流变学基础

合集下载

流变学基础

流变学基础
14
第三节 蠕变性质的测定方法

毛细管黏度计(一点法,相对黏度,
适于牛顿流体)

落球黏度计(牛顿流体)
旋转黏度计(多点发,适合于非牛流
体,如高分子/胶体溶液)
15
作业与要求

掌握本章基本概念 辨别各非牛顿流体的流动曲线特征 了解黏度的测定方法及适用性
即所谓的触变性是施加应力使流体产生流动时,流体的粘性 下降,流动性增加;而停止流动时,其状态恢复到原来性质 的现象。
13
四、黏弹性 (viscoelasticity)



粘弹性: 高分子物质或分散体系,具有粘 性和弹性的双重特性,我们把这种性质称为 粘弹性。 物质被施加一定的压力而变形,并使其保持 一定应力时,应力随时间而减少,把这种现 象称为应力缓和。 对物质附加一定重量时,表现为一定的伸展 性或形变,而且随时间变化,把这种现象称 为蠕变性。
假塑性流体的结构变化示意图
11
(三)胀性流动(dilatant flow)
胀性流动曲线 :曲线经过原点,且随着剪切
应力的增大其粘性也随之增大,表现为向上突 起的曲线称为胀性流动(dilatant flow)曲线 。
如滑石粉或淀粉。
胀性流体的结构变化示意图
12
三、触变流动(thixotropic flow)
6
二、非牛顿流体
非牛顿液体(nonNewtonian fluid):不符合牛顿
定律的液体,如乳剂、混悬剂、高分子溶液、
胶体溶液等。 非牛顿流动:非牛顿液体的流动现象。 按非牛顿液体流动曲线为类型可将非牛顿液分 为:塑性流动、假塑性流动、胀性流动、触变 流动。
7
流变曲线:以切变速率D为纵坐标,切应力S为横 坐标作图,所得曲线为流变曲线或流动曲线。

Rheology(流变学基础)

Rheology(流变学基础)

二.非牛顿流动
实际上大多数液体不符合牛顿粘度定律, 实际上大多数液体不符合牛顿粘度定律,如高分子溶 胶体溶液、乳剂、混悬剂、软膏以及固液、胶体溶液、乳剂、混悬剂、软膏以及固-液的不均匀 体系的流动。把这种不遵循牛顿粘度定律的物质称为非牛 不遵循牛顿粘度定律的物质称为 体系的流动。把这种不遵循牛顿粘度定律的物质称为非牛 顿流体,这种物质的流动现象称为非牛顿流动 非牛顿流动。 顿流体,这种物质的流动现象称为非牛顿流动。 非牛顿流体的剪切速度D和剪切应力S的变化规律,经 非牛顿流体的剪切速度D和剪切应力S的变化规律, 作图后可得四种曲线的类型:塑性流动、假塑性流动、 作图后可得四种曲线的类型:塑性流动、假塑性流动、胀 形流动、触变流动。 形流动、触变流动。 对于非牛顿流体可以用旋转粘度计进行测定。 对于非牛顿流体可以用旋转粘度计进行测定。
对于这种粘弹性, 对于这种粘弹性,我们用弹性模型化的弹簧和把 粘性通过模型的缓冲器的复合型模型加以表示: 粘性通过模型的缓冲器的复合型模型加以表示: 麦克斯韦尔(Maxwell) (一)麦克斯韦尔(Maxwell)模型 福格特(Voigt) (二)福格特(Voigt)模型 (三)双重粘弹性模型 (四)多重粘弹性模型
胀性液体的流动公式: 胀性液体的流动公式: /η D= Sn /ηa n<1,为胀性流体; n<1,为胀性流体; 当n接近1时,流动接近牛顿流动。 接近1 流动接近牛顿流动。
(d)胀性流动
胀性流体的结构变化示意图
• 胀性流动的特点:没屈伏值;过原点;切应速度很小时, 胀性流动的特点:没屈伏值;过原点;切应速度很小时, 液体流动速度较大,当切应速度逐渐增加时, 液体流动速度较大,当切应速度逐渐增加时,液体流动速度 逐渐减小,液体对流动的阻力增加,表观粘度增加, 逐渐减小,液体对流动的阻力增加,表观粘度增加,流动曲 线向上弯曲。 线向上弯曲。 • 在制剂中表现为胀性流动的剂型为含有大量固体微粒的高 浓度混悬剂如50%淀粉混悬剂、糊剂等。 50%淀粉混悬剂 浓度混悬剂如50%淀粉混悬剂、糊剂等。

第十四章 流变学基础

第十四章 流变学基础

流动可视为一种可逆性变形过程,与流体本身的粘度 (viscosity)有关。
测试仪器
基本参数

层流:流体流动时形成互相平行移动的液层。

剪切速度(rate of shear,D):层流各层速度的不
同形成速度梯度,称为剪切速度。

使各液层间产生相对运动的外力叫剪切力,在单位液 层面积上所需施加的这种力称为剪切应力(shearing force,S)。
第六章 流变学基础
2
2
退热贴
第六章
第一节 基本概念
流变学基础
流变学(rheology):主要是研究物质的变
形和流动的一门科学。

