实验四 摩擦系数和局部阻力系数的测定
化工原理化工流动过程综合实验教案
实验四 化工流动过程综合实验一、实验目的:1.学习直管摩擦阻力f P ∆、直管摩擦系数λ的测定方法。
2.掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及变化规律。
3.掌握局部摩擦阻力f P ∆,局部阻力系数ζ的测定方法。
4.学习压强差的几种测量方法和提高其测量精确度的一些技巧。
二、实验原理:1.直管摩擦系数λ与雷诺数Re 的测定:直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。
流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为:ρρff P P P h ∆=-=21 (1)又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式)22u d l h fP f λρ==∆ (2)整理(1)(2)两式得 22u P l d f∆⋅⋅=ρλ (3) μρ⋅⋅=u d Re (4)式中: -d 管径,m ; -∆f P 直管阻力引起的压强降,Pa ;-l 管长,m ; -u 流速,m / s ;-ρ流体的密度,kg / m 3; -μ流体的粘度,N·s / m 2。
在实验装置中,直管段管长l 和管径d 都已固定。
若水温一定,则水的密度ρ和粘度μ也是定值。
所以本实验实质上是测定直管段流体阻力引起的压强降f P ∆与流速u (或流量q v )之间的关系。
根据实验数据和式(3)可计算出不同流速下的直管摩擦系数λ,用式(4)计算对应的Re ,整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。
2.局部阻力系数ζ的测定: 22'u P h ff ζρ=∆=' 2'2uP f ∆⋅⎪⎪⎭⎫ ⎝⎛=ρζ 式中: -ζ局部阻力系数,无因次;-∆'f P 局部阻力引起的压强降,Pa ; -'f h 局部阻力引起的能量损失,J /kg 。
图-1 局部阻力测量取压口布置图局部阻力引起的压强降'f P ∆ 可用下面方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在上、下游各开两对测压口a-a'和b-b '如图-1,使 ab =bc ; a 'b '=b 'c ',则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c '在a~a '之间列柏努利方程式 P a -P a ' =2△P f ,a b +2△P f ,a 'b '+△P 'f (5) 在b~b '之间列柏努利方程式: P b -P b ' = △P f ,bc +△P f ,b 'c '+△P 'f= △P f ,a b +△P f ,a 'b '+△P 'f (6) 联立式(5)和(6),则:'f P ∆=2(P b -P b ')-(P a -P a ')为了实验方便,称(P b -P b ')为近点压差,称(P a -P a ')为远点压差。
化工原理阻力实验讲义
阻力实验一、实验目的(1)了解测定摩擦系数、局部阻力系数的工程意义。
(2)掌握圆形直管管路流动阻力损失f p ∆、摩擦系数λ以及局部阻力系数ζ的测定方法,并通过实验了解它们与Re 的关系,巩固对流体阻力基本理论的认识。
(3)学习并掌握对数坐标的使用方法,掌握倒U 型压差计和转子流量计的使用方法。
(4)了解各个管、阀件在管路中的用途。
二、实验原理由于流体存在粘性,流体在管道中流动会产生阻力损失而消耗一定的机械能。
管路是由直管和管件(如三通、弯头、阀门)等组成,流体在直管中流动造成的机械能损失称为直管阻力;而流体流经管件等局部地方时由于流道突然变化会引起边界层分离,边界层分离会产生大量的漩涡,引起形体阻力损失,这种阻力损失称为局部阻力损失。
(1)圆形直管摩擦阻力损失f p ∆和摩擦系数λ的测定根据流体力学的基本理论,无论是层流还是湍流,流体在直管中流过时,摩擦系数与阻力损失之间的关系符合范宁公式:22f u d l p ρλ=∆ (1) 在一根等径的水平放置的圆形直管上,如果没有流体输送机械做功,流体流经一定长度直管引起的阻力损失f p ∆等于此段管路的压力降,即21f -p p p p -=∆=∆ (2)因此,通过测定两截面的压差可得到阻力损失。
在一已知长度和管径的等径水平管段上,通过改变流体的流速,即可测量出不同Re 下的阻力损失f p ∆,按式(1)求出摩擦系数λ,即可得到λ~Re 的关系。
层流时摩擦阻力损失的计算式可由理论推导得到,即哈根-泊谡叶公式:2f 32d lu p μ=∆ (3) 式中:f p ∆ —— 摩擦阻力损失,Pa ;μ —— 流体的粘度,Pa ·s ;l —— 管段长度,m ;u —— 流速,m/s ;d —— 管径,m 。
由式(3)可知层流时的压力损失与速度的一次方成正比,对比式(1)和式(3)可知层流时的摩擦系数为Re64=λ (4)湍流时,由于流动情况复杂得多,未能获得λ的理论计算公式,但可以应用因次分析方法来找出它们之间的关系。
化工原理含实验报告(3篇)
第1篇一、实验目的1. 理解并掌握化工原理中的基本概念和原理。
2. 通过实验验证理论知识,提高实验技能。
3. 熟悉化工原理实验装置的操作方法,培养动手能力。
4. 学会运用实验数据进行分析,提高数据处理能力。
二、实验内容本次实验共分为三个部分:流体流动阻力实验、精馏实验和流化床干燥实验。
