电机的五种启动方式比较

合集下载

电动机的启动方式与起动装置选择

电动机的启动方式与起动装置选择

电动机的启动方式与起动装置选择电动机是一种将电能转换为机械能的设备,广泛应用于工业生产和日常生活中。

在电动机运行前,需要选择适当的启动方式和起动装置来确保电动机能够有效、安全地启动。

本文将探讨电动机的启动方式以及起动装置的选择。

一、电动机的启动方式1. 直接起动方式直接起动是最简单、最常用的启动方式。

它的原理是将电源直接接入电动机,通过控制电源的开关来启动和停止电动机。

直接起动适用于小型电动机或对起动时间无特殊要求的场合。

这种方式简单可靠,成本低,但对电源的冲击较大,容易引起电网电压的瞬间下降。

2. 限流起动方式限流起动方式通过限制电动机的电流来达到缓慢启动的目的。

其中一种常见的方法是使用启动电阻,通过逐步减小电阻的方式来限制电流增长的速度,从而使电动机实现缓慢启动。

限流起动方式适用于启动负载较重或对电源冲击要求较高的电动机。

3. 自耦变压器起动方式自耦变压器起动方式是通过自耦变压器来降低电源电压,从而使电动机实现缓慢启动。

使用自耦变压器能够减小启动时电动机对电源的冲击,提高起动过程的平稳性。

这种方法适用于起动大功率电动机或对启动冲击要求较低的场合。

4. 频率变换器起动方式频率变换器起动方式是通过改变电源频率来控制电动机的启动和停止。

频率变换器将电源的交流电转换为直流电,再通过中间环节将其转换为对应频率的交流电供给电动机。

这种方式适用于对电动机启动的平稳性和精度要求较高的场合。

二、起动装置的选择1. 起动电阻器起动电阻器主要用于限制电动机的起动电流,减少启动时对电源的冲击。

它适用于小型电动机或起动冲击要求较高的电动机。

起动电阻器可以通过调节电源电阻来控制启动电流的大小,从而实现缓慢启动的效果。

2. 软起动器软起动器是一种智能化的起动装置,它通过电子元件来实现对电机的启动和停止控制。

软起动器具有启动过程的平稳性好、启动电流小、调速性能好等优点。

它适用于对电动机起动和停止过程要求较高的场合。

3. 磁力启动器磁力启动器是一种通过电磁力来实现对电动机启动和停止的装置。

直流电动机常用的启动方法

直流电动机常用的启动方法

直流电动机常用的启动方法直流电动机是一种常见的电动机类型,广泛用于各种工业生产与民用设备中。

对于直流电动机的启动方法,有很多种不同的选择,这些选择的依据包括电动机的型号、工作环境、驱动力矩的大小以及控制方式等因素。

下面是10种关于直流电动机常用的启动方法,并分别进行详细描述。

1. 电阻启动法电阻启动法是直流电动机最常见的启动方式,其原理是通过依次接入不同电阻来使电动机的起动电流随之逐渐减小。

当起动电流达到设定的安全范围之后,电阻便会逐渐减少,直到电机正常运行。

这种启动方式起动起来比较平稳,价格较为低廉。

电阻启动法需要使用大量的电阻器,造成能量的浪费。

2. 串联启动法串联启动法是一种将电动机的电源与电阻器串联连接在一起的启动方法。

与电阻启动法相似,它也是通过连续连接电阻器来降低电流的方法来启动电动机,与电阻启动不同的是,串联启动法每次只启动一个电阻器。

这种启动方式对电机来说更加低温,启动更加快速。

在起动阶段,会产生高电压,并且会造成能量的浪费。

3. 并联启动法并联启动法是一种将电动机的电源与电阻器并联连接在一起的启动方法。

并联启动法直接输入电机供电电压,通常需要通过控制继电器来控制电动机的启动。

这种启动方式比较经济实用,并且启动过程中对电机起动电流和电机结构的影响最小。

4. 自励磁通启动法自励磁通启动法是通过电机冷态下挂上外接的直流电源,使电机发生自励磁通,再接上负载进行启动。

这种启动方法具有启动电流小,启动时间短,启动前不需预充电等特点。

但是自励磁通启动方式不适用于需要一直处于低速转动状态的电机。

5. 逆励磁通启动法逆励磁通启动法是通过将直流电动机转子两端分别接上两个反向或相同的电极来实现启动的方法。

这种启动方式不需要任何外接电阻器和其他控制器等,启动过程非常快速。

在实际使用中,逆励磁通启动需要一定的起动电流,不利于电机的长时间运转。

6. 惯性位移启动法惯性位移启动法也称为惯性磁力启动法,是一种利用电机转子上的惯性力和轴承摩擦力产生的惯性磁力来实现启动的方法。

各种启动方式的特点

各种启动方式的特点

各种启动方式的特点低压电工2016-07-10 06:08原创作者:晓月池塘基础知识/各种启动方式的特点常见电动机启动方式有以下几种:1.全压直接启动;2.自耦减压起动;3.Y-Δ起动;4.软起动器;5.变频器启动。

目前软启动器和变频器启动为市场发展的潮流。

当然也不是必须要使用软启动器和变频器启动,以成本和适用性为主要参考,下面简要介绍各种启动方式的特点。

1全压直接起动:图一在电网容量和负载两方面都允许全压直接起动的情况下,可以考虑采用全压直接起动。

主要用于小功率电动机的起动,从节约电能的角度考虑,大于11kw的电动机不宜用此方法。

直接启动的优点是所需设备少,启动方式简单,成本低。

电动机直接启动的电流是正常运行的5倍左右,经常启动的电动机,提供电源的线路或变压器容量应大于电动机容量的5倍以上不经常启动的电动机,向电动机提供电源的线路或变压器容量应大于电动机容量的3倍以上。

