考研数学:求极限的16个方法
考研:求数列极限的十五种解法
求数列极限的十五种方法1.定义法;-N 定义:设{a .}为数列,a 为定数,若对任给的正数;,总存在正数 N ,使得当n . N 时,有a . -a | .;:「,则称数列{a .}收敛于a ;记作:l im a^a ,否则称{a .}为发散数列.例1 •求证: 1nim:a —1,其中a 0.证:当a =1时,结论显然成立.III当 a >1 时,记 a =a n_1,则 a >0 ,由 a =n+a $ K 1 +n a =1 + n(c^ _1),得_1 兰王,v‘ n彳 1 1 1任给E >0,则当n >口 =N 时,就有—1 ,即a 下一1 c 呂,即lim=1 .1综上, lim a n =1,其中 a >0 .例2 .求: 7nlim—.M^n!解: 变式: 7n_7 77 7 77 7 .7 7 771 .. n7--0 7丄丄n! 1 27 8 9 n —1 n 7! n 6! nn! 6! n2•利用柯西收敛准则由柯西收敛准则,数列 {x,}收敛.1丄当—时,令b 蔦,则b 1,由上易知:”呻1lim a nn丄-11 —1lim b 下n ::0,N 丄6!则当n . N 时, •••lim 7=0.f n!柯西收敛准则:数列{a n }收敛的充要条件是: 一;・0 , T 正整数N ,使得当n 、m • N 时,总有:|a n -a m I ■:"'成立.例3 •证明:数列x n 八§n当(n 才,2, 3,)为收敛数列. k 2±2证:X n -X m =sin(m 勺)-2m +当n • m • N 时,有有二丄「;6! n例4 .(有界变差数列收敛定理 )若数列{x }满足条件:(n =1, 2,),则称{人}为有界变差数列,试证:有界变差数列一定收敛.=0, y n 二 X n —X nJ —%1—X n 』"| X ? - X ’那么{y n }单调递增,由已知可知: {y n }有界,故{%}收敛, 从而0, -I 正整数N ,使得当n .m . N 时,有y n -y m :::;; 此即X n -X m _X n -X n 』"|X n 丄^/"| X m 1 - X m |八;由柯西收敛准则,数列{ X,}收敛.注:柯西收敛准则把 ;—N 定义中的a n 与a 的关系换成了 a n 与a m 的关系,其优点在于无需借用数列以外的数a ,只需根据数列本身的特征就可鉴别其敛散性.3 •运用单调有界定理单调有界定理:在实数系中,有界的单调数列必有极限.例5 •证明:数列 x n = J a +J a +''描 (n 个根式,a >0,n =1, 2, 11|)极限存在,并求l i ^X n • 证:由假设知X n = a • X n1 ;①用数学归纳法可证: X n 1 X, , ^ N :② 此即证{X,}是单调递增的.事实上,0 ::: Xn 1 • ..=a • Xn •;: J a • a • 1 :::、'( :a • 1)2二 a 1 ;由①②可知: {X n }单调递增有上界,从而 lim X^ =1存在,对①式两边取极限得:1二JFR ,解得: 1」1如和|/-1 4a(舍负);.・.limX 」1如.22F 24.利用迫敛性准则(即两边夹法)迫敛性:设数列{a n }、{b n }都以a 为极限,数列{C n }满足:存在正数 N ,当n • N 时,有:1*2 n "郭 n 2 +n 勺 n 2+2n 2+n +n)卫j <X ^n (n 1);从而lim 単』亠m 吵"2(n ②) 2(n 5 1) "一斗2 (n 2n) 2 r :2( n n 1)•••由迫敛性,得:朝人+冷…冷弓.注:迫敛性在求数列极限中应用广泛,常与其他各种方法综合使用,起着基础性的作用.证:令力 a^lC n 乞b ,则数列{C n }收敛,且l nim Cn =a .例6 .求:解:记:X n备?■生,则:....1 2 小“丘 n ; 21 n 2n 1亠 % - x ,| M5•利用定积分的定义计算极限黎曼积分定义:设为f(x)定义在[a, b ]上的一个函数,J 为一个确定的数,若对任给的正数g >0 ,总存在某一正数 5,使得对[a, b ]的任意分割T ,在其上任意选取的点集 {©},1X 」,x ],n只要—就有送f(©)织—J £ ■则称函数f(x)在[a, b ]上(黎曼)可积,数J 为f(x)在[a, b ]i J_.