深度学习史上最详细的卷积循环神经网络ppt

合集下载

CNN(卷积神经网络) ppt课件

CNN(卷积神经网络)  ppt课件
为了处理一维序列数据,便有了循环神经网络,以及基于循环神经网络 优化而来的lstm,attention机制等.
目录
Contents
2. 卷积神经网络
2.1. 卷积神经网络和深度学习的历史 2.2. 卷积神经网络的设计和原理 2.3. 卷积神经网络的神经科学基础
CNN处理图像
卷积神经网络的计算效率提升,参数量:10^12 -> 10^6
卷积神经网络池化有最大池化(max_pool)和平均池化(avg_pool),顾名 思义,最大池化取区域内最大值,平均池化取区域内平均值.其它池化包 括L 2 范数以及依靠据中心像素距离的加权平均池化.
CNN池化过程
CNN 特性-池化
为什么要池化?
1.减少参数的量,提高计算效率. 2.最大池化能显著增强局部特征,平均池化可减少噪声.
深度学习以及卷积神经网络的适用需要大量的有效训练数据,过去的互联网时代为 深度学习提供了大量的训练数据,同时随着几十年来硬件技术的发展,为利用和计算 大量数据提供了条件.所以,近年来,每一次模型算法的更新,都取得了良好的效果, 为深度学习这把火炬增添了燃料.
卷积神经网络和深度学习的历史
卷积神经网络提供了一种方法来专业化神经网络,以处理具有清楚的网 络结构的数据,以及将这样的模型放大到非常大的尺寸(加深层数).这种方法 在二维图像拓扑上的应用是最成功的.同时,卷积神经网络比全连接网络计 算效率更高,使用他们运行多个实验并调整它们的实现和超参数更容易,更 大的网络也更容易训练.
CNN特性-权值共享和多卷积核
卷积神经网络之所以计算效率高,对特征提取的效果好,主要是由于卷 积神经网络具有以下三个特性:权值共享,多卷积核,池化.
权值共享
请在这里输入论文答辩

深度学习RNN循环神经网络ppt课件

深度学习RNN循环神经网络ppt课件
右图是双向RNN模型,可以发现它的输出 层,既接受了从左向右传播的隐藏层的输 出,也接受了从右向左传播的隐藏层的输 出。
RNN—LSTM
ft (Wfx xt Wfhht1 bf ) (a) C 't tanh(WCx xt WChht1 bC ) (b) it (Wix xt Wihht1 bi ) (c) Ct ft *Ct1 it *C 't (d ) ot (Wox xt Wohht1 bo ) (e) ht ot * tanh(Ct ) ( f )
右图中的网络是seq2vec模型,可以 用于情感识别,文本分类等,主要 针对输入为序列信号,输出为向量 的模型建模
右图中的网络包含三个权值,分别 是U,W和V,最后损失函数采用的 是标签和输出的softmax交叉熵,其 实和最大似然函数最终推倒结果是 一致的。
RNN—vec2seq
右图是一个vec2seq模型,它的输入是 一个固定长度的向量,而输出是一个 序列化的信号,比如文本数据。这个 模型的输入x可以当作是循环神经网络 的额外输入,添加到每个隐藏神经元 中,同时每个时间步的输出y也会输入 到隐藏神经元。 在训练期间,下一个时间步的标签和 上一个时间步的输出构成交叉熵损失 函数,最终依旧采用BPTT算法进行训 练。 这样的模型可以用作image captioning 也就是看图说话。
每一个时间步计算都是用相同的激活函数和输入连接权以及循环连接权
RNN—Synced seq2seq
a(t) b Wh(t1) Ux(t) h(t) tanh(a(t) ) 2015-ReLU o(t) c Vh(t) y(t) soft max(o(t) )
L({x(1) ,..., x( )},{y(1) ,..., y( )}) 上图是隐藏神经元之间有循环连接,并且每一个

卷积神经网络ppt课件

卷积神经网络ppt课件
6. F6层有84个单元(之所以选这个数字的原因来自于输出层的设计),与C5层 全相连。有10164个可训练参数。如同经典神经网络,F6层计算输入向量 和权重向量之间的点积,再加上一个偏置。然后将其传递给sigmoid函数 产生节点的输出。
16
LetNet-5

