博弈论各章节课后习题答案 (3)

合集下载

博弈论各章节课后习题答案 (3)

博弈论各章节课后习题答案 (3)

E( π 2 ) = θq2( aH − q1H − q2 − c2 ) + (1−θ )q2( aL − q1L − q2 − c2 )
由此得:
1 q2 = 2 [θaH + (1−θ )aL − (θq1H + (1−θ )q1L ) − c2 ]
在均衡时,q1,q2 应满足
1
⎪⎪⎧q1
=
1 2
+ c1
− 2c2
]
企业 2 的策略为:
q*2
=
1 3
[
θaH
+ (1− θ
)aL
+ c1
− 2c2
]
因此博弈的贝叶斯纳什均衡是:当 a=aH 时,企业 1 生产 q1*H ;当 a=aL 时,企业 1 生产 q1*L ,
企业 2 生产 q*2 。
5. 在下面的静态贝叶斯博弈中,求出所有的纯策略贝叶斯纳什均衡。 (1) 自然决定收益情况是由博弈 1 给出,还是由博弈 2 给出,选择每一博弈的概率相等; (2) 局中人 1 了解到自然选择了博弈 1,还是选择了博弈 2,但局中人 2 不知道; (3) 局中人 1 选择行动 T 或 B,同时局中人 2 选择行动 L 或 R; (4) 根据自然选择的博弈,两局中人得到相应的收益。
的定价,qi是企业i的需求量。假设企业生产没有固定成本,并且边际成本为常数c,c<a.假定博弃 重复无穷多次,每次的价格都立即被观察到,企业使用触发策略。求使垄断价格可以作为完美 均衡结果出现的最低贴现因子δ,并解释δ与n的关系。
分以下几个步骤进行。
1)计算纳什均衡 当企业 i 选择价格 pi,其它企业选择价格 pj(j=1,2,…,n,j≠i)时,企业 i 的利润为: πi = (pi − c)qi = (pi − c)(a − pi + b(p1 + p2 + ⋯ + pi−1 + pi+1 + ⋯ + pn )) ,i=1,2,…,n

博弈论课后习题

博弈论课后习题

第一章导论1、什么是博弈?博弈论的主要研究内容是什么?2、设定一个博弈模型必须确定哪几个方面?3、举出烟草、餐饮、股市、房地产、广告、电视等行业的竞争中策略相互依存的例子。

4、“囚徒的困境”的内在根源是什么?举出现实中囚徒的困境的具体例子。

5、博弈有哪些分类方法,有哪些主要的类型?6、你正在考虑是否投资100万元开设一家饭店。

假设情况是这样的:你决定开,则0.35的概率你讲收益300万元(包括投资),而0.65的概率你将全部亏损;如果你不开,则你能保住本钱但也不会有利润,请你(a)用得益矩阵和扩展形式表示该博弈;(b)如果你是风险中性的,你会怎样选择?(c)如果你是风险规避的,且期望得益的折扣系数为0.9,你的策略选择是什么?(d)如果你是风险偏好的,期望得益折算系数为1.2,你的选择又是什么?7、一逃犯从关押他的监狱中逃走,一看守奉命追捕。

如果逃犯逃跑有两条可选择的路线,看守只要追捕方向正确就一定能抓住逃犯。

逃犯逃脱可以少坐10年牢,但一旦被抓住则要加刑10年;看守抓住逃犯能得到1000元奖金。

请分别用得益矩阵和扩展形式表示该博弈,并作简单分析。

第二章完全信息静态博弈1、上策均衡、严格下策反复消去法和纳什均衡相互之间的关系是什么?2、为什么说纳什均衡是博弈分析中最重要的概念?3、找出现实经济或生活中可以用帕累托上策均衡、风险上策均衡分析的例子。

4、多重纳什均衡是否会影响纳什均衡的一致预测性质,对博弈分析有什么不利影响?5、下面的得益矩阵表示两博弈方之间的一个静态博弈。

该博弈有没有纯策略纳什均衡?博弈的结果是什么?6、求出下图中得益矩阵所表示的博弈中的混合策略纳什均衡。

7、博弈方1和2就如何分10000元进行讨价还价。

假设确定了以下规则:双方同时提出自己要求的数额S1和S2,,如果s1+s2≤10000,则两博弈方的要求都得到满足,即分别得到s1和s2,但如果是s1+s2>10000,则该笔钱就被没收。

范里安-微观经济学现代观点(第7版)-28博弈论(含习题解答)

范里安-微观经济学现代观点(第7版)-28博弈论(含习题解答)

Chapter 28: Game TheoryIntermediate Microeconomics:A Modern Approach (7th Edition)Hal R. Varian(University of California at Berkeley)第28章:博弈论(含习题解答)含习题解答)中级微观经济学:现代方法(第7版)范里安著(加州大学伯克利)曹乾译(东南大学caoqianseu@)简短说明:翻译此书的原因是教学的需要,当然也因为对现行中文翻译版教材的不满。