兀 .2兀 sin — sin —— lim------ + ---- - +"f 1n 1< 22n2n2n .sin — sinsin sin — sinsin si n — sin sin-n nn ____ n . ___ 亠 亠 n ... n nnnn注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时, 可以考虑能否将极限看作是一个特殊的函数定积分的定义;部分相关的数列极限直接利用积 分定义可能比较困难,这上的定积分,记作 bJ f (x)dx •=exp "li 琴瓦 ^In(1 +丄)卜exp(』ln(1 +x)dx )=exp(2ln2 —1例8.求: 解:因为:又:.兀亠• 2兀亠亠.n 兀sin — sin sin -n n nn +1 n 1 =lim — ■- y :n 1 二二 二 2 二 n 二 -—(sin — sin — ■ ■■-sin —) •兀丄• 2兀丄亠• nn sin sin sin 一 •- lim n nJnY :n -1■nsin同理:sin — si n — s in 」由迫敛性,得:例7.求:1112 n n+評+廿1+討2兀时需要综合运用迫敛性准则等方法进行讨论.6•利用(海涅)归结原则求数列极限(x )=A=对任何人必(n 宀),有 ”叮(Xn )=A •2=[im(1 •啤)]im(1 ^^1)^ ^lim(1 n^)^^lim(1 」)x =e ; lim(1 -1 -4)n=e • i : n n注:数列是一种特殊的函数,而函数又具有连续、可导、可微、可积等优良性质,有时我们可以借助函数的这些优良性质将数列极限转化为函数极限,从而使问题得到简化和解决. 7•利用施托尔茨(Stolz )定理求数列极限stolz 定理1: (__)型:若{y n }是严格递增的正无穷大数列,它与数列 {X n }一起满足:□0"m :x 二辭1,则有卩叹辭1,其中l为有限数,或;,或一stolz 定理2: (0)型:若{yn }是严格递减的趋向于零的数列, n —「::时,Xn —;0且lim X 1 Xn=],则有lim Xn=l ,其中I 为有限数,或•::,或-. n「y n1. -y n7%例11 .求:乍 2P 加:小n p愠 np+ (P^N) •解:令X n =1p ,2p 爲…圧-P , y n =n p1, n • N ,则由定理1,得:lim 1P 2P1 nP Rim (n P11)P P1,lim心 「 rn p1":( n1)p_ n p n]p1) n p_(P ⑴卩P 1注:本题亦可由 方法五(即定积分定义)求得,也较为简便,此处略.例9•求:lim n-<-.: 1e n-1 1 解:lim■n-s : 1-1 1例10 •计算: 解:一方面, 另一方面, 1= lim 学n T_on( lim 1 n 扛 (1 - n由归结原则: 1、n “ 1、n 2):::(1 ) > n(nr ');1 1(1 ——1)n (取 X n=(1 2丄_2_ 丁 )心丄—(1—)5-; nn2n n—1 ,n = 2, 3,…), 归结原则:lim f X十2n2由迫敛性,得:n'TnC :S n,求:Hm S n •n8.利用级数求和求数列极限由于数列与级数在形式上的统一性,有时数列极限的计算可以转化为级数求和,从而通过级 数求和的知识使问题得到解决.1 2n例13 .求:lim( 21) , (a >1). n: - a aa n1od解:令x =—,则|x | .;:1,考虑级数:V nx nan 1x而S(x)二x f (x)2;因此,原式(1—X)9.利用级数收敛性判断极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此 数列极限的存在性及极限值问题,可转化为研究级数收敛性问题.例14.