这一要求对于小容量的电动机容易实现,所以小容量的电动机绝大部分都是直接启动的,不需要降压启动。

对于大容量的电动机来说,一方面是提供电源的线路和变压器容量很难满足电动机直接启动的条件,另一方面强大的启动电流冲击电网和电动机,影响电动机的使用寿命,对电网稳定运行不利,所以大容量的电动机和不能直接启动的电动机都要采用降压启动。

2自耦减压起动:图二图三利用自耦变压器的多抽头减压,既能适应不同负载起动的需要,又能得到更大的起动转矩,是一种经常被用来起动较大容量电动机的减压起动方式。

它的最大优点是起动转矩较大,当其绕组抽头在80%处时,起动转矩可达直接起动时的64%,启动电压降至额定电压的65%,其启动电流为全压启动电流的42%,启动转矩为全压启动转矩的42%。

自耦变压器降压启动的优点是可以直接人工操作控制,也可以用交流接触器自动控制,经久耐用,维护成本低,适合所有的空载、轻载启动异步电动机使用,在生产实践中得到广泛应用。

缺点是人工操作要配置比较贵的自偶变压器箱(自偶补偿器箱),自动控制要配置自偶变压器、交流接触器等启动设备和元件。

电动机的5种启动方式(图文)

电动机的5种启动方式(图文)
变频器能完成实现电机的软起软停,所以在相对负载较大的 场合,Y-Δ、自耦减压启动或软启动都比不上变频器。
软启动,变频器,减压启动综合分析
组网通讯 变频器本身可以通过自身集成的或扩展的通讯口实现 网络监控。软起还能做一些监控,但要实现电机的实时监控,也 是减压启动、软启动所不能比拟的。 维护方面 由于Y-Δ、自耦减压启动本身就比较简单,自然维护 起来也最简单。我其实很反对使用软起,如果不选择变频器,肯 定会直接选择Y-Δ或自耦减压启动。
软启动,变频器,减压启动综合分析
价格问题自然是变频器最贵,Y-Δ、自耦减压启动相对便宜。对于 投入较小的项目,经济性就会成为首选; 可控问题 Y-Δ、自耦减压启动简单,但仅仅只是启动。但在自动化程度高的 场合,估计就会使用得较少,甚至软起也少。而通过变频器调控 电机,包括转速、电压等就远不是减压启动、软启动所能比拟的。 所以变频器在大型或自动化程度高的生产线就是首选了。
这是利用了可控硅的移相调压 原理来实现电动机的调压起动,主 要用于电动机的起动控制,起动效 果好但成本较高。因使用了可控硅 元件,可控硅工作时谐波干扰较大, 对电网有一定的影响。
另外电网的波动也会影响可控 硅元件的导通,特别是同一电网中 有多台可控硅设备时。因此可控硅 元件的故障率较高,因为涉及到电 力电子技术,因此对维护技术人员 的要求也较高适用于无载或者轻载起动的场合。并且同任何别的减压 起动器相比较,其结构最简单,价格也最便宜。
除此之外,星三角起动方式还有一个优点,即当负载较轻时, 可以让电动机在星形接法下运行。此时,额定转矩与负载可以匹 配,这样能使电动机的效率有所提高,并因之节约了电力消耗。
软启动,变频器,减压启动综合分析
组网通讯 变频器本身可以通过自身集成的或扩展的通讯口实现 网络监控。软起还能做一些监控,但要实现电机的实时监控,也 是减压启动、软启动所不能比拟的。 维护方面 由于Y-Δ、自耦减压启动本身就比较简单,自然维护 起来也最简单。我其实很反对使用软起,如果不选择变频器,肯 定会直接选择Y-Δ或自耦减压启动。

电机各类启动原理

电机各类启动原理

电机各类启动原理
电机是现代工业中必不可少的设备之一,它的启动方式有多种,下面介绍几种常见的电机启动原理:
1. 直接启动:直接将电源接到电机上,通过电机自身的转动来启动。