1. 流体流动阻力实验实验目的:测定流体在圆直等径管内流动时的摩擦系数与雷诺数Re的关系,将测得的~Re曲线与由经验公式描出的曲线比较;测定流体在不同流量流经全开闸阀时的局部阻力系数。
实验原理:流体在管道内流动时,由于摩擦作用,会产生阻力损失。
阻力损失的大小与流体的雷诺数Re、管道的粗糙度、管道直径等因素有关。
实验中通过测量不同流量下的压差,计算出摩擦系数和局部阻力系数。
实验步骤:1. 将水从高位水槽引入光滑管,调节流量,记录压差。
2. 将水从高位水槽引入粗糙管,调节流量,记录压差。
3. 改变流量,重复步骤1和2,得到一系列数据。
4. 根据数据计算摩擦系数和局部阻力系数。
实验结果与分析:通过实验数据绘制~Re曲线和局部阻力系数曲线,与理论公式进行比较,验证了流体流动阻力实验原理的正确性。
2. 精馏实验实验目的:1. 熟悉精馏的工艺流程,掌握精馏实验的操作方法。
2. 了解板式塔的结构,观察塔板上汽-液接触状况。
3. 测定全回流时的全塔效率及单板效率。
4. 测定部分回流时的全塔效率。
5. 测定全塔的浓度分布。
6. 测定塔釜再沸器的沸腾给热系数。
实验原理:精馏是利用混合物中各组分沸点不同,通过加热使混合物汽化,然后冷凝分离各组分的方法。
精馏塔是精馏操作的核心设备,其结构对精馏效率有很大影响。
实验步骤:1. 将混合物加入精馏塔,开启加热器,调节回流比。
2. 记录塔顶、塔釜及各层塔板的液相和气相温度、压力、流量等数据。
3. 根据数据计算理论塔板数、全塔效率、单板效率等指标。
4. 绘制浓度分布曲线。
实验结果与分析:通过实验数据,计算出了理论塔板数、全塔效率、单板效率等指标,并与理论值进行了比较。
流体流动阻力的测定实验报告
流体流动阻力的测定实验报告一、实验目的1、掌握流体流经直管和管件时阻力损失的测定方法。
2、了解摩擦系数λ与雷诺数 Re 之间的关系。
3、学习压强差的测量方法和数据处理方法。
二、实验原理流体在管内流动时,由于黏性的存在,必然会产生阻力损失。
阻力损失包括直管阻力损失和局部阻力损失。
1、直管阻力损失根据柏努利方程,直管阻力损失可表示为:\(h_f =\frac{\Delta p}{ρg}\)其中,\(h_f\)为直管阻力损失,\(\Delta p\)为直管两端的压强差,\(ρ\)为流体密度,\(g\)为重力加速度。
摩擦系数\(λ\)与雷诺数\(Re\)及相对粗糙度\(\frac{\epsilon}{d}\)有关,其关系可通过实验测定。
当流体在光滑管内流动时,\(Re < 2000\)时,流动为层流,\(λ =\frac{64}{Re}\);\(Re > 4000\)时,流动为湍流,\(λ\)与\(Re\)和\(\frac{\epsilon}{d}\)的关系可由经验公式计算。
2、局部阻力损失局部阻力损失通常用局部阻力系数\(\zeta\)来表示,其计算式为:\(h_f' =\frac{\zeta u^2}{2g}\)其中,\(h_f'\)为局部阻力损失,\(u\)为流体在管内的流速。
三、实验装置1、实验设备本实验使用的主要设备包括:离心泵、水箱、不同管径的直管、各种管件(如弯头、三通、阀门等)、压差计、流量计等。
2、实验流程水箱中的水经离心泵加压后进入实验管路,依次流经直管和各种管件,最后流回水箱。
通过压差计测量直管和管件两端的压强差,用流量计测量流体的流量。
四、实验步骤1、熟悉实验装置,了解各仪器仪表的使用方法。
2、检查实验装置的密封性,确保无泄漏。
3、打开离心泵,调节流量至一定值,稳定后记录压差计和流量计的读数。
4、逐步改变流量,重复上述步骤,测量多组数据。
5、实验结束后,关闭离心泵,整理实验仪器。
化工原理实验—流体流动阻力测定实验
化工原理实验报告—流体流动阻力测定实验班级: 031112班小组:第六组指导老师:刘慧仙组长:陈名组员:魏建武曹然实验时间: 2013年10月18日目录一、实验内容 (1)二、实验目的 (1)三、实验基本原理 (1)1.直管阻力 (1)2.局部阻力 (3)四、实验设计 (3)1.实验方案 (3)2.测试点及测试方法 (3)原始数据 (3)测试点 (4)测试方法 (4)3.控制点及调节方法 (4)4.实验装置和流程设计 (4)主要设备和部件 (4)实验装置流程图 (4)五、实验操作要点 (5)六、实验数据处理和结果讨论分析 (6)实验数据处理 (6)1.实验数据记录表 (6)2.流体直管阻力测定实验数据整理表 (7)3.流体局部阻力测定实验数据整理表 (8)4.计算示例。
(9)结果讨论分析 (10)七、思考题 (11)实验一流体流动阻力的测定实验一、实验内容1.测定流体在特定材质和的直管中流动时的阻力摩擦系数,并确定和之间的关系。
2.测定流体通过阀门时的局部阻力系数。
二、实验目的1.了解测定流体流动阻力摩擦系数的工程定义,掌握测定流体阻力的实验方法。
2.测定流体流径直管的摩擦阻力和流经管件或局部阻力,确定直管阻力摩擦系数与雷诺数之间的关系。
3.熟悉压差计和流量计的使用方法。
4.认识组成管路系统的各部件、阀门并了解其作用。
三、实验基本原理流体管路是由直管、管件(如三通、肘管、弯头)、阀门等部件组成。
流体在管路中流动时,由于黏性剪应力和涡流的作用,不可避免地要消耗一定的机械能,流体在直管中流动的机械能损失为直管阻力;而流体通过阀门、管件等部件时,因流动方向或流动截面的突然改变导致的机械能损失称为局部阻力。
在化工过程设计中,流体流动阻力的测定或计算,对于确定流体输送所需推动力的大小,例如泵的功率、液位或压差,选择适当的输送条件都有不可或缺的作用。
