(线性代数)矩阵秩的8大性质、重要定理以及关系
线性代数:矩阵秩的求法
![线性代数:矩阵秩的求法](https://img.taocdn.com/s3/m/42f28993b4daa58da1114a8b.png)
6/44
定理 Ax=0 的解的情况:
1.Ax=0 有非零解 r(A)<n 只有零解 r(A)=n
2.若A是方阵,Ax 0有非零解 A 0 只有零解 A 0
3.Ax 0,若m n,则一定有非零解。 m :方程个数 n :未知量个数
k
2
1 2
0
3 2
1
.
其中k1
,
k
为任意常数。
2
12/44
定理 3 线性方程组 Ax=b 有解 r(A)=r(Ab)
定理 4 设线性方程组 Ax=b 有解。 若A为方阵,
如果 r(A)=n,则它有唯一解; A 0,唯一解
如果
r(A)<n,则它有无穷多解。
A
0,无穷解
13/44
x1 x2 a1
a4
x5 x1 a5
RA RB
5
ai 0
i 1
15/44
5
方程组有解的充要条件是 ai 0.
i 1
x1 x2 a1
由于原方程组等价于方程组
x2 x3
x3 x4
a2 a3
例4
证明方
程组
x2 x3
x3 x4
a2 a3
x4
x5
a4
x5 x1 a5
有解的充要条件
是a1 a2 a3 a4 a5 0.在有解的情况下,
求出它的一切解.
解证 对增广矩阵B进行初等变换, 方程组的增广矩阵为
14/44
1 1 0 0 0 a1
0 1 1 0 0 a2
第十-十一次
矩阵的秩的定理
![矩阵的秩的定理](https://img.taocdn.com/s3/m/fbc96178842458fb770bf78a6529647d27283405.png)
矩阵的秩的定理
矩阵的秩的定理,也称为格拉姆-施密特(Gram-Schmidt)定理或斯皮耳定理(Sylvester's law),是线性代数中的一个基本定理。
它描述了一个矩阵的秩,也称为矩阵的“行秩”或“列秩”,等于其行向量组或列向量组的极大线性无关组中向量的个数。
具体地,设A是一个n\times m矩阵,r是它的秩,则:
1. 存在n\times r矩阵B和r\times m矩阵C,使得A=BC;
2. r等于矩阵A中的行向量组或列向量组的极大线性无关组中向量的个数。
这个定理的证明可以通过线性代数的一般理论,包括线性空间的基本概念和线性相关性等进行推导。
矩阵的秩的定理在很多数学和工程应用中都得到了广泛的应用,如矩阵分解、矩阵压缩、图像处理、信号处理和统计学中的因子分析等。
线性代数 矩阵的秩与逆矩阵
![线性代数 矩阵的秩与逆矩阵](https://img.taocdn.com/s3/m/21a5b53d647d27284b735141.png)
BP1 P2
Ps = X
AP1 P2
Ps = E
3. AXC = B, A, C可逆。 解法I : X = A BC
解法II : AX = BC
−1
−1
−1
−1
XC = A B
求解矩阵方程时,一定要记住:先化简,再求解。
1 .已知 A, 且 AB = A − B , 求 B .