变形:物体受外力时,内部各部分的形状和体积发生 变化,称为变形。可恢复原状(可逆性)的变形为弹
性变形(elastic deformation),反之则称为塑形变
形(plastic deformation)。
1,000 30 40 1/s 50 Shear Rate
第三节 粘度的测定


毛细管式粘度计
旋转粘度计 落球式粘度计
第四节 流变学的药剂学应用

流变学在药学研究中的重要意义在
于可应用流变学理论对乳剂、混悬
剂、半固体制剂等的剂型设计、处
方组成以及制备、质量等进行评价。

剪切应力和剪切速度是表征体系流变性质的两个基本
参数。
第二节 流变性质
一、牛顿流动

纯液体和多数低分子 溶液在层流条件下剪 切应力S与剪切速度
D
D成正比,遵循该法
则的液体为牛顿流体 (Newtonian fluid)。
S=F/A=ηD或D=S/η
S

06第六章 流变学基础

06第六章  流变学基础

种性质称为触变性。
18
触变性流体
• 触变流动的流动曲线特点:剪切应力的
下降曲线与上升曲线相比向左迁移,在图上表 现为环状滞后曲线。
• 产生触变的机制:随着剪切应力的增加,
粒子之间形成的结构受到了破坏,粘性减小; 撤掉剪切应力时,被拆散的粒子靠布朗运动移 动到一定的几何位置,才能恢复原来的结构, 即粒子之间结合构造的恢复需要一段时间,从 而呈现出对时间的依赖,表现出触变性。
F B
dv dx
A
6
三、黏弹性
黏弹性(viscoelasticity):是指物质具有黏性与弹 性的双重特性,具有这种性质的物体称为黏弹 体,如软膏剂或凝胶剂等半固体制剂。
7
第二节 流体的基本性质
一、牛顿流体
1.牛顿公式:理想液体服从牛顿黏性定律——流 体内部的剪切应力与垂直于流体运动方向的速度
梯度D成正比,即S=F/A=D
A为面积;F为A面积上施加的力;为黏度或黏度系数[Pa·s, 1Pa·s=10P(泊)], 20℃水的粘度约为1厘泊。
8
二、非牛顿流体 塑性流体 假塑性流体 胀性流体 触变性
9
塑性流体 • 塑性流动(plastic flow) :当外加剪切
应力较小时,物体不流动,只发生弹 性变形,当剪切应力超过某一限度时, 物体发生永久变形,表现为可塑性。
• 屈服切应力与制剂流动性有关,选择有适 当屈服切应力的基质,保证其具有合适的 流动性(既不容易从容器中流出,也要易 于在皮肤上铺展)
33
二、流变性质对不同制剂制备方法的影响 栓剂制备中的应用
• 栓剂在直肠温度下的流变学性质会影响栓 剂中药物的释放和生物吸收。
34
三、流变性质对生产工艺的影响

14流变学基础

14流变学基础

(三)胀性流体
切变稠化现象:曲线经过原点,且随
体填充 非凝聚性粒子处于密集型状态,其空隙被液
D
着剪切应力的增大其
剪切应力较低时(缓慢搅拌),粒子排列不紊
粘性也随之增大
乱,表现为较好的流动性。 剪切应力较大(快速搅拌),由于其粒子形成 疏松的填充状态,粒子空隙不能很好地吸 收水分而形成块状集合体,增大粒子间的
四、制剂流变性的评价方法
测定软膏、乳剂、雪花膏等半固体制剂的流变 性质,主要用penetrometer,curd tensionmeter 和spread meter进行测定。
液体
混合
半固体
固体
制备工艺 装量的生产 能力
皮肤铺展性和 压片或填充时 黏附性 粉体的流动
由剪切引起的 从瓶或管状容 粉末状或颗粒 操作效率的 二、流变学在药剂学中的应用 分散系粒子的 器中挤出制剂 状固体的充填 提高 粉碎 性 容器中液体的 流出和流入 通过管道输送 液体制剂 分散体系的物 理稳定性 与液体能够混 合的固体量 基质中药物的 释放
其保持一定应力时,应力随时间而减少的现象。
(三)双重粘弹性模型:
蠕变性:对物质附加一定重量时,表现为一定的
伸展性或形变,而且随时间变化的现象。
第三节 蠕变性质的测定方法
具体测定方法: 三个主要测定途径:
不随时间变化的静止测定法,即 r0一定时,施加应 ①测定使待测样品产生微小应变 r(t)时所需的应力 S(t); 力 S 0; ②测定对待测样品施加应力 S(t) 时所产生的应变程度 r(t) ; 转动测定法,对于胶体和高分子溶液的粘度,其变 ③施加一定剪切速度时,测定其应力S(t)。 S 化主要依赖于剪切速度。
• 混悬剂:静止时不沉降,振摇时易倾倒, 因此选择塑性流动的助悬剂和分散媒。常 见有羧甲基纤维素钠、西黄蓍胶、海藻酸 钠。皂土、胶性硅酸镁铝混合物具有塑性 流动和触变特性,用于外用混悬剂。