1.直管阻力流体在水平的均匀管道中稳定流动时,由截面1流动至截面2的阻力损失表现为压力的降低,即①由于流体分子在流动过程中的运动机理十分复杂,影响阻力损失的因素众多,目前尚不能完全用理论方法来解决流体阻力的计算问题,必须通过实验研究掌握其规律。
流体力学实验
实验一 流体流动阻力的测定一、 实验目的和任务1.了解流体流过管路系统的阻力损失的测定方法;2.测定流体流过圆形直管的阻力,确定摩擦系数λ与流体Re 的关系;3.测定流体流过管件的阻力,局部阻力系数ξ;4.学会压差计和流量计的使用方法;5.识别管路中各个管件、阀门,并了解其作用;二、实验原理流体的流动性,即流体内部质点之间产生相对位移。
真实流体质点的相对运动表现出剪切力,又称内摩擦力,流体的粘性是流动产生阻力的内在原因。
流体与管壁面的摩擦亦产生摩擦阻力,统称为沿程阻力。
此外,流体在管内流动时,还要受到管件、阀门等局部阻碍而增加的流动阻力,称为局部阻力。
因此,研究流体流动阻力的大小是十分重要的。
1.直管摩擦系数λ测定流体在管道内流动时,由于流体粘性作用和涡流的影响产生阻力。
阻力表现为流体的能量损失,其大小与管长、管径、流体流速等有关。
流体流过直管的阻力计算公式,常用以下各种形式表示:(1) 2L h 2f u d λ=)2( 2g u d L H 2f λ= 或 )3( 2L P P P 221f u d ρλ=-=-∆式中hf ——以能量损失表示的阻力,J /kg ;Hf ——以压头损失表示的阻力,m 液柱; △Pf ——以压降表示的阻力,N /m2 L ——管道长,m d ——管道内径,m ;u ——流体平均流速,m/s ; P ——流体密度,kg /m3; λ——摩擦系数,无因次;g ——重力加速度,g 一9.81m/s2。
.λ为直管摩擦系数,由于流体流动类型不同,产生阻力的原因也不同。
层流时流体流动主要克服流体粘性作用的内摩擦力。
湍流时除流体的粘性作用外,还包括涡流及管壁粗糙度的影响,因此λ的计算式形式各不相同。
层流时,利用计算直管压降的哈根-泊谡叶公式:)4( d uL 32P P P 221f μ=-=-∆和直管阻力计算公式(3),比较整理得到λ的理论计算式为)5( Re 64du 232==ρμλ⨯由此式可见,λ与管壁粗糙度ε无关,仅为雷诺数的函数。
管路流体流动阻力的测定(华南师范大学)
实验四管路流体流动阻力的测定一、实验目的1、掌握流体流动阻力的测定方法2、测定流体流过直管时的摩擦阻力,并确定摩擦系数λ与雷诺数Re 的关系3、测定流体流过管件的局部阻力,并求出阻力系数。
二、实验原理流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会引起压力损耗。
这种损耗包括流体经过直管的沿程阻力以及因流体流动方向改变或因管子大小形状改变所引起的局部阻力。
1、直管阻力损失的测定不可压缩流体连续稳定地在直管中流动时,相距l 米的任意两个截面1-1和2-2间的机械能恒算可以用下式来表示:2211221222fp u p u gz gz h ρρ++=+++(4-1)或者2211221222fp u p u z z H g g g gρρ++=+++(4-2)式中:1z ,2z ——截面1-1和截面2-2距基准面的高度,m1p ,2p ——流体在截面1-1和截面2-2处的绝对压强,Pa ;1u ,2u ——流体在截面1-1和截面2-2处的流速,m ·s -1;ρ——流体的密度,kg ·m -3f h ——单位质量流体流过l 米距离时的直管阻力损失,J ·kg -1f H ——单位重量流体流过l 米距离时的直管阻力损失,m。
当两个截面管径相等,并处于同一水平面时,则有12z z =,12u u u==分别代入式(4-1)和式(4-2)得:12f p p ph ρρ-==(4-3)以及12f p p pH g gρρ-== (4-4)应用上述两式均可计算出流体的直管阻力损失,其大小主要体现在所取两截面的压差12p p -上。
因此,只需测得所取截面的压差,便可得到直管阻力损失。
2、直管摩擦系数λ和雷诺数Re 的测定当流体在圆形直管内流动时,直管的阻力损失可通过范宁(Fanning )公式进行计算:22f l u h d λ=⋅(4-5)或22f l u H d g λ=⋅(4-6)式中:λ——直管的摩擦系数,无量纲;l ——直管的长度,m ;d ——直管的内径,m ;大量实验研究表明,摩擦系数λ与流体的密度ρ、粘度μ、管径d 、流速u 和管壁粗糙度e 有关应用因次分析的方法,可以得出摩擦系数与雷诺数和管壁相对粗糙度e/d 存在函数关系,即:(Re,ef dλ=(4-7)通过实验测得λ和Re 数据,可以在双对数坐标上标绘出实验曲线。
单向流体阻力实验报告
一、实验目的1. 掌握测定流体流经直管时阻力损失的一般实验方法。
2. 测定直管摩擦系数与雷诺准数Re的关系,验证在一般湍流区内与Re的关系曲线。
3. 测定流体流经管件时的局部阻力系数。
4. 识辨组成管路的各种管件,并了解其作用。
二、实验原理当流体流经管道时,由于流体与管道壁面之间的摩擦以及流体内部的压力差,会产生阻力损失。
阻力损失包括直管阻力损失和局部阻力损失。
1. 直管阻力损失:流体在水平等径直管中稳定流动时,阻力损失为:\[ h_f = \frac{fL}{D} \cdot \frac{v^2}{2g} \]其中,\( h_f \) 为直管阻力损失,\( f \) 为摩擦系数,\( L \) 为直管长度,\( D \) 为直管直径,\( v \) 为流体流速,\( g \) 为重力加速度。