设焉0,X :^^ ^(n r O, 1, 2,),证明:数列{X :}收敛,并求极限2 +X :证:由x 0・0 ,可得: x:0(:巾 1 2, ),令 f(x ^22 x C),(x 0),例12 •设 解:令y =n 2,则{y n }单调递增数列,于是由定理2得:nE ln C ;lim S n = lim k~ 2—— j nY :2n 1n7 ln C n k1 -7 ln C := lim - n二 k 纟 k 土 2 2" (n 1) —nn” ln^^ k_on —k +1=lim n:■: 2n -1n +(n - 1)ln(n y ln kk -1=lim — n二2n 1(n 七)ln( n +1) — n In n -ln(n +1) = lim n:2n 1 .z n 1 nln( ) 1= lim :-n注:Stolz 定理是一种简便的求极限方法,特别对分子、分母为求和型,利用Stolz 定理有很大的优越性,它可以说是求数列极限的洛必达(L'Hospita )法则.lim an = lim =1,•••此级数是收敛的.令Q QS(x) nx n士二八'nx n1,再令n —f (x) =7 nx n」,x:: x::o f(t)dt ■ 0nt n1dt ■ x nn ±n 1f (x)二(产)二1 -x1 (1 -==S(a 」)=a(1-a 于2(1 亠x )=x :1,x : 0, (n =0,1,2,),oo考虑级数:.J |X : 1 -人; n 倉则 0 . f '(x)2(2 x)2由于X n 牛一X f (X n ) f (X nJf '(©(X n -X n£1X n —人iXn—人 1人一X n 1J?2所以, 级数"_人收敛,从而n£Q0壬(X n 牛-X n )收敛.n_0_令Sn=E (x kk_0_%牛一X k ) = X n 牛一人,叮臂^存在,二 n ^X n 丰 M^+U^S nJ (存在);对式子:X 」= 2(1+X),两边同时取极限:| =2(1知),2 *2 +I\ =^J 2或 I =―J2 (舍负);二 lim 人=J2 .n与、 1 1 i例15 .证明:lim (1In n )存在.(此极限值称为 Euler 常数)ii i i证:设 a n =i +— +—…+— —In n ,贝U a * —a*丄=—[in n —ln (n —i )];2 3 n n对函数y =1 n n 在[n -i, n ]上应用拉格朗日中值定理,可得:Inn —ln(n —1) - (0:::小1),10 •利用幕级数求极限例 16•设 sin x =sinx, sin x 二sin(sin n ±x) (n =2, 3, ■■- ),若 sinx 0 ,求:— i解:对于固定的x ,当n —•:时,单调趋于无穷,由stolz 公式,有:sin n x2nn ,1-1 lim nsin n x =lim lim — n 二 nn :”: 1n 1 [2 2 2sin n x sin n 1 x sin n x所以 a n —a “ 丄=一1 .n(n -1+0) In -1)2 'OC A因为J 收敛,由比较判别法知: n三(n -1)2心a n -a ni 也收敛,n士1 1所以l j m® 存在,即lim^Vi*1iln n)存在. n利用基本初等函数的麦克劳林展开式, 常常易求岀一些特殊形式的数列极限... 1= lim ——y : 1 ___ 1 sin 2(sin x) s in 2sin . x .2 2丄1 t sin t= lim lim 2 2 lim -“士一* t0 t -int(0 t^(t2-1t4 o(t4))sin t t 3t 4 -- t 6 o (t 6) 1 -- t 2 o (t 2) = lim 3 lim 33 .3t o (t )3 o (i )ii •利用微分中值定理求极限拉格朗日中值定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛•下面我们来看一下拉格朗日中值定理在求数列极限中的应用. 、 a a 例仃•求:limn 2(arctan arctan ) , (a =0).n二 n n 1解:设f (x ) =arctanx ,在[—a, a]上应用拉格朗日中值定理, n +1 n得:吩…(洽)="吟话),启,故当2知,J 。
极限的求法总结
a xn
=
a 0 xn
a
即 {xn} 有下界, 由此得
xn+1 −
xn
=
1 2
(
xn
+
a xn
)
−
xn
=
a − xn2 2 xn
0
既
xn 单调下降,因此
lim
x→+
xn
存在。
(2)设
lim
x→+
xn
=
,由(1)
a 0
对递推公式两端取极限,得 = 1 ( + 2 ) 2
解得 = a (舍去负值),所以 = a.