第七章 流变学基础

第七章 流变学基础

塑性流体、假塑性流体、胀性流体、假黏性流体中多数具
有触变性。
流变学在药剂学中的应用
流变学在药学研究中的重要意义在于可以应用流变学理 论对乳剂、混悬剂、半固体制剂等的剂型设计、处方组成 以及制备、质量控制等进行评价。
下的粘度。
根据公式得知牛顿液体的切变速度D与切变应力S 之间如下图所示,呈直线关系且直线经过原点。
(a)牛顿流动
二.非牛顿流动
实际上大多数液体不符合牛顿粘度定律,如高分子溶液 、胶体溶液、乳剂、混悬剂、软膏以及固-液的不均匀体 系的流动。把这种不遵循牛顿粘度定律的物质称为非牛顿 流体,这种物质的流动现象称为非牛顿流动。

非牛顿流体的剪切速度D和剪切应力S的变化规律,经 作图后可得四种曲线的类型:塑性流动、假塑性流动、胀 形流动、触变流动。


对于非牛顿流体可以用旋转粘度计进行测定。
(一)塑性流体 塑性流动的流动曲线:曲线不经过原点,在横轴 S 轴上 的某处有交点,得屈服值(yield value)或降伏值。 当切变应力增加至屈伏值时,液体开始流动,切变速度 D和切变应力S呈直线关系。液体的这种性质称为塑性流动 。引起液体流动的最低剪切应力为屈服值S0:

(二)假塑性液体
当作用在物体上的剪切应力大于某一值(S0) 时物体开始流动,表观黏度随着剪切应力 的增大而减小,这种流体称~ 特点:具有屈服值(S0) ,剪切应力超过S0 值时才开始流动。 剪切稀化 如MC、CMC等大多数高高分子溶液

(三)胀性流体
胀性流动曲线曲线经过原点,且随着切变应力的增大其粘 性也随之增大,表现为向上突起的曲线称为胀性流动曲线( dilatant flow curve)。 胀性流体的流动公式: D= Sn /a n<1,为胀性流体; 当n接近1时,流动接近牛顿流动。

流变学基础

流变学基础
➢ 其原因主要是随着温度 的升高凡士林的蜡状骨架 基质产生崩解,另一方面, 液体石蜡聚乙烯复合型软 膏基质,通常在温度发生 变化的条件下能够维持树 脂状结构。
剂型设计和制备工艺过程中流变学的主要应用领域
(一)流变学在混悬剂中的应用
➢ 流变学可应用于讨论影响混悬液中分散粒子沉降时的粘 性及经过振荡从容器中倒出混悬剂时的流变性质的变化。 同时也可以应用于投药部位的洗剂的伸展性能等方面。混 悬液在静止状态下所产生的切变应力,如果只考虑悬浮粒 子的沉降,由于其存在的力很小,故可以忽略不计。但是 ,经过振摇后把制剂从容器中倒出时可以观察到存在较大 的切变速度。
D
S
S0
(b)塑性流动
η——塑性粘度(plastic viscosity);S0——屈伏值、致流值或降伏 值,单位为dyne·㎝-2。
塑性流体的结构变化示意图
塑性流动的特点:不过原点;有屈伏值S0; 当切应力S< S0时,形成向上弯曲的曲线; 当切应力S> S0时,切变速度D和切应力呈 直线关系。
➢在制剂中表现为假塑性流动的剂型有某些亲水性高分子溶 液及微粒分散体系处于絮凝状态的液体。
(三)胀性流动(dilatant flow)
胀性流动曲线曲线经过原点,且随着切变应力的增大其粘 性也随之增大,表现为向上突起的曲线称为胀性流动曲线( dilatant flow curve)。
胀性液体的流动公式: D= Sn /a n<1,为胀性流体; 当n接近1时,流动接近牛顿流动。
➢ 由外部应力而产生的固体的变形,如除去其应力,则固 体恢复原状,这种性质称为弹性(Elasticity)。
➢ 把这种可逆性变形称为弹性变形(elastic deformation),而非可逆性变形称为塑性变形(plastic deformat- ion)。

