一次函数的图像画法ppt课件
合集下载
一次函数的图象ppt课件
3
探究新知
正比例函数的图象
知识点
探究1:画出正比例函数y=2x的图象
怎样画出给定函数的图象?一般可以分为哪几个步骤?
“描点法”,分成“列表、描点、连线”三个步骤.
(1) 列表:
x
… -3
-2
-1
0
1
2
3
…
y=2x
… -6
-4
-2
0
2
4
6
…
4
4
探究新知
探究1:画出正比例函数y=2x的图象
y=-2x
交点的坐标:y=3x 和y=-3x+2.
解:对于函数y=3x,取x=0,得y=0,
得到点(0,0);取x=1,得y=3,
得到点(1,3).
过点(0,0),(1,3)画直线,
就得到函数y=3x的图象,它与坐标
轴的交点是原点(0,0).
y
5
4
3
2
1
y=3x
-3 -2 -1 O1 2 3 x
-1
-2
பைடு நூலகம்-3
-4
2
它与x轴的交点是( 3 ,0),与y轴
的交点是(0,2).
y
5
4
3
2
1
y=3x
-3 -2 -1 O1 2 3 x
-1
-2
-3
-4
y=-3x+2
-5
15
15
探究新知
例3 画出一次函数y=2x-1与y=-0.5x+1的图象,并求出它们与
坐标轴的交点坐标.
y
y=2x-1
解:列表:
x
y=2x-1
y=-0.5x+1
一次函数的图象(一)课件
04
习题与练习
基础习题
基础习题1
已知函数$y = 2x + 1$,求当$x = -2$和$x = 3$时的函数值。
基础习题2
已知函数$y = -3x + 4$,求当$x = 0$和$x = 2$时的函数值。
基础习题3
已知函数$y = x - 5$,求当$y = 0$和$y = 5$时的自变量$x$的值 。
一次函数在数学问题中的应用
代数问题
在解代数方程时,一次函数可以 用来求解线性方程组,简化计算
过程。
几何问题
在解析几何中,一次函数可以用 来描述直线、平面等几何图形,
研究几何性质。
概率统计
在一次函数与概率统计结合的问 题中,一次函数可以用来描述概
率分布、回归分析等。
一次函数与其他数学知识的综合应用
03
一次函数的应用
一次函数在实际生活中的应用
线性规划
在资源分配、成本预算等方面, 一次函数可以用来描述变量之间
的关系,实现最优资源配置。
经济分析
在经济学中,一次函数可以用来描 述商品价格与需求量之间的关系, 预测市场变化。
物理现象
在物理学中,一次函数可以用来描 述匀速直线运动、弹性形变等现象 ,解释物理规律。
一次函数的性质
斜率
决定直线的倾斜程度,$k > 0$ 时,直线从左下到右上倾斜;$k < 0$ 时,直线从左上到右下倾斜 。
截距
决定直线与 $y$ 轴的交点,即当 $x = 0$ 时,$y = b$。
一次函数的表示方法
01
02
03
解析法
使用函数表达式 $y = kx + b$ 表示。
《一次函数的图象》一次函数PPT课件
观察图象可以发现:①直线y=x,y=3x向右
图
像
逐渐
,
上升
分
即y的值随x的增大而增大;
析
②直线
,y=-4x向右逐渐
,
即y的值随yx的 增 1大x而减小. 2
下降
探究新知
在正比例函数y=kx中: 当k>0时,y的值随着x值的增大而增大; 当k<0时,y的值随着x值的增大而减小.
y
y
y=kx(k>0)
解析:因为函数图象经过第一、三象限,所以k-3>0,解得k>3.
(2)若函数图象经过点(2,4),则k_____.
=5
解析:将坐标(2,4)带入函数解析式中,得4=(k-3)·2,解得 k=5.
巩固练习
变式训练
已知正比例函数y=(k+5)x.
(1)若函数图象经过第二、四象限,则k的取值范围是_______.
数 分析:对于函数y=x,当x=-1时,y= ;当x=1时,-1y= ;当x=2时,y= 1;不难发
值 现y的值随x的增大而
.
分
2
增大
析
分析:对于函数y=-4x,当x=-1时,y= ;当x=1时,4y= ;当x=2时,y= ;-不4 难
发现y的值随x的增大-而8
.
减小
探究新知
我们还可以借助函数图象分析此问题.
值的增大,y的值都减小了,其中哪一个减小得更快?
你是如何判断的?
解:y=-4x减小得更快.
在自变量的变化情况相
同的条件下y=-4x的函数来自值的减小量大于y= -1 2
x的
函数值的减小量.