这种方法简单易行,但启动电流较大,对电网影响较大,有可能导致电网电压波动或短暂的停电,因此适用于小功率电机。

2. 自耦变压器启动:通过调节自耦变压器的输出电压来改变电机的启动电流,从而达到减小对电网影响的目的。

这种方法适用于功率较大的电机。

3. 电阻启动:在电机的回路中串联一定的电阻,通过降低电机的起始电压来降低启动电流。

这种方法适用于中小功率的电机,但在启动过程中会产生大量的热量,会影响电机的寿命。

4. 自动启动控制器启动:通过自动启动控制器来控制电机的启动,可以实现多种启动方式,如星三角启动、电动启动等。

这种方法操作简便,启动电流小,对电网影响较小,适用于各种功率的电机。

以上是几种常见的电机启动原理,不同的电机启动方式适用于不同的场合,选择合适的启动方式可以提高电机的效率和使用寿命。

- 1 -。

电动机常用的启动方法

电动机常用的启动方法

电动机常用的启动方法
电动机常用的启动方法有直接启动法、自耦变压器启动法、星三角启动法、电阻启动法、变频启动法等。

1. 直接启动法
直接启动法是最简单、最常见的电动机启动方法。

即将电动机直接连接到电源,通过闭合启动电机的电源开关来完成启动。

这种方法适用于起动转矩小、机械负载较小的电动机。

2. 自耦变压器启动法
自耦变压器启动法是使用自耦变压器来降低电动机启动时的电压,以减小启动电流并提高电动机的转矩。

自耦变压器启动法适用于起动转矩较大、起动时需限制电流的电动机。

3. 星三角启动法
星三角启动法是将电动机启动时的绕组连接方式从星型切换到三角形,以降低启动时的电流,减小电动机起动时对电网的影响。

星三角启动法适用于起动转矩较大的电动机。

4. 电阻启动法
电阻启动法是通过在电动机绕组中串联电阻,降低电动机的起动电压,以减小启动时的电流和起动转矩,保护电动机和负载设备。

适用于起动转矩较大、负载设
备对起动电流敏感的电动机。

5. 变频启动法
变频启动法是通过变频器来调整电源频率,通过改变电动机的转速来改变电动机的转矩和起动特性。

变频启动法适用于需要控制电动机启动转矩和速度的场合,如需要在启动过程中缓慢加速和平稳运行的电动机。

总结来说,电动机常用的启动方法有直接启动法、自耦变压器启动法、星三角启动法、电阻启动法和变频启动法。

不同的启动方法适用于不同的电动机起动特性和负载要求。

需要根据具体的工作需求和负载情况选择最合适的启动方法,以保障电动机的正常运行和负载设备的安全运行。

电机的启动方式有什么

电机的启动方式有什么

电气作业人员最熟悉的电动设备应该就是电动机了,电动机在启动的时候有很多种方式,包括直接启动,自耦减压起动,Y-Δ降压启动,软启动器启动,变频器启动等等方式。

那么他们之间有什么不同呢?1、全压直接起动在电网容量和负载两方面都允许全压直接起动的情况下,可以考虑采用全压直接起动。

优点是操纵控制方便,维护简单,而且比较经济。

主要用于小功率电动机的起动,从节约电能的角度考虑,大于11kw 的电动机不宜用此方法。

2、自耦减压起动利用自耦变压器的多抽头减压,既能适应不同负载起动的需要,又能得到更大的起动转矩,是一种经常被用来起动较大容量电动机的减压起动方式。

它的最大优点是起动转矩较大,当其绕组抽头在80%处时,起动转矩可达直接起动时的64%。

并且可以通过抽头调节起动转矩。

至今仍被广泛应用。

3、Y-Δ起动对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,如果在起动时将定子绕组接成星形,待起动完毕后再接成三角形,就可以降低起动电流,减轻它对电网的冲击。