第六章 流变学基础

第六章 流变学基础

第六章流变学基础第一节概述一、变形与流动变形:对某一物体施加压力时其内部各部分形状和体积发生变化的过程应力(stress):对物体施加外力时内部产生对应的力使其保持原状,此时单位面积上存在的力弹性(elasticity):物体在外力作用下发生形变,外力撤销后恢复原来的状态的性质黏性(viscosity):物体在外力作用下质点间相对运动产生的阻力二、剪切应力和剪切速率三、黏弹性:黏性与弹性的双重性质,这种物体为黏弹体第二节流体的基本性质一、牛顿流体牛顿公式:流体内部剪切应力与垂直于流体运动方向的速度梯度成正比二、非牛顿流体(一)塑性流体:剪切应力较小时发生弹性形变,超过某一值后发生塑性流动原因:静止时粒子聚集成网状结构,当应力超过屈服值时开始塑性流动(二)假塑性流体:加小的应力就会发生流动,没有屈服值(三)胀性流体:阻力随应力增大而增大条件:1、粒子必须是分散的2、分散相浓度在一个狭小的范围(四)触变性:体系搅拌时为流体,停止搅拌时逐渐变稠甚至胶凝第三节流变性测定法一、黏度的测定(一)黏度的测定方法绝对黏度、相对黏度、动力粘度、特性黏度、增比粘度、比浓黏度(二)影响因素1、温度2、压力3、分散介质4、分散相(三)仪器1、毛细管式黏度计:根据液体在毛细管的流出速度测量液体黏度2、旋转式黏度计:旋转过程中作用于液体的剪切应力大小3、落球式黏度计二、稠度的测定1、插度计:一定温度下150g金属椎体放在待测物表面以插入深度测定稠度2、平行板黏度计:样品夹在板间,施加压力根据扩散速度评价其涂展性第四节流变学在药剂学中的应用一、药物制剂的流变性质(一)稳定性(二)可挤出性(三)涂展性(四)通针性(五)滞留性(六)控释性二、对制备方法的影响(一)乳剂中制备的影响:表面黏性、表面弹性、表面黏弹性(二)软膏剂制备的应用:(三)混悬剂制备中的应用(四)栓剂制备中的应用三、药物制剂流变学对生产工艺的影响(一)工艺放大(二)混合作用四、心理流变学软膏剂的分类:1、较柔软,主要用于眼部2、中等稠度3、用于渗出性糜烂皮炎。

14-药剂学-流变学基础

14-药剂学-流变学基础

第二节 流变性质
一、牛顿流动 纯流体和多数低分子溶液在层流条件下的剪切应 力S与剪切速度D成正比,遵循该法则的液体为 牛顿流体(Newtonian fluid)。 1/ η S=F/A=ηD D=S/η 粘度与剪切速度无关, 只要温度一定,粘度就一定
D
S
粘度的单位
η= S/D Pa.s ,mPa.s 达因.厘米-2.秒(泊,p) 1泊=0.1 Pa.s 药学中常用厘泊(cp) 1cp=10-2泊=10-3pa.s
一、牛顿流体的粘度与测定 1、毛细管粘度计
η1 = η2 ρ2 t2 ρ1t1
奥氏粘度计 平氏粘度计 乌氏粘度计
待测液体 t
毛细管
奥氏粘度计
平氏粘度计
t
落球粘度计
η=t(ρb-ρl).B
非牛顿流体流动性质测定
对于非牛顿流体,一般不采取测定某一切变速度 下的粘度,因为非牛顿流体的粘度不是常数,而 随切变速度变化而变化。(见图) 非牛顿流体的流动性质应采用可改变切变速度的 粘度计进行测定。 如旋转式粘度计,借助于流体中旋转物体的粘性 阻力来测定粘度。 优点:切变速度可调范围广,可自动调节至程序 切变速度。
如分散相体积比相对较低时(0.05以下)时,其 系统表现为牛顿流动;随着相体积比增加,系统 的流动性下降,表现为假塑性流动;而体积比较 高时,转变为塑性流动。体积比接近0.74时产生 相转移,粘度显著增加。 减小粒子的平均粒径能增加乳剂的粘度。 在粒子平均粒径相同的情况下,粒度分布宽的系 统,粘度较小,粒度分布窄的系统粘度较高。 乳化剂浓度越高,制剂的粘度越大 剪切速度增大时,粘度减少。原因是液滴间距离 增大所致。
S0 S
假塑性流动
随着S值的增大而粘度下降的流动称为假塑性流 动。 D=Sn/ ηa ηa 表观粘度,随剪切速度的改变而改变 n越大,非牛顿性越大, n=1为牛顿流体 甲基纤维素、西黄耆胶等 链状高分子的1%水溶液 表现为假塑性流动

《流变学基础》课件

《流变学基础》课件

应变:物体受到外 力作用时,形状或 尺寸发生的变化
应变速率:物体应 变的速度,通常用 单位时间内应变的 变化量来表示
应力、应变和应变速 率是流变学的基本概 念,它们之间的关系 是流变学研究的核心 内容
屈服点:材料在受 到外力作用下,开 始发生塑性变形时 的应力值
屈服应力:材料在 屈服点时的应力值
研究方向:多 学科交叉融合, 如生物流变学、 环境流变学等
技术挑战:提 高测量精度、 开发新型流变
仪等
应用领域:拓 展到更多工程 领域,如航空 航天、生物医
学等
理论创新:建 立更完善的流 变学理论体系, 解决复杂流变
问题
汇报人:
流变学中的本构方程是描述材料在应力作用下的变形和流动的基本方程。 本构方程可以分为线性本构方程和非线性本构方程。 线性本构方程是最简单的本构方程,它假设材料的变形和流动是线性的。 非线性本构方程则考虑了材料的非线性变形和流动特性。
PART FIVE
流变仪:用于测量流体的流变 特性
旋转流变仪:用于测量流体的 剪切应力和剪切速率
温度升高,流变特性增强 压力增大,流变特性减弱 温度和压力共同作用,影响流变特性 实验和测量技术:需要精确控制温度和压力,以获得准确的流变特性数据
流变特性:材料在应力作用下的变形和流动特性
微观结构:材料的内部结构,包括原子、分子、晶格等
机理:流变特性的物理和化学机制,如分子间的相互作用、晶格变形等
玻璃材料:具有透明、易加工、耐腐蚀等特点,广泛应用于建筑、光学等领域
流变学在陶瓷和玻璃材料中的应用:研究材料的变形、断裂、蠕变等行为,为材料的设 计和加工提供理论依据
流变学在陶瓷和玻璃材料中的应用实例:陶瓷材料的烧结工艺、玻璃材料的成型工艺等