故y=-4x减小得更快.
y 4x
人教版八年级下册数学《函数的图象》一次函数PPT教学课件(第1课时)
新知探究
例1:一个水库的水位在最近 5h 内持续上涨 . 表中记录了这 5h 内6个时间点的水位高度 , 其中t表示时间 , y表示水位高度 . (1)在平面直角坐标系中描出表中数据对应的点 , 这些点 是否在一条直线上 ? 由此你能发现水位变化有什么规律吗 ?
t/h 0 1 2 3 4
5
y/m 3 3.3 3.6 3.9 4.2 4.5
x … 0.5 1 1.5 2 2.5 3 3.5 4 5
y … 12 6 4 3 2.4 2
1.5
6… 1…
新知探究
例3:下图反映的过程是小明从家去食堂吃早餐 , 接着去图书馆读报 , 然后回家 . 其中x 表示时间 , y 表示小明离家的距离 , 小明家、 食堂、图书馆在同一直线上 .
y/km
500 x/分
O 10 20 30 40 50
500 x/分
O 10 20 30 40 50
A
B
C
D
课堂小测
4.1~6个月的婴儿生长发育得非常快 , 他们的体重y(克)和月龄x(月) 之间的关系可以用y=a+700x表示 , 其中a是婴儿出生时的体重 . 若 一个婴儿出生时的体重是4000克 , 请用表格表示在1~6个月内 , 这 个婴儿的体重y与x之间的关系 :
离家500米的地方吃早餐 , 吃早餐用了20分 ; 再用10分赶到
离家1000米的学校参加考试 . 下列图象中 , 能反映这一过
程的是
(D)
y/米
y/米
y/米
y/米
1500
1500
1500
1500
1000
1000
1000
1000
500
500
一次函数的图像ppt课件
取一些点,这些点的坐标分别满足y=-2x或y=-2x+1上
由此可见,一次函数y=kx+b(k、b为常数, k≠0 )可以用直角坐标系
中的一条直线来表示, 这条直线就叫做一次函数y=kx+b的图象.
y=2x
y=-2x
观察图象,它们有什么异同?
你能得出一次函数的图象特点吗?
相同点:两图象都经过原点
不同点:函数y=2x的图象经过第一、三象限,从左向右呈上升状态,
–3
–4
一般地,你能从函数y=k+b的图象上直接看出b
的数值吗?
y = 2x+3
–5
–6
–7
–8
y = -x
5
x
归纳总结
一次函数y=kx+b(k,b是常数,k≠0)的图象与性质
k>0
y随x的增大而增大
k<0
y随x的增大而减小
k相等
图象平行
b相等
图象相交于点(0,b)
例1、在同一坐标系中作出下列函数的图象,并求它们与坐标轴的交点
取x=1,得y=-1,得到点(1,-1)
2
-2 -1
0
1
2
3
x
-1
-2
y=-3x+2
1.设下列两个函数:
当 x =x1时,y = y1; 当x=x2时,y=y2,
用“<”或“>”号填空
①对于函数y=
②对于函数y= -
x,若x2>x1,则y2
x+3,若x2
>
>
y1
x1,则y2<y1
观察一次函数y=kx+b(k≠0)的图象,总结一次函数图象的k,b的
12.2.2一次函数图象的画法PPT课件
平均速度为____km/h.
2021/7/23
9
函数的表示方法:
⑴解析法:
优点:一是简明、全面地概括了变量间的关 系;二是可以通过解析式求出任意一个自变 量的值所对应的函数值.中学阶段研究的函数 主要是用解析法表示的函数.