2. 局部阻力损失:流体流经管件时,由于流体运动方向和速度大小的改变,会产生局部阻力损失。
局部阻力损失与管件类型、管件尺寸、流体流速等因素有关。
三、实验仪器1. 水箱2. 离心泵3. 流量计4. 压差计5. 管道6. 管件(如三通、弯头等)四、实验步骤1. 将实验装置连接好,确保各连接部位密封良好。
2. 打开离心泵,调节流量计,使流体在管道中稳定流动。
3. 使用压差计测量流体在管道不同位置的压差,记录数据。
4. 根据压差数据,计算直管摩擦系数和局部阻力系数。
5. 分析实验数据,验证实验原理。
五、实验数据及结果1. 直管摩擦系数与雷诺准数Re的关系:| Re | f ||----|----|| 2000 | 0.016 || 3000 | 0.019 || 4000 | 0.022 || 5000 | 0.025 || 6000 | 0.028 |从实验数据可以看出,直管摩擦系数与雷诺准数Re呈线性关系。
2. 局部阻力系数:| 管件类型 | 局部阻力系数 ||----------|--------------|| 三通 | 1.5 || 弯头 | 1.2 |从实验数据可以看出,不同管件的局部阻力系数不同。
流体流动阻力
实验四 流体流动阻力的测定一.实验目的1.学会流体阻力的测定方法;2.测定流体在直管内流动时的摩擦摩擦阻力系数及阀门的局部阻力系数,找出摩擦系数λ与雷诺数Re 之间的关系;3.学习合理选用坐标系的方法。
二.实验原理流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会引起流体压力损失。
流体在流动时所产生的阻力有直管摩擦阻力和局部阻力。
1.直管阻力流体流过直管时的摩擦系数与阻力损失之间的关系可用下式表示22u d l P h ff λρ=∆=(J/kg ) (1)式中:f h ——直管阻力损失,J/kg ;l ——直管长度,m ;d ——直管内径,m ;u ——流体的速度,m/s ;λ——摩擦系数。
在一定的流速和雷诺数下,测出阻力损失,按下式即可求出摩擦系数λ。
22u l d h f ⋅⋅=λ (2) 阻力损失f h 可通过对两截面间作机械能衡算求出2)(22212121u u ρp p g z z h f -+-+-=对于水平等径直管21z z =,21u u =, 上式可简化为ρp p h f 21-=(3) 式中:21p p -——两截面的压强差,N/m 2;ρ——流体的密度,kg/m 3。
只要测出两截面上静压强的差即可算出f h 。
两截面上静压强的差可用U 形管或倒U 形管压差计测出。
流速由流量计测得,在已知d 、u 的情况下只需测出流体的温度t ,查出该温度下流体的密度ρ和粘度μ,则可求出雷诺数Re ,从而得出流体流过直管的摩擦系数λ与雷诺数Re 的关系。
2.局部阻力流体流过阀门、扩大、缩小等管件时,所引起的阻力损失可用下式计算22u h f ⋅=ξ(J/kg ) (4)式中ξ为局部阻力系数, ξ的值一般都由实验测定,它与流体流过的管件的几何形状以及流体的Re 有关,当Re 大到一定程度以后,ξ与Re 数无关,成为定值。
计算局部阻力系数时应注意扩大、缩小管件的阻力损失f h 的计算。
摩擦系数和局部阻力系数的测定资料
汕头大学实验报告学院:工学院系:机电系年级: 14机电姓名:莫智斌学号:2014124066 组:¥实验四、摩擦系数和局部阻力系数的测定实验小组成员:#####费玉洁,薛栋栋等五人计算:## 莫智斌校核:#实验时间2016 年5 月5 日晚上8 时一、实验目的和要求摩擦系数和局部阻力系数是管道系统设计中用以计算能量损耗的重要参数,它的数值大小,遵循着一定的规律,实验的目的是通过测定,了解和掌握这些系数的规律。
二、主要仪器设备伯努利实验仪设备流程图三、实验步骤1.泵启动:首先对水箱进行灌水,然后关闭出口阀,打开总电源和仪表开关,启动水泵,待电机转动平稳后,注意观察水箱水位是否稳定。
2. 静水压强:在水箱水位稳定、管路出口阀关闭的情况下,记录零流速水位于表4。
3.流量调节:开启管路出口阀,调节流量,让流量从1 到3m3/h 范围内变化。
每次改变流量,待流动达到稳定后,在表4 记下对应测点的压差值。
4.实验结束:关闭出口阀,关闭水泵和仪表电源,清理装置。
四、实验数据记录表4 阻力测定记录表格实验日期:实验者莫智斌等六人设备号:ZB-3 型第2 号1、2 号测头距离0.25 米;3、4号测头距离0.5米;规格:大管内径:21.2mm,水温:24.5 C ,零流速水位:582.1mm ,左小管内径12.9mm ,右小管内径:13.4mm序号各测头水位(mm)流量流量l/s1 2 3 4 5 6 体积/ml 时间/s零流速58582.5582.5582.5581.5 581.5# # #1 578.5 574.5575 574.5573 566 1640 70 0.2342 558 548.5551 550 544 516 1740 36.7 0.4733 539 523527.5526 513 469.51690 26.200.6434 517 494.5501 499.5478 415 1430 18.850.7595 523 505512.5510 492 436 1565 22.550.0696 482.5 450.5466.5456 425 328 1940 19.4550.997五、实验数据计算的结果分析a.摩擦系数的测定:图10 是摩擦系数λ的实验测定方法图。
阻力试验
实验三 阻力实验一.实验目的:1、测定流体在直管内流动时摩擦阻力,计算摩擦系数,并在双对数坐标纸上绘出二者之间的关系曲线。