市场中的翻译版翻译生硬错误百出。

此次翻译的错误是微不足道的,但仍欢迎指出。

仅供教学和学习参考。

28博弈理论我们在上一章阐述的寡头理论,是企业间策略性互动的经典经济理论解释。

但这只是冰山一角。

经济行为人(agents)的策略性互动有多种方式,经济学家借助博弈理论(game theory)这个工具已研究了很多种策略性互动的行为。

博弈理论关注的是策略性互动的一般分析。

人们可使用博弈理论研究室内游戏(parlor games)、政治协商和经济行为(一)。

在本章,我们将简要分析这一迷人的学科,目的是让你感受一下它是如何运行的,以及让你初步知道如何使用博弈理论分析寡头市场中的经济行为。

28.1博弈的收益矩阵策略性互动可能涉及很多选手和很多策略,但是我们仅限于分析两个选手之间的博弈,而且限于分析策略的数量有限的情形。

这样做的好处是可以用收益矩阵(payoff matrix)描述博弈。

最好举例进行分析。

假设两人玩一种简单的游戏。

选手A在纸上写出“上”或“下”。

与此同时,选手B独立地写出“左”或“右”。

在两人写好后,经过分析,将他们的收益标记于表28.1中。

若A 选上且B选左,我们看矩阵的左上角的小方格。

在该小方格中,A的收益是第一个数,B 的收益是第二个数。

类似地,如果A选下B选右,则A得到收益为1,B得到的收益为0.表28.1:一个博弈的收益矩阵选手A有两个策略:上或下。

博弈论与信息经济学-部分课后习题答案

博弈论与信息经济学-部分课后习题答案

博弈论与信息经济学-部分课后习题答案张1.5张1.6假定消费者从价格低的厂商购买产品,如果两企业价格相同,就平分市场,如果企业i的价格高于另一企业,则企业i的需求量为0,反之,其它企业的需求量为0。

因此,企业i的需求函数由下式给出:从上述需求函数的可以看出,企业i绝不会将其价格定得高于其它企业;由于对称性,其它企业也不会将价格定的高于企业i,因此,博弈的均衡结果只可能是每家企业的价格都相同,即pi=pj。

但是如果pi=pj>c那么每家企业的利润,因此,企业i只要将其价格略微低于其它企业就将获得整个市场的需求,而且利润也会上升至,。

同样,其它企业也会采取相同的策略,如果此下去,直到每家厂商都不会选择降价策略,此时的均衡结果只可能是pi=pj=c。

此时,企业i的需求函数为。

张1.8张2.3张2.4张2.9(1)由于古诺博弈的阶段均衡是,此时的利润为;若各家企业合作垄断市场,则此时的最优产量是,可求得,此时的利润为,此时若有企业i背叛,其产量就是,其收益为。

下面我们来看重复博弈下的古诺博弈。

在这个博弈中,有两个博弈路径,我们分别进行讨论。

首先,在惩罚路径上,由于每个阶段参与企业选择的都是最优的产量,因此能够获得最优的收益,因此是均衡的。

其次,在合作路径上,只要合作的收益大于背叛的收益,则均衡也是可以实现的,这要求:,解得。

(2)伯川德博弈的阶段均衡是,此时参与者的利润均为0。

若各企业合作,则此时的最优价格是:,此时,则,利润为。

而若有企业i背叛,则其选择价格,其产量为Q,利润为。

下面我们来看重复博弈下的伯川德博弈,在这个博弈中,也有两个博弈路径,我们分别讨论如下:首先在惩罚路径上,由于每个阶段的企业选择都是眼前最优,因此,它能够实现均衡。

其次,在合作路径上,只要合作的收益大于背叛的收益,则均衡也是可以实现的,这就要求:,求得。

(3)伯川德博弈中的最低贴现因子小于古诺博弈中的贴现因子的原因在于其惩罚要严重的多,因此其对于耐心的要求也就要相对较小。

博弈论 课后习题答案

博弈论 课后习题答案

博弈论课后习题答案第四部分课后习题答案1. 参考答案:括号中的第一个数字代表乙的得益,第二个数字代表甲的得益,所以a表示乙的得益,而b表示甲的得益。

在第三阶段,如果,则乙会选择不打官司。

这时逆推回第二阶段,甲会选择a,0不分,因为分的得益2小于不分的得益4。

再逆推回第一阶段,乙肯定会选择不借,因为借的最终得益0比不借的最终得益1小。

在第三阶段,如果,则乙轮到选择的时候会选择打官司,此时双方得益是(a,b)。

a,0逆推回第二阶段,如果,则甲在第二阶段仍然选择不分,这时双方得益为(a,b)。

b,2在这种情况下再逆推回第一阶段,那么当时乙会选择不借,双方得益(1,0),当a,1时乙肯定会选择借,最后双方得益为(a,b)。

在第二阶段如果,则甲会选择a,1b,2分,此时双方得益为(2,2)。

再逆推回第一阶段,乙肯定会选择借,因为借的得益2大于不借的得益1,最后双方的得益(2,2)。

根据上述分析我们可以看出,该博弈比较明确可以预测的结果有这样几种情况:(1),此时本博弈的结果是乙在第一阶段不愿意借给对方,结束博弈,双方a,0得益(1,0),不管这时候b的值是多少;(2),此时博弈的结果仍然012,,,ab且是乙在第一阶段选择不借,结束博弈,双方得益(1,0);(3),此时博ab,,12且弈的结果是乙在第一阶段选择借,甲在第二阶段选择不分,乙在第三阶段选择打,最后结果是双方得益(a,b);(4),此时乙在第一阶段会选择借,甲在第二阶段会选择分,ab,,02且双方得益(2,2)。

要本博弈的“威胁”,即“打”是可信的,条件是。

要本博弈的“承诺”,即a,0“分”是可信的,条件是且。

a,0b,2注意上面的讨论中没有考虑a=0、a=1、b=2的几种情况,因为这些时候博弈方的选择很难用理论方法确定和预测。

不过最终的结果并不会超出上面给出的范围。

2. 参考答案:静态贝叶斯博弈中博弈方的一个策略是他们针对自己各种可能的类型如何作相应的完整计划。

大学mooc博弈论(首师大)满分章节测验答案

大学mooc博弈论(首师大)满分章节测验答案

第一讲认识博弈论1单选(10分)博弈论的基本要素以下内容,除了()。

A.策略与策略集B.均衡C.支付与支付函数D.局中人正确答案:B你选对了2单选(10分)博弈论的基本假设是强调()。

A.均衡状态B.利益最大化C.个人理性D.集体理性正确答案:C你选对了3单选(10分)哪种表述模型更适合表示二人博弈()。

A.特征函数式B.标准式C.扩展式D.以上都不适合正确答案:B你选对了4单选(10分)根据人们行动为相互作用时,参与人能否达成一个具有约束力的协议,可将博弈分为( )。

