正常运行的影响。

还需要考虑到设备的特性和工作环境,确保保护装置的稳定性和可靠性。

最后,单相接地保护电流的设置还需要符合相关的标准和规范
要求。

不同国家和地区可能有不同的标准和规范,针对不同类型的
变压器和系统,可能会有不同的要求和建议,因此在设置单相接地
保护电流时,需要参考当地的标准和规范要求,确保保护装置的设
置符合相关的要求。

综上所述,变压器单相接地保护电流是针对变压器单相接地故障而设置的保护装置参数,其设置需要考虑变压器参数、系统要求和相关标准规范,以确保系统的安全稳定运行。

变压器常用的保护方式是什么

变压器常用的保护方式是什么

变压器常用的保护方式是什么Prepared on 24 November 2020变压器常用的保护方式是什么变压器的不正常工作状态主要是过负荷、外部短路从而引起的过电流、外部接地的短路引起中性点过电压、油箱漏油而引起的油面降低或冷却系统故障造成的温度升高等。

此外,大容量变压器,由于它的额定工作磁通密度较高,工作磁密与电压频率是成正比,在过电压或低频率下运行的时候,可能会引起变压器的过励磁故障等。

针对以上情况,大型变压器一般采用的方式为以下几种:一、瓦斯保护:保护变压器的内部短路和油面降低的故障。

二、差动保护、电流速断保护:保护变压器绕组或引出线各相的相间短路、大接地电流系统的接地短路以及绕组匝间短路。

三、过电流保护:保护外部相间短路,并作为瓦斯保护和差动保护(或电流速断保护)的后备保护。

四、零序电流保护:保护大接地电流系统的外部单相接地短路。

五、过负荷保护:保护对称过负荷,仅作用于信号。

六、过励磁保护:保护变压器的过励磁不超过允许的限度。

变压器瓦斯保护反应变压器油箱内部各种故障和油面降低。

及以上油浸式变压器和及以上车间内油浸式变压器,均应装设瓦斯保护。

当油箱内故障产生轻微瓦斯或油面下降时,应瞬时动作于信号;当产生大量瓦斯时,应动作于断开变压器各侧断路器。

带负荷调压的油浸式变压器的调压装置,亦应装设瓦斯保护。

变压器一般采用的保护方式二:纵联差动保护或电流速断保护反应变压器引出线、套管及内部短路故障的纵联差动保护或电流速断保护。

保护瞬时动作于断开变压器的各侧断路器。

1. 对以下厂用变压器和并列运行的变压器,以及10MVA以下厂用备用变压器和单独运行的变压器,当后备保护时间大于时,应装设电流速断保护。

2. 对及以上厂用工作变压器和并列运行的变压器,10MVA及以上厂用备用变压器和单独运行的变压器,以及2MVA及以上用电流速断保护灵敏性不符合要求的变压器,应装设纵联差动保护。

3. 对高压侧电压为330kV及以上变压器,可装设双重纵联差动保护。

变压器接地保护的工作原理

变压器接地保护的工作原理

变压器接地保护的工作原理
变压器接地保护是一种用于保护变压器和输电线路中的人身安全和设备完整性的保护措施。

其工作原理如下:
1. 自动接地装置:变压器接地保护通常通过自动接地装置实现。

自动接地装置是一种感应式装置,其通过检测变压器的中性点电压是否为零来确定是否发生接地故障。

2. 电流检测:自动接地装置通过检测变压器中性点电流来实现接地故障的检测。

当变压器中性点发生接地故障时,接地电流将通过接地装置,装置则会触发保护装置进行保护动作。

3. 动作逻辑:当自动接地装置检测到变压器中性点电流超过预设的阈值时,保护装置会接收到信号,并发出命令/信号,使
得变压器的高压侧和低压侧断路器跳闸,切断故障电流的路径。