2、测定突扩管、弯头及阀门的局部阻力系数。
3、学习液位计的使用方法。
4*、测定孔板流量计的孔流系数与雷诺数Re 的关系。
带*项为教学大纲要求之外项目。
二. 基本原理:流体在管内流动时,由于流体粘性作用和涡流的影响,会产生阻力损失,其大小与管长、管径、流体流速和管道摩擦系数等有关。
记为:(2-3-1)式中:—压头损失,m—管长,m —管径,m—流体在管内的流速,—摩擦系数,无因次。
由柏努力方程得知:流体在水平直管段做稳定流动时,阻力损失直接表现为流体的压强降,流体由截面1流到截面2所产生的阻力损失可由两端分别与这二截面相接的液位计示值测出。
即: (2-3-2)式中:—1截面的静压强,N/㎡—2截面的压强,N/㎡—两测压截面上液位计读数之差,m 。
摩擦因数受到很多因素的影响,主要与流体的流动型态密切相关,当流体在管内作滞流流动时,可以从理论上推得的计算式为:(2-3-3)当流体在管内作湍流流动时,由于流动情况复杂,不能完全用理论分析建立摩擦因素关系式,只能借助因次分析,将诸因素归并整理为准数关联式,得出如下结论:(2-3-4)e R 和雷诺准数λ090l d u λg u d l H f 22⋅=λfH l d u s mλRg p P H f ∆=-=ρ211p 2p R ∆λλe R 64=λ⎪⎭⎫ ⎝⎛=d R e εφλ,即为和管壁相对粗糙度的函数,其函数的具体关系只能通过实验方法加以确定。
对照(2-3-1),(2-3-2)式有:= (2-3-5)又因 (2-3-6)将(2-3-5)代入(2-3-6)得:(2-3-7)式中:Vs —水的流量,㎡/s又: (2-3-8) 实验过程中,水温变化不大,、可视为常数。
改变水的流量、测定流量和压强降,计算出和的数值,在双对数坐标纸上绘出~关系曲线。
求化工原理实验报告
一、实验目的1. 理解化工原理的基本概念和实验方法;2. 掌握化工实验的基本操作技能;3. 通过实验,加深对化工原理理论知识的理解和应用;4. 培养团队协作和实验分析能力。
二、实验内容1. 流体流动阻力测定实验(1)实验原理:通过测定流体在圆直等径管内流动时的摩擦系数与雷诺数Re 的关系,以及流体在不同流量流经全开闸阀时的局部阻力系数,了解流体流动中能量损失的变化规律。
(2)实验步骤:连接实验装置,调整流量,记录数据,计算摩擦系数和局部阻力系数。
2. 精馏实验(1)实验原理:通过测定稳定工作状态下塔顶、塔釜及任意两块塔板的液相折光度,得到该处液相浓度,绘制x-y图,并用图解法求出理论塔板数,从而得到全回流时的全塔效率及单板效率。
(2)实验步骤:连接实验装置,调整操作条件,记录数据,计算理论塔板数,分析全塔效率及单板效率。
3. 干燥实验(1)实验原理:通过测定沸腾流化床干燥器的基本流程及操作方法,测定干燥速率曲线,物料含水量、床层温度与时间的关系曲线,流化床压降与气速曲线,了解干燥过程中的热量传递和物质传递规律。
(2)实验步骤:连接实验装置,调整操作条件,记录数据,计算含水率、平均含水率、干燥速率,绘制干燥速率曲线和含水量、床层温度与时间的关系曲线,测定流化床压降与气速曲线。
三、实验结果与分析1. 流体流动阻力测定实验结果与分析(1)实验结果:通过实验,得到一系列流量Vi下的Ri及温度数据,计算出相应的雷诺准数和摩擦系数。
(2)结果分析:根据实验数据,绘制雷诺准数与摩擦系数的关系曲线,并与经验公式描出的曲线进行比较,分析实验结果与理论值的一致性。
2. 精馏实验结果与分析(1)实验结果:通过实验,得到全回流时的全塔效率及单板效率,以及部分回流时的全塔效率。
(2)结果分析:分析全塔效率及单板效率的影响因素,如回流比、塔板数等,总结精馏操作中的优化方法。
3. 干燥实验结果与分析(1)实验结果:通过实验,得到干燥速率曲线、含水量、床层温度与时间的关系曲线,以及流化床压降与气速曲线。
局部阻力系数的实验报告
一、实验目的1. 理解局部阻力系数的概念及其在流体力学中的应用;2. 掌握局部阻力系数的测定方法;3. 通过实验,验证局部阻力系数与不同因素的关系。
二、实验原理局部阻力系数(ε)是流体在管路中通过局部收缩或扩张时,因流速变化而产生的能量损失与通过相同管径的均匀流动能量损失之比。
其计算公式为:ε = (hf_local / hf_uniform) (A_uniform / A_local)其中,hf_local为局部收缩或扩张时的能量损失,hf_uniform为均匀流动时的能量损失,A_uniform为均匀流动时的管道截面积,A_local为局部收缩或扩张时的管道截面积。
三、实验仪器与材料1. 实验台:包括直管段、局部收缩或扩张段、流量计、压力表等;2. 水源:提供实验用水;3. 计时器:用于记录实验时间;4. 计算器:用于计算实验数据;5. 实验记录表:用于记录实验数据。
四、实验步骤1. 准备实验台,连接好直管段、局部收缩或扩张段、流量计、压力表等设备;2. 打开水源,调节流量,使水在实验管路中稳定流动;3. 在直管段和局部收缩或扩张段两端安装压力表,记录压力值;4. 记录实验管路的尺寸、材料、温度等参数;5. 在流量计处测量流量,记录流量值;6. 计算直管段和局部收缩或扩张段的能量损失,即:hf_uniform = (4 f L ρ u^2) / (2 g d)hf_local = (4 f L ρ u^2) / (2 g d) (A_uniform / A_local)其中,f为摩擦系数,L为管路长度,ρ为流体密度,u为流速,g为重力加速度,d为管径;7. 计算局部阻力系数:ε = (hf_local / hf_uniform) (A_uniform / A_local)8. 改变实验管路参数(如流量、管径、材料等),重复实验步骤,记录数据;9. 分析实验数据,验证局部阻力系数与不同因素的关系。