比特面编码:将一个灰度图像为8 bit/像素中每个像素的第j个比特抽取出来,就得到一个称为比特平面的二值 图像,于是图像完全可以用一组共8个比特平面来表示,对灰度图像的编码转为对比特平面的二值化方块编码。 为此,将每个比特面分为不重叠的m×n个元素的子块。
23
池化层的误差传递
大部分池化层没有需要训练的参数,只需要将误差传递。以Max Pooling为 例
Layer l-1
Layer l
24
池化层的误差传递
5. C5层是一个卷积层,有120个特征图。每个单元与S4层的全部16个单元的5*5邻 域相连,故C5特征图的大小为1*1:这构成了S4和C5之间的全连接。之所以仍 将C5标示为卷积层而非全连接层,是因为如果LeNet-5的输入变大,而其他的 保持不变,那么此时特征图的维数就会比1*1大。C5层有48120个可训练连接。
17
卷积层的训练
layer l-1
L-1





L-1
层 的
输 出
layer l
L
层 的 误 差
L
层 的 输 入
18
卷积层的误差传播

19
卷积层的误差传播

20
卷积层的误差传播

卷积操作 21
卷积层filter权重梯度的计算

22
卷积层filter权重梯度的计算

深度卷积神经网络ppt课件

深度卷积神经网络ppt课件
简洁、普适的结构模型。 特征提取与分类器可以一起学习。
神经网络简要介绍
人类视觉机理:
David Hubel 和 TorstenWiesel 发现了视觉系 统的信息处理 方式,即视皮 层的分级特性, 获得1981年诺 贝尔生理学或 医学奖。
Low-level sensing
Preprocessing
人工神经网络发展历程
• 发展基础:
数据爆炸:图像数据、文本数据、语音数 据、社交网络数据、科学计算等
计算性能大幅提高
• 为什么有效
– 浅层神经网络可以近似任意函数,为何多层?
深层网络结构中,高层可以综合应用低层信息。 低层关注“局部”,高层关注“全局”、更具有语
义化信息。 为自适应地学习非线性处理过程提供了一种可能的
感知机(Perceptron)
通过查找超平面解决二类分类问题(通过二值函数解决二类分类问题)
公式表达:
f (x) sign(w x)
w x 可看作对输入的空间变换
四种空间变换:维度、缩放、旋转、平移
感知机中的线性映射限制了模型的表达能力,线 性变化的组合仍为线性变化。
神经网络简要介绍
ANN基本构成:感知机(Perceptron)+激活函数
1、计算每层中每个节点的输出
y
m j

h(s
m j
)

h(
wimj
y m1 i
)
h()
为激活函数
2、在输出层计算损失

m j

h' (smj )(Tj

yi m j
)
Tj 为目标参考输出,一般从样本训练中得到。
神经网络简要介绍

深度学习与卷积神经网络基础理论与实例分析ppt课件

深度学习与卷积神经网络基础理论与实例分析ppt课件
11
目录
0 1
概述与背景
人脑视觉机理 与特征表示
0 2
0 3
卷积神经 网络
TensorFlow的 相关介绍
0 4
12
3.1 初探----LeNet框架
3.卷积神经网络-CNN
LeCun 1998年,LeCun提出LeNet,并成功应用于美国手写数字识别。测试误差小于1%。 麻雀虽小,但五脏俱全,卷积层、pooling层、全连接层,这些都是现代CNN网络的基本组件。
第三次兴起(2012年):深度学习的兴 起,一直到现在。
• 发展基础: 数据爆炸:图像数据、文本数据、 语音数据、社交网络数据、科学计 算等 计算性能大幅提高
3
目录
0 1
概述与背景
人脑视觉机理 与特征表示
0 2
0 3
卷积神经 网络
TensorFlow的 相关介绍
0 4
4
2.人脑视觉机理与特征表示
3.2 基本单元-----卷积层
3.卷积神经网络-CNN
如上图是LeNet-5,它的第一个卷积层含有6的feature map,每一个feature map对应一个卷积核,也就
对应提取了图像的一种特征。这里注意最终的feature map并不是做完卷积后的结果,然后还要加一个 非线性激活的操作,一般用ReLU函数,这个过程一般叫做detector stage。
Top Layer: the neurons respond to highly complex, abstract concepts that we would identify as different animals
输出: The network predicts what the