流变学基础

流变学基础
流变学基础
一、概述
• 观察河中的流水:尽管水流方向一致,但水流速度却不 同,中心处的水流最快,靠近河岸水流较慢。 • 因此,在流速不太快时,可以将流动着的液体视为互相 平行移动的一个个液层;由于各层的速度是不同的,所 以产生速度梯度dυ/dy,这是流动的基本特征。
• 因为有速度梯度存在,流动较慢 的液层阻滞着流动较快液层的运动, 所以产生流动阻力。
(一)流变学在混悬剂中的应用
• 如图,表现假塑性流动的 西黄蓍胶、海藻酸钠、羧 甲基纤维素钠等物质具有 上述性能。 • 图中用具有牛顿流体性质 的甘油为对照组进行实验, 结果说明,甘油的粘性作 为悬浮粒子的助悬剂较为 理想。
• 触变性物质在静置状态下 可形成凝胶,经振摇后转 变为液状。
(一)流变学在混悬剂中的应用
(二)非牛顿流体
• 4、触变流动——大多数非牛顿流体 均具有触变性,凝胶、溶胶为典型 触变性体系。 • 特点: • 1)上升曲线与下降曲线不重合,形 成环形滞后曲线; • 2)上升和下降曲线包围成一定面积, 称为滞后面积,这种现象称为滞后 现象; • 3)滞后面积是衡量触变性大小定量 指标,其大小由切变时间和切变速 度决定。
SM
K
度液体, 平行圆板型用于测定高粘度液 体。
(a)双重圆筒型
(b)圆锥圆板形 (c)平行圆板型
图---旋转粘度hirley粘度计为圆锥—平板粘度计的一种类型。如 图所示。 • 测定方法为将试验液放在平板的中央,然后把平板推至上 面的圆锥下部,使试验液在静止的平板和旋转的圆锥之间 产生切变。
(二)流变学在乳剂中的应用
• 粘性的影响因素: • 分散相
• 连续相
• 乳化剂
(二)流变学在乳剂中的应用
• 分散相:与分散相相关的主要因素有相的体积比、 粒度分布、内相固有的粘度等。 • 分散相体积: • 粒度分布

流变学基础

流变学基础

图8 与流变时间相关的非牛顿流体的流变图
第二节 基本概念
引入:
变形 流动 应力~应变 应力~应变速率
定义应力、应 变、应变速率
注意:
实际材料发生的变形和受力情况是复杂的,要找 出其应力~应变之间的关系十分困难。因此,在流变学 中采用一些理想化的实验——简单实验。
简单实验
(Simple experiment)
高分子液体的奇异流变现象
其力学响应十分复杂,而且这些响应还与 体系内外诸多因素相关,主要的因素包括高分 子材料的结构、形态、组分;环境温度、压力 及外部作用力的性质(剪切力或拉伸力)、大小 及作用速率等。下面简单介绍几种著名的高分 子特征流变现象。
高粘度与“剪切变稀”行为
1、现象:例:牛顿液体(N):水、甘
图6无管虹吸效应
2、原因:与高分子液体的弹性行为有关,这种
液体的弹性性质使之容易产生拉伸流动,而且 拉伸液体的自由表面相当稳定。实验表明,高 分子浓溶液和熔体都具有这种性质,因而能够 产生稳定的连续拉伸形变,具有良好的纺丝和 成膜能力。
孔压误差和弯流压差
1、现象:测量流体内压力时,若压力
传感器端面安装得低于流道壁面,形成 凹槽,则测得的高分子液体的内压力将 低于压力传感器端面与流道壁面相平时 测得的压力,如图7中有Ph<P,这种压力 测量误差称孔压误差。
第一部分 流变学基础
第一章 流变学的基本概念
第一节高分子液体的奇异流变现象 第二节 基本概念 1 应变 2 应力 3 粘度与牛顿定律
第一章 流变学的基本概念
第一节 高分子液体的奇异流变现象
引入:高分子液体(熔体和溶液)在外力或 外力矩作用下,表现出既非胡克弹性体,又非 牛顿粘流体的奇异流变性质。它们既能流动, 又有形变,既表现出反常的粘性行为,又表现 出有趣的弹性行为。