=
a0
(
lim
x→x0
x)n
+
a1
(
lim
x→x0
x) n−1
++
an
= a0 x0n + a1 x0n−1 + + an = Pn (x0 ).
2
极限的求法总结
例3. lim x2 + 5x − 6 x→−1 3x2 + 2
商的法则(代入法)
方法总结: 多项式函数与分式函数(分母不为0)用 代入法求极限;
极限的求法总结
极限的求法总结
简介:求极限方法举例,列举21种 求极限的方法和相关问题
1
1.代入法求极限
极限的求法总结
例1.lim(x2 + x − 2) x→2
例2.设有多项式Pn (x) = a0 xn + a1xn−1 + ... + an ,
求
lim
x → x0
Pn
(
函数的极限考研真题填空
函数的极限考研真题填空填空一:对于一个函数f(x),当x无限靠近一个实数a时,如果f(x)的值也无限接近某个实数L,那么就称L为函数f(x)在x趋近于a时的极限,记作:lim (x→a) f(x) = L填空二:要想计算函数的极限,我们可以通过一些特定的方法和定理来求解。
下面是一些常用的计算极限的方法:方法一:代入法当函数在某个点a处连续时,可以直接将a代入函数表达式中,求得极限的值。
方法二:夹逼定理当对于函数f(x)、g(x)和h(x),在某个点a处有f(x)≤g(x)≤h(x),且lim (x→a) f(x) = lim (x→a) h(x) = L时,我们可以推断lim (x→a) g(x) = L。
方法三:恒等变形通过将极限表达式进行恒等变形,通常是通过分子有理化、分解因式、提取公因式等操作,将极限转化为可以直接计算的形式。
填空三:解析题下面是一个函数的极限计算实例:例:已知函数f(x) = (x^2 - 1)/(x - 1),求lim (x→1) f(x)的值。
解:我们可以利用恒等变形的方法进行计算,首先分解f(x)为(x - 1)(x + 1)/(x - 1),再将分子(x - 1)与(x + 1)相约去,得到f(x) = x + 1。
由于f(x)在x = 1处连续,所以我们可以直接将1代入f(x),得到lim (x→1) f(x) = lim (x→1) (x + 1) = 2。
填空四:综合题下面是一个综合题的极限计算实例:例:已知函数f(x) = 3x^2 - x,g(x) = 2x - 1,求lim (x→2) (f(x) +g(x))的值。
解:我们可以利用恒等变形的方法将f(x)和g(x)进行合并,得到f(x) + g(x) = (3x^2 - x) + (2x - 1) = 3x^2 + x - 1。
将x = 2代入f(x) + g(x),得到lim (x→2) (f(x) + g(x)) = lim (x→2) (3x^2 + x - 1) = 11。
考研高数中求极限的几种特殊方法
考研高数中求极限的几种特殊方法在数学分析中,极限是研究函数的重要工具。
通过极限,我们可以研究函数的性质,进行函数的计算,以及解决与函数相关的问题。
求函数极限的方法有很多种,以下是几种常见的方法。
对于一些简单的初等函数,我们可以直接根据函数的定义代入特定的x值来求得极限。
例如,求lim (x→2) (x-2),我们可以直接代入x=2,得到极限为0。
当函数在某一点处的极限存在时,如果从该点趋近的数列是无穷小量,则此函数在该点处的极限就等于该数列的极限。
例如,求lim (x→0) (1/x),我们可以令x=1/t,当t→∞时,x→0,而t=1/x趋近于无穷小量,所以lim (x→0) (1/x) = lim (t→∞) (t) = ∞。
洛必达法则是求未定式极限的重要方法。
如果一个极限的形式是0/0或者∞/∞,那么我们可以通过对函数同时取微分的方式来找到极限的值。
例如,求lim (x→+∞) (x^2+3)/(2x^2+1),分子分母同时求导,得到lim (x→+∞) (2x/4x) = lim (x→+∞) (1/2) = 1/2。
对于一些复杂的函数,我们可以通过泰勒展开的方式将其表示为无限多项多项式之和的形式。
通过选取适当的x值,我们可以使得多项式的和尽可能接近真实的函数值。
例如,求lim (x→0) ((1+x)^m-1)/x,我们可以使用泰勒展开得到lim (x→0) ((1+x)^m-1)/x = lim (x→0) m(1+x)^(m-1) = m。