A.静态博弈与动态博弈B.常和博弈与非常和博弈C.完全信息博弈与不完全信息博弈D.合作博弈与非合作博弈正确答案:D你选对了5单选(10分)“要想在现代社会做一个有文化的人,你必须对博弈论有一个大致了解”出自哪位诺贝尔经济学奖获得者的名言( )。

A.1994年诺贝尔经济学奖获得者John·NashB.2012年诺贝尔经济学奖获得者Lloyd S. ShapleyC.2005年诺贝尔经济学奖获得者Robert·AumannD.1970年诺贝尔经济学奖获得者Paul A. Samuelson正确答案:D你选对了6多选(15分)博弈论的研究特点包括()。

A.博弈论存在信息的对称性B.博弈论涉及的决策者至少为两人C.博弈论存在信息的不对称性D.博弈论需要考虑其他决策者的决策对自身利益的影响正确答案:B、C、D你选对了7多选(15分)“囚徒困境”反映了()。

A.“看不见的手”是有力的,但不是万能的B.个人理性通过市场机制导致社会福利最优的结论并不总是成立的C.个体理性与集体理性的冲突D.以自我利益为目标的“理性”行为,最终导致了两个囚徒得到相对较劣的收益正确答案:A、B、C、D你选对了8判断(5分)博弈论是一种以数学为基础、研究发生对抗与冲突时如何选择最优策略的一门学问。

正确答案:√你选对了9判断(5分)博弈论是单向的理性决策。

博弈论吉本斯第三章习题答案

博弈论吉本斯第三章习题答案

(1 +
tp

x
− x
c

c x
>
(−1) ×
x
− x
c
+
c x
(1) 与(2)联立,
=〉 tp
>
2c x−c
−2
=
p ---------------------(2)
c = p 带入(1)
仅供参考!!
-2-
E-mail:beckham.23@
Gibbons《博弈论基础》第三章习题解答(部分)
2c − 2x + 2c = cx − c2 c2 + (4 − x)c − 2x = 0
c = −4 + x + 16 + x2 2
x − c = 2x + 4 − x − 16 + x2 = 1 + 4 − 16 + x2
x
2x
2
2x
其中,4 − 16 + x2 = 1 ×
1
= 1×
1
2x
2 4 + 16 + x2 x
3.5
假设参与者 1 的私人信息为 tc ,参与者 2 的私人信息为 tp 。 tc ,tp ∈ (0, x)
正面
反面
正面
1+ tc , -1 -1, 1+ t p
-1, 1
1, -1
反面
当 tc > c 时,参与者 1 选正面;当 t p > p 时,参与者 2 选择反面
因此,参与者 1 选择正面的概率为 x − c ,选背面的概率为 c ;
2
4+ x

“博弈论”习题及参考答案

“博弈论”习题及参考答案

《博弈论》习题一、单项选择题1.博弈论中,局中人从一个博弈中得到的结果常被称为()。

A. 效用B. 支付C. 决策D. 利润2.博弈中通常包括下面的内容,除了()。

A.局中人B.占优战略均衡C.策略D.支付3.在具有占优战略均衡的囚徒困境博弈中()。

A.只有一个囚徒会坦白B.两个囚徒都没有坦白C.两个囚徒都会坦白D.任何坦白都被法庭否决了4.在多次重复的双头博弈中,每一个博弈者努力()。

A.使行业的总利润达到最大B.使另一个博弈者的利润最小C.使其市场份额最大D.使其利润最大5.一个博弈中,直接决定局中人支付的因素是()。

A. 策略组合B. 策略C. 信息D. 行动6.对博弈中的每一个博弈者而言,无论对手作何选择,其总是拥有惟一最佳行为,此时的博弈具有()。

A.囚徒困境式的均衡B.一报还一报的均衡C.占优策略均衡D.激发战略均衡7.如果另一个博弈者在前一期合作,博弈者就在现期合作;但如果另一个博弈者在前一期违约,博弈者在现期也违约的策略称为()。

A.一报还一报的策略B.激发策略C.双头策略D.主导企业策略8.在囚徒困境的博弈中,合作策略会导致()。

A.博弈双方都获胜B.博弈双方都失败C.使得先采取行动者获胜D.使得后采取行动者获胜9.在什么时候,囚徒困境式博弈均衡最可能实现()。

A. 当一个垄断竞争行业是由一个主导企业控制时B.当一个寡头行业面对的是重复博弈时C.当一个垄断行业被迫重复地与一个寡头行业博弈时D. 当一个寡头行业进行一次博弈时10.一个企业采取的行为与另一个企业在前一阶段采取的行为一致,这种策略是一种()。

A.主导策略B.激发策略C.一报还一报策略D.主导策略11.关于策略式博弈,正确的说法是()。

A. 策略式博弈无法刻划动态博弈B. 策略式博弈无法表明行动顺序C. 策略式博弈更容易求解D. 策略式博弈就是一个支付矩阵12.下列关于策略的叙述哪个是错误的():A. 策略是局中人选择的一套行动计划;B. 参与博弈的每一个局中人都有若干个策略;C. 一个局中人在原博弈中的策略和在子博弈中的策略是相同的;D. 策略与行动是两个不同的概念,策略是行动的规则,而不是行动本身。