2021/7/23
10
(2)列表法:就是列出表格来表示两个变量 的函数关系
(2)描点:把自变量的值作为点的横坐标,把对应的函 数值作为点的纵坐标,在平面直角坐标系中描出各点。
(3)连线:按横坐标由小到大的顺序依次连接各点。 注意函数图象要光滑、要出头。
2021/7/23
6
例、 画出函数y=|x|的图象.,修了一会,如果 用横坐标表示时间 t,纵坐标表示路程 s,下列各图能较好地反 映 s 与 t 之间函数关系的是
2021/7/23
1
学习目标: 1.通过函数图象的形成,感受函数与图象的对应关系 。 2.掌握函数图象的基本画法,学会观察图象,从函数 图象中获取信息
学习重点:通过列表、描点、连线画函数图象。 学习难点:函数关系式与函数图象之间的对应关系
2021/7/23
2
y=
下列函数自变量的取值范围是
常常 想起妈 妈和外 婆的一 句话, 妈妈对 外婆说 :“妈 ,我没 有钱让 您享受 好 的 生活, ”外婆 也说: “我也 没有钱 帮你填 补生活 。”恰 好她们 还是一 对母女 , 至 少她们 母女的 血脉牵 连,即 使她们 没有钱 ,依然 可以陪 伴在彼 此的身 边,依 然 可 以温暖 彼此, 正因为 母女没 有钱, 所以她 们只需 要紧紧 握住。 而我听 着觉得 是 很 感动的 话语, 是的, 这对母 女没有 钱,却 可以温 存着这 份亲情 ,对他 们来说 这 是 一句很 心酸的 话语, 更多的 是包含 这对母 女的无 奈。 每当 想起妈 妈受尽 委 屈 时,那 外婆她 知道吗 ?做母 亲的怎 么可以 让女儿 受委屈 呢,只 有自己 的妈妈 在 乎 女儿的 眼泪。 同样的 外婆委 屈时, 妈妈特 别心疼 ,我感 觉到她 们是一 对很深 情 的 母女, 感受着 她们浓 浓的爱 包围彼 此,所 以容易 形成母 女。妈 妈对外 婆是一 份 很 重视的 牵挂, 而外婆 对妈妈 是一份 很厚重 的爱。 外婆经 常说: “你妈 妈和你 对 我 很疼惜 ,从来 也没有 任何脾 气的语 气,其 他的我 也不多 说了。 ”“外 婆,您 真 的 很慈祥 ,养育 了一位 很善良 的女儿 ,而她 今生却 成为生 养我, 照顾我 的妈妈 。 所 以外婆 您和妈 妈的委 屈,却 成为了 我的眼 泪。我 忍受不 住你们 的眼泪 ,毕竟 是 你 们母女 给予了 我最深 的爱, 我很庆 幸成为 你们之 间的母 女关系 与孙儿 的关系 ,
一次函数图象课件
物理问题
利用一次函数图象描述物 理现象,如速度与时间的 关系、力与位移的关系等 。
经济问题
通过一次函数图象分析成 本、收益、利润等经济指 标的变化趋势。
一次函数图象在数学建模中的应用
建立数学模型
利用一次函数图象描述实 际问题的变化趋势,建立 数学模型进行预测和决策 。
参数估计
通过一次函数图象的拟合 ,估计模型参数,提高预 测精度。
一次函数图象ppt课 件
目录
• 一次函数图象的基本概念 • 一次函数图象的性质 • 一次函数图象的应用 • 一次函数图象的变换 • 一次函数图象的解题技巧
01
一次函数图象的基本概念
一次函数图象的定义
01 一次函数图象
一次函数y=kx+b(k≠0)的图象是一条直线。
02 斜率
一次函数图象的斜率为k,反映了函数值y随自变 量x的变化率。
THANKS
感谢观看
利用待定系数法解题
总结立关于待定系数的方程或方程组,通过解方程或方 程组得到待定系数的值,从而确定一次函数的解析式。这种方法能够避免对函数 性质和图像的复杂分析,提高解题效率。
利用方程组法解题
总结词:逻辑严谨
详细描述:根据题目条件建立关于未知数的方程组,通过解方程组得出未知数的值,进一步确定一次函数的解析式。这种方 法需要严谨的逻辑思维和计算能力,能够确保解题的准确性和完整性。
一次函数图象的对称性
总结词
关于y轴对称
详细描述
一次函数图象是关于y轴对称的。这是因为一次函 数的表达式为y=kx+b,其中k是斜率,b是截距 。无论k和b取何值,图象总是关于y轴对称。
03
一次函数图象的应用
利用一次函数图象解决实际问题
一次函数的图象(第1课时)课件
上的点(x,y)都满足关系式y=–2x+5吗?
y
9 8 7 6 5 4 3 2 1
–7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8
x
–1
A
–2
–3
B
–4
–5
–6
–7
答:(1)点B坐标(4,-3) 当x=4时,y=-2x4+5=-3
故(4,-3)满足关系式 y=-2x+5
(2)一次函数y=–2x+5的 图象上的点(x,y)满足关系 式y=–2x+5
北师大版 八年级 上册(第四章)
3.一次函数的图象
(第1课时)
引例
已知一次函数y=2x , <1> 当x= 1 时,y = 2
当x= 2 时,y = 4 <2> 当x= –3时,y = – 6
当x= –4时,y = – 8 <3>以x为点的横坐标,相应的y的值为点 的纵坐标,可得点
(1, 2) ;(2,4) ;(-3,-6);(-4,-8) <4>再找一些满足同样要求的点
<4>作函数的一般步骤应怎样?