CNN(卷积神经网络) ppt课件

CNN(卷积神经网络)  ppt课件
Notes: 式1:
神经网络的结点计算
前向计算:
反向传播:
神经网络梯度传播(链式法则)
Notes:
目录
Contents
2. 卷积神经网络
2.1. 卷积神经网络和深度学习的历史 2.2. 卷积神经网络的设计和原理 2.3. 卷积神经网络的神经科学基础
卷积神经网络和深度学习的历史
卷积神经网络在深度学习的历史中发挥了重要作用.它们是将研究大脑获得的深 刻理解成功应用于机器学习应用的关键例子,也是第一个表现良好的深度模型之 一.是第一个解决重要商业应用的神经网络,并且仍然是当今深度学习应用的前沿.
目录
Contents
3. CNN实现(tensorflow)
3.1.主流CNN模型介绍 3.2.使用tensorflow实现CNN 3.3.使用tensorflow实现其它模型
使用tensorflow搭建CNN
TensorFlow™ 是一个采用数据流图,用于数值计算的开源软件库。节点 在图中表示数学操作,图中的线则表示在节点间相互联系的多维数据数组, 即张量(tensor)。
深度学习以及卷积神经网络的适用需要大量的有效训练数据,过去的互联网时代为 深度学习提供了大量的训练数据,同时随着几十年来硬件技术的发展,为利用和计算 大量数据提供了条件.所以,近年来,每一次模型算法的更新,都取得了良好的效果, 为深度学习这把火炬增添了燃料.
卷积神经网络和深度学习的历史
卷积神经网络提供了一种方法来专业化神经网络,以处理具有清楚的网 络结构的数据,以及将这样的模型放大到非常大的尺寸(加深层数).这种方法 在二维图像拓扑上的应用是最成功的.同时,卷积神经网络比全连接网络计 算效率更高,使用他们运行多个实验并调整它们的实现和超参数更容易,更 大的网络也更容易训练.

卷积神经网络(纯净版)ppt课件

卷积神经网络(纯净版)ppt课件
Convolutional Neural Networks 卷积神经网络
1
Contents
• 机器学习,神经网络,深度学习之间的关系 • 什么是神经网络 • 梯度下降算法 • 反向传播算法 • 神经网络的训练 • 什么是卷积 • 什么是池化 • LeNet-5 • 其它的工作
2
Convolutional Neural Networks
5
Convolutional Neural Networks
反向传播算法(Back Propagation)
• 反向传播算法是计算多层复合函数的所有变量的偏导数的利器,上面梯度下降的例子中就是求梯度, 简单的理解就是链式法则
根据链式法则,我们求e对a的偏导和e对d的偏导是如下所示:
可以看出,它们都求了e对c的偏导。对于权值动则数万的深度模型 中的神经网络,这样的冗余所导致的计算量是相当大的 BP算法则机智地避开了这种冗余,BP算法是反向(自上往下)来求偏 导的。
• 神经元:
,
• 每个连接都有一个权值
4
图1.一个全连接的神经网络
Convolutional Neural Networks
梯度下降算法
• 梯度下降算法是用来求函数最小值的算法 • 每次沿着梯度的反方向,即函数值下降最快的方向,去
修改值,就能走到函数的最小值附近(之所以是最小值 附近而不是最小值那个点,是因为我们每次移动的步长 不会那么恰到好处,有可能最后一次迭代走远了越过了 最小值那个点)
什么是卷积?
右图展示了卷积的过程,和信号处理的卷积有所区别 卷积降低了网络模型的复杂度(对于很难学习的深层 结构来说,这是非常重要的),减少了权值的数量 黄色部分是卷积核
11
Convolutional Neural Networks

深学习循环神经网络PPT课件

深学习循环神经网络PPT课件
11
Linear Separable Problem
AND
0
1
0
0
x1
x2
y
000
100
010
111
OR
1
1
0 1
111
XOR
1
0
0 1
x1
x2
y
000
101
011
110
12
Single Layer Perceptrons
XOR
1
0
0 1
For XOR problem: 1. introducing one additional neuron in a special way; 2. using differentiable activation function;
最简单的神经网络: Perceptrons
8
Single Layer Perceptrons
Rosenblatt, 1957
x1
x2
w1
y
• ••
w2
b
wM
xM
y f (u) signwi xi b
1 if u 0 y 1 if u 0
1 if u 0 f (u) w1x1 w2x2 b 1 if u 0
吸收了HMM模型的有限序列关联的思想。 神经网络的隐藏层结构能够更好的表达有限的观察值背后的复杂分布。
22
递归神经网络模型
时序扩展
23
Recurrent Neural Network
RNN是一类扩展的人工神经网络,它是为了对序列数据进行建模而产生的。 针对对象:序列数据。例如文本,是字母和词汇的序列;语音,是音节的序列;