这样的起动方式称为星三角减压起动,或简称为星三角起动(Y-Δ起动)。

采用星三角起动时,起动电流只是原来按三角形接法直接起动时的1/3。

如果直接起动时的起动电流以6~7Ie 计,则在星三角起动时,起动电流才2~2.3 倍。

这就是说采用星三角起动时,起动转矩也降为原来按三角形接法直接起动时的1/3。

适用于无载或者轻载起动的场合。

并且同任何别的减压起动器相比较,其结构最简单,价格也最便宜。

除此之外,星三角起动方式还有一个优点,即当负载较轻时,可以让电动机在星形接法下运行。

此时,额定转矩与负载可以匹配,这样能使电动机的效率有所提高,并因之节约了电力消耗。

4、软起动器这是利用了可控硅的移相调压原理来实现电动机的调压起动,主要用于电动机的起动控制,起动效果好但成本较高。

因使用了可控硅元件,可控硅工作时谐波干扰较大,对电网有一定的影响。

另外电网的波动也会影响可控硅元件的导通,特别是同一电网中有多台可控硅设备时。

单相感应电机启动方法

单相感应电机启动方法

单相感应电机启动方法
单相感应电机是一种常用的电机类型,它可以在家庭和工业等领域中得到广泛应用。

在使用单相感应电机之前,需要了解它的启动方法。

单相感应电机的启动方法有很多种,其中比较常见的方式包括: 1. 直接启动法:此方法常用于小功率的单相感应电机,直接将电源线接到电机的起动线和运行线上即可启动。

2. 自启动法:此方法适用于大功率的单相感应电机,需要使用一个起动电容器来辅助电机起动。

3. 反转启动法:此方法适用于需要反转运转的单相感应电机,需要将电源线和运行线反接即可实现反转启动。

4. 变压器启动法:此方法适用于需要启动大功率的单相感应电机,需要使用一个自耦变压器来进行分压启动。

5. 电容启动法:此方法适用于启动大功率的单相感应电机,需要使用一个起动电容器来进行分压启动。

以上是单相感应电机的几种启动方法,具体的选择应根据电机的功率和运行要求来进行。

在使用单相感应电机时,还需要注意保养和维护,确保其长期稳定运行。

- 1 -。

电机的各种启动方式性能及优缺点对比

电机的各种启动方式性能及优缺点对比

电机的各种启动方式性能及优缺点对比一、各种启动方式的性能对比1.直接启动直接启动是最简单的电机启动方式,直接将电源接通。

其性能优点是简单、成本低、安装维护方便。

但缺点是启动冲击大,电流突变会对电网和电机造成冲击,可能引起设备损坏或电网不稳定。

2.步进启动步进启动是通过将电动机的启动电流以逐步增加的方式进行启动。

其性能优点是启动过程平稳,缓解了直接启动所带来的冲击,可以有效保护设备和电网。

但缺点是启动时间较长,不能满足一些对快速启动的要求。

3.自耦变压器启动自耦变压器启动是通过在电机线圈中引入自耦变压器,降低电压来减小启动电流。

其性能优点是启动冲击小,可以有效延长电机和设备的使用寿命。

但缺点是成本较高,维护困难,启动时间较长。

4.电压降低启动电压降低启动是通过降低电源电压来减小启动电流。

其性能优点是启动冲击小,保护设备,电压恢复后电机能正常工作。

但缺点是启动时电机转矩较小,启动过程中可能出现振动,不适合对转矩要求较高的设备。

5.频率变换启动频率变换启动是通过变换电源电压的频率来实现电机启动。

其性能优点是启动平稳,电流变化较小,对电网影响较小。

但缺点是设备复杂,成本较高。

1.直接启动优点:简单、成本低、安装维护方便。

缺点:启动冲击大,可能引起设备损坏,电网不稳定。

2.步进启动优点:启动过程平稳,可以缓解直接启动的冲击,保护设备和电网。

缺点:启动时间较长,不能满足对快速启动的要求。

3.自耦变压器启动优点:启动冲击小,可以有效延长电机和设备的使用寿命。

缺点:成本较高,维护困难,启动时间较长。

4.电压降低启动优点:启动冲击小,保护设备,电压恢复后电机能正常工作。

缺点:启动时电机转矩较小,不适合转矩要求较高的设备。

5.频率变换启动优点:启动平稳,电流变化小,对电网影响小。

缺点:设备复杂,成本较高。

综上所述,不同的启动方式具有各自的优缺点,选择适合的启动方式需要根据具体的应用场景和需求进行评估。

对于对电压和转矩要求较高的设备,可以选择步进启动或自耦变压器启动;对于对启动冲击要求小,且成本低的设备,直接启动是一个较好的选择;对于对启动平稳性要求较高的设备,可以选择频率变换启动。