第七章 流变学基础

第七章  流变学基础
真正粘度; n ── 常数 若以lgD-lgf作图,则应得一直线,其斜率为n ,当n >1时,则有: d 2D 1 n2 n ( n 1 ) f 0 2 df 所以,D-f流型曲线为向上凹的曲线。随着D 值的增大,dD/df值也增大,这种情 况就属于准塑流型,当n<1时,则有d2D/df2<0,故D-f流动曲线为向下凹的曲线, dD/df值随着D增大而减少。这种流型属于下面将要讨论的膨胀型流型;当n=1时, 则有f=ηD,此时属于真粘度。(7-4)式还原为牛顿粘度公式(7-1)式。由此 可见,n值可作为牛顿型与非牛顿型的区别。n值越偏离1,则其非牛顿行为越显著。
a)牛顿型 b)胡克型。c)圣维南型
第三种类型在小于一定值的应力的作用下,物体呈现出完全刚性。但应力超过一定 值以后,物体极易流动。故其D-f 流型曲线为距原点一定距离的垂直线。这一引起 物体流动的最低应力称为流动极限值或称屈服值,这种物体称为理想塑性体或称圣 维南(St. Venen)型物体。简称S-流型。其机械模型可以用物体在底板上滑动来描 2 述,如图7-lc所示。
第七章 流变学基础
流变学(Rheology)是研究物质在外力作用下发生形变和流动的科学。它研究剪切 应力,切变速率以及时间三者之间的关系。 内容包括: 1)研究在外力作用下物体发生形变。通常作用力以剪切应力表示,形变则以切变速 率表示。 2)研究液体、胶体或悬浮液在外力作用下的流动。流动时所表现出来的一个重要性 质是粘度,因此讨论液体的粘度及其测定,悬浮液的粘度定律及其影响因素,以及 粘度与高聚物摩尔质量的关系。 7.1 流型 1、流型简介 流体,特别是胶体和悬浮液的流变行为一般都很复杂,不可能用一个简单的公式来 作统一的描述。 在研究流体的流变性时按照剪切应力 f 与切变速率 D 的关系,分成各种类型——流 型来进行讨论。 最基本的流型有三种,其他可以通过这三种基本形式组合得到。

流变学基础

流变学基础

第十四章流变学基础第一节概述一、流变学的基本概念(一)流变学研究内容流变学—Rheology 来源于希腊的Rheos=Sream(流动)词语,是Bingham 和Crawford为了表示液体的流动和固体的变形现象而提出来的概念。

流变学主要是研究物质的变形和流动的一门科学。

对某一物体外加压力时,其内部各部分的形状和体积发生变化,即所谓的变形。

对固体施加外力,固体内部存在一种与外力相对抗的内力使固体保持原状。

此时在单位面积上存在的内力称为内应力(stress)。

对于外部应力而产生的固体的变形,当去除其应力时恢复原状的性质称为弹性(elasticity)。

把这种可逆性变形称为弹性变形(elastic deformation),而非可逆性变形称为塑形变形(plastic deformation)。

流动是液体和气体的主要性质之一,流动的难易程度与流体本身的粘性(viscosity)有关,因此流动也可视为一种非可逆性变形过程。

实际上,多数物质对外力表现为弹性和粘性双重特性,称为粘弹性物质。

(二)剪切应力与剪切速度观察河道中流水,水流方向一致,但水流速度不同,中心处的水流最快,越靠近河岸的水流越慢。

因此在流速不太快时可以将流动着的液体视为互相平行移动的液层,叫层流,如图14-1。

由于各层的速度不同,便形成速度梯度du/dy,或称剪切速度。

这反映流体流动的特征。

由于流动阻力便产生速度梯度,流动较慢的液层阻滞着流动较快液层的运动。

使各液层间产生相对运动的外力叫剪切力,在单位液层面积(A)上所需施加的这种力称为剪切应力,简称剪切力(shearing force),单位为N·m-2,以S 表示。