−1 ⇒ B = ( A + E ) A ⇒ AB + B = A ⇒ ( A + E ) B = A
⎛1 − 1 − 1 ⎜ → ⎜0 −1 − 2 ⎜0 0 −1 ⎝
⎛1 0 0 ⎜ → ⎜0 1 0 ⎜0 0 1 ⎝ 2
1 0 0⎞ ⎟ 3 1 0⎟ 4 2 1⎟ ⎠
1 ⎞ ⎟ 5 3 2⎟ − 4 − 2 − 1⎟ ⎠ 1
∴A
−1
=
1 1 ⎞ ⎛ 2 ⎜ ⎟ 3 2⎟ ⎜ 5 ⎜ − 4 − 2 − 1⎟ ⎝ ⎠
⎛2 ⎛1 − 1 ⎞ 3 . C = ⎜ 2.B = ⎜ ⎟ ⎜0 ⎜1 − 2 ⎟ ⎝ ⎝ ⎠
− 2⎞ ⎟ ⎟ 1 ⎠
⎛2 1 ⎛ 1 1⎞ −1 2. B = ⎜ = ⎜ ⎟ ⎜ ⎟ ⎜1 3 ⎝ − 2 1⎠ ⎝
− 1⎞ −1 1 ⎛ 1 2 ⎞ ⎜ ⎟ = C 3 . ⎟ ⎜ ⎟ ⎟ 0 2 2 − 1⎠ ⎝ ⎠
?? ⎛ 1 − 1 − 1⎞ ⎜ ⎟ 的逆怎样求? ? A = ⎜− 3 2 1 ⎟
⎜ 2 ⎝ 0 1 ⎟ ⎠
逆阵的性质
1 (i ) A可逆 ⇒ A = ; A (ii ) A可逆 ⇒ A−1可逆, ( A−1 ) −1 = A;
−1
(iii ) AB = E (or BA = E ) ⇒ B = A ;
矩阵秩的性质大全及证明
![矩阵秩的性质大全及证明](https://img.taocdn.com/s3/m/4eab65bbdbef5ef7ba0d4a7302768e9951e76ed1.png)
矩阵秩的性质大全及证明矩阵的秩是指矩阵中最多能线性无关的列(或行)的数量。
下面是矩阵秩的一些性质和证明:秩加性性质如果有两个矩阵$A$ 和$B$,则有:$$\text{rank}(A+B) \leq \text{rank}(A)+\text{rank}(B)$$证明:设$A$ 的秩为$r_A$,$B$ 的秩为$r_B$。
则存在$r_A$ 个线性无关列$a_1, a_2, \dots, a_{r_A}$ 和$r_B$ 个线性无关列$b_1, b_2, \dots, b_{r_B}$,使得$A$ 和$B$ 分别可以写成如下形式:$$A = \begin{bmatrix} a_1 & a_2 & \dots & a_{r_A} & * & \dots & * \end{bmatrix}$$$$B = \begin{bmatrix} b_1 & b_2 & \dots & b_{r_B} & * & \dots & * \end{bmatrix}$$其中星号表示可以是任意列。
由于$a_1, a_2, \dots, a_{r_A}$ 和$b_1, b_2, \dots, b_{r_B}$ 都是线性无关的,所以$A+B$ 中前$r_A+r_B$ 列是线性无关的。
因此$\text{rank}(A+B) \leq r_A+r_B = \text{rank}(A)+\text{rank}(B)$。
秩乘法性质如果有两个矩阵$A$ 和$B$,则有:$$\text{rank}(AB) \leq \min(\text{rank}(A),\text{rank}(B))$$证明:设$A$ 的秩为$r_A$,$B$ 的秩为$r_B$。
则存在$r_A$ 个线性。
线性代数 矩阵的秩
![线性代数 矩阵的秩](https://img.taocdn.com/s3/m/227cf4f5910ef12d2bf9e70f.png)
小结. 求m × n 矩阵A 的秩r(A), 可用以下方法: 1. 对于比较简单的矩阵, 直接用秩的定义 直接用秩的定义. .
∼
1 0 0 0
0 1 0 4
0 1 0 −1 0 0 5 0
2. 用有限次初等变换, 用有限次初等变换, 将矩阵A变为它的等价 标准形 , 则 r = r( A ) . O O 3. 用有限次行初等变换, 用有限次行初等变换,将矩阵A变为梯矩阵, 则 r(A)等于该梯矩阵的非零行的行数 等于该梯矩阵的非零行的行数. (方法2 与方法3 相比, 方法3 较为简单.)
例1 求下列矩阵的秩: 求下列矩阵的秩:
(1) A = 2 2
1 1
2 4 8 (2) B = 1 2 1
(3) C = 2
1 2 4 1 4 8 2 3 6 2 0
.
解 (1)因为
1 1 a = 1 ≠ 0 而 det A = 1 1 = 0 A= 11 , 2 2 2 2 故 r ( A) = 1
又B 并无3阶子式, 阶子式,故 r (B) =2.
8 2 2 0
故, 矩阵C 的秩不小于2.
= −3 ≠ 0
另外, 因为矩阵 C 不存在高于3阶的子式, 可知r (C) ≤ 3. 又因矩阵C 的第1, 2行元是对应成比例的, 行元是对应成比例的, 故C 的任一 3阶 子式皆等于零. 子式皆等于零.因此
0 0 1 0
4 3 −3 4
1 0 B= 0 0
0 1 0 0
−1 −1 2 0
0 0 1 0
4 3 −3 4
1 0 (2) 每个台阶只有一行, 每个台阶只有一行,台阶 A = 0 数即是非零行的行数, ,阶梯 数即是非零行的行数 0 线的竖线后面的第一个元素
线性代数§3.3矩阵的秩
![线性代数§3.3矩阵的秩](https://img.taocdn.com/s3/m/17b71d0e0740be1e650e9ac7.png)
设A为n阶可逆方阵. 因为| A | 0, 所以, A的最高阶非零子式为| A |, 则R(A)=n.