直流电机的启动方法

直流电机的启动方法

直流电机的启动方法直流电机的启动方法有很多种,以下将详细介绍几种常见的启动方法。

1. 直流电机的直接启动:直接将直流电源连接到直流电机的绕组,使其获得足够的电压和电流来启动。

这种方法简单直接,适用于小功率的直流电机。

但是,直接启动会产生较大的启动电流冲击,可能造成电网压降和电机烧毁。

2. 利用电阻启动:在直流电机的电源回路中添加一个外部电阻,通过调节电阻的大小来控制启动电压和电流。

启动时,先将电阻接入电路,限制初始电流,待电机达到设定转速后,再逐渐减小电阻的值,使电机获得全额电压。

这种方法可以减小启动时的电流冲击,保护电网和电机。

3. 利用变压器启动:通过变压器来调整电源电压,控制启动电机的电流。

在启动时,通过变压器将电机所需的启动电流限制在可接受范围内,待电机转速达到一定值后,逐渐增加变压器输出的电压,使电机获得额定电压。

这种方法适用于大功率电机的启动,可以减小电网负荷和电机启动时的电流冲击。

4. 利用电容启动:在直流电机的电源回路中添加一个起动电容,通过起动电容的电势差产生的电流相位差,使电机启动。

起动电容可以改变电机线路的相位,相当于改变了电压和电流的相对位置,从而产生助力启动的效果。

这种方法适用于小功率的直流电机,可以减小启动电流和启动扭矩。

5. 利用外加转矩启动:当电机的起动扭矩较大,超过了电机自身的启动扭矩时,可以通过外加转矩的方式来启动电机。

常见的外加转矩启动方法有电动机激励、外驱励、机械传动等,通过这些方式施加外力或外磁场,使电机获得足够的启动扭矩。

这种方法适用于启动难度较大或启动时负载较大的直流电机。

需要注意的是,不同的启动方法适用于不同规格和功率的直流电机,选择合适的启动方法可以保障电机的正常启动运行。

在选择启动方法时,需要综合考虑电机额定功率、转速、负荷情况以及所在工作环境等因素,并遵循电机制造商提供的启动参数和指导。

此外,在启动过程中要注意避免过载和过电流现象的发生,及时检查电机的运行状态和工作温度,确保电机的安全运行。

常用电动机起动方式比较表

常用电动机起动方式比较表

4 软起动
软起动器设备价格仅次于变频器软起 动。但随着软启动技术越来越成 适用于不需要调速的、起动转矩大的电动机。起 熟,其综合成本越来越低,多数已 动时工作,起动后退出。 经低于自耦减压起动,甚至低于Y/ △起动。
在低速时可以任意调节电动机转矩, 起动转矩可达150%的额定转矩,也可 以恒转矩起动电动机,起动电流可限 制在1.5倍额定电流以内。可以软停 5 变频器软起动 车。变频器软启动更在于能够根据需 求调节电机运行频率与提高功率因 数,具有刹车制动功能,满足高精尖 的各种工艺要求,降低能耗,特别是 风机泵类应用上有显著的节能效果。
运行时在电源测产生谐波电流,使电 压、电流波形畸变,影响电能质量, 适用于需要调速的、起动转矩大的电动机;具有 干扰电子设备的正常工作。设备价格 节能降耗条件的风机泵类电机。 比Y/△起动、自耦减压起动、软起动 起动及运行过程中一直工作。 设备高。
2 Y/△起动
通过降低电压(60%Ue、80 Ue),恒 起动过程中电动机冲击电流较大,冲 压起动。起动电流小,起动转矩较 3 自耦减压起动 击转矩大,不能频繁起动。允许连续 适用于大中容量电机的起动。 大,设备价格较Y/△起动高,但性价 起动2~3次。 比较优,得到广泛应用。 通常为斜坡电压起动,也可突跳起 动;起动电流、起动转矩。上升下降 的时间可调,有多种控制方式 ;可 带ห้องสมุดไป่ตู้种保护;允许起动次数较高;可 以使电机“柔性”起动, “柔性” 停止,是一种电机电压平滑上升的无 级减压起动模式,减缓了起动时造成 的机械和电气冲击。
常用电动机起动方式比较表
序号 启动方式 优点 缺点 备注 1 直接启动 起动电流大(4~7Ie),对电网冲击大 全压起动,线路简单,设备价格最低。 适用于小容量(7.5Kw以下)电动机的起动。 。 起动过程中二次冲击电流大,冲击转 起动时为分步跳跃上升的恒压起动, 矩大。电机电缆线需要6+1,需要考 起动电流小,起动转矩小,允许起动 适用于定子绕组为三角形接线的中小型电机的起 虑电缆成本,控制柜与电机距离稍 次数较高。设备价格较低,技术成 动。 远就会造成整体成本与软启动差不 熟,应用较广。 多甚至超过。

电机启动的十二种方法

电机启动的十二种方法

1.基本的直接启动控制线路
按下启动按钮,KM线圈得电,KM常开辅助触点自锁,绿灯亮,电机运行;按下停止按钮,KM线圈失点,辅助触点复位,红灯亮,电机停止。

2 直接启动,延时停止
通过时间继电器作用,延时使回路断开。

3 控制电机正反转
使用双重互锁,采用复合按钮和2个接触器。

将2个接触器的常闭辅助触点相互串联在对方回路中,安全方便,避免了短路的发生~
4 顺停、逆停循环
5 电机轮流循环启动
6 三台电机轮流循环
7 单按钮控制电机启动停止
8 时间继电器控制双速电机
9 定子串电阻降压启动
这个不太常用!
10 延边三角形降压启动
这个知道就行!!!
11 星三角降压启动
照片名称:星三角降压启动实物接线图
照片名称:星三角
照片名称:星三角启动控制线路图
照片名称:星三角
(这个很重要,也和简单,也很实用的降压启动,一般电机大于7.5千瓦,为了保护电压网就应该采取降压的方式。


12 自耦降压
这也是很使用的降压启动控制线路。

一般大于40千瓦的电机使用。

电机的五种启动方式

电机的五种启动方式

电机的五种启动方式
电机的五种启动方式包括:
1.全压直接启动:在电网容量和负载两方面都允许全压直接启动的情况下,可
以考虑采用全压直接启动。

这种方式操作控制方便,维护简单,且成本较低,主要用于小功率电动机的启动。

2.自耦减压启动:利用自耦变压器的多抽头减压,既能适应不同负载启动的需
要,又能得到更大的启动转矩,是一种经常被用来启动较大容量电动机的减压启动方式。

3.Y-Δ启动:对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,
如果在启动时将定子绕组接成星形,待启动完毕后再接成三角形,就可以降低启动电流,减轻对电网的冲击。

这样的启动方式称为星三角减压启动,或简称为星三角启动(Y-Δ 启动)。

4.软启动器:利用可控硅的移相调压原理来实现电动机的调压启动,主要用于
电动机的启动控制,启动效果好但成本较高。

5.变频器:是现代电动机控制领域技术含量最高、控制功能最全、控制效果最
好的电机控制装置,它通过改变电网的频率来调节电动机的转速和转矩。

在实际应用中,应根据电机的具体参数、使用环境、负载大小和需求来选择合适的启动方式。

三相异步电动机的启动方式

三相异步电动机的启动方式

三相异步电动机的启动方式1. 引言三相异步电动机是最常用的电动机类型之一,广泛应用于工业、商业和家庭领域。

在使用电动机之前,我们需要了解电动机的启动方式,以确保电动机能够安全、高效地启动,并满足不同工作负载的要求。

本文将介绍三相异步电动机的启动方式,包括直接启动、星角启动、自耦启动、电阻启动、变频启动等。

我们将对每种启动方式进行详细阐述,包括原理、特点、适用范围和操作注意事项等。

2. 启动方式2.1 直接启动直接启动是三相异步电动机最简单、常用的启动方式之一。

它的原理是将电动机的三相综合电源直接连接到电源上,通过开关将电流导通,使电动机旋转起来。

直接启动方式的特点包括:•结构简单,成本低;•启动过程简单、直接,启动时间短;•适用于小功率电动机和轻负载工作。

直接启动方式的操作注意事项包括:•启动时应确保电源电压稳定,避免电动机过载或损坏;•电动机启动后应检查电流是否正常,防止过大电流对电动机和电源造成损害。

2.2 星角启动星角启动是一种常用的三相异步电动机启动方式,它的原理是通过切换电动机的绕组连接方式,改变电动机的转矩和启动电流。

星角启动方式的特点包括:•启动电流较小,减少了对电网的冲击;•启动过程平稳,适用于较大功率电动机和重负载工作;•无需额外的启动设备。

星角启动方式的操作注意事项包括:•启动时应先将电动机与电源断开,然后切换绕组连接方式;•启动后应检查电流和转矩是否正常,防止过大电流或转矩对电动机和负载造成损害。