剪切速度(rate of shear),单位为s-1,以D 表示。

剪切应力与剪切速度是表征体系流变性质的两个基本参数。

二、流变学在药剂学中的应用流变学在药学研究中的重要意义在于可以应用流变学理论对乳剂、混悬剂、半固体制剂等的剂型设计、处方组成以及制备、质量控制等进行评价。

流变学基础

流变学基础

应力松弛测量
10
瞬时阶跃应变
1.0 应变 %
0.1
0.01
恒定应变
0.001 0.01 0.1
1
10
100
时间 log secs
G 松弛模量 (Pa)
应力松弛测量
H (Pa) 松弛时间谱
0.001 0.01 0.1
1
10
100
时间 log secs
应力松弛谱图
• 瞬时阶跃响应时间小于5 ms • 应变没有过冲 • 快速的模量衰减 - 粘性样品
锥板的不利之处
• 溶剂产生挥发
• 顶点处 的小间 隙,在测量带粗 糙填料的体系时 受到限制
杯 和 转子 (同轴圆桶)
• 很宽的间隙 (11.5mm),适合填充 材料
• 更大的表面积,测 量稀薄液体时更灵 敏
• 减少了挥发
杯和转子的不利ห้องสมุดไป่ตู้处
• 清除样品更困难
• 与 Peltier 或其它 平板加热体系, 兼容性相对较差
• 这个流动能够描述为应变随时间变化的函数关系
Force, F
Constant velocity, v h
粘性流动
• 如果立方体是粘性液体,当我们施加一个力时,我们就 得到一个恒定的流动而不是一个形变
• 这个流动能够描述为应变随时间变化的函数关系
Force, F
Constant velocity, v h
剪切粘度
粘度 = 剪切应力 剪切速率
• 单位:
– Pascal second - Pas (SI)
– Poise
- P (CGS)
• 单位换算:
– 1 Pas = 10 P 或 1 mPas = 1 cps