答: A:一次函数y=-3x的图象应是一条直线
B:作函数的一般步骤:列表,描点,连线
例 作出一次函数y=-3x的图象
解: x … -2 -1 0 1 2 … y
y=2x+1 … 6 3 0 -3 -6 … 5
4
作函数图象的一般步骤: 列表:找到一些满足条件的点。 描点:以表中各组对应值作为点的坐
1 2 34567 8
A
B
答: (1)当x=3, y=–2x3+5=-1 所对应的点(3,–1)在一次函数 y=–2x+5的图象上。
y
9 8 7 6 5 4 3 2 1
–7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8
x
–1
A
–2
–3
B
–4
–5
–6
–7
答:(1)点B坐标(4,-3) 当x=4时,y=-2x4+5=-3
故(4,-3)满足关系式 y=-2x+5
(2)一次函数y=–2x+5的 图象上的点(x,y)满足关系 式y=–2x+5
北师大版 八年级 上册(第四章)
3.一次函数的图象
(第1课时)
引例
已知一次函数y=2x , <1> 当x= 1 时,y = 2
当x= 2 时,y = 4 <2> 当x= –3时,y = – 6
当x= –4时,y = – 8 <3>以x为点的横坐标,相应的y的值为点 的纵坐标,可得点
(1, 2) ;(2,4) ;(-3,-6);(-4,-8) <4>再找一些满足同样要求的点
<4>作函数的一般步骤应怎样?
答: A:一次函数y=-3x的图象应是一条直线
B:作函数的一般步骤:列表,描点,连线
例 作出一次函数y=-3x的图象
解: x … -2 -1 0 1 2 … y
y=2x+1 … 6 3 0 -3 -6 … 5
4
作函数图象的一般步骤: 列表:找到一些满足条件的点。 描点:以表中各组对应值作为点的坐
1 2 34567 8
A
B
答: (1)当x=3, y=–2x3+5=-1 所对应的点(3,–1)在一次函数 y=–2x+5的图象上。
一次函数的应用课件(共31张PPT)
(0,b)
直线
未知数
方程或方程组
3.一次函数的图象与性质.
图象:一次函数y=kx+b(k≠0)的图象是一条 ,通常叫做直线y=kx+b.
性质:对于一次函数y=kx+b,当 时,y随x的 而 ;当 时,y随x的 而 .
(1)完成下面的表格
(2)你能探索L与n之间的函数解析式吗?这个函数是一次函数吗?试写出L与n的函数解析式。
(3)求n=20时L的值。
14
17
20
北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。假定每台计算机的运费如下表,求
华氏温度y看作x的函数,建立直角坐标系,把表中每一对(x,y)的值作为点的坐标,在直角坐标系中描出表中相应的点,观察这些点是否同在一条直线上.
(2)你能利用(1)中的图象,写出y与x的函数表达式吗?
(3)除了小亮所说的方法外,你能通过分析上表中两个变量间的数量关系,判断它们之间是一次函数关系吗?
(4)你能求出华氏温度为0度(即0˚F )时,摄氏温度是多少度?
10.6 一次函数的应用
1.一次函数图象的画法.
通常过 , 两点画一条 ,就是函数y=kx+b(k≠0)的图象.
2.待定系数法.
先设出表达式中的 ,再根据所给条件,利用 确定这些未知数.这种方法叫待定法.
在例1 的解决过程中,是从现实生活中抽象出数学问题,用数学符号建立函数表达式,表示数学问题中变量之间的数量关系和变化规律.因此函数也是一种重要的数学模型.
梯形个数n
1
2
3
4
5
6
…
所拼得四边形的周长L
直线
未知数
方程或方程组
3.一次函数的图象与性质.
图象:一次函数y=kx+b(k≠0)的图象是一条 ,通常叫做直线y=kx+b.
性质:对于一次函数y=kx+b,当 时,y随x的 而 ;当 时,y随x的 而 .
(1)完成下面的表格
(2)你能探索L与n之间的函数解析式吗?这个函数是一次函数吗?试写出L与n的函数解析式。
(3)求n=20时L的值。
14
17
20
北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。假定每台计算机的运费如下表,求
华氏温度y看作x的函数,建立直角坐标系,把表中每一对(x,y)的值作为点的坐标,在直角坐标系中描出表中相应的点,观察这些点是否同在一条直线上.
(2)你能利用(1)中的图象,写出y与x的函数表达式吗?