浙江大学经济学院博士生博弈论课程习题及答案

浙江大学经济学院博士生博弈论课程习题及答案

纳什均衡1.在下表所示的战略式博弈中,找出重复删除劣战略的占优均衡表1.1于R策略,所以M为严格劣策略。

删除后M再找出S1的劣战略,显然对于S1而言,M策略和D策略严格劣于U策略,所以M和D为严格劣策略。

删除M与D后找占优均衡为(U,L)即,(4,3)。

2.求解下表所示的战略博弈式的所有的纯战略纳什均衡表1.2首先看S1选择X策略。

如果S2同样选择X策略,那么S3一定选择Y策略;同样,如果S3选择Y策略,S2也一定会选择X策略,因此(X,X,Y)是一个纳什均衡;如果S2选择Y策略,那么S3一定选择X策略;同样,如果S3选择X策略,S2也一定会选择Y策略,因此,(X,Y,X)是一个纳什均衡。

其次看S1选择Y策略。

如果S2选择X策略,S3一定选择X策略;同样,如果S3选择X策略,S2也一定会选择X策略,因此(Y,X,X)是一个纳什么均衡。

如果S2选择Y策略,S3选择Y策略是理性的,如果S3选择X,S2将选择X,这样(Y,Y,X)将不是一个纳什均衡;同样,如果S3选择Y策略,S2也一定会选择Y策略,因此(Y,Y,Y)是一个纳什均衡。

所以该博弈式的纯战略纳什均衡有4个:(X,X,Y)(X,Y,X)(Y,X,X)(Y,Y,Y)。

3.(投票博弈)假定有三个参与人(1、2和3)要在三个项目(A、B和C)中选中一个。

三人同时投票,不允许弃权,因此,每个参与人的战略空间Si={A,B,C}。

得票最多的项目被选中,如果没有任何项目得到多数票,项目A被选中。

参与人的支付函数如下:U1(A)=U2(B)=U3(C)=2U1(B)=U2(C)=U3(A)=1U1(C)=U2(A)=U3(B)=0求解以上博弈的所有纯战略纳什均衡。

由上,若参与人1选择A策略。

如果参与人2同样选择A策略,那么参与人3选择ABC策略是无差异的,但均衡策略只能是参与人3选择A策略,因此(A,A,A)是一个纳什均衡。

如果参与人2选择B策略,参与人3选择AB策略是差异的,但均衡策略只能是其选择A,因此(A,B,A)是一个纳什均衡。

张维迎版博弈论 部分习题答案

张维迎版博弈论 部分习题答案

张1.5张1.6假定消费者从价格低的厂商购买产品,如果两企业价格相同,就平分市场,如果企业i 的价格高于另一企业,则企业i 的需求量为0,反之,其它企业的需求量为0。

因此,企业i 的需求函数由下式给出:ii i i i i i i p pi p p p p 0)/2Q(p )Q(p q --->=<⎪⎩⎪⎨⎧=从上述需求函数的可以看出,企业i 绝不会将其价格定得高于其它企业;由于对称性,其它企业也不会将价格定的高于企业i ,因此,博弈的均衡结果只可能是每家企业的价格都相同,即p i =p j 。

但是如果p i =p j >c 那么每家企业的利润02i i j i p c q ππ-==>,因此,企业i 只要将其价格略微低于其它企业就将获得整个市场的需求,而且利润也会上升至()()22i i i i p cp c Q p Q p εε---->,()0ε→。

同样,其它企业也会采取相同的策略,如果此下去,直到每家厂商都不会选择降价策略,此时的均衡结果只可能是p i =p j =c 。

此时,企业i 的需求函数为2i a c q -=。

张1.8张2.3张2.4张2.9(1)由于古诺博弈的阶段均衡是1i a cq n -=+,此时的利润为21a c n -⎛⎫⎪+⎝⎭;若各家企业合作垄断市场,则此时的最优产量是()arg m ax i i i a n q c q ∈--⨯,可求得2i a cq n -=,此时的利润为24a c n -⎛⎫ ⎪⎝⎭,此时若有企业i背叛,其产量就是()124jj ii a c q n q a c n ≠--+==-∑,其收益为()2214n a c n +⎛⎫- ⎪⎝⎭。

下面我们来看重复博弈下的古诺博弈。

在这个博弈中,有两个博弈路径,我们分别进行讨论。

首先,在惩罚路径上,由于每个阶段参与企业选择的都是最优的产量,因此能够获得最优的收益,因此是均衡的。

博弈论课后复习及标准答案浙江财经大学张老师课后复习标准答案

博弈论课后复习及标准答案浙江财经大学张老师课后复习标准答案

第1次作业1、考虑一个工作申请的博弈。

两个学生同时向两家企业申请工作,每家企业只有一个工作岗位。

工作申请规则如下:每个学生只能向其中一家企业申请工作;如果一家企业只有一个学生申请,该学生获得工作;如果一家企业有两个学生申请,则每个学生获得工作的概率为1/2。

现在假定每家企业的工资满足:W1/2<W2<2W1,则问:a .写出以上博弈的战略式描述b .求出以上博弈的所有纳什均衡(包括混合策略均衡) 2、设古诺模型中有n 家厂商。

i q 为厂商i 的产量,12n Q q q q =+++L 为市场总产量。

P 为市场出清价格,且已知Q a Q P P-==)((当a Q <时,否则0=P )。

假设厂商i 生产产量i q 的总成本为i i i i cq q C C ==)(,也就是说没有固定成本且各厂的边际成本都相同,为常数)(a c c <。

假设各厂同时选择产量,该模型的纳什均衡是什么?当趋向于无穷大时博弈分析是否仍然有效?3、两个厂商生产一种完全同质的商品,该商品的市场需求函数为P Q -=100,设厂商1和厂商2都没有固定成本。

若他们在相互知道对方边际成本的情况下,同时作出产量决策是分别生产20单位和30单位。

问这两个厂商的边际成本各是多少?各自的利润是多少?4、五户居民都可以在一个公共的池塘里放养鸭子。

每只鸭子的收益v 是鸭子总数N 的函数,并取决于N 是否超过某个临界值N ;如果N N<,收益N N v v -==50)(;如果N N ≥时,0)(≡N v 。