故, 可逆方阵A的标准形为单位阵E, 即A E. 即可逆矩阵的秩等于阶数. 故又称可逆(非奇异)矩 阵为满秩矩阵, 奇异矩阵又称为降秩矩阵. 1 2 2 1 1 2 4 8 0 2 , b , 例5:设 A 2 4 2 3 3 3 6 0 6 4 求矩阵A和矩阵B=(A | b)的秩. 分析: 设矩阵B的行阶梯形矩阵为B=(A| b), 则A就是A的行阶梯形矩阵. 因此可以从B=(A| b)中同时考察出R(A)及R(B).
性质6: R(A + B) R(A) + R(B). 证明: 设A, B为mn矩阵, 对矩阵(A+B ¦ B)作列变 换: ci – cn+i (i =1,2, · · · , n)得, (A+B ¦ B) (A+O ¦ B) B) R(A) + R(B). 于是, R(A+B) R(A+B ¦ B) =R(A+O ¦ 性质7: R(AB) min{R(A), R(B)}. 性质8: 若AmnBnl =O, 则R(A)+R(B) n . 这两条性质将在后面给出证明. 例7: 设A为n阶方阵, 证明R(A+E)+R(A–E) n . 证明: 因为(A+E)+(E–A)=2E, 由性质6知, R(A+E)+R(E–A)R(2E)=n, 而R(E–A)=R(A–E), 所以 R(A+E)+R(A–E) n .
§3.3 矩阵的秩
一、矩阵秩的概念
由上节讨论知: 任何矩阵Amn, 总可以经过有限次 初等行变换把它们变为行阶梯形矩阵和标准形矩阵. 行阶梯形矩阵中非零行的行数, 也就是标准形矩阵中 的数字r 是唯一确定的. 它是矩阵理论中非常重要的数 量关系之一——矩阵的秩. 定义: 在mn矩阵A中任取 k 行 k 列( km, kn ), 位于这 k 行 k 列交叉处的 k2个元素, 不改变它们在A 中所处的位置次序而得到的 k 阶行列式, 被称为矩阵A 的k阶子式. k C k 个. mn矩阵A的k阶子式共有 C m n
第一章 第五讲 矩阵的秩
![第一章 第五讲 矩阵的秩](https://img.taocdn.com/s3/m/9fc0c7176bd97f192279e9d3.png)
第五讲 矩阵的秩矩阵的秩是线性代数中又一重要概念,它描述了矩阵的一个重要的数值特征:在判定线性方程组是否有解,向量组的线性相关性,求矩阵的特征向量以及在多项式、空间几何等多个方面都有广泛的应用。
本讲我们主要了解矩阵秩的概念及其与方程组各类型解的关系。
5.1.1 矩阵秩的定义在第二讲中,我们通过矩阵的初等行(列)变换定义了矩阵的行(列)阶梯形、矩阵的行(列)最简形以及矩阵的标准形。
其中矩阵行(列)阶梯形与矩阵行(列)最简形可以不唯一,但矩阵的标准形唯一。
因此,下面就利用矩阵标准形的唯一性来给出矩阵秩的概念。
定义5.1 对于给定的m n ⨯矩阵A ,它的标准形(-)(-)(-)(-)rr n r m r r m r n r m nE OF O O ⨯⨯⨯⨯⎛⎫=⎪⎝⎭由数r 完全确定,我们称数r 为矩阵m n A ⨯的秩(rank ),记作()R A 。
其中, r E 是r 阶单位矩阵;其余都是零矩阵。
注:(1) 零矩阵的秩为零:()0R O =;(2) 矩阵的秩就是矩阵标准形中左上角单位矩阵的阶数。
(3)对于n 阶方阵A ,当()R A n =时,称A 为满秩矩阵。
当()R A n <时,称A 为降秩矩阵.例5.1 求矩阵111610121210A ⎛⎫⎪=-- ⎪ ⎪-⎝⎭的秩。
解 先将A 通过初等变换化为标准形111610121210A ⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭2131111601280306r r r r --⎛⎫⎪−−−→ ⎪ ⎪⎝⎭323111601280026r r -⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭111601280013⎛⎫ ⎪→ ⎪ ⎪⎝⎭12312101201280013r r r ---⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭13232100101020013r r r r +-⎛⎫⎪−−−→ ⎪ ⎪⎝⎭()4142433312,3100001000010c c c c c c E O -⨯--⎛⎫ ⎪−−−−−→= ⎪ ⎪⎝⎭可看出,矩阵A 的标准形中左上角是3阶单位矩阵,所以()3R A =. 