夹逼定理是一种通过构造两个有界序列来找到一个数列的极限的方法。
如果一个数列的项可以划分为三部分,而每一部分都分别被两个有界序列所夹逼,那么这个数列的极限就等于这两个有界序列的极限的平均值。
例如,求lim (n→∞) (n!/(n^n))^(1/n),令a_n=(n!/(n^n))^(1/n),则a_n ≤ a_{n+1}且a_n ≥ a_{n-1},因此由夹逼定理可知lim a_n=lim a_{n+1}=lim a_{n-1}=1。
考研数学:求极限的16种方法1500字
考研数学:求极限的16种方法1500字极限是数学中的重要概念,是解析数学中很多问题的基础。
求极限的方法有很多种,下面就介绍一下求极限的16种常用方法。
1. 直接代入法:对于某个函数在某个点的极限,如果可以直接将极限点代入函数中计算出极限值,则可以使用直接代入法。
2. 连续性法则:如果一个函数在某个点处连续,那么该点的极限值就是函数在该点的函数值。
3. 无穷小量的性质:利用无穷小量的性质对极限进行求解,例如利用已知的极限,对函数进行分子分母的化简、展开等操作。
4. 夹逼法:当一个函数夹在两个函数之间时,利用两个函数的极限值可以求出该函数的极限值。
5. 单调有界原理:对于单调有界的函数,可以通过证明上下确界得到极限值。
6. 极限的四则运算法则:对于两个函数的极限,可以利用四则运算法则求出其和、差、积、商的极限。
7. 换元法:通过对函数进行变量替换,将原来的极限问题转化为更简单的问题求解。
8. 泰勒级数展开法:对于某些函数,可以利用泰勒级数展开的性质,将函数进行级数展开,然后求出极限值。
9. 符号常用极限法:对于一些特殊的函数,例如正弦函数、指数函数等,可以通过符号常用极限值来求出其极限。
10. 隐函数极限法:对于隐函数的极限问题,需要通过隐函数求导的方式来求出极限值。
11. 单调列法:对于一个递增(递减)且有上(下)界的序列,可以通过极限的单调列法求出极限。
12. Stolz定理:当一个数列为无穷大与无穷小的极限的商时,可以利用Stolz定理求出极限。
13. 递推法:对于递归定义的数列,可以通过递推的方式求出极限。
14. 分部积分法:对于一些函数的积分,可以通过分部积分法转化为极限问题求解。
15. L'Hospital法则:对于一些不定型的极限问题,可以通过L'Hospital法则来求出其极限。
16. 堪培拉法则:对于一些含有多个变量的函数,可以利用堪培拉法则求出其极限。
以上是求解极限的16种常用方法,掌握这些方法可以更好地应对极限求解问题。
2023考研数学高数备考冲刺:16种求极限的方法
2023考研数学高数备考冲刺:16种求极限的方法2023考研数学高数备考冲刺:16种求极限的方法1、极限分为一般极限,还有个数列极限〔区别在于数列极限是发散的,是一般极限的一种〕。
2、解决极限的方法如下1〕等价无穷小的转化,〔只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限仍然存在〕e的X次方-1或者〔1+x〕的a次方-1等价于Ax等等。
全部熟记。
〔x趋近无穷的时候复原成无穷小〕2〕洛必达法那么〔大题目有时候会有暗示要你使用这个方法〕首先他的使用有严格的使用前提。
必须是X趋近而不是N 趋近。
〔所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件。
还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!〕必须是函数的导数要存在!〔假设告诉你g〔x〕,没告诉你是否可导,直接用无疑是死路一条〕必须是0比0,无穷大比无穷大!当然还要注意分母不能为0。
洛必达法那么分为三种情况1〕0比0无穷比无穷时候直接用2〕0乘以无穷,无穷减去无穷〔应为无穷大于无穷小成倒数的关系〕所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了3〕0的0次方,1的无穷次方,无穷的0次方对于〔指数幂数〕方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,〔这就是为什么只有3种形式的原因,ln〔x〕两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候ln〔x〕趋近于0〕3、泰勒公式〔含有ex的时候,尤其是含有正余旋的加减的时候要特变注意!〕ex展开,sinx展开,cos展开,ln〔1+x〕展开对题目简化有很好帮助4、面对无穷大比上无穷大形式的解决方法取大头原那么最大项除分子分母!看上去复杂处理很简单。