再假设每只鸭子的成本为2=c 元。

若所有居民同时决定养鸭的数量,问该博弈的纳什均衡是什么?5、三对夫妻的感情状态可以分别用下面三个得益矩阵对应的静态博弈来表示。

问:这三个博弈的纳什均衡分别是什么?这三对夫妻的感情状态究竟如何?6、两个个体一起参加某项工程,每个人的努力程度[0,1](1,2)i e i ∈=,成本为()(1,2)i c e i =,该项目的产出为12(,)f e e 。

最新《经济博弈论》课后答案、补充习题答案

最新《经济博弈论》课后答案、补充习题答案

房地产开发企业在选址、开发规模、目标客户定位等方面,也常常存在相互制约的问题.例如一个城市当时的住房需求约10000平方米,如果其他厂商已经开发了8 000平方米,那么你再开发5 000平方米就会导致供过于求,销售就会发生困难,但如果其他厂商只开发了不到5 000平方米,那么你开发5 000平方米就是完全合理的0读者可进一步给出更多例子,并考虑建立这些博弈问题的详细模型并加以讨论。

4.“囚徒的困境”的内在根源是什么?举出现实中徒的困境的具体例于。

“囚徒的困境”的内在根源是在个体之间存在行为和利益相互制约的博弈结构中,以个体理性和个体选择为基础的分散决策方式,无法有效地协调各方面的利益,并实现整体、个体利益共同的最优口简单地说J 囚徒的困境”问题都是个体理性与集体理性的矛盾引起的口现实中“囚徒的困境”类型的问题是很多的。

例如厂商之间的价格战、恶性的广告竞争,初等、中等教育中的应试教育等,其实都是“囚徒的困境”博弈的表现形式。

5・博弈有附些分类方法.有哪些主要的类型?学考答案:首先可根据博弈方的行为逻辑,是否允许存在有约束力协议,分为非合作博弈和合作博弈两大类匚其次可以根据博弈方的理性层次,分为完全理性博弈和有限理性博弈两大类,有限理性博弈就是进化博弈D第工是可以根据博弈过程分为静态博弈、动态博弈和重复博弈三大类。

笫四是根据博弈问题的信息结构,根据博弈方是否都有关于得益和博弈过程的充分信息,分为完全信息静态博弈、不完全信息静态博弈、完全且完美信息动态博弈、完全但不完美信息动态博弈和不完全信息动态博弈几类“第五是根据得益的特征分为零和博弈、常和博弈和变和博弈.第六是根据博弈中博弈方的数量.可将博弈分为单人博弈、两人博弈和多人博弈。

第七是根据博弈方策略的数量,分为有限博弈和无限博弈两类口6.博弈论在现代经济学中的作用和地位如何?为什么?参考答案:博弈论为现代经济学提供了一种高效率的分析工具。

博弈论在分析存在复杂交互作用的经济行为和决策问题,以及由这些经济行为所导致的各种社会经济问题和现象时,是非常有效的分析度,在揭示社会经济现象内在规律和人类行为本质特征的能力方面,都更加有效和出色Q正是因为这些特点,博弈论的产生和发展引发了一场深刻的经济学革命,使得现代经济学从方法论,到概念和分析方法体系,都发生了很大的变化。

博弈论习题解答 浙江大学

博弈论习题解答 浙江大学

xi ≤ M
0,
∑ xi > M
3
∑ 因此,对于参与人 i 来说,只要采用 xi = M − x j 都能实现自己的最大收益,也就是说,在 j≠i
∑ 该博弈中有着多个纳什均衡,所有使得 xi = M ,0 ≤ xi ≤ M 成立的战略组合都是该博弈的纯战
略纳什均衡。
7.考虑一个工作申请的博弈。两个学生同时向两家企业申请工作,每家企业只有一个工作岗位。
必须使得这四种战略的期望效用相同,因此,必须满足以下四个方程:
⎧b − d = c − a
⎪ ⎨
c

a
=
c

b
⎪⎩c − b = a − c
解得:a=b=c=d,所以 a=b=c=d=1/4。同理可得参与人 2 的战略,所以该博弈的唯一混
合策略纳什均衡是参与者以 1/4 的概率随机选择各自的四个纯战略。
1
与企业
2
提出申请。
8.考虑存在事前交流的性别战博弈。在丈夫决定去看足球还是芭蕾之前,丈夫有机会向妻子传递 以下信息:我们在足球场见面,或者我们在芭蕾馆见面。当以上信息交流完成以后,两者同时决 定去足球场还是去芭蕾馆。博弈支付如下:如果两者在足球场见面,则丈夫获得 3,妻子获得 1; 如果两者在芭蕾馆见面,则丈夫获得 1,妻子获得 3;在其他条件下两者的支付都是 0。
(3)假定甲选择企业 1 的概率为α ,选择企业 2 的概率为1− α ;乙选择企业 1 的概率为 β ,选
择企业 2 的概率为1− β ,则甲选择企业 1 的期望收益为 W1 β +W1(1− β ) ,选择企业 2 的期望收
2
益为 W 2β + W 2 (1− β ) ,由二者相等可得乙选择两个企业的概率分别为: β = 2W1−W 2 ,

博弈论——策略互动的艺术_哈尔滨工业大学中国大学mooc课后章节答案期末考试题库2023年

博弈论——策略互动的艺术_哈尔滨工业大学中国大学mooc课后章节答案期末考试题库2023年

博弈论——策略互动的艺术_哈尔滨工业大学中国大学mooc课后章节答案期末考试题库2023年1.观察如下的一个博弈树,【图片】下面结论正确的是()。

答案:该博弈实质上是一个二人同时进行的博弈,其中参与人1的策略集为{a,b},参与人2的策略集为{c, d}2.关于纳什均衡、子博弈完美均衡、完美贝叶斯均衡三个概念,下面说法正确的是()。