矩阵秩有如下性质 性质5.1 ()()TR A R A =; 性质5.2 }{0()min ,R A m n ≤≤;性质5.3 如果n 阶方阵A 可逆,则()R A n =;(可逆矩阵也称为满秩矩阵)性质5.4 {}()min (),()R PA R P R A ≤; 当P 可逆时,()()R PA R A =;若 P Q 、都可逆,且有PAQ B =,则()()R A R B =.性质5.5 max {}(),()(|)()+()R A R B R A B R A R B ≤≤;特别地,当B 为列矩阵时,有max {}(),()(|)()+1R A R B R A B R A ≤≤;性质5.6 ()()();()()().r A B r A r B r A B r A r B +≤+-≥-性质5.7 设A 为m n ⨯矩阵且()R A r =,则A 的任意S 行组成的矩阵B ,有().r B r s n ≥+-下面只证明性质5.3和性质5.4,其余的性质请学生自证。
(线性代数)矩阵秩的8大性质、重要定理以及关系
![(线性代数)矩阵秩的8大性质、重要定理以及关系](https://img.taocdn.com/s3/m/746ee6bd192e45361066f5ec.png)
矩阵秩的8大性质:①A,宀)冬mini加小I ;③若A〜叭则R(A) = K(B)j④若可逆•则R(PAQ) = R(A),下面再介绍几个常用的矩阵秩的性质:⑤maxi R( A )>R(B)|^J R(A t B)^J R(A) + P (B), 特别地,当B = b为非零列向量时,有R(A)MR(A』)MR(A)+ 1.⑦R(AB)^min{K(A)t K(B)|,(见下节定理7)⑧若A…B“二0,则R(A) + R(B)Mm(见下章例13)设AB= O■若A为列满秩矩阵,则B-0.线性方程组的解:定理3 H元线性方程组A x=&(i)无解的充分必要条件是K(A)CR(A』);(ii)有惟一解的充分必要条件是R(A) = R(A,b)=n;(iii)有无限多解的充分必要条件是R(A) = R(A』)Cr?・定理4 n元齐次线性方程组Ax=OW零解的充分必要条件是R(A)Cm £35翹方聽AE鬧械酬髓件默⑷=R(A"定理6解方gAX=£有解的充分必要条件是R(A) = R(A,B).定理7 «AB = C,则R(C)Wmin|R(A),R(B)h向量组的线性相关性:定鰹1向跖能由向量组严心线憐示的充分必要桑件是j£^A=(a H fl J1»<t a w )的秩等于矩阵B =(爲卫?广』册』)的税.定理2向虽组B4訥严上能由向蚩组A0 叫…心 线性表示的 充分必要条件是矩阵A = («i 严心)的秩等于矩阵(A,B)=(釦严心, 27啲秩,即 R(A} = R(A,B)・推论向輦组宀%与向HfflB :*1(h lt -s6,等价的充分必要 条件是J?(A) = R(B)-J?(A,B)t其中A 和月是向僮组A 和B 所构成的矩阵”定理3设向員组Bl 】』?「讪能由向證组A a 厲厂心线性表示. 则R(h 』W 血KR 仏曲宀仇)・阵A = g 曲严松)的秩小于向懂个数奶向咼组线性无关曲充分必要条件 是R ⑷二皿血“也线性相关成盲之,若向储组B 线性无关侧向A 也线性无关.(2) 7«个"维向虽组成的向量组,当维数«小于向虽个数加时一定钱牲相 关•特别地,n + ltwt 向量一定线性相关,(3) 设向量组人:叭』2,线性无关,而向量组线性 相关侧向虽b 必能由向鈕组A 钱性表示,且表示式是惟一的.定理4,%线性相关的充分必要条件是它所构成的矩 定理5 (1)若向员组A0严心线性相关』IJ 向量組SW *对比:矩阵A =(叭』加小,%)的秧等于矩阵B = 的税,定理5线性方程组曲M 有解的充分必要憑件是R ⑷= R(A ;b)?l定理2向虽组时血严血能由向量组A :釘』线性表示的 充分必要条件是矩阵4二(尙,伽「・,心)的秩等于矩阵= 儿7)的秩,即R(A) = R(A 』}.