这样可以有效地阻止电流通过变压器中性点流向地。

4. 故障指示:当保护装置发生动作时,通常还会有指示灯或声音警报等方式来提醒维护人员发生了接地故障。

总结来说,变压器接地保护通过检测变压器中性点电流,一旦检测到异常的接地电流,会触发保护装置进行断开变压器高低压侧电源的动作,以防止接地故障对设备和人员造成伤害。

变压器中的接地是什么原理

变压器中的接地是什么原理

变压器中的接地是什么原理
变压器中的接地是为了保护设备和人员安全的一种措施。

接地的原理主要涉及电压的分配、电流的传导和故障保护等方面。

首先,在变压器中,电源输入端和输出端之间存在电压差。

当变压器没有接地时,这种电压差会导致杂散电磁场的产生,进而引起电磁干扰,对设备和人体造成危害。

而变压器接地后,电势差会分布到接地点,从而减小了电磁辐射的幅度,保护了设备和人员的安全。

其次,变压器的接地有助于电流的传导。

在正常工作状态下,电流从输入端流入变压器,在输出端流出,形成了一个闭合的电流回路。

当有电力故障发生或设备出现绝缘故障时,电流会通过接地系统降低电压,将故障电流导向地下,从而防止电流引发火灾或对设备和人员造成电击等危险。

此外,变压器接地还能实现故障保护。

当变压器中发生短路故障时,电流通过接地系统通向地下,从而形成一个低阻抗回路,使故障电流得到迅速地耗散,达到过流保护的目的。

同时,接地系统中的接地线还能承受一部分电流,起到熔断器的作用,保护变压器和线路不受过流损坏。

总结起来,变压器中的接地原理主要包括电压分配、电流传导和故障保护。

接地能够降低电磁辐射幅度,保护设备和人员的安全;通过电流回路的形成,将故障
电流导向地下,避免电流引发火灾和电击等危险;同时,接地系统中的接地线还起到熔断器的作用,保护变压器和线路不受过流损坏。

因此,在变压器中进行接地是为了确保电气系统的正常运行和人员的安全,是一种必要的措施。

变压器的保护

变压器的保护

变压器的保护本课程总体思路:一.变压器的故障、不正常状态及其保护方式〔一〕变压器的故障〔二〕变压器的不正常工作状态〔三〕变压器应装设的保护1、主保护2、外部相间短路的后备保护3、外部接地短路的后备保护4、其他的保护5、其他非电量保护1、瓦斯保护基本原理三.变压器差动保护的基本原理及其不平衡电流1.由励磁涌流所产生的不平衡电流(1)励磁涌流的产生〔2〕励磁涌流特征,〔3〕克服励磁涌流对变压器纵差保护影响的措施:2、三相变压器接线产生的不平衡电流4.由电流互感器变比误差及互感器型号、特性不同产生的不平衡电流5.变压器带负荷调节分接头位置改变所产生的不平衡电流。

四、比率制动特性的变压器差动保护五.变压器相间短路的后备保护1、过电流2、低电压启动的过电流保护3、复合电压启动的过电流保护4、负序电流保护+单相式电压保护5、阻抗保护六.变压器的接地保护〔一〕中性点直接接地变压器的零序电流保护〔二〕中性点可能接地或不接地运行时变压器的零序电流电压保护变压器在我们电力系统中应用的量很大的设备也是很重要的设备,对变压器的不正常状况和故障状态配置了不同的保护,这部分培训内容主要介绍变压器常用的保护原理及各保护的特点。

一、变压器的故障、不正常状态及其保护方式变压器的故障根据变压器的结构分为油箱内部和外部故障〔一〕变压器的故障油箱内部的故障主要有两点(1)各相绕组间的相间短路(2)单相绕组的单相接地油箱外部的故障(1)引出线的相间短路(2)引出线通过外壳发生的单相接地短路、变压器有的中性点是接地的,在接地的这一侧外部会发生单相接地短路、绝缘套管闪络或破坏。