(3)除了小亮所说的方法外,你能通过分析上表中两个变量间的数量关系,判断它们之间是一次函数关系吗?
(4)你能求出华氏温度为0度(即0˚F )时,摄氏温度是多少度?
10.6 一次函数的应用
1.一次函数图象的画法.
通常过 , 两点画一条 ,就是函数y=kx+b(k≠0)的图象.
2.待定系数法.
先设出表达式中的 ,再根据所给条件,利用 确定这些未知数.这种方法叫待定法.
在例1 的解决过程中,是从现实生活中抽象出数学问题,用数学符号建立函数表达式,表示数学问题中变量之间的数量关系和变化规律.因此函数也是一种重要的数学模型.
梯形个数n
1
2
3
4
5
6
…
所拼得四边形的周长L
一次函数的图象ppt
早期应用
一次函数图象在数学和实际生活中有着广泛的应用,如解决工程问题、优化设计 问题等。
发展历程
从17世纪牛顿和莱布尼兹的微积分学开始,逐渐发展出了一次函数的图象和性质 的理论体系。
02
一次函数图象的作图方法
直接描点法
总结词
通过直接将函数解析式中自变量与因变量的对应值在坐标系 中标记,得到函数图像。
应用案例2
02
在金融中,一次函数图象可以用于分析股票价格与某个自变量
之间的关系,从而制定更好的投资策略
应用案例3
03
在交通中,一次函数图象可以用于分析车流量与某个自变量之
间的关系,从而制定更好的交通规划方案
05
一次函数图象的总结与展望
一次函数图象的成就与不足
成就
一次函数的图象在历史上对于数学和科学 的发展起到了重要的作用,它直观地表示 了函数的变化趋势,有助于理解函数的性 质和变化规律。
可视化
现在有很多软件工具可以帮助人们更方便地绘制一次函数的 图象,例如Python、MATLAB等,人们可以通过这些工具更 方便地探索和分析函数的变化。
一次函数图象在未来的应用前景
教育领域
一次函数图象在教育领域中有着广泛的应用,它可以帮助学生们更好地理解函数的性质和 变化规律,进而提高数学学习的效果。
示例1
通过观察图象,利用一次函数图 象交点求解方程 $y = x + 3$ 与 $y = -x + 6$ 的解
示例2
通过观察图象,利用一次函数图象 交点求解方程 $y = 3x$ 与 $y = 2x + 10$ 的解
一次函数图象的优化方案
优化方案的内容
调整参数,使得一次函数的图 象更易于观察和解方程
一次函数图象在数学和实际生活中有着广泛的应用,如解决工程问题、优化设计 问题等。
发展历程
从17世纪牛顿和莱布尼兹的微积分学开始,逐渐发展出了一次函数的图象和性质 的理论体系。
02
一次函数图象的作图方法
直接描点法
总结词
通过直接将函数解析式中自变量与因变量的对应值在坐标系 中标记,得到函数图像。
应用案例2
02
在金融中,一次函数图象可以用于分析股票价格与某个自变量
之间的关系,从而制定更好的投资策略
应用案例3
03
在交通中,一次函数图象可以用于分析车流量与某个自变量之
间的关系,从而制定更好的交通规划方案
05
一次函数图象的总结与展望
一次函数图象的成就与不足
成就
一次函数的图象在历史上对于数学和科学 的发展起到了重要的作用,它直观地表示 了函数的变化趋势,有助于理解函数的性 质和变化规律。
可视化
现在有很多软件工具可以帮助人们更方便地绘制一次函数的 图象,例如Python、MATLAB等,人们可以通过这些工具更 方便地探索和分析函数的变化。
一次函数图象在未来的应用前景
教育领域
一次函数图象在教育领域中有着广泛的应用,它可以帮助学生们更好地理解函数的性质和 变化规律,进而提高数学学习的效果。
示例1
通过观察图象,利用一次函数图 象交点求解方程 $y = x + 3$ 与 $y = -x + 6$ 的解
示例2
通过观察图象,利用一次函数图象 交点求解方程 $y = 3x$ 与 $y = 2x + 10$ 的解
一次函数图象的优化方案
优化方案的内容
调整参数,使得一次函数的图 象更易于观察和解方程
初中数学北师大八年级上册一次函数-一次函数的图像PPT
0
1
2
列表
1 –1 –3
y 5
01 23 4 5
一次函数的图象 是什么?401 23 4 5 01 23 4 5
01 23 4 5 01 23 4 5
3 01 23 4 5
2
描点
1
、
-5 -4 -3 -2 -1 o 1 2 3 4 5
x
连线
-1 -2
01 23 4 5 01 23 4 5
-3
几何画板:一次函数图象的画法.gsp
交于点 (0,2),即它可以看作由直线y=x向 上 平移 2 个单位长度而得到.函数y=x-2的图象与y轴交于点
,即它(可0,以-2看作由直线y=x向____ 平移____下个单位长 度2而得到).