4 流变学基础

4 流变学基础

应变:弹性变形时,与原形状相比变形的比 率。应变分为常规应变和剪切应变,应变的 大小与应力成正比。 粘性流动:液体流动可视为一种非可逆性变 形过程,与流体本身的粘度有关。
粘性:液体内部存在的阻碍液体流动的摩擦力。 层流:液体流动时形成互相平行移动的液层。 粘滞现象:任意两层流体之间互使作用力阻碍运 动。
油水体积比(相比)。0.05以下为牛顿流体, 相比增加流动性下降,表现为假塑性流体, 接近0.74时,发生相转移,粘度增大。
在半固体制剂中的应用
0
假塑性流体
流动曲线经过原点,没有直线部分,没有屈 服值,随着切应力增大,液体粘度下降,变 稀,称为切变稀化。 流动曲线无直线部分,液体粘度不是定值。 假塑性流体的应变率越大, 粘度越小,流动性越好。 如亲水性高分子溶液, 甲基纤维素、西黄蓍胶链状分子。
胀性流体
流动曲线经过原点,没有屈服值。 切应速度小时,液体流动速度大。 切应速度增加时,流动速度逐渐减小,流动 阻力增加,表观粘度增加,称为切变稠化。 如含有大量微粒的高浓度 混悬剂。以紧密填充排列, 分散剂于粒子周围和空隙中。
变流动
假塑性流动、胀性流动属于非时变性非牛 顿流动。其表观粘度与应变力有关,与其 作用时间无关。 触变流动:属于时变性非牛顿流动。 如混悬剂、乳剂、软膏剂等。
触变流动:有些流体在搅拌 时,由于其粘度下降,故流 体易于流动。但是放置一段 时间后,又恢复原来的粘性。 这种随着剪切力增大,粘度 下降,剪切力消除后粘度在 等温条件下缓慢恢复到原来 状态的现象称为触变性 (thixlotropy)。其流动曲 线如图:(左迁移环状滞后 曲线)
第三节 粘度的测定
落球粘度计 旋转粘度计 圆锥平板粘度计
第四节 流变学的药剂学应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编辑ppt
17
触变性(thixotropy):象这种随着剪切应力增大,粘度下 降,剪切应力消除后粘度在等温条件下缓慢地恢复到 原来状态的现象称为触变性。
其流动曲线的特性表现为剪切应力的下降曲线与上升 曲线相比向左迁移,在图上表现为环状滞后曲线。也 就是说,与同一个σ值进行比较,曲线下降时粘度低, 上升时被破坏的结构并不因为应力的减少而立即恢复 原状,而是存在一种时间差。
外力相对抗的内力使其恢复原状。此时在单位面积上存在
的内力称为应力(Stress)(如橡胶)。
编辑ppt
2
➢ 由外部应力而产生的固体的变形,如除去其应力,则固 体恢复原状,这种性质称为弹性。
➢ 把这种可逆性变形称为弹性变形,而非可逆性变形称为 塑性变形。
➢ 流动主要表示液体和气体的性质。流动的难易与物质本
编辑ppt
6
第二节 流变性质
一.牛顿流动
牛顿粘度定律:纯液体和多数低分子溶液和高分子稀溶液 在层流条件下的剪切应力( 单位面积上的粘滞阻力σS)与剪 切速度(γ垂直于流动方向上的速度梯度)成正比。遵循该法 则的液体为牛顿流体。
式中,η——粘度或粘度系数,是表示流体粘性的物理常数
。单位为泊,1P= 0.1N·S ·m-2,SI单位中粘度用Pa·S或
14
假塑性流体的结构变化示意图
编辑ppt
15
切力变稀体原因:1、由于剪切力作用使分子缠结解 开。2、由于大分子的长链结构,流动时,从不同 流速的液层中挣脱到同一流速层中去,而发生取 向。
编辑ppt
16
(四)触变流动
➢ 当对某种体系进行搅拌时,由于其粘度下降,故流体易 于流动。但是,放置一段时间以后,又恢复原来的粘性。 象这种随着切变应力的下降,其粘度下降的物质,即在等 温条件下缓慢地恢复到原来状态的现象称为触变性。
补充: 流变学基础
编辑ppt
1
第一节 概 述
一.流变学的基本概念
➢ 流变学——为了表示液体的流动和固体的变形现象而提 出来的概念。
➢ 流变学主要是研究物质的变形和流动的一门科学。
➢ 变形:对某一物体外加压力,其内部的各部分的形状和 体积发生的变化。
➢ 对液体或固体施加外力,则液体或固体内部存在一种与
编辑ppt
19
三.粘弹性(Viscoelasticity)
➢ 高分子物质或分散体系具有粘性(viscosity)和弹性 (elasticity)双重特性,称之为粘弹性。
➢ 应力缓和(stress relaxation):物质被施加一定的压力 而变形,并使其保持一定应力时,应力随时间而减少,此 现象称为应力缓和。
Kg/(m·s)表示。粘度系数除以密度ρ得的值ν(ν =η/ρ)为
动力粘度(SI单位为㎡/S)。
编辑ppt
7
下表中表示常用的各种液体在20℃条件下的粘度(厘 泊秒)。
编辑切变应力之 间如下图所示,呈直线关系且直线经过原点。
(a)牛顿流动
在一定温度下,牛顿液体的粘度为常数,它只是温度的函数,随温度升高而减小。
身具有的性质有关,把这种现象称为粘性。流动也视为一 种非可逆性变形过程。
➢ 实际上,某一种物质对外力表现为弹性和粘性双重特性 (粘弹性)。这种性质称为流变学性质,对这种现象进行 定量解析的学问称为流变学。
编辑ppt
3
切变应力与切变速率
➢ 在流速不太快时,可将流动着的液体视为互相平行移动 的液层叫层流(如下图),由于各层的速度不同,便形成 速度梯度du/dy,这是流动的基本特征(水中之游鱼)。
(b)塑性流动
η——塑性粘度;σ0——屈伏值、致流值或降伏值,单位为dyne·㎝-2。
编辑ppt
11
塑性流体的结构变化示意图
编辑ppt
12
塑性流动的特点:不过原点;有屈伏值σ0; 当切应力σ< σ0时,形成向上弯曲的曲线; 当切应力σ> σ0时,切变速度和切应力呈直 线关系。
表现为塑性流动的有浓度较高的乳剂和混
表征体系流变性质的两个基本参数:
u
1. 在单位液层面积(A)上施加的使
y
各液层间产生相对运动的外力称为剪
切应力,简称剪切力,单位为N/m2,
以S表示。
2.剪切速度,单位为S-1,以D表示。
编辑ppt
4
小分子流动与高分子黏性流动机理的区 别:
流动机理:
小分子的流动,简单来说是靠整个分子的孔 穴跃迁完成的。运动单元是整个分子。
在小分子液体内部,存在许多与小分子尺寸 相当的孔穴,在外力作用下,分子不断沿外力方 向跃迁填补前面的空穴,分子原来占有的位置成 为新的空穴后,又让后面的分子跃入,从而形成 了液体的宏观流动。
编辑ppt
5
大分子的流动时,运动单元不是整个分子链 (高分子体积庞大)而是链段,整个分子链的运动 是靠链段相继跃迁实现的,从而产生高分子的宏观 流动。类似于蚯蚓的蠕动。孔穴只需链段的大小即 可。(汽车的排队和运动模式)。
悬剂。
编辑ppt
13
(二)假塑性流动(高分子浓溶液) ➢ 随着σ值的增大粘度下降的流动现象称为假塑性流动。
(c)假塑性流动
➢式中,ηa ——表观粘度(apparent viscosity)。 ➢ 假塑性流动的特点:没屈伏值;过原点;切应速度增大, 形成向下弯的上升曲线,粘度下降,液体变稀。
编辑ppt
编辑ppt
18 18
产生触变的原因:对流体施加切应力后,破坏了液体内部 的网状结构,当切应力减小时,液体又重新恢复原有结构, 恢复过程所需时间较长,因而上行线和下行线就不重合。
触变流动的特点:等温的溶胶和凝胶的可逆转换。
塑性流体、假塑性流体中多数具有触变性,它们分别称为 触变性塑性液体、触变性假塑性液体。
编辑ppt
10
(一)塑性流动 塑性流动的流动曲线:曲线不经过原点,在横轴S轴上 的某处有交点,得屈伏值(yield value)或降伏值。 当切变应力增加至屈伏值时,液体开始流动,切变速度 和切变应力呈直线关系。液体的这种性质称为塑性流动。 引起液体流动的最低剪切应力为屈伏值σ0:
D S S0
编辑ppt
9
二.非牛顿流动
实际上大多数液体不符合牛顿粘度定律,如高分子溶液 、胶体溶液、乳剂以及固-液的不均匀体系的流动。把这 种不遵循牛顿粘度定律的物质称为非牛顿流体,这种物质 的流动现象称为非牛顿流动。
非牛顿流体的剪切速度和剪切应力的变化规律,经作图 后可得三种曲线的类型:塑性流动、假塑性流动、触变流 动。
相关文档
最新文档