条件是定理1 JSA 仙疋“5—线性表示的充分必要条件是 推论 向量组A :%与向 组…出等价的充分必要曬b 能由向 R(A) = R(B) = R(A t B),其中A 和B 是向世组A 和B 所构成的矩阵・定理6矩阵方程AX=B 有解的充分必要条件是R(A) = R(A t B).则RO】』?严,h)WR(a*2严叫)・n定理4向燧组小勺严心黠相关的充分必要条件是它所构成的矩阵亦⑴曲「心)的秩小于向齢数用洞鞠黠无关的充分必縣件是R(A)n||能4 "元制:黠方翻X0有鶴繃充分必要条瞬丽石~|觀5如騎次難方翻(13)的系協行臟D判屈粽黠方翱(13)蹣粹館定理5’如果撅黠方翩(13)辭輔』陀的系舫脱必腮.。
矩阵的秩的性质总结
![矩阵的秩的性质总结](https://img.taocdn.com/s3/m/fd3d32eb185f312b3169a45177232f60ddcce70e.png)
矩阵的秩的性质总结1. 什么是矩阵的秩?矩阵的秩是矩阵最重要的性质之一。
它是描述矩阵列空间的维度,也可以看作是矩阵中线性无关的列或行的数量。
对于一个 m × n 的矩阵 A,它的秩记作 rank(A) 或 r(A)。
矩阵的秩是矩阵A的最大非零子式的阶数。
2. 矩阵秩的性质性质1:矩阵的行秩等于列秩对于任意 m × n 的矩阵 A,它的行秩和列秩是相等的,即 rank(A) = rank(A^T),其中 A^T 表示 A 的转置矩阵。
性质2:矩阵的秩不超过它的维数对于任意 m × n 的矩阵 A,它的秩不会超过它的行数和列数中的较小值,即rank(A) ≤ min{m, n}。
性质3:矩阵的零空间维数等于它的列数减去秩对于一个 m × n 的矩阵 A,它的零空间维数等于 n - rank(A),其中 n 为矩阵 A的列数。
性质4:矩阵的秩可能受大小变化的影响矩阵的秩在进行大小变化时可能发生变化。
例如,如果一个矩阵 A 的某一行乘以一个非零数,那么这个矩阵的秩不会改变。
性质5:矩阵乘法中秩的关系对于两个矩阵 A 和 B,我们有以下关系:rank(AB) ≤ min{rank(A), rank(B)}。
3. 矩阵秩的应用解线性方程组矩阵的秩在解线性方程组时起到了重要的作用。
通过求解矩阵 A 的秩和增广矩阵的秩,可以判断线性方程组的解的情况。
线性相关性与线性无关性矩阵的秩可以用来判断向量组的线性相关性与线性无关性。
一个向量组的秩等于向量组中线性无关向量的最大个数。
求矩阵的逆对于一个方阵 A,如果它的秩等于它的行数(或列数),那么它是一个可逆矩阵,可以求出它的逆矩阵。
矩阵的相抵标准形矩阵的秩可以用来推导矩阵的相抵标准形。
相抵标准形是矩阵在初等行变换和初等列变换下的标准形式。
结论矩阵的秩是矩阵理论中一个非常重要的概念。
它能够帮助我们理解矩阵的性质,并在线性方程组求解、线性相关性判断、矩阵逆的求解等问题中发挥重要作用。
大学课程大一数学线性代数上册14.矩阵的秩课件
![大学课程大一数学线性代数上册14.矩阵的秩课件](https://img.taocdn.com/s3/m/9d15f6bff8c75fbfc77db25e.png)
或
A
2
r1r2
B
1
2
,
s
s
则 A 的行向量组与 B 的行向量组等价, 由书上第127页推论
可知 A 的行向量组的秩与 B 的行向量组的秩相等.
(2) 用初等行变换化 A 为阶梯形矩阵 U;
(3) U 的行向量组的秩与 A 的行向量组的秩相同.
4
例1 求下列矩阵 A 行向量组的一个
1 2 1 0 1
(4) 阶梯形矩阵 U 的列向量组的极大无关组就是 U 中每个非
零行第一个非零元所在的列向量所组成的向量组.
3
向量组秩的求法之二
(1) 将向量组 1, 2, , s 按行排成矩阵,并作行初等变换,
例如 1
1
A
2
r2
B
2
,
0,
或
1
2
A
2
r1r2
B
1
,
s
s
s
s
1
1
其非零行的行数为 r(A), B 通过初等行变换化为阶梯形矩阵, 其非零行的行数为 r(B), 则
行 A0数为B0 r(A通)过+ 初r(B等),行故变r换 可A0以化B0 为 阶r梯(A形) 矩r阵(B,);其非零行的
9
(2) r(A+B) r(A) + r(B);
证法一 记 A = (1, 2 ,, n), B = (1, 2 , , n).