《循环神经网络》课件

《循环神经网络》课件
线性激活函数, 通常为logistic函数或tanh函数;为状态-状态权重矩阵;为状态输入权重矩阵;为偏置。式(8-1)和式(8-2)也经常直接写为:
ht f (Uht 1 Wxt b)
(8-3)
5 of 31
8.1 循环神经网络的工作原理
第八章 循环神经网络
2. 循环神经网络的基本工作原理
第八章 循环神经网络
4. 循环神经网络的梯度计算
BPTT算法将循环神经网络看作是一个展开的多层前馈网络, 其中“每一层”对应
循环网络中的“每个时刻”。这样, 循环神经网络就可以按照前馈网络中的反向传播
算法进行参数梯度计算。在“展开”的前馈网络中, 所有层的参数是共享的, 因此参数
的真实梯度是所有“展开层”的参数梯度之和, 其误差反向传播示意图如图所示。
yt-1
yt
g
V=[why]
ht-1
f
U=[wh,h-1]
பைடு நூலகம்
ht
zt
W=[wxh]
xt-1
xt
t-1
t
8 of 31
前向计算示意图
8.1 循环神经网络的工作原理
第八章 循环神经网络
给定计算t时刻的输入_x001A__x001B__x001B_求网络的输出
_x001A__x001B__x001B_。输入_x001A__x001B__x001B_与权
=g (Vf ( Wxt Uf ( Wxt 1 Uf ( Wxt 2 Uf ( Wxt 3 ) bt 2 ) bt 1 ) bt ))
6 of 31
8.1 循环神经网络的工作原理
第八章 循环神经网络
3. 循环神经网络的前向计算

卷积神经网络PPT演示课件

卷积神经网络PPT演示课件
隐含层的每一个神经元都连接10x10个图像区域,也就是说每 一个神经元存在10x10=100个连接权值参数。那如果我们每个神经 元这100个参数是相同,每个神经元用的是同一个卷积核去卷积图 像,这就是权值共享。
权值共享的优点:
一方面,重复单元能够对特征进行 识别,而不考虑它在可视域中的位置。 另一方面,权值 共享使得我们能更有 效的进行特征抽取,因为它极大的减少 了需要学习的自由变量的个数。通过控 制模型的规模,卷积网络对视觉问题可 以具有很好的泛化能力。
• CNNs它利用空间关系减少需要学习的参数数目以提高一般前 向BP算法的训练性能。CNNs作为一个深度学习架构提出是为 了最小化数据的预处理要求。在CNN中,图像的一小部分(局 部感受区域)作为层级结构的最低层的输入,信息再依次传输 到不同的层,每层通过一个数字滤波器去获得观测数据的最显 著的特征。这个方法能够获取对平移、缩放和旋转不变的观测 数据的显著特征,因为图像的局部感受区域允许神经元或者处 理单元可以访问到最基础的特征,例如定向边缘。
卷积神经网络应用
• LeNet-5手写数字识别
C1层: 输入图片大小: 卷积窗大小: 卷积窗种类: 输出特征图数量: 输出特征图大小: 神经元数量: 连接数: 可训练参数:
32*32 5*5 6 6 28*28 4707 122304 156
C1层是一个卷积层,卷积运算一个重
要的特点就是,通过卷积运算,可以使原 信号特征增强,并且降低干扰,由6个特征 图Feature Map构成。特征图中每个神经元 与输入中5*5的邻域相连。特征图的大小为 28*28,这样能防止输入的连接掉到边界之 外。C1有ቤተ መጻሕፍቲ ባይዱ56个可训练参数(每个滤波器 5*5=25个unit参数和一个bias参数,一共6 个滤波器,共(5*5+1)*6=156个参数),共 (5*5+1)*6*(28*28)=122,304个连接。