〔二〕变压器的不正常工作状态主要有以下几个方面,(1)大容量变压器的过励磁,大容量变压器为了充分利用变压器的铁芯材料,正常的工作点接近于饱和磁通附近,一旦电压升高或者电网频率降低,这时铁芯励磁电流就会急剧增大,容易引起过励磁,引起变压器的发热(2)外部相间短路引起的过电流(3)外部接地短路引起的过电流和中性点的过电压(4)过负荷(5)漏油等原因引起的油面降低,绕组温度升高以上讲的是变压器的故障及可能出现的不正常工作状态,根据这些状态,以下讲变压器应该装设什么样的保护〔三〕变压器应装设的保护1、主保护根据变压器的特点,因为变压器绕组放在变压器油里面,假设变压器内部故障,短路产生电弧就会产生大量的气体,根据气体的流速,就产生了一个保护-------瓦斯保护,瓦斯保护是一个非电量的保护,分为重瓦斯和轻瓦斯保护,〔1〕重瓦斯保护重瓦斯保护可以启动继电器动作断路器,能反应油箱内各种故障,所以重瓦斯作为油箱内部故障一个主保护〔2〕纵联差动保护差动保护的范围可以包括油箱内部绕组的相间短路、匝间短路,外部引线的短路,所以差动保护可以作为主保护(3)电流速断保护变压器在容量较小、电压等级比较低的变压器可采用变压器的主保护就这三种类型2、外部相间短路的后备保护根据变压器的容量、电压等级和重要程度来选择后背保护〔1〕过电流保护最基本的也是最简单的保护,只反应电流,因为灵敏度低,所以一般用于容量较小,电压较低的变压器,电流整定要躲开最大负荷电流〔2〕低电压启动的过电流保护增加了一个低电压条件,可以把电流原件的值降低,所以比过电流保护灵敏,如果过电流保护不能满足要求,我们可以采用这个〔3〕复合电压启动的过电流保护对于不对称短路是反应负序电压、对于对称短路是反应低电压,再加上过电流这个条件,就形成了复合电压启动的过电流保护,这个对于不对称短路的灵敏度就大大提高(4)负序电流及单相式低电压起动的过电流保护负序电流只能反应不对称故障,为了反应对称故障,需要加上单相式低电压起动的过电流保护,和〔3〕不同的是此保护只要有一相故障就可以动作〔5〕阻抗保护采用阻抗继电器形成阻抗保护3、外部接地短路的后备保护〔1〕零序电流保护发生接地故障会产生零序电流,所以零序电流可以反应接地故障〔2〕零序电流方向保护对于多电源变压器,比方说三绕组变压器两边有电源,就要加方向元件,方向是为了保证有选择性,另外自耦变压器零序电流相互流动,所以也要加方向原件(3)零序过电压保护接地时,出现零序电压,构成零序电压保护(4)间隙电流保护和零序电压保护变压器中性点是经间隙接地的,正常状态下,间隙是断开的,相当于中性点不接地变压器,当发生接地故障,产生过电压,假设间隙发生击穿,变压器就变成中性点接地,间隙一击穿,就会有零序电流,我们可以采用间隙电流保护和零序电压保护,击穿时有间隙电流,不击穿时有零序电压,两者结合起来构成接地短路的后备保护4、其他的保护〔1〕过负荷保护反应变压器过负荷情况,只发信号〔2〕大容量变压器要装过励磁保护5、其他非电量保护轻瓦斯保护、油温高保护、冷却器故障、压力释放保护等二.瓦斯保护1、瓦斯保护基本原理:在变压器油箱内部发生故障(包括轻微的匝间短路和绝缘破坏引起的经电弧电阻的接地短路)时,由于故障点电流和电弧的作用,将使变压器油及其他绝缘材料因局部受热而分解产生气体,因气体比较轻,它们将从油箱流向油枕的上部。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

接地变压器的保护
一.电流速断保护:
作为电源侧绕组和电流侧套管及引出线路故障的主要保护。

电源侧为中性点直接接地系统时,保护采用完全星形接线方式,电源侧为中性点不接地或经消弧线圈接地时,则采用两相不完全星形接线。

A.电流速断保护的起动电流按躲开励磁涌流;同时确保变压器一次侧短路时可以有效跳闸,(也必须确保消弧线圈短路时回路变成直接接地)即
Idz,j=(Kjx/ Kk)*Idz,max
Kk:可靠系数,(取1.2-1.3,DL电磁式取1.2,GL感应取1.3)
Kjx:接线系数,取1(按CT的接线方式,1或√3或2)
Idz,max=一次容量/(√3Ue×Uk)( Uk一般为4%,是一次的Uk)
=Pe/(√3Ue×Uk)=Ie/Uk (带所用变时标有的二次短路阻抗不能用)
=Ie/(Zo*Ie/Ue)=Ue/Zo (标有零序阻抗)
= Ue/(Zt+Zs)(Zt:接地变的每相Xo,Zs系统每相的Xo)
注:1。

阻抗包括零序阻抗Zt和系统阻抗Zs,
Zs=UN2/S 系统阻抗,每相欧姆(当Zs≤0.05Zt时,Zs可以忽略不计)
系统短路表观容量如下表(GB1094.5-1985)
为了有利于电力系统的运行,建议接地变零序阻抗计算按下式进行
6、10KV Zs=4%×UN2/SN(UN系统额定电压,SN接地变容量)
35KV Zs=6.5%×UN2/SN
Uk:为一次的短路阻抗,不是出厂报告上标的二次的阻抗,一般系统设计要求按4%左右进行设计,实际产品一般做到2-3%。