2.3 自耦启动自耦启动是一种通过自耦变压器改变电动机绕组电压比例的启动方式。

它的原理是通过自耦变压器将起动电流限制在一定范围内,减少对电网的冲击。

自耦启动方式的特点包括:•启动电流较小,减少了对电网的冲击;•启动过程平稳,适用于中小功率电动机和负载;•需要自耦变压器作为启动设备。

自耦启动方式的操作注意事项包括:•启动时应先将电动机与电源断开,然后连接自耦变压器;•启动后应检查电流和转矩是否正常,防止过大电流或转矩对电动机和负载造成损害。

三相异步电动机的6种启动方法选择与比较

三相异步电动机的6种启动方法选择与比较

三相异步电动机的6种启动方法选择与比较1、直接启动直接启动的优点是所需设备少,启动方式简单,成本低。

电动机直接启动的电流理论上来说,只要向电动机提供电源的线路和变压器容是正常运行的 5 倍左右,量年夜于电动机容量的 5 倍以上的,都可以直接启动。

这一要求关于小容量的电动机容易实现,所以小容量的电机绝大部分都是直接启动的,不需要降压启动。

关于年夜容量的电动机来说,一方面是提供电源的线路和变压器容量很难满足电动机直接启动的条件,另一方面强年夜的启动电流冲击电网和电动机,影响电动机的使用寿命,对电网不利,所以年夜容量的电动机和不能直接启动的电动机都要采用降压启动。

直接启动可掖棵胶木开关、铁壳开关、空气开关(断路器)等实现电动机的近距离操作、点动控制,速度控制、正反转控制等,也可掖棵限位开关、交流接触器、时间继电器等实现电动机的远距离操作、点动控制、速度控制、正反转控制、自动控制等。

2、用自偶变压器降压启动采用自耦变压器降压启动,电动机的启动电流及启动转矩与其端电压的平方成比例降低,相同的启动电流的情况下能获得较大的启动转。

如启动电压降至额定电压的65%,其启动电流为全压启动电流的42%,启动转矩为全压启动转矩的42%。

自耦变压器降压启动的优点是可以直接人工操作控制,也可掖棵交流接触器自动控制,经久耐用,维护成本低,适合所有的空载、轻载启动异步电动机使用,在生产实践中得到广泛应用。

缺陷是人工操作要配置比较贵的自偶变压器箱(自偶补偿器箱),自动控制要配置自偶变压器、交流接触器等启动设备和元件。

3、Y-△降压启动定子绕组为△连接的电动机,启动时接成Y,速度接近额定转速时转为△运行,采用这种方式启动时,每相定子绕组降低到电源电压的58%,启动电流为直接启动时的33%,启动转矩为直接启动时的33%。