深学习循环神经网络讲课课件

深学习循环神经网络讲课课件

深度RNN的参数数量庞大,需要大量 的数据进行训练,且训练过程较为复 杂。
深度RNN具有更强的表达能力和泛化 能力,能够处理复杂的序列数据。
深度RNN的训练方法
使用反向传播算法进行参数更 新,通过计算损失函数对每一 层的误差进行传播。
使用优化器如Adam、SGD等 进行参数优化,以最小化损失 函数。
学习到长期的依赖关系。
梯度爆炸
随着时间步的增加,梯度在反向传 播过程中逐渐增大,导致参数更新 不稳定。
解决方案
使用长短时记忆网络(LSTM)或门 控循环单元(GRU)等改进的RNN 结构,解决长期依赖问题。
03
深学习循环神经网络 (Deep RNN)
深度RNN的结构和特点
深度RNN由多个RNN层叠加而成, 能够捕获序列数据的长期依赖关系。
深学习循环神经网络讲课课 件
汇报人:可编辑 2024-01-11
目录
• 引言 • RNN的基本结构和原理 • 深学习循环神经网络(Deep RNN) • 循环神经网络的变体和扩展 • 深度学习循环神经网络的应用实例 • 总结与展望
01
引言
什么是循环神经网络(RNN)
循环神经网络是一种特殊类型的 深度学习模型,适用于处理序列
深度学习技术的突破为RNN的发展和应用提供了强大的支持。
RNN的应用场景
自然语言处理
如机器翻译、文本生成 、情感分析等。
语音识别
将语音信号转化为文字 信息,用于语音助手、
语音搜索等应用。
推荐系统
利用用户行为序列为用 户推荐相关内容或产品

时间序列预测
如股票价格、气候变化 等时间序列数据的预测

02
深度学习循环神经网络在语音识别中具有强大的特征学习和 序列建模能力,能够处理各种口音、语速和背景噪音,提高 语音识别的准确率和鲁棒性。

卷积神经网络ppt课件

卷积神经网络ppt课件
Convolutional Neural Networks 卷积神经网络
ppt课件.
1
Contents
机器学习,神经网络,深度学习之间的关系 什么是神经网络 梯度下降算法 反向传播算法 神经网络的训练 什么是卷积 什么是池化 LeNet-5 其它的工作
ppt课件.
2
Convolutional Neural Networks
ppt课件.
6
Convolutional Neural Networks
梯度下降算法+反向传播算法
ppt课件.
7
Convolutional Neural Networks
ppt课件.
8
Convolutional Neural Networks
ppt课件.
9
Convolutional Neural Networks
ppt课件.
10
Convolutional Neural Networks
什么是卷积?
右图展示了卷积的过程,和信号处理的卷积有所区别
卷积降低了网络模型的复杂度(对于很难学习的深层 结构来说,这是非常重要的),减少了权值的数量
黄色部分是卷积核
ppt课件.
11
Convolutional Neural Networks
图1.一个全连接的神经网络
ppt课件.
4
Convolutional Neural Networks
梯度下降算法
• 梯度下降算法是用来求函数最小值的算法
• 每次沿着梯度的反方向,即函数值下降最快的方向,去 修改值,就能走到函数的最小值附近(之所以是最小值 附近而不是最小值那个点,是因为我们每次移动的步长 不会那么恰到好处,有可能最后一次迭代走远了越过了 最小值那个点)

深度学习史上最详细的卷积循环神经网络 PPT

深度学习史上最详细的卷积循环神经网络 PPT

•ReLU激励层 / ReLU layer
•池化层 / Pooling layer
•全连接层大/家好FC layer
3
卷积神经网络(CNN)介绍
数据输入层
该层要做的处理主要是对原始图像数据进行预处理,其中 包括:
•去均值:把输入数据各个维度都中心化为0
•归一化:幅度归一化到同样的范围
•PCA/白化:用PCA降维;白化是对数据各个特征轴上 的幅度归一化
8
卷积神经网络(CNN)介绍
卷积计算层
大家好
9
卷积层的计算过程
卷积运算的特点:通过卷积运算,可
以使原信号特征增强,并且降低噪音
大家好
10
卷积层的计算过程
同一个图片,经过两个(红色、绿色)不同的filters扫描过后可得到不同 特点的Feature Maps。 每增加一个filter,就意味着你想让网络多抓取一个 特征。
将卷积所得的Feature Map经过ReLU变换(elementwise)后所得到的 output就如下图所展示
大家好
13
卷积神经网络(CNN)介绍
池化层
池化层夹在连续的卷积层中间,用于压缩数据和参数的量,减小过 拟合。简而言之,如果输入是图像的话,那么池化层的作用就是压 缩图像。
池化层用的方法有Max pooling 和 average pooling,而实际用的较多 的是Max pooling
深度学习二
卷积神经网络
讲解人:
导 师:
大家好
1
内容
• 卷积神经网络(CNN)介绍 • LeNet5模型的介绍 • 分析 LeNet5模型相关代码 • LeNet5 模型的训练代码 • 实验结果
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