2.可靠系数还是除(1.2)比较合适,希望保护范围比较大,能包括整个变压器。

3.关于接线系数Kjx:(大部分为AC相接CT)
对于两不完全星形接法、三相星形接法为1
两相电流差时:可能为√3(正常运行或三相短路),AB、BC短路为1,AC 相短路为2
B.电流速断保护电流的起动电流还应躲开变压器空载合闸的励磁涌流。

Idz,e=(3-5)Ie,b=4×Ie,b(Ie,b为一次额定电流)
C.接地变进线处要有两倍灵敏度:
二.接地变压器的励磁涌流
当接地变压器空载投入、带消弧线圈投入、外部故障切除后电压恢复、系统的过度过程或状态改变时,可能出现数值很大的励磁涌流。

励磁涌流最大可达额定电流的6-8倍,同时电流中含有很大的非周期分量和高次谐波分量,其波形几乎全部偏在时间轴的一边。

励磁涌流在变压器合闸后开始瞬间衰减很快,对中小型变压器,经过05-1秒后其值已不大于0.25-0.5Ie(Ie为额定电流)。

三.变压器的过流保护
为了反应变压器外部短路引起的过电流,并作为变压器主保护的后备变压器应装过流保护。

过流保护的动作电流应躲开变压器的最大负荷电流。

接地变本身没有负荷,主要考虑本身的额定电流,一般按最大档位的电感电流整定;接地变的过流主要包括:系统接地时、当接地变压器空载投入、带消弧线圈投入
Idz,j=Kk*Kjx*Kgh*Ie,b/(Kf*Ki) 过流保护
Kk:可靠系数,取1.3
Kjx:接线系数,取1
Kgh:过负荷系数,没有二次负荷可以取1
Kf:继电器返回系数,取0.85
Ie,b:变压器一次电流
Ki:变比
注:A。

无二次负荷,不要过负荷系数;消弧线圈是否可以当作接地变的负荷,系统突然接地时,消弧线圈是否有瞬间冲击电流,是否需要跺开,时间0.5S 是否够。

(一般电感的冲击无大电流,但有过电压,时间常数为T=L/R)。

B.考虑接地变和消弧线圈串联后接地冲击过电压或涌流,从接地变看进去。

要考虑接地变的过电流能力,同时需要考虑响应过电流的时间曲线。

(接地时的暂态过程或状态变化是否影响过流保护)
将短时故障电流及其容量换成持续的额定电流及容量,IEEE-C62.92.3标准作出规定,换算列表如下:
C.时间整定,应和主开关的动作时间配合,比主保护时间短,时间及差为
△t,一般取0.5-1S。

D.现在按普通变压器考虑时,变压器主要考虑正序负序电流,而接地变主要是零序电流
解决办法:可以从定值和时间的角度给予配合。

A.过流保护可以用6倍0.5S
B.也可以用1.5-2倍1S,要考虑和主变的时间配合
四.举例说明
1.接地变为DKS1-500/10.5-50/0.4
(零序阻抗:6.64欧姆/相,二次阻抗电压2.06%)
A.速断电流:按一次侧短路的最大电流整定(Zs忽略不计)
按接地变出厂零序阻抗计算:Idz,max =Ue/(Zt+Zs)=912A
按接地变的零序阻抗估算:Idz,max =Ue/(Zt+Zs)=688A(8.8)电流速断保护的起动电流,从安全性考虑可以取较低值688
Idz,j=Kk*Kjx*Idz,max=688/1.2=573A
按躲开励磁涌流的条件
Idz,e=(3-5)Ie,b=4×Ie,b=4*500/10.5*√3=110A〈573A,能满足要求中性点直接接地电流:6062/(6.64/3)=2738A>573A.
B.过流保护(一般为额定电流的1.5-2倍)
Idz,j=Kk*Kjx *Ie,b/(Kf*Ki)变比暂不考虑,
=1.3*1*(500/10.5*√3)/0.85
=1.53*27.4
=42A
按6倍数据进行整定:27.4*6=165A
2.定值整定(注意CT的变比一定要正确)
速断定值:573A
过流定值:42A/1S,165A/0.5S。

相关文档
最新文档