启动电流小,启动转矩小。

Y-△降压启动的优点是不需要添置启动设备,有启动开关或交流接触器等控制设备就可以实现,缺陷是只能用于△连接的电动机,x大型异步电机不能重载启动。

直流电动机的启动方法

直流电动机的启动方法

直流电动机的启动方法一、直流电动机的启动方法1. 直接启动法直接启动法是最简单的直流电动机启动方法。

它的步骤很简单,只需要将直流电源的正极和负极依次连接到电动机的正、反极上即可实现启动。

这种方式的优点是简单、方便,缺点是启动过程冲击大、机械负载大,不能应对过大负载的启动。

2. 电阻启动法电阻启动法在直接启动法的基础上增加了电阻,使得电动机在启动初期可以经过一段时间的缓慢的逐渐加速,以减少启动时的机械冲击和电力冲击。

其步骤是在启动时先通过外接的电阻将电动机两端的电阻增加,然后再逐渐减小电阻的过程中逐渐加速电动机。

这种启动法可以有效保护电动机和减少启动冲击,但启动时间比较长,效率也比较低。

3. 自耦变压器启动法自耦变压器启动法是通过改变供电电压来实现电动机逐步加速的方式。

其步骤是在启动时,先将电动机连接到一个较低电压的电源上,逐渐加大电源电压,直到达到额定电压后,自耦变压器自动退出,电动机进入正常运行状态。

这种启动方式可以有效降低启动冲击和保护电动机,同时又可以缩短启动时间和提高启动效率。

4. 电子软启动器启动法电子软启动器启动法是一种较新的启动技术,它是通过控制电机电流的方式实现电动机的逐步加速。

其步骤是在启动时,先将电子软启动器控制电路内的电阻逐渐减小,同时逐渐增加输出电压,从而实现电动机的逐步加速。

这种方式具有启动平稳、启动时间短、机械冲击小、维护成本低等优点,已经逐渐普及应用于各种设备中。

二、各个环节详细描述1. 直接启动法的详细描述直接启动法是最简单的电动机启动方法之一,虽然简单,但缺点明显,首先启动冲击大,其次不能应对过大的负载启动。

因此在现实应用中,直接启动法很少用到,只有在特殊场合会用到。

在启动时,只需将直流电源的电极连接到电动机的正极和负极即可,电流通过电动机后,电动机自身的电刷与转子之间的电磁作用使得电动机旋转,从而实现启动。

2. 电阻启动法的详细描述电阻启动法是在直接启动法的基础上增加了电阻,通过改变电动机电阻的大小来控制电动机的加速度,以减小启动时的机械冲击和电力冲击。

电机启动原理

电机启动原理

电机启动原理电机是现代社会中不可或缺的重要设备,广泛应用于工业、家庭和交通等领域。

电机的启动原理是电能转化为机械能的关键过程。

本文将深入探讨电机的启动原理以及常见的启动方式。

一、电机启动的基本原理电机的启动原理基于电磁感应和力矩平衡的基本原理。

在电机中,当通过电流通过电线圈时,会在磁场中产生力矩,这将导致电机产生旋转运动。

电机的启动原理可以总结为以下几个步骤:1. 施加电源:将电源连接到电机的线圈上,提供电流流动的通路。

2. 电流引发磁场:通过通电,产生电流在线圈中流动,产生磁场。

3. 力矩产生:磁场与电机中的转子相互作用,在转子上产生力矩,使其开始旋转。

4. 转子运转:一旦开始旋转,电机的惯性和磁场的作用将使电机持续运转。

二、常见的电机启动方式1. 直接启动:直接启动是最常见的电机启动方式之一,适用于小功率电机。

这种启动方式简单直接,只需将电源直接连接到电机的线圈上即可。

2. 自启动:自启动适用于具有较高功率的电机,其目的是通过减小电机启动时的启动电流来保护电网。

自启动方式通常使用具有降低线圈绕组电阻的特殊设计。

3. 起动器启动:起动器启动适用于大型电机,它使用起动器设备来控制启动电流和转矩。

起动器启动方式在电机的启动过程中逐渐加大电流和转矩,以平稳地启动电机。

4. 变频启动:变频启动适用于对电机速度和转矩要求较高的场合,通过改变电源频率和电压来控制电机的启动。

变频启动方式提供了更大的灵活性和精确性,同时减小了启动时的电流冲击。

三、电机启动问题及解决方案电机启动过程中可能会遇到一些问题,例如启动电流过大、启动时间过长或启动时的机械冲击等。

针对这些问题,可以采取以下解决方案:1. 使用软起动器:软起动器能够通过控制器来逐步提供电流和转矩,减小启动时的冲击。

它可以通过缓慢增加电压和频率来实现平稳启动。

2. 采用星三角启动:星三角启动是一种常见的降低启动电流的方法,它通过将电机的线圈的起始状态从星型变为三角形来实现。

高压电机的起动方式

高压电机的起动方式

高压电机的起动方式
高压电机有多种起动方式,常见的有以下几种:
1. 直接起动:将高压电机直接连接到电源上,通过开关进行启动和停止。

这种方式简单直接,适用于小容量的高压电机。

2. 自耦变压器起动:采用自耦变压器作为启动装置,将高压电机的电压逐步增加,以降低起动时的电流冲击。

这种方式能够减小起动时的机械冲击和电网压降,提高电机的起动可靠性。

3. 降压起动:通过降低高压电机起动时的电压,减小电机的起动电流。

常用的方法有三相自动提升降压启动器、电压降低器等。

4. 变频起动:通过变频器控制高压电机的转速,从而实现平滑起动。

变频起动可以实现起动过程中的软启动和调速功能,减小起动冲击和电机的机械压力,提高设备的寿命和效率。

5. 真空起动:在高压电机的回路中加入真空起动器,通过真空开关控制电源的接通和切断,实现高压电机的启动和停止。

真空起动具有启动平稳、可靠性高的特点,适用于特殊的高压电机起动要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电机的五种启动方式比较
电气作业人员最熟悉的电动设备应该就是电动机了,电动机在
启动的时候有很多种方式,包括直接启动,自耦减压启动,Y-Δ 降压启动,软启动器启动,变频器启动等等方式。

那么他们之
间有什么不同呢?
1、全压直接启动
在电网容量和负载两方面都允许全压直接启动的情况下,可以考虑采用全压直接启动。

优点是操纵控制方便,维护简单,而且比较经济。

主要用于小功率电动机的启动,从节约电能的角度考虑,大于11kW 的电动机不宜用此方法。

2、自耦减压启动
利用自耦变压器的多抽头减压,既能适应不同负载启动的需要,又能得到更大的启动转矩,是一种经常被用来启动较大容量电动机的减压启动方式。

它的最大优点是启动转矩较大,当其绕组抽头在80%处时,启动转矩可达直接启动时的64%。

并且可以通过抽头调节启动转矩。

至今仍被广泛应用。

3、Y-Δ启动
对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,如果在启动时将定子绕组接成星形,待启动完毕后再接成三角形,就可以降低启动电流,减轻它对电网的冲击。