卷积运算的特点:通过卷积运算,可 以使原信号特征增强,并且降低噪音
卷积层的计算过程
同一个图片,经过两个(红色、绿色)不同的filters扫描过后可得到不 同特点的Feature Maps。 每增加一个filter,就意味着你想让网络多抓取 一个特征。
卷积神经网络(CNN)介绍
激励层
把卷积层输出结果做非线性映射
CNN采用的激励函数一般为ReLU(The Rectified Linear Unit/修正线性 单元),它的特点是收敛快,求梯度简单
卷积神经网络(CNN)介绍
激励层
和前馈神经网络一样,经过线性组合和偏移后,会加入非线性增强模型 的拟合能力。 将卷积所得的Feature Map经过ReLU变换(elementwise)后所得到的 output就如下图所展示
卷积神经网络(CNN)介绍
池化过程
卷积神经网络(CNN)介绍
池化过程
卷积神经网络(CNN)介绍
全连接层
两层之间所有神经元都有权重连接,通常全连接层在卷积神经பைடு நூலகம்络尾部。 也就是跟传统的神经网络神经元的连接方式是一样的:
当抓取到足以用来识别图片的特征后,接下来的就是如何进行分类。 全连接层 (也叫前馈层)就可以用来将最后的输出映射到线性可分的空间。 通常卷积网 络的最后会将末端得到的长方体平摊(flatten)成一个长长的向量,并送入全连接 层配合输出层进行分类。
卷积神经网络(CNN)介绍
End
卷积神经网络(CNN)介绍
数据输入层
该层要做的处理主要是对原始图像数据进行预处理,其中 包括: •去均值:把输入数据各个维度都中心化为0 •归一化:幅度归一化到同样的范围 •PCA/白化:用PCA降维;白化是对数据各个特征轴上 的幅度归一化
卷积神经网络(CNN)介绍
去均值与归一化效果图:
去相关与白化效果图:
卷积神经网络(CNN)介绍
卷积计算层
这一层就是卷积神经网络最重要的一个层次,也是“卷积神经网络” 的名字来源。在这个卷积层,有两个关键操作: • 局部关联。每个神经元看做一个滤波器(filter) • 窗口(receptive field)滑动, filter对局部数据计算
卷积神经网络(CNN)介绍
深度学习二
卷积神经网络
讲解人: 导 师:


• 卷积神经网络(CNN)介绍 • LeNet5模型的介绍 • 分析 LeNet5模型相关代码 • LeNet5 模型的训练代码
• 实验结果
卷积神经网络的层级结构
•数据输入层/ Input layer •卷积计算层/ CONV layer •ReLU激励层 / ReLU layer •池化层 / Pooling layer •全连接层 / FC layer
卷积神经网络(CNN)介绍
池化层
池化层夹在连续的卷积层中间,用于压缩数据和参数的量,减小过 拟合。简而言之,如果输入是图像的话,那么池化层的作用就是压 缩图像。
池化层用的方法有Max pooling 和 average pooling,而实际用的较多 的是Max pooling 对于每个2*2的窗口选出最大的数作为输出矩阵的相应元素的值, 比如输入矩阵第一个2*2窗口中最大的数是6,那么输出矩阵的第一 个元素就是6,如此类推。
卷积计算层
这个带有连接强弱的红色方框就叫 做 filter 或 kernel 或 feature detector。 而filter的范围叫做 filter size,这里所展示的是2x2的 filter size。
卷积神经网络(CNN)介绍
卷积计算层
卷积神经网络(CNN)介绍
卷积计算层
卷积层的计算过程
相关文档
最新文档