如果引入下列定义, 则可以把以上两个结论叙述的更简练.
定义1 矩阵 A = (aij)mn 中行向量组的秩称为行秩, 列向量组 的秩称为列秩.
定理1 初等变换不改变矩阵行秩和列秩.
第一章 第五讲 矩阵的秩
![第一章 第五讲 矩阵的秩](https://img.taocdn.com/s3/m/fed5235d77232f60ddcca1cc.png)
1 → 0 0
r3 − 3 r2
1 1 0
1 2 2
6 1 1 1 6 8 → 0 1 2 8 0 0 1 3 6
1 0 −1 −2 1 0 0 1 r1 + r3 → 0 1 2 8 → 0 1 0 2 r2 − 2 r3 0 0 1 3 0 0 1 3
3 −8 8 2 −3 −1 1 1 A= 2 −2 2 12 → 0 0 4 18 −1 1 1 3 0 0 −6 −27 3 −1 1 1 → 0 0 0 0 0 0 −6 −27
解先将a通过初等变换化为标准形111610121210a?????????????2131111601280306rrrr???????????????323111601280026rr??????????????111601280013??????????12312101201280013rr?r???????????????13r232100101020013rrr??????????????41424333123100001000010cccccceo??????????????????可看出矩阵a的标准形中左上角是3阶单位矩阵所以ra3
在第四讲里讨论 n 元线性方程组相容性时,我们给出了有效方程的概念:即对方程组进 行消元法时最终保留的方程。那么,对方程组而言它有多少个有效方程?哪些方程可以作为 有效方程?这些都可以通过增广矩阵的秩得到答案。
定理 5.1 对齐次线性方程组
a11 x1 + a12 x2 + ... + a1n xn = 0, a x + a x + ... + a x = 0, 21 1 22 2 2n n ...... am1 x1 + am 2 x2 + ... + amn xn = 0.
矩阵的秩的性质以及矩阵运算和矩阵的秩的关系
![矩阵的秩的性质以及矩阵运算和矩阵的秩的关系](https://img.taocdn.com/s3/m/10dd537852d380eb63946d24.png)
高等代数第二次大作业1120133839 周碧莹30011303班矩阵的秩的性质1.阶梯型矩阵J的行秩和列秩相等,它们都等于J的非零行的数目;并且J的主元所在的列构成列向量的一个极大线性无关组。
2.矩阵的初等行变换不改变矩阵的行秩。
证明:设矩阵A的行向量组是a1,…,as.设A经过1型初等行变换变成矩阵B,则B的行向量组是a1,…,ai,kai+aj,…,as.显然a1,…,ai,kai+aj,…,as可以由a1,…,as线性表处。
由于aj=1*(kai+aj)-kai,因此a1,…,as可以由a 1,…,ai,kai+aj,…,as线性表处。
于是它们等价。
而等价的向量组由相同的秩,因此A的行秩等于B的行秩。
同理可证2和3型初等行变换使所得矩阵的行向量组与原矩阵的行向量组等价,从而不改变矩阵的行秩。
3.矩阵的初等行变换不改变矩阵的列向量组的线性相关性。
证明:一是为什么初等行变换不改变列向量的线性相关性?二是列向量进行初等行变换后,为什么可以根据行最简形矩阵写出不属于极大无关组的向量用极大无关组表示的表示式?第一个问题:设α1,α2,…,αn是n个m维列向量,则它们的线性相关性等价于线性方程组AX=0(其中A=(α1,α2,…,αn),X=(x1,x2,…,xn)T)是否有非零解,即α1,α2,…,αn线性相关等价于AX=0有非零解,α1,α2,…,αn 线性无关等价于AX=0只有零解。
而对A进行三种行初等变换分别相当于对线性方程组中的方程进行:两个方程交换位置,对一个方程乘一个非零常数,将一个方程的常数倍对应加到另一个方程上。
显然进行三种变换后所得方程组与原方程组同解,若设所得方程组为BX=0,则B即为对A进行行初等变换后所得矩阵。
B 的列向量的线性相关性与BX=0是否有解等价,也就是与AX=0是否有解等价,即与A的列向量的线性相关性等价!第二个问题以一个具体例子来说明。
例:设矩阵,求A的列向量组的一个极大无关组,并把不属于极大无关组的列向量用极大无关组线性表示。
线性代数矩阵的秩
![线性代数矩阵的秩](https://img.taocdn.com/s3/m/3765d63ab90d6c85ec3ac685.png)
几个简单结论 (1) 若 矩 阵 A 中 有 某 个 s 阶 子 式 不 为 0 则 R(A)s 若A中所有t 阶子式全为0 则R(A)t (2)若A为mn矩阵 则0R(A)min{m n} (3)R(AT)R(A) (4)对于n阶矩阵A 当|A|0时 R(A)n 当 |A|0时 R(A)n 可逆矩阵又称为满秩矩阵 不可逆矩阵(奇 异矩阵)又称为降秩矩阵
则
R( 1 , 2 , 3 , 4 ) 3
也就式说矩阵A的秩和它行向量组和列向量组 的秩是相等的。 那么这到底是巧合还是必然呢?下面我们就来 研究这个问题
二、矩阵与向量组秩的关系
定理1 矩阵的秩等于它的列向量组的秩,也等于
它的行向量组的秩.