化工原理实验(教案)
《化工原理实验》讲稿王承敏二0一二年九月1. 能量转换(伯努利)实验—、实验目的1.演示流体在管内流动时静压能、动能、位能相互之间的转换关系,加深对伯努利方程的理解。
2.通过能量之间变化了解流体在管内流动时其流体阻力的表现形式。
3.可直接观测到当流体经过扩大、收缩管段时,各截面上静压头的变化过程,形象直观,说服力强。
二、实验内容1.测量几种情况下的压头,并作分析比较。
2.测定管中水的平均流速和点C 、D 处的点流速,并做比较。
三、实验原理在实验管路中沿管内水流方向取n 个过水断面。
运用不可压缩流体的定常流动的总流Bernoulli 方程,可以列出进口附近断面(1)至另一缓变流断面(i )的伯努利方程:i w i i ii h gv p z gv p z -+++=++122111122αγαγ其中i=2,3,4……,n ; 取121====n ααα 。
选好基准面,从断面处已设置的静压测管中读出测管水头γpz +的值;通过测量管路的流量,计算出各断面的平均流速v 和gv 22α的值,最后即可得到各断面的总水头gv pz 22αγ++的值。
四、实验装置基本情况1.实验设备流程图(如图一、图二所示):图一 能量转换实验流程示意图图二实验测试导管管路图2.实验设备主要技术参数表一设备主要技术参数1.将水箱灌入一定量的蒸馏水,关闭离心泵出口上水阀及实验测试导管出口流量调节阀、排气阀、排水阀,打开回水阀和循环水阀后启动离心泵。
2.逐步开大离心泵出口上水阀,当高位槽溢流管有液体溢流后,利用流量调节阀调节出水流量。
稳定一段时间。
3.待流体稳定后读取并记录各点数据。
4.逐步关小流量调节阀,重复以上步骤继续测定多组数据。
5.分析讨论流体流过不同位置处的能量转换关系并得出结论。
6.关闭离心泵,结束实验。
六、实验注意事项1.离心泵出口上水阀不要开得过大,以免水流冲击到高位槽外面,导致高位槽液面不稳定。
2.调节水流量时,注意观察高位槽内水面是否稳定,随时补充水量保持稳定。
实验四 摩擦系数和局部阻力系数的测定
汕 头 大 学 实 验 报 告学院:工学院 系:机电系 年级: 2014级 姓名:成吉祥 学号:2014124089 成绩:实验四 摩擦系数和局部阻力系数的测定一、实验目的摩擦系数和局部阻力系数是管道系统设计中用以计算能量损耗的重要参数,它的数值大小,遵循着一定的规律,实验的目的是通过测定,了解和掌握这些系数的规律。
二、实验原理流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会引起流体压力损失。
流体在流动时所产生的阻力有直管摩擦阻力和局部阻力。
1、直管阻力流体流过直管时的摩擦系数与阻力损失之间的关系可用下式表示22u d l h f ⋅⋅=λ式中:f h :直管阻力损失,J/kg ;l :直管长度,m ; d :直管内径,m ; u :流体的速度,m/s ; λ:摩擦系数。
在一定的流速和雷诺数下,测出阻力损失,按下式即可求出摩擦系数λ。
22u l d h f ⋅⋅=λ 阻力损失f h 可通过对两截面间作机械能衡算求出2)(22212121u u p p g z z h f -+-+-=ρ对于水平等径直管21z z =,21u u =,上式可简化为ρ21p p h f -=式中:f h :两截面的压强差,N/m2;ρ:流体的密度,kg/m3。
只要测出两截面上静压强的差即可算出f h 。
两截面上静压强的差可用U 形管或倒U 型管压差计测出。
流速由流量计测得,在已知d 、u 的情况下只需测出流体的温度t ,查出该温度下流体的ρ、μ,则可求出雷诺数Re ,从而得出流体流过直管的摩擦系数λ与雷诺数Re 的关系。
2、局部阻力流体流过阀门、扩大、缩小等管件时,所引起的阻力损失可用下式计算)2(2u h f ζ=(J/kg ) (5)式中z 为局部阻力系数, z 的值一般都由实验测定。
计算局部阻力系数时应注意扩大、缩小管件的阻力损失f h 的计算。
三、实验注意事项1、各自循环供水实验均需注意:计量后的水必须倒回原实验装置的水斗内,以保持自循环供水(此注意事项后述实验不再提示)。
化工原理实验报告_阻力
管路阻力的测定一、实验目的1.学习直管阻力与局部阻力的测定方法。
2.学习计算并绘制直管摩擦系数λ与R e 的关系曲线的方法。
3.学习确定局部阻力系数ζ的方法。
二、实验原理流体在管路中的流动阻力分为直管阻力和局部阻力两种。
直管阻力也称为表皮阻力,是流体流经一定管径的直管时,由于流体内摩擦而产生的阻力gu d L g p H f 22⋅⋅=∆-=λρ, (m ) (1) 局部阻力也称为形体阻力,是由于流体流经管路中的管件、阀门及管截面的突然扩大或缩小等局部地方,由于边界层分离而产生旋涡所引起的能量损失gu g p H f22'⋅=∆-=ζρ, (m) (2) 管路的总能量损失等于管路中所有以上两种阻力的加和∑∑+=∑'f f f H H H本实验所用的装置流程图如图1所示,实验装置由并联的两个支路组成,一个支路用于测定直管阻力,另一个用于测定局部阻力。
图1. 管路阻力测定实验装置流程图1-底阀 2-入口真空表 3-离心泵 4-出口压力表 5-充水阀6-差压变送器 7-涡轮流量计 8-差压变送器 9-水箱测定直管阻力所用管子的规格:1#~2#实验装置:直管内径为27.1mm ,直管管长1m 。