这样的启动方式称为星三角减压启动,或简称为星三角启动(Y-Δ启动)。

采用星三角启动时,启动电流只是原来按三角形接法直接启动时的1/3。

如果直接启动时的启动电流以6~7Ie 计,则在星三角启动时,启动电流才2~2.3 倍。

这就是说采用星三角启动时,启动转矩也降为原来按三角形接法直接启动时的1/3。

适用于无载或者轻载启动的场合。

并且同任何别的减压启动器相比较,其结构最简单,价格也最便宜。

除此之外,星三角启动方式还有一个优点,即当负载较轻时,可以让电动机在星形接法下运行。

此时,额定转矩与负载可以匹配,这样能使电动机的效率有所提高,并因之节约了电力消耗。

4、软启动器
这是利用了可控硅的移相调压原理来实现电动机的调压启动,主要用于电动机的启动控制,启动效果好但成本较高。

因使用了可控硅元件,可控硅工作时谐波干扰较大,对电网有一定的影响。

另外,电网的波动也会影响可控硅元件的导通,特别是同一电网
中有多台可控硅设备时。

因此可控硅元件的故障率较高,因为涉及到电力电子技术,因此对维护技术人员的要求也较高。

5、变频器
变频器是现代电动机控制领域技术含量最高,控制功能最全、控制效果最好的电机控制装置,它通过改变电网的频率来调节电动机的转速和转矩。

因为涉及到电力电子技术,微机技术,因此成本高,对维护技术人员的要求也高,因此主要用在需要调速并且对速度控制要求高的领域。

减压启动、软启动、变频启动的优缺点对比
减压启动,常见的是星-三角启动,缺点是启动力矩小,仅适用于无载或轻载启动。

优点是价格便宜。

软启动,可以设置启动时间和启动初始力矩对设备实现软启动与软停止,并能限制启动电流,价格适中。

变频启动,能根据设定时间平滑启动,并让设备运行在设定频率,价格较高。

减压启动、软启动、变频启动性能原理对比
1、软启动器是晶闸管交流调压技术与功率因数控制技术的结合,是通过晶闸管调压实现电机软启动、软停车,不具备调速功能。

2、变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电机控制(调速)装置。

通过变频控制电机运行(电压也随频率变化,如v/f恒定),是真正的高效调速方式,效率很高。

变频器能够实现真正的软启动、软停止和高效调速。

3、减压启动一般常见的方式是自耦减压起动和Y-Δ 起动两种,自耦减压起动它的最大优点是启动转矩较大,当其绕组抽头在80%处时,起动转矩可达直接启动时的64%。

并且可以通过抽头调节启动转矩。

至今仍被广泛应用。

Y-Δ适用于无载或者轻载启动的场合。

并且同任何别的减压启动器相比较,其结构最简单,价格也最便宜。

除此之外,星三角启动方式还有一个优点,即当负载较轻时,可以让电动机在星形接法下运行。

此时,额定转矩与负载可以匹配,这样能使电动机的效率有所提高,并因之节约了电力消耗。

减压启动、软启动、变频启动综合分析
1、价格问题
自然是变频器最贵,Y-Δ、自耦减压启动相对便宜。

对于投入较小的项目,经济性就会成为首选。

2、可控问题
Y-Δ、自耦减压启动简单,但仅仅只是启动。

但在自动化程度高的场合,估计就会使用得较少,甚至软启也少。

而通过变频器调控电机,包括转速、电压等就远不是减压启动、软启动所能比拟的。

所以变频器在大型或自动化程度高的生产线就是首选了。

3、组网通讯
变频器本身可以通过自身集成的或扩展的通讯口实现网络监控。

软启还能做一些监控,但要实现电机的实时监控,也是减压启动、软启动所不能比拟的。

4、维护方面
由于Y-Δ、自耦减压启动本身就比较简单,自然维护起来也最简单。

我其实很反对使用软启,如果不选择变频器,肯定会直接选择Y-Δ或自耦减压启动。

变频器能完成实现电机的软启软停,所以在相对负载较大的场合,Y-Δ、自耦减压启动或软启动都比不上变频器。

补充知识对比
1.软启动器和变频器
变频器和软启动设备都属于降压启动范畴,变频器虽然降频后大部分会降压,但是,恒转矩是全压。

软启动是通过改变晶闸管的导通角来达到由电压0到全电压的启动过程。

变频器是全程控制,而且可以由仪表信号来控制任何时段的电机转速,软启动器只能在电机启动和停止时起到降压的目的。

2.电机启动方式大类比
电动机启动常用方法:全压直接启动、自耦减压启动、Y-Δ启动、软启动、变频启动等。

在电网和负载两方面都允许的情况下,电动机以直接启动为宜,因为操纵控制方便,而且比较经济。

自耦减压启动经常被用来启动较大容量鼠笼式异步电动机,虽然自耦减压启动是一种老式的起动设备,但利用自耦变压器的多抽头减压,既能适应多种负载起动的需要,又能得到更大的启动转矩,加之还因装设有热继电器和低电压脱扣器而具有完善的过载和失压保护而被广泛应用。

星三角启动方式电流特性很好,而转矩特性差,故只适应于无载或轻载启动的场合,但这种方式结构最简单,价格最便宜,在轻载运行中可以节约电力消耗。

以上这些启动方式都属于有级减压启动,存在明显缺点,即启动过程中出现二次冲击电流。

3.软启动与传统减压启动方式对比
①无冲击电流
软启动器在启动电机时,通过逐渐增大晶闸管导通角,使电机启动电流从零线性上升至设定值。

对电机无冲击,提高了供电可靠性,平稳启动,减少对负载机械的冲击转矩,延长机器使用寿命。

②有软停车功能即平滑减速,逐渐停机,它可以克服瞬间断电停
机的弊病,减轻对重载机械的冲击,避免高程供水系统的水锤效应,减少设备损坏。

③启动参数可调根据负载情况及电网继电保护特性选择,可自由地无级调整至最佳的启动电流。

软启动器和变频器是两种完全不同用途的产品,变频器是用于需要调速的地方,其输出不但改变电压而且同时改变频率;软启动器实际上是个调压器,用于电机启动时,输出只改变电压并没有改变频率。

变频器具备所有软启动器功能,但它的价格比软启动器贵得多,结构也复杂得多。

相关文档
最新文档