5、无穷小与有界函数的处理方法面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。
考研数学求极限方法小结
一.求极限方法小结极限是整个微积分的基础,要理解微积分,首先要很好地理解极限的概念.有多种求极限的方法,究竟该用哪种方法求极限,关键是要判断极限属于哪一种类型.1. 知识要点(1)利用极限的定义求极限. (2)利用极限运算法则求极限. (3)利用不等式求极限. (4)利用变量代换法求极限. (5)利用两个重要极限求极限. (6)利用单调有界准则求极限. (7)利用函数的连续性求极限. (8)利用等价无穷小代换求极限. (9)利用单侧极限求极限.(10) 利用罗必达法则求极限. (11) 利用导数定义求极限. (12) 利用定积分定义求极限. (13)利用Taylor 公式求极限.2.典型例子例1:设 ,12,,12,21121nn x x x x x +=+==+ 求证:n n x ∞→lim 存在,并求其值.)21(+答案:例2:求⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim (答案:1) 例3:求⎪⎪⎪⎭⎫⎝⎛++++++∞→n n n n n n 1212)1(1)1(111lim (答案:1) 例4:求nn n 2642)12(531lim⋅⋅-⋅⋅∞→ (答案:0)例5:求 ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-∞→x x x x 11ln lim 2 (答案:21)例6:xx x cos lim 0+→ (答案:21-e)例7:求常数c ,使dt te c x c x ct xx ⎰∞-∞→=⎪⎭⎫⎝⎛-+2lim (25=c ) 例8:已知 ,11,,11,1111121++=++==--n n n x x x x x x x ,证明数列}{n x 收敛,并求出此数列的极限. ⎪⎪⎭⎫ ⎝⎛+251例9:设)0(3)1(3,010≥++=>+n x x x x nn n ,求n n x ∞→lim (答案:3)例10:求 1tan 1tan 1lim---+→xx e xx (答案:1) 例11:求 xx x x x x x cos sec )1ln()1ln(lim 220-+-+++→ (答案:1)例12: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++→x x e e x xx sin 12lim 410 (答案:1)例13:设x x x g tdt x f x 6702sin )(,tan )(2+==⎰,证明:当0→x 时,)(x f 与)(x g 是同阶无穷小量.例14:⎪⎭⎫⎝⎛-→x x x 220cot1lim (答案:32)例15:求 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++++++∞→n n n n n n n 1sin 212sin 1sin lim πππ (答案:π2) 例16:求 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++∞→n n n n n n n n n n n n n 222sin 22sin 211sin 1lim (答案:1cos 1sin -) 例17:设)(x f 在原点的邻域内二次可导,且0)(3sin lim 230=⎪⎭⎫⎝⎛+→x x f x x x ,求)0("),0('),0(f f f 及⎪⎭⎫ ⎝⎛+→220)(3lim x x f x x (答案:29,9,0,3-)例18:设)(x f 在0=x 的某邻域内具有二阶导数,且310)(1lim e x x f x xx =⎪⎭⎫ ⎝⎛++→,求)0(''),0('),0(f f f 及xx x x f 10)(1lim ⎪⎭⎫ ⎝⎛+→.