答案:完美贝叶斯均衡一定是子博弈完美均衡3.关于博弈论纳什均衡的论述,下列说法中,()是正确的。

答案:纳什均衡中任意一个参与人的对应策略,一定是关于该均衡中其他参与人在均衡中的策略或策略组合的最佳应对(best reply)4.下面例子,()不属于博弈行为。

答案:樵夫在森林砍柴,樵夫和树木的关系5.再考虑孩子教育博弈问题,假设博弈支付矩阵如下所示孩子认真学习沉迷游戏母亲溺爱e, 21, f冷酷的爱a, bc, d如果在博弈均衡情况下,孩子的均衡策略是“认真学习”和“沉迷游戏”策略的完全非退化随机化(孩子均以严格正概率选择这两个策略),且博弈只存在一个纳什均衡,那么下面表述为真的选项是( )答案:母亲也必须对“溺爱”和“冷酷的爱”进行完全非退化的随机化(以严格正概率选择“溺爱”和“冷酷的爱”)6.考虑如下的孩子教育博弈,支付矩阵如下(a,b,c均大于0)孩子认真学习沉迷游戏母亲溺爱3, 21, 3冷酷的爱a, bc, d如果希望博弈均衡为(冷酷的爱,认真学习),那么a~d需要满足的条件为()答案:a≥3且b≥d7.对于如下图所示的博弈【图片】若参与人1选择行动L、M和R的概率分别为0.2,0.3和0.5,那么根据“策略-信念”的一致性要求,当博弈到达参与人2的信息集时,下面选项正确的是()。

答案:参与人2认为她在左边决策节点的概率和右边节点的概率分别为0.4和0.6 8.目前新能源汽车在世界范围内处于方兴未艾的状态,关于新能源汽车行业,从博弈“竞合”角度,下面说法合理的是()(可多选)答案:提升电动汽车电池续航能力会增加汽车的价值_适度的国内竞争,会有利于我国新能源汽车行业的发展_在相对偏僻的商场增设充电桩,会实现商场和新能源汽车销售企业的共赢9.关于博弈“竞合”的表述,最为贴切的表述是()答案:竞合的含义是,竞争与合作同时存在的过程10.下面选项哪个不属于破解囚徒困境的方法()答案:事先制定君子协定11.改变博弈的PARTS法中,S的含义是()答案:Scope 博弈的范围12.下面关于博弈树的说法,正确的是()。

博弈论课后题答案

博弈论课后题答案

博弈论课后题答案(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--;第二章第三章PPT问题第四章第五章第六章一、用柠檬原理和逆向选择的思想解释老年人投保困难的原因。

答:“柠檬原理”是在信息不完美且消费者缺乏识别能力的市场中,劣质品赶走优质品,最后搞垮整个市场的机制。

“逆向选择”是在同样不完美信息和消费者缺乏识别能力的市场中,当价格可变时,价格和商品质量循环下降,市场不断向低端发展的机制.高龄人群的保险市场是一个典型的柠檬原理和逆向选择会起作用,从而会导致发展困难的市场。

老年人的健康情况差别很大,比年轻人之间的差别要大得多,而保险公司要了解老年人投保人的实际健康状况又很困难或成本很高,这就造成了保险公司对老年投保人健康状况的信息不完美。

则保险公司就无法根据每个老年投保人的实际健康情况确定不同的保费率,只能根据平均健康情况确定保费率。

这种平均保费率对健康情况很差的老年人是合算的,但对健康状况较好的老年人则不合算。

因此前者倾向于投保,后者则不愿意投保,这就会导致投保的老年人的平均健康情况会很差。

这使得保险公司的赔付风险大大提高,不仅不能赢利而且要亏损,从而失去经营老年保险的积极性,最终导致老年人的投保难问题。

这就是柠檬原理作用的结果。

如果允许调整保费率,那么保险公司为了避免亏损会上调保费率。

而这又会使得原来投保或者准备投保者中相对较健康的老人退出,从而投保老人的平均健康状况会变得更差。

如此循环,最终保费会升得很高而投保老人的平均健康情况则会越来越差,对市场的发展当然是很不利。

这就是逆向选择作用的结果。

二、为什么消费者偏好去大商店买东西而不太信赖走街穿巷的小商贩消费者去大商店更接近无限次重复博弈,商场提供高质量产品的概率更大,虽然个别消费者不一定能对商店以往售出商品的质量作出反应,但消费者群体肯定可以作出反应,因此大商店保持高质量符合自己的长期利益,一股会自觉保证质量,从而消费者也比较可以信任大商店的商品。

吉本斯-博弈论基础答案

吉本斯-博弈论基础答案
2
1 2 的收益贴现到t期可得 1 − δ (a − c) / 8 , 1 2 2 触发战略有效的条件是: 1 − δ (a − c ) / 8 > (a − c) / 4 ,得到: δ > 1/ 2
(可参见谢识予的《经济博弈论》习题解答) 。 2.14 略 2.15 (1)垄断的产量、价格、利润: π=Q(a-Q)-CQ 利润最大化时:a-2Q=C,从而 Q=(a-c)/2. 此时价格为(a-c)/2。 (2)古诺均衡下的产量、价格、利润: π=(a-∑qi) qi -cqi
(*)
因 此 当 增 加 S 时 , U1 ( I c − S ) 会 减 小 , 同 时 , d ( S + B ) / dS > 0 , ∴ S + B 会 增 加 ,
∴ U 2 ( S + B ) 会增加,因为(*)式, U 2 ( S + B ) 增加的幅度比 U1 ( I1 − S ) 减小的幅度大,所以
如果参与者推断自然选择左边博弈的概率23参与者2选l如果参与者推断自然选择左边博弈的概率23参与者2选l和选r无差异如果参与者推断自然选择左边博弈的概率23参与者2选r如果参与者推断自然选择左边博弈的概率23参与者2选l如果参与者推断自然选择左边博弈的概率23参与者2选l和选r无差异如果参与者推断自然选择左边博弈的概率23参与者2选r自然选择左边博弈时参与者1选t参与者2选l
由 一 阶 条 件 ∂π i / ∂qi = 0 , 可 得 : qi = (a − q− i − c) / 2 … … ( 1)
* *
( 1) 式 两 端 乘 以 2, 再 减 qi , 可 得 : qi = a − Q − c … … ( 2), 对 于 任 意 的 i 都 成 立 。