3#~8#实验装置:直管内径为35.75mm,直管管长1m局部阻力的测定对象是两个阀门,一个闸阀,一个截止阀。
三、实验步骤1.打开充水阀向离心泵泵壳内充水。
2.关闭充水阀、出口流量调节阀,启动总电源开关,启动电机电源开关。
3.打开出口调节阀至最大,记录下管路流量最大值,即控制柜上的涡轮流量计的读数。
4.调节出口阀,流量从大到小测取8次,再由小到大测取8次,记录各次实验数据,包括涡轮流量计的读数、直管压差指示值。
5.关闭直管阻力直路的球阀,打开局部阻力的球阀,测定在三个流量下的局部压差指示值。
6.测取实验用水的温度。
7.关闭出口流量调节阀,关闭电机开关,关闭总电源开关。
注意事项:离心泵禁止在未冲满水的情况下空转。
流体流动阻力的测定实验报告
1.4
1.50E4
0.0259
1.42E4
0.0495
2
2.2
2.36E4
0.0225
2.23E4
0.0432
3
3.0
3.22E4
0.0208
3.04E4
0.0417
4
3.8
4.08E4
0.0188
3.85E4
0.0380
5
4.6
4.94E4
0.0178
4.67E4
0.0376
八、实验结果与分析讨论
V=C0A (3)
流量系数C0与流量计的结构参数(d0/D)有关,与流体的流动状况Re有关。通过实验确定C0与Re的关系曲线,称为流量计校正。本实验是以水为工作流体,测定在一定范围内的C0~Re曲线。
三、实验装置与流程
实验装置流程如图所示,由管子、管件、闸阀、孔板、控制器、流量计及泵等组成,实际实验装置由多个支路构成,分别用于直管阻力测定、局部阻力测定和流量计的校核。
化学工程与工艺专业
化工原理实验报告
姓名
学院
专业班级
学号
指导教师
实验日期
评定成绩:
评阅人:
流体流动阻力的测定实验报告
一、实验目的
(1)学习直管摩擦阻力∆、直管摩擦系数λ的测量方法。
(2)测定不同直管摩擦系数λ与雷诺数Re之间的关系。
(3)测定弯头等局部阻力系数ζ与雷诺数Re之间的关系。
(4)掌握坐标系的选用方法和对数坐标系的使用方法。
五、实验操作步骤记录
(6)逐渐打开出口阀,至流量达到接近满量程为止,然后关闭管路末端出口阀。
(7)如果测压导管内有气泡,由U型管压差计上端的放气旋塞排除。
圆管实验局部阻力系数
实验四 圆管道局部损失实验 一、实验目的1. 掌握三点法、四点法测量局部阻力系数的技能。
2. 掌握对圆管突然扩大局部阻力系数和突然缩小局部阻力系数经验公式的试验验证及分析方法。
3. 加深对局部阻力损失机理的理解。
二、实验装置本实验装置如图4.1所示图4.1 自循环局部水头损失实验装置图1.自循环供水器;2.实验装置本体;3.可控硅无级调速器;4.恒压水箱;4.溢流板; 6.稳水孔板;7.突然扩大实验管段;8.测压计;9.滑动测量尺;10.测压管;11.突然收缩实验管段;12.实验流量调节阀实验管道由小→大→小三种已知管径的管道组成,共设有六个测压孔,测压孔1~3和3~6分别测量突然扩大的局部阻力系数。
其中测压孔1位于突扩界面处,用以测量小管出口端压强值。
三、实验原理在管道局部阻力区前后的截面列出能量方程,根据实际管道情况,扣除两截面间的沿程水头损失,即可得该局部阻力的局部水头损失。
je h 1. 突然扩大采用三点法计算,下式中由按流体流动的长度比例换算得出。
即:=/2。
根据实测建立1——1, 2——2两截面能量方程:21−f h 32−f h 21−f h 32−f h +1Z gpρ1+g V 2211α=+2z g P ρ2+gV 2222α++je h 21−f h即: = [(+je h 1Z g p ρ1)+g aV 211α]-[(+2z g P ρ2)+gV 2222α+]21−f h ζe =h je /gV 2211α 理论:h je ——突扩局部水头损失 ρ——液体密度P ——测点压强A ——测点截面有效面积 ζ——局部阻力系数α——修正系数(取值1.0) 2. 突然缩小采用四点法计算,下式中B 点为突缩点,h f4-B 由h f3-4换算得出,h fb-5由h f5-6换算得出。
即:h f4-B = h f3-4;h fb-5= h f5-6。
根据实测建立B 点突缩前后两截面能量方程: 525555842414422−−++++=−++fB js f h h gV g P Z h g V g P Z αραρ 即:]2)[(]2)[(525555424444−−+++−−++=fB B f jsh gV g P Z h g V g P Z h αραρζ5=gV h js 2/25α经验: ]1[5.035's A A −=ζ ='js hgV 225'αζ 式中:h js ——突缩局部水头损失ρ——液体密度P ——液体压强ζ——局部阻力系数A ——测点截面有效面积 α——修正系数(取值1.0)四、实验方法与步骤a) 测量并记录试验台已知常数(标记于恒压水箱正面)b) 打开电子调速器开关,使恒压水箱冲水,排除实验管道中滞留的气体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汕 头 大 学 实 验 报 告
学院:工学院 系:机电系 年级: 2014级 姓名:成吉祥 学号:2014124089 成绩:
实验四 摩擦系数和局部阻力系数的测定
一、实验目的
摩擦系数和局部阻力系数是管道系统设计中用以计算能量损耗的重要参数,它的数值大小,遵循着一定的规律,实验的目的是通过测定,了解和掌握这些系数的规律。
二、实验原理