(答案:4)0('',0)0(',0)0(===f f f ,210)(1lim e x x f xx =⎪⎭⎫ ⎝⎛+→) 例19:设}{n a ,}{n b ,}{n c 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有)(A n n b a <对任意n 成立; )(B n n c b <对任意n 成立; )(C 极限n n n c a ∞→lim 不存在; )(D 极限n n n c b ∞→lim 不存在.(2003年数学一)例20:已知011lnarctan 2lim≠=-+-→c x x xx px ,求c p , (答案:34,3-==c p )例21:设函数)(x f 在0=x 的某邻域内具有二阶连续导数,且0)0(≠f ,0)0('≠f ,0)0(''≠f .证明:存在惟一的一组实数321,,λλλ,使得当0→λ时,)0)3()2()(321f h f h f h f -++λλλ是比2h 高阶的无穷小.例22:求极限⎪⎪⎭⎫ ⎝⎛+-++→)1ln(1)1ln(1lim20x x x x (答案:21-) 例23:已知当0→x 时⎰-222cos x dt t x 与kAx 是等价无穷小,求常数A 和k .(答案:10,101==k A ) 例24:设函数)(x f 在),(+∞-∞内单调有界,}{n x 为数列,下列命题正确的是)(A 若}{n x 收敛,则)}({n x f 收敛. )(B 若}{n x 单调,则)}({n x f 收敛. )(C 若)}({n x f 收敛, 则}{n x 收敛. )(D )}({n x f 若单调,则}{n x 收敛.(答案:B) (2008年数学一)例25:求极限 40sin )]sin(sin [sin limx x x x x -→ (答案:61)(2008年数学一)例26:(I)证明:对任意的正整数n ,都有nn n 1)11ln(11<+<+ (II)设),2,1(1211 =+++=n na n ,证明数列}{n a 收敛. (2011年数学一、二)。
考研数学极限有哪些运算方法和适用情况
考研数学极限有哪些运算方法和适用情况考研数学极限七种运算方法及适用情况基础阶段,我们的目标是三基本:基本概念、基本定理、基本方法,因此在基础阶段学习极限应从两个方面着手,一是极限的定义,二是极限的运算。
极限的定义在考试大纲中明确要求是理解,理解的意思并不是会背诵定义内容,而是能够领会定义内容背后的所蕴含的含义,正确理解所代表的任意小以及代表的距离。
除定义本身以外,极限的趋近状态也要注意区分,对于函数来说有六种趋近状态:各自的含义要非常清楚,而数列只有一种趋近状态,虽然没有指明,但是数列里边的隐含之意为。
极限的计算则需要首先掌握考研数学要考到的七种基本方法,知道七种方法适用的情况。
第一种是四则运算,此方法大家最为熟悉,但比较容易出错,需要注意使用四则运算的前提是进行运算的函数极限必须都是存在的;第二种是等价无穷小替换,这一方法比较受欢迎,而且很多极限计算的问题只需经过等价无穷小代换就能得出结果,不需再使用其他方法,需要注意的是等价无穷小代换前提必须首先是无穷小才可代换,另外只能在乘积因子内代换(有些是可以在加减因子中代换的,但是在没有十足把握的情况下应避免使用在加减因子中代换);第三种是洛必达法则,适用于及型未定式,在使用的过程中需要注意一下几点:1、洛必达法则必须结合等价无穷小使用;2、使用一次整理一次;3、其他类型未定式需要转化成及型才可以使用洛必达法则等;第四种是泰勒展式,这是解决极限问题的利器,在基础阶段不必要求掌握如何使用,只需了解泰勒展式的内容即可,具体使用原则会在强化阶段给出;第五种是夹逼定理,主要用于解决含有不等式关系的极限问题,特别应用于个分式之和的数列极限问题,通过放缩分母来达到出现不等关系的目的;第六种是定积分的定义,与夹逼定理相区别,夹逼定理解决的问题放缩分母后分子可用一个式子去表示,而定积分的定义可解决夹逼定理不能解决的问题,通过主要的三步:1、提取,2、凑出,3、极限符号及连加符号改写为,改写为,改写为计算定积分即可解决个分式之和的数列极限问题;第七种方法是适用于数列极限的单调有界性定理,难点在于如何确定证明方向,一般单调有界性定理适用于由递推公式给出的数列极限问题,因此可采取数学归纳法证明有界性,做差的办法证明单调性。
求极限方法总结