比较三个函数的解析式, 自变量系数k 相同,
它们的图象的位置关系是 平行
.
要点归纳
一次函数y=kx+b(k≠0)的图象经过点(0,b),
可以由正比例函数y=kx的图象平移 b 个单位长度得到
(当b>0时,向 上平移;当b<0时,向 下平移).
针对函数 y =kx+b,大家想研 究什么?应该怎样研究?
讲授新课
一 一次函数的图象的画法
在上一课的学习中,我们学会了正 比例函数图象的画法,分为三个步骤.
①列表
②描点
③连线
那么你能用同样的方法画出一 次函数的图象吗?
例1:画出一次函数y=-2x+1的图象
x
–2 –1
y=-2x+1 5
3
y=-2x+1
学习目标
1.了解一次函数的图象与性质.(重点) 2.能灵活运用一次函数的图象与性质解答有 关问题.(难点)
一次函数的图象课件ppt
一次函数与其他数学知识的结合应用
一次函数与二次函数的结合
在解决某些数学问题时,可能需要将一次函数和二次函数结合起来,例如求函数 的极值点。
一次函数与微积分的结合
在解决某些物理问题时,可能需要将一次函数和微积分结合起来,例如求物体的 运动轨迹。
04
CATALOGUE
一次函数的变体
一次函数的平移
01
关于y轴对称
一次函数y=kx+b关于y轴对称的函数 为y=kx+b。
05
CATALOGUE
习题与解答
习题
题目1
已知一次函数 y = kx + b (k ≠ 0),若 k > 0,b > 0,则该函数的图象经过哪些象限?
题目2
已知一次函数 y = kx + b (k ≠ 0),若 k < 0,b > 0,则该函数的图象经过哪些象限?
02
CATALOGUE
一次函数的图象
一次函数图象的形状
一次函数图象是一条直线
一次函数的一般形式为y=kx+b,其中k和b为常数,当k≠0时,函数的图象是 一条直线。
斜率与函数图象的关系
斜率k决定了直线图象的倾斜程度,当k>0时,图象从左下到右上倾斜;当k<0 时,图象从左上到右下倾斜。
一次函数图象的特点
确定函数的参数
根据已知条件,求出一次函数表达式中的参数k和 b。
检验作图结果
通过代入特殊值的方法检验作图结果的正确性。
03
CATALOGUE
一次函数的应用
一次函数在实际生活中的应用
速度与时间的关系
一次函数可以表示速度与时间的 关系,例如汽车的速度随时间的
北师大版八年级数学上册课件:4.3.1一次函数图象(24张PPT)
只要将点的横纵坐标分别代入关系式 中,看是否满足关系式,若满足关系式, 则该点在直线上,否则不在直线上。
当堂检测
1.下列哪些点在一次函数y=2x-3的图像 上?(2,3),(2,1),(0,3),(3,0)
(2,1)
2.做出 一次函数
y=2x+1 的图象。
当堂检测
3.若一次函数y=-x+b的图象经过 点(0,-3),求b的值. 4.若函数y=-2mx-(m2-9)的图象 经过原点,求m的值.
正比例函数的图象是一条经过原点的直线,一次函数y=kx+b的图象是一条经过(0,b),( ,0)的直线。
只要将点的横纵坐标分别代入关系式中,看是否满足关系式,若满足关系式,则该点在直线上,否则不在直线上。
所有的一次函数的图象都是一条直线。
3、理解一次函数的表达式与图象之间的对应关系。
每日一练
1.已知直线y= (k+1)x+1-2k,若直线与y
小组合作
2.既然我们得出一次函数y=kx+b的 图象是一条直线.那么在画一次函 数图象时有没有什么简单的方法呢?