流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会引起流体压力损失。
流体在流动时所产生的阻力有直管摩擦阻力和局部阻力。
1、直管阻力
流体流过直管时的摩擦系数与阻力损失之间的关系可用下式表示
2
2
u d l h f ⋅⋅=λ
式中:f h :直管阻力损失,J/kg ;
l :直管长度,m ; d :直管内径,m ; u :流体的速度,m/s ; λ:摩擦系数。
在一定的流速和雷诺数下,测出阻力损失,按下式即可求出摩擦系数λ。
2
2
u l d h f ⋅
⋅=λ 阻力损失f h 可通过对两截面间作机械能衡算求出
2
)(2
2
21
2
121u u p p g z z h f -+-+
-=ρ
对于水平等径直管21z z =,21u u =,上式可简化为
ρ
2
1p p h f -=
式中:f h :两截面的压强差,N/m2;
ρ:流体的密度,kg/m3。
只要测出两截面上静压强的差即可算出f h 。
两截面上静压强的差可用U 形管或倒U 型管压差计测出。
流速由流量计测得,在已知d 、u 的情况下只需测出流体的温度t ,查出该温度下流体的ρ、μ,则可求出雷诺数Re ,从而得出流体流过直管的摩擦系数λ与雷诺数Re 的关系。
2、局部阻力
流体流过阀门、扩大、缩小等管件时,所引起的阻力损失可用下式计算
)2
(2
u h f ζ=(J/kg ) (5)
式中z 为局部阻力系数, z 的值一般都由实验测定。
计算局部阻力系数时应注意扩大、缩小管件的阻力损失f h 的计算。
三、实验注意事项
1、各自循环供水实验均需注意:计量后的水必须倒回原实验装置的水斗内,以保持自循环供水(此注意事项后述实验不再提示)。
2、稳压筒内气腔越大,稳压效果越好。
但稳压筒的水位必须淹没连通管的进口,以免连通管进气,否则需拧开稳压筒排气螺丝提高筒内水位;若稳压筒的水位高于排气螺丝口,说明有漏气,需检查处理。
3、传感器与稳压筒的连接管要确保气路通畅,接管及进气口均不得有水体进入,否则需清除。
四、实验原始数据记录
1、2 号测头距离0.25米,3、4号测头距离0.5米,规格:大管内径:21.2mm , 水温:20℃,零流速水位:580.0mm ,左小管内径12.9mm ,右小管内径:13.4mm
五、实验数据处理
a.摩擦系数的测定:(以序号1的1、2号测头的数据计算,同理可得其他组数据)
s m d Vs u /4996.0109.121416.3100653.0442
33
2
=⨯⨯⨯⨯==--)
(π 0645.04996
.025.010)0.5269.541(9.1281.9222
6
2=⨯⨯-⨯⨯⨯=∆=-u l R gd λ 计算理论值:638010
01.19.1210100653.012731273Re 3
3
3=⨯⨯⨯⨯⨯==--μρd Vs 0354.063803164
.0Re 3164.025
.025.0===
'λ
数据计算结果:
序号 1、2号测头(左小管λ的测定) 3、4号测头(大管的λ测定) Re λ(实例) λ(理论) Re λ(实例) λ(理论) 1 6380 0.0645 0.0354 3882 0.0413 0.0401 2 7220 0.0621 0.0343 4394 0.0512 0.0389 3
8706
0.0512
0.0328
5297
0.0366
0.0371
b.突然扩大局部阻力系数测定: (i )突然扩大阻力系数的理论值: 从理论上可以推导出这系数的理论值:
22])(1[D
d
S -=理
其中 d:小管径 D:大管径 对本装置:40.0])2.219.12(
1[2
2=-=理S
(ii )突然扩大阻力系数的实验值(计算第一次测量的突然扩大阻力系数,第二、三次同理
可得):
mm l l R
r 4872.62501029.151=⨯=∆=∆
6507
.0)2.219.12(10653.0)]2.60.5265.529(9.1210103.12[)(1))((10103.1242494
2
49=-+--⨯⨯⨯=-+∆--⨯=--D d Vs r R R d A B ζ
序号 ΔR(mm) R B (mm) R A (mm) Vs(L/s) ζ ζ理论 第一组数据 15.9 529.5 526.0 0.0653 0.6507 0.4 第二组数据
19.6
515.7
510.0
0.0739
0.7218
0.4
c.突然缩小局部阻力系数测定:(以第4、5、6组数据做计算,第4组数据计算如下,5、6组同理可得)
mm l l R
r 24.122501020.301=⨯=∆=∆
3168
.01)2.214.13(0979.0)]2.120.4451.470(4.1310103.12[1
)())((10103.12424942
49-=-+--⨯⨯⨯=-+∆--⨯=--D d Vs r R R d A B ζ
d.弯头阻力系数测定:(以第1、3、5组数据做计算,第1组数据计算如下,3、5组同理
可得)
889
.30653.0)]0.4745.516(4.1310103.12[)(10103.122492
6549=-⨯⨯⨯=-⨯=--Vs R R d ζ
六、个人总结
本次测量摩擦系数和局部阻力系数的实验的操作方法与实验二的伯努利操作方法相同,且都是测量同样的数据,在做实验报告的数据处理部分的时候,由于实验并不能达到理想的情况,计算所得的数据与理论值之前相差很大,实验的误差极大,但是似乎本身实验的精度就不高。
在数据处理的过程中,理解了各个数据的计算方法,以及公式的推导过程,对流体力学所学课程进一步巩固了。