吉本斯《博弈论基础》课后习题答案

吉本斯《博弈论基础》课后习题答案

对 于 2 来 说 , 4(1− p*) = 2 p* + 3(1− p*) , 得 p* = 1/ 3 。
则 原 博 弈 的 混 合 战 略 纳 什 均 衡 为 : { (1/3, 2/3, 0), (2/3, 0, 1/3) }。 1.12 按 照 1.11 的 解 法 , 可 得 混 合 战 略 纳 什 均 衡 为 : { (2/3, 1/3), (3/4, 1/4) }。 过 程 略 。 1.13 此博弈有两个纯战略纳什均衡、一个混合战略纳什均衡。 纯 战 略 纳 什 均 衡 为 :( 向 企 业 1 申 请 , 向 企 业 2 申 请 );( 向 企 业 2 申 请 , 向 企 业 1 申 请 )。 混合战略纳什均衡为:
{ } ((2w1 − w2 ) /(w1 + w2 ), (2w2 − w1) /(w1 + w2 )) ,((2w1 − w2 ) /(w1 + w2 ), (2w2 − w1) /(w1 + w2 ))
1.14
证 明 : 在 混 合 战 略 纳 什 均 衡 中 , 参 与 人 i 的 混 合 战 略 为 pi* , 其 中 选 择 第 j 个 纯 战 略 sij 的 概
目 要 求 , 即 ( qc , qc )是 唯 一 的 纳 什 均 衡 , 并 且 在 纳 什 均 衡 下 , 每 一 企 业 的 福 利 都 要 比 他 们 相
互合作时低,但两个企业都没有严格劣战略。 1.6
当 0 < c1, c2 < a / 2 时 , 易 求 均 衡 产 量 q1* = (a + c2 − 2c1) / 3 , q2* = (a + c1 − 2c2 ) / 3 。 而 当
为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
L
R
1
L
R
2
L
R
2
L
R
2
L
R
2
L
R
3
L
R
3
L
R
3
L
R
3
L
R
答:两个扩展式中的子博弈划分均不正确,图 1 中的划分对同一信息集产生了分割,图 2 中的子博弈不是开始于单节信息集的决策结点。
4. 在双寡头古诺模型中,设逆需求函数为 p=a-Q,其中 Q=q1+q2 为市场总需求,但 a 有 aH 和 aL 两种可能的情况,并且企业 1 知道 a 究竟是 aH 还是 aL,而企业 2 只知道 a=aH 和 a=aL 的概率分 别是θ和 1-θ,该信息是双方都知道的。双方的总成本函数分别是 cq1 和 cq2。如果两企业同时 选择产量,双方的策略空间是什么?试计算出贝叶斯纳什均衡。
∂π2 ∂q 2
= a − q1
− 2q2
− q3
−c=0
∂π3 ∂q3
=
a
− q1
− q2
− 2q3
−c
=0
求解(1)、( 2)组成的方程组有:
(1) (2)
q*2
=
q*3
=
a

q1 3

c
(2)现进行第一阶段的博弈分析:
对与a − q1 − q2 − q3 )q1 − cq1 将(3)代入可得:
1
(0,0) 1
2 (s -c1,-s )
(Pr-c1-c2,-Pr-d)
(-c1,0)
一)局中人 1 不指控局中人 2 时两个人的收益均为 0 二)局中人 1 决定指控局中人 2,在告上法庭之前,局中人 1 提出一个无协商余地的赔偿金 额 s 以私了,
(1)当局中人 2 接受要求时局中人的收益为 s-c1;局中人 2 的收益为-s; (2)当局中人 2 拒绝局中人 1 的要求, 1)局中人 1 放弃上诉时,局中人 1 的收益为-c1,局中人 2 的收益为 0; 2)当局中人 1 起诉时,局中人 1 的期望收益为 Pr-(c1+c2);局中人 2 的期望收益为-Pr-d
7. 如果将如下的囚徒困境博弈重复进行无穷次,惩罚机制为触发策略,贴现因子为δ。试问
δ应满足什么条件,才存在子博弈完美纳什均衡?
乙 坦白 不坦白

坦白
4,4
0,5
不坦白 5,0
1,1
由划线法求得该博弈的纯策略纳什均衡点为(不坦白,不坦白),均衡结果为(1,1),采用触发策
略,局中人 i 的策略组合 s 的最好反应支付 φi (s) = max Pi (s−i ,si ) =5,Pi(s*)=4,Pi(sc)=1。若存 si ∈Si
的定价,qi是企业i的需求量。假设企业生产没有固定成本,并且边际成本为常数c,c<a.假定博弃 重复无穷多次,每次的价格都立即被观察到,企业使用触发策略。求使垄断价格可以作为完美 均衡结果出现的最低贴现因子δ,并解释δ与n的关系。
分以下几个步骤进行。
1)计算纳什均衡 当企业 i 选择价格 pi,其它企业选择价格 pj(j=1,2,…,n,j≠i)时,企业 i 的利润为: πi = (pi − c)qi = (pi − c)(a − pi + b(p1 + p2 + ⋯ + pi−1 + pi+1 + ⋯ + pn )) ,i=1,2,…,n
P2 (s)
=
200s2