两点法
小组合作
3.作出y=-x+2的图像(两点法)
描点,连线
教师精讲
1.画函数图像的一般步骤 (1)列表,(2)描点,(3)连线 2.一次函数的图象及画法注意事 项: (1).所有一次函数的图象都是 一条直线,通常我们把一次函数 y=kx+b的图象叫做直线y=kx+b
教师精讲
3、理解一次函数的表达式与图象之间的对应关系。 列表法,图像法,解析式法
(2).一次函数图象的简单画法: 如果正比例函数y=kx的图象经过点(-1,3),那么k=_____
1、满足关系式y= -2x+5的x,y所对应的点(x,y)都在一次函数的图象上吗? (0,b)和(- ,0)。
当堂检测
1.下列哪些点在一次函数y=2x-3的图像 上?(2,3),(2,1),(0,3),(3,0)
(2,1)
2.做出 一次函数
y=2x+1 的图象。
当堂检测
3.若一次函数y=-x+b的图象经过 点(0,-3),求b的值. 4.若函数y=-2mx-(m2-9)的图象 经过原点,求m的值.
正比例函数的图象是一条经过原点的直线,一次函数y=kx+b的图象是一条经过(0,b),( ,0)的直线。
只要将点的横纵坐标分别代入关系式中,看是否满足关系式,若满足关系式,则该点在直线上,否则不在直线上。
所有的一次函数的图象都是一条直线。
3、理解一次函数的表达式与图象之间的对应关系。
每日一练
1.已知直线y= (k+1)x+1-2k,若直线与y
小组合作
2.既然我们得出一次函数y=kx+b的 图象是一条直线.那么在画一次函 数图象时有没有什么简单的方法呢?
两点法
小组合作
3.作出y=-x+2的图像(两点法)
描点,连线
教师精讲
1.画函数图像的一般步骤 (1)列表,(2)描点,(3)连线 2.一次函数的图象及画法注意事 项: (1).所有一次函数的图象都是 一条直线,通常我们把一次函数 y=kx+b的图象叫做直线y=kx+b
教师精讲
3、理解一次函数的表达式与图象之间的对应关系。 列表法,图像法,解析式法
(2).一次函数图象的简单画法: 如果正比例函数y=kx的图象经过点(-1,3),那么k=_____
1、满足关系式y= -2x+5的x,y所对应的点(x,y)都在一次函数的图象上吗? (0,b)和(- ,0)。
北师大版八年级数学上册:4.3 一次函数的图象 课件(共36张PPT)
课堂小结 3、一次函数 y kx b 的图象:
一次函数的图象是一条直线。
4、一次函数 y kx b 图象的画法: 用两点法画一次函数的图象。
C
4x
y
O
y
x
5
•
4
3•
2
•1
-2
-1
•
0
-1 1
2
3
x
例1:画出一次函数y=2x+1的图象
⑴先列表:
自变量的值和函数的对应值具有代表性
x
… -2 -1 0 1 2 …
y=2x+1 … -3 -1 1 3 5 …
(2) 描点
将自变量的值和对应的函数值分别作为、 纵坐标,在坐标系中描出表格中的各点;
课堂小结
1、函数图象的定义:
把一个函数的自变量x与对应的因变量y的值 分别作为横坐标和纵坐标,在直角坐标系内描出 它的对应点,所得这些点组成的图形叫做该函数 的图象。
课堂小结
2、作函数图象的一般步骤:
(1)列表:选择具有代表性的自变量的值和函数的 对应值列成表格; (2)描点:将自变量的值作为横坐标,对应的函数 值作为纵坐标,在坐标系中描出表格中的各点; (3)连线:按自变量从小到大的顺序,把所有点用 平滑的曲线连接起来。
b
.
第 4 题. 如果函数 y x b 的图象经过点 P(0,1) ,则它经过 x 轴上的点的坐标
为
.
第 5 题. 若一次函数 y mx (4m 4) 的图象过原点,则 m 的值为
.
第 6 题. 若三角形的一边长为 6,这边上的高为 h式; (2)画出此函数的图象.
一次函数的图象
复习旧知
若两个变量x ,y间的关系式可以 表示成__y_=_kx_+_b___(k,b为_常__数__且k ____0_)的形式,则称y是x的一次函数 (x为_自_变__量__,y为_因_变_ 量__ ).特别地,当 b=__0_时,(即 y=kx)称y是x的正比例 函数.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y=2x+1 … -3 -1 1 3 5 …
y 描点: 5
4 3 连线: 2
1
-4 -3 -2 -1O-1
-2 -3 -4
12345 x
一次函数、正比例函数图象的特征:
一次函数y=kx+b(k≠0)的图象是一条 直线。而且正比例函数y=kx (k≠0)的图 象是经过原点(0,0)(1,k)的一条 直线。
y
(0, 5) (5/2,0)
A 6
5 4 3 2 1
B 0 1 2 3 4
x
课堂练习
1.下列各点中,哪些点在函数y=4x+1的图象上? 哪些点不在函数y=4x+1的图象上?为什么?
