含参不等式的解法(教师版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式(3)----含参不等式的解法
当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。解参数不等式一直是高考所考查的重点内容。
(一)几类常见的含参数不等式
一、含参数的一元二次不等式的解法:
例1:解关于的x 不等式2(1)410()m x x m R +-+≤∈
分析:当m+1=0时,它是一个关于x 的一元一次不等式;当m+1≠1时,还需对m+1>0及m+1<0来分类讨论,并结合判别式及图象的开口方向进行分类讨论:⑴当m<-1时,⊿=4(3-m )>0,图象开口向下,与x 轴有两个不同交点,不等式的解集取两边。⑵当-1
⎫=-≥⎨⎬⎩⎭
当时原不等式的解集为 ⎭
⎬⎫⎩⎨⎧+-+≤≤+--<<-⎭
⎬⎫⎩⎨⎧+-+≤+--≥-<∆=+-+-≠132132|,31132132|1);
34014)1(12m m x m m x m m m x m m x x m m x x m m 原不等式的解集为时当或时,原不等式的解集为则当-(=的判别式时,当 当m=3时,原不等式的解集为⎭⎬⎫⎩⎨⎧=
21|x x ; 当m>3时, 原不等式的解集为∅。
小结:⑴解含参数的一元二次不等式可先分解因式再讨论求解,若不易分解,也可对判别式分类讨论。⑵利用函数图象必须明确:①图象开口方向,②判别式确定解的存在范围,③两根大小。⑶二次项的取值(如取0、取正值、取负值)对不等式实际解的影响。
牛刀小试:解关于x 的不等式)0(,04)1(22>>++-a x a ax
思路点拨:先将左边分解因式,找出两根,然后就两根的大小关系写出解集。具体解答请同学们自己完成。
二、含参数的分式不等式的解法:
例2:解关于x 的不等式02
12>---x x ax 分析:解此分式不等式先要等价转化为整式不等式,再对ax -1中的a 进行分类讨论求解,还需用到序轴标根法。
解:原不等式等价于0)1)(2)(1(>+--x x ax
当a =0时,原不等式等价于0)1)(2(<+-x x
解得21<<-x ,此时原不等式得解集为{x|21<<-x };
当a >0时, 原不等式等价于0)1)(2)(1(>+--x x a
x , 则:当,2
1时=a 原不等式的解集为{}21|≠->x x x 且; 当0<,21时 ⎬⎫⎩⎨⎧<<->211|x a x x 或; 当,21时>a 原不等式的解集为⎭ ⎬⎫⎩⎨⎧><<-211|x a x x 或; 当a <0时, 原不等式等价于0)1)(2)(1(<+--x x a x , 则当1-=a 时, 原不等式的解集为{}12|-≠ 当01<<-a 时, 原不等式的解集为⎭ ⎬⎫⎩⎨⎧<<-<211|x a x x 或; 当1- ⎬⎫⎩⎨⎧<<-<211|x a x x 或; 小结:⑴本题在分类讨论中容易忽略a =0的情况以及对a 1,-1和2的大小进行比较再结合系轴标根法写出各种情况下的解集。⑵解含参数不等式时,一要考虑参数总的取值范围,二要用同一标准对参数进行划分,做到不重不漏,三要使划分后的不等式的解集的表达式是确定的。⑶对任何分式不等式都是通过移项、通分等一系列手段,把不等号一边化为0,再转化为乘积不等式来解决。 牛刀小试:解关于x 的不等式)1(,12 )1(≠>--a x x a 思路点拨:将此不等式转化为整式不等式后需对参数a 分两级讨论:先按a >1和a <1分为两类,再在a <1的情况下,又要按两根1