15s
2 2
+
10s1s 2
,i=1,2。(1)求纳什均衡点;(2)在纳什均衡下的最优反应函数;(3)若该
博弈重复无限次,是否存在触发策略构成的子博弈完美纳什均衡,其条件是什么?
解:局中人 1,2 的最优反应函数分别为:
s1=5+1/2s2
s2=20/3+1/3s1
由此得唯一的纯策略纳什均衡点:sc=(10,10).相应的有 P(sc)=(1000,1500).
+ c1
− 2c2
]
企业 2 的策略为:
q*2
=
1 3
[
θaH
+ (1− θ
)aL
+ c1
− 2c2
]
因此博弈的贝叶斯纳什均衡是:当 a=aH 时,企业 1 生产 q1*H ;当 a=aL 时,企业 1 生产 q1*L ,
企业 2 生产 q*2 。
5. 在下面的静态贝叶斯博弈中,求出所有的纯策略贝叶斯纳什均衡。 (1) 自然决定收益情况是由博弈 1 给出,还是由博弈 2 给出,选择每一博弈的概率相等; (2) 局中人 1 了解到自然选择了博弈 1,还是选择了博弈 2,但局中人 2 不知道; (3) 局中人 1 选择行动 T 或 B,同时局中人 2 选择行动 L 或 R; (4) 根据自然选择的博弈,两局中人得到相应的收益。
1
A1
A2
3
2
C1
C2
B1
B2
(4,2,3)
(1,7,8) (7,6,6)
(2,1,9)
这时,假设局中人 1 采取行动 A1,对于左边一个子博弈,局中人 3 必定采取行动 C2(3<8),因 而在该子博弈顶点的结果只会是(1,7,8).同样,若局中人 1 采取行动 A2,此时局中人 2 必然采取 行动 B1(6>1),因而在该子博弈顶点的结果只会是(7,6,6).进而,该博弈又简化为:
(
a

q2

c1
)
⎨ ⎪⎪⎩q2
=
1 2
[θaH
+(1−θ
)aL
− (θq1H
+(1−θ
)q1L
) − c2
]
由此得:
企业 1 的策略为:
q1*H
=
1 2
(
aH
− c1 ) −
1 6
[
θaH
+(1−θ
)aL
+ c1 − 2c2 ]
q1*L
=
1 2 ( aL
− c1
)−
1 6
[ θaH
+ (1−θ
)aL
2
美纳什均衡。 答:该博弈分为两个阶段,第一阶段企业 1 选择产量 q1,第二阶段企业 2 和 3 观测到 q1 后, 他们之间作一完全信息的静态博弈。我们按照逆向递归法对博弈进行求解。 (1)假设企业 1 已选定产量 q1,先进行第二阶段的计算。设企业 2,3 的利润函数分别为:
π2 = (a − q1 − q2 − q3 )q2 − cq2 π3 = (a − q1 − q2 − q3 )q2 − cq3 由于两企业均要追求利润最大,故对以上两式分别求一阶条件:
价格组合( p1c , pc2,⋯, pcn )若是纳什均衡,则对每个企业 i, pic 应是如下最优问题的解:
max (pi − c)(a − pi + b(p1* + p*2 + ⋯p*i−1 + p*i+1 + ⋯ + p*n ))
0≤pi <∞
5
求解该问题,得;
∑ pic
=
1 2
(a
+
c
+
9. 求如图所示完全信息动态博弈的子博弈完美纳什均衡(图中数字(a,b,c)分别表示局中人 1、
2、3 的 收 益 )。
1
A1
A2
3
2
C1
C2
B1
B2
(4,2,3)
(1,7,8) 3
C1
C2 C1
3
C2
(5,4,3) (7,6,6) (2,1,9) (0,4,2)
答:局中人 1 采取 A2 行 动 ,局中人 2 采取行动 B1 时,局中人 3 必然采取 C2 行 动( 因为 3<6), 因而该博弈的顶点只能是(7,6,6)。同样对于局中人 3 右边一个子博弈,必然采取 C1 行动 (9>2),因而该博弈的顶点只能是(2,1,9)。进而原博弈简化为:
E( π 2 ) = θq2( aH − q1H − q2 − c2 ) + (1−θ )q2( aL − q1L − q2 − c2 )
由此得:
1 q2 = 2 [θaH + (1−θ )aL − (θq1H + (1−θ )q1L ) − c2 ]
在均衡时,q1,q2 应满足
1
⎪⎪⎧q1
=
1 2
在子博弈完美纳什均衡,必须满足: δ

φi (s* ) φi (s* )
− −
Pi (s* ) Pi (sc )
=
5−4 5 −1
=
1 4
,即只有当贴现因子
δ
>1/4
时,才存在子博弈完美纳什均衡。
3
8. 假设 有 一 博 弈 G=[N,S,P], 其中 N={1,2},S1=[0,50],S2=[0,50], P1(s) = 100s1 −10s12 +10s1s2 ,
第三章 纳什均衡的扩展与精炼 1. 什么是完全信息和不完全信息?什么是完美信息和不完美信息?在海萨尼转换中,自然 对局中人类型的确定都是有限的吗?举例说明。(见教材) 2. 什么是重复博弈中的策略?什么是一个重复博弈中的子博弈?什么是一个子博弈完美纳什 均衡? (见教材) 3. 以下(虚线框中的)子博弈的划分是否正确?
LR
LR
T 1,1 0,0
T 0,0 0,0
B 0,0 0,0 博弈 1
B 0,0 2,2 博弈 2
N
1
0.5
2
相关文档
最新文档