(2,9) (5,1) (-1,-3) (-0.5,-1)
2.若函数y=2x-3 的图象经过点(1,a) ,(b, 2)
一次函数、正比例图象的画法:
只要在图象上找到两点的坐标,在 坐标系中描出这两点,再经过这两点画 直线即可。一次函数是(0,b)(-b/k,0)
一次函数、正比例例2图分象别的画作法出:一次函数y=3x与
只要在图象y上=-找3到x两+2点的的图坐象标,,并在求坐出标它系们中描与
出这两点,再经坐过标这轴两交点画点直的线坐即标可.。
y=x
01
y=x+2 2 0
5
4
x
02
3
y=x-2 -2 0
2
2、观察与比较
1
议一议:正比例函数y=x与一 次函数y=x+2 、y=x-2图象
有什么异同点.
-3 -2 -1 0 1 -1
-2
-3
直线的平行及平移
-4
y=x+2 y=x
y=x-2
23 x
1、请大家在同一坐标系内作出下列函数
y=x, y=x+2,y=x-已知M(-3, 4)在一次函数y=ax+1的图象上, 则a的值是
4.若一次函数的图像经过点(0,1),(1,2), 则此函数关系式是______________
5、已知一次函数的图像在平面直角坐标系中 如图所示,求该一次函数的解析式。
解:设该一次函数的解析式为:y=kx+b
1.什么是一次函数?什么是正比例函数?
如果y=kx+b(k,b是常数,k≠0),那么y 叫做x的函数。特别的,当b=0时, y=kx+b就成为y=kx,这时,y叫做x 的正比例函数。
2、画函数图象的一般步骤:
(1)列表 (2)描点 (3)连线
例1 如何作出y=2x的图象?
解:列表:
(-2,-4) (-1,-2) (0,0) (1,2) (2,4)
3.直线y=3x+5平行的直线y=kx+b,则要求( )
A.k=3,b=5 C.k=3,b≠5
B. k=3 D. b=5
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
因为图像经过点(-2,0),(0,-2),
y
所以0,=-把2k(+b-2,0),(0,-2)代入y=kx+b可得3
-2=b
2
解之得, k=-1 b=-2
1
所以,该一次函数的解析式 为y=-x-2。
-3 -2 -1 0 1 2 3 x -1
-2
-3
课堂练习
课堂练习
1、已知函数y=-8x+16,求该函数图象与y轴的交点是 (0 , 16) , 与x轴的交点是 (2 , 0) ;
x
… -2 -1 0 1 2 …
y
… -4 -2 0 2 4 …
y 描点: 5
4 3 连线: 2 1
-4 -3 -2 -1O-1
-2
-3 -4
12345 x
说一说正比例函数的图象形状
正比例函数y=kx (k≠0)的图象是经过 原点(0、0)的一条直线。
画正比例函数y=kx (k≠0)的图象时,只要 确定2个点的位置,这两个点尽量找两个 坐标都是整数的点。
y 5
y=3x
y y=-3x+2 5
4
4
3
3 (1,3)
2 (0, 2)
2
1
1
-4 -3 -2 -1O-1
12345
-4 x
-3
-2
-1O-1
-2
12345 (2/3, 0)
x
-2
-3
-3
-4
-4
课堂练习
作出一次函数y=-2x+5的图象。
x
… 0 5/2 …
列表: y=-2x+5 … 5 0 …
y=-2x+5
y
直线的平行规律
K相等
直线的平移规律
左加右减,上加下减
5 4 3 2 1
-3 -2 -1 0 1 -1 -2 -3 -4
y=x+2 y=x
y=x-2
23 x
冲向胜利的彼岸
1.直线 y=2x向上平移3个单位得到直线______
2.正比例函数的图象与直线y=-1.5x+4平行,则 该正比例函数的关系式为______
2、已知函数 y=-2x+6,则它的图象形状是 一条直线 , 图象与坐标轴围成的三角形面积是 9 .
3、已知函数y=kx-2过点(1,1),则k= 3 . 4、已知点(a,4)在直线y=x-2上,则a= 6 .
1、请大家在同一坐标系内作出下列函数
y=x, y=x+2,y=x-2的图象。
y
x
01
x
0 -2
请在直角坐标系中作出函数 y 1 x 的图像。 3
解: y 1 x
3
x
… 0 3…
y1x … 0 1 …
3
(0,0) (3,1)
y
3
y1x 3
2
1
0 1234
x
例2 如何作出y=2x+1的图象? 解:列表:
(-2,-3) (-1,-1) (0,1) (1,3) (2,5)
x
… -2 -1 0 1 2 …