定理1说明求向量组的秩可以转化为求矩阵的 秩
例1 求矩阵
1 0 A 0 0 1 1 2 1 4 0 0 5 0 0 0 3
的秩
解
显然A的四阶子式 A 0
1 1 1
而A的一个三阶子式 D 0 2 4 10 0 因此R(A)=3
0 0 5
注意A是一个行阶梯矩阵,而它的秩恰好是非 零行的行数。
E 0
0 0
但是在第一章中我们不能确定E的阶数, 而学习完矩阵的秩的有关知识以后我们知道E 的阶就是矩阵A的秩 由此我们也知道对于一个可逆矩阵它的等价标 准形就是与它同阶的单位矩阵。
说明
(1)初等变换不改变矩阵的秩
(2)用初等行(列)变换把矩阵化成行(列) 阶梯时,非零行(列)的个数就是矩阵的秩 (3)把矩阵A化成行(列)阶梯矩阵B,则B的 列(行)向量组中任意最大无关组所对应的A的 列(行)向量组构成A的一个最大无关组。
三、矩阵秩的求法
1、用定义
线性代数重要知识点总结
![线性代数重要知识点总结](https://img.taocdn.com/s3/m/2746a4a6a8114431b80dd803.png)
线性代数N阶行列式定理1:任意一个排列经过对换后,其奇偶性改变。
推论:奇排列变成自然数顺序排列的对换次数为奇数,偶排列变成自然数顺序排列的对换次数为偶数。
定理2:n个自然数(n-1)共有n!个n级排列,其中奇偶排列各占一半。
行列式的性质性质1:行列式与它的转置行列式相等。
性质2:交换行列式的两行(列),行列式变号。
*注2:交换i,j两列,记为ri↔ri(ci↔cj)。
推论1:如果行列式中有两行(列)的对应元素相同,那么该行列式必为零。
性质3:用数k乘行列式的某一行(列),等于用k乘此行列式。
注3:第i行(列)乘以k,记为ri×k(ci×k)。
推论2:行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面。
推论3:在一个行列式中,如果有两行(列)元素成比例,则这个行列式必等于零。
性质4:如果将行列式的某一行(列)的每个元素都改写成两个数的和,则此行列式可写为两个行列式的和,且这两个行列式分别为所在行(列)对应位置的元素,其它元素不变。
#注4:上述结果可推广到有限个数和的情形。
性质5:将行列式的某一行(列)的所有元素都乘以数k后加到另一个行(列)对应位置的元素上,行列式的值不变。
注5:以数k乘第j行加到第i行上,记作ri+krj;以数k乘第j列加到第i列上,记作ci+kcj。
行列式按行(列)展开余子式:Mij 代数余子式:Aij=(-1)i+j Mij引理:一个n阶行列式D,若其中第i行所有元素除aij外都为0,则该行列式等于aij 与它代数余子式的乘积,即D=aijAij[定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和。
推论:行列式某一行(列)的每元素与另一行(列)对应元素的代数余子式乘积之和等于零。
k阶行列式:在n阶行列式D中,任意选定k行k列,位于这些行和列交叉处的k²个元素,按原来顺序构成一个k阶行列式M,称为D的一个k阶子式,划去这k行k列,余下的元素按原来的顺序构成一个n-k阶行列式,在其前面冠以符号(-1)的(i1+i2+…+i k+j1+j2+…+j k)次方,称为M的代数余子式,其中i1,i2,…,i k为k阶子式M在D中的各行标,j1,j2,…,j k为M在D 中的各列标。
Ch3-2线性代数矩阵的秩
![Ch3-2线性代数矩阵的秩](https://img.taocdn.com/s3/m/9cd230c17f1922791688e8e7.png)
rt,
故有
R ( A, B) R ( A) R ( B).
6 0 R( A+B ) R( A) +R( B) . c i c n i ( , ) 证 ( A B , B) A B , , n i 1, R ( A B ) R ( A B , B ) R ( A, B) R ( A) R (B) .
0 3 2 4 A 0 3 1 1 6 2
1 2 1 3
3 1 4 2
1 3 1 4
2 0 2 1
2 0 1 3 4 3 1 2 4
2 1 3 4
一般地: m×n 矩阵A 的 k
2 阶子式 3 阶子式 k C k 个. 阶子式共有 Cm n
k 阶子式、矩阵的子块、余子式、代数余子式的区别!
定义3(P66) 设 A 为 n 阶方阵,若 R(A)= n, 则称 A 为 满秩矩阵;若 R(A)< n,则称 A 为降秩矩阵.
单位阵 E 是满秩矩阵, 1 2 2
A 0 3 1 是降秩矩阵. 0 0 0
① n 阶满秩阵化为行阶梯形时有多少非零行? — n 行. ② 满秩阵的行列式 ≠ 0
左乘列满秩阵秩不变 Bnl , 证明: 若 A mn, 且 R ( A) n , R ( AB ) R ( B ) . A的秩等于其列数 A列满秩
,
行满秩阵——矩阵的秩等于其行数. 上面的结论可以相应地推广到右乘行满秩阵. 请自证. 满秩矩阵——方阵,且既列满秩又行满秩. AB = O时,本题结论为:设 AB = O,若 A为列满秩矩阵,则B = O. 原本仅对可逆阵成立的零因子性质,可以推广到列(行)满秩矩阵. 由此可以体会到列(行)满秩矩阵概念的重要性.
线性代数矩阵的秩
![线性代数矩阵的秩](https://img.taocdn.com/s3/m/0df684fb7c1cfad6195fa72e.png)
a11 a12 a21 a22 ai 1 ai 2 a m 1 am 2
解
把矩阵 A 用初等行变换变成为阶梯形矩阵:
(-1)[1]+[2] [1,4] (-2)[1]+[3] (-3)[1]+[4] (-3)[2]+[3] (-4)[2]+[4] (-1)[3]+[4]
A
1 6 4 1 4 1 1 0 4 3 0 0 0 4 8 0 0 0 0 0
1 A 0 2 2 1 4 3 2 6 0 1 0
1 2 3 6
1 3 2 6 0 1 0 0
பைடு நூலகம்3 阶子式: 0
2
2 阶子式:
0
1 0
0 1
1
模式二 一、基本概念 1、 k 阶子式 定义 在 m n 矩阵 A中, 任取 k 行 k 列, 位于这些 行与列交叉处的元素, 保持原来的位置不变而构成的 k 阶行列式,称为 A 的一个 k 阶子式.
1 a 1
1 1 a
1 1 1 1 a 1
求 r( A)
解: A
a 1 1
1 a 1
[( n 1) a ]
1 1 a
[( n 1) a ]
1 a 1 0
1 0 a 1
[(n 1) a](a 1)n1
A [(n 1) a](a 1)n1
求
A O r1 r2 O B
矩阵的秩的性质.doc
![矩阵的秩的性质.doc](https://img.taocdn.com/s3/m/d95a7464bf23482fb4daa58da0116c175f0e1e91.png)
矩阵的秩的性质.doc
1. 矩阵经过初等行变换或初等列变换后,其秩保持不变。
2. 对于一个 n × m 的矩阵 A,它的秩满足以下条件:
- 秩(A) ≤ min(n, m),即矩阵的秩不会超过它的行数和列数中较小的那个。
- 秩(A) = r,其中 r 表示 A 中线性无关的列(或行)的最大个数。
- 如果 r = n,则矩阵 A 被称为满秩矩阵。
- 如果 r < n,则矩阵 A 被称为降秩矩阵。
3. 当一个方块矩阵(n × n)是满秩时,它是可逆的。
也就是说,如果一个方块矩阵 A 是满秩的,则存在另一个方块矩阵 B,使得AB = BA = I,其中 I 是单位矩阵。
4. 对于两个任意大小的矩阵 A 和 B,我们有以下关系:
- 秩(A + B) ≤秩(A) + 秩(B)
- 秩(AB) ≤ min(秩(A), 秩(B))。