求极限方法总结求极限方法总结一,求极限的方法横向总结:1带根式的分式或简单根式加减法求极限:1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置上)2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式(常用到2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。
3等差数列与等比数列和求极限:用求和公式。
4分母是乘积分子是相同常数的n项的和求极限:列项求和5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。
6运用重要极限求极限(基本)。
7乘除法中用等价无穷小量求极限。
8函数在一点处连续时,函数的极限等于极限的函数。
9常数比0型求极限:先求倒数的极限。
10根号套根号型:约分,注意别约错了。
11三角函数的加减求极限:用三角函数公式,将sin化cos二,求极限的方法纵向总结:1未知数趋近于一个常数求极限:分子分母凑出(x-常数)的形式,然后约分(因为x不等于该常数所以可以约分)最后将该常数带入其他式子。
2未知数趋近于0或无穷:1)将x放在相同的位置2)用无穷小量与有界变量的乘积3)2个重要极限4)分式解法(上述)高数解题技巧。
高数(上册)期末复习要点高数(上册)期末复习要点第一章:1、极限2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)高数解题技巧。
考研数学:求极限的16种方法
考研数学:求极限的16种方法1500字求极限是数学中一个重要的概念和技巧,经常会在高等数学、微积分、函数分析等课程中出现。
在考研数学中,求极限也是一个比较常见的题型,有时候会要求借助不同的方法来求解极限。
以下是16种常见的求极限的方法:方法1:代入法代入法是求极限中最基本的方法之一,特别适用于极限问题中有指定点的情况。
代入的点可以是有限点或无限点,通过将极限值代入原函数中,来求得极限。
方法2:夹逼定理夹逼定理也是一种常用的方法,适用于需要用两个已知函数夹住待求函数的情况。
通过取两个已知函数逐渐逼近待求函数,来求得极限。
方法3:集中取值法集中取值法是一种常用的方法,适用于需要对待求函数的取值进行讨论的情况。
通过将待求函数的取值限制在一个区间内,来求得极限。
方法4:变量代换法变量代换法是一种常用的方法,适用于需要通过变换变量来求得极限的情况。
通过进行恰当的变换变量,将原极限转化为另一个更容易求解的极限。
方法5:公共因子法公共因子法是一种常用的方法,适用于需要将待求函数的表达式进行分解的情况。
通过进行恰当的分解,将待求函数表达式中的公共因子提取出来,来求得极限。
方法6:三角函数极限法三角函数极限法是一种常用的方法,适用于需要进行三角函数的极限转化的情况。
通过使用三角函数的性质和公式,将原极限转化为更容易求解的三角函数极限。
方法7:幂函数极限法幂函数极限法是一种常用的方法,适用于需要进行幂函数的极限转化的情况。
通过使用幂函数的性质和公式,将原极限转化为更容易求解的幂函数极限。
方法8:自然对数极限法自然对数极限法是一种常用的方法,适用于需要进行自然对数的极限转化的情况。
通过使用自然对数的性质和公式,将原极限转化为更容易求解的自然对数极限。
方法9:常数e极限法常数e极限法是一种常用的方法,适用于需要进行常数e的极限转化的情况。
通过使用常数e的性质和公式,将原极限转化为更容易求解的常数e极限。
方法10:斜率法斜率法是一种常用的方法,适用于需要进行斜率的极限转化的情况。
11考研辅导讲稿之极限例题资料版
a x −1 ~ x ln a , ln(1+ x) ~ x , n 1+ x −1 ~ x , (1+ βx)α −1 ~ αβx . n
以上的等价无穷小中的 x 可以用相同形式的无穷小代替。如当 x→0 时,有
1− cos x ~ 1 ( x )2 = 1 x
2
2
例 1.010202(2)设当 x → 0 时, (1− cos x)ln(1+ x2 ) 是比 xsin xn 高阶的无穷小,而 xsin xn
,(
n =1,
2,
3,
"
),证明
lim
n→+∞
xn
存在并求
出其极限值(1+ 2 ).
例 9(1).设 f (x) 是周期为 T 的非负连续函数,求证:
∫ ∫ lim 1
x f (t)dt = 1
T
f (t)dt
x x→+∞ 0
T0
∫ 例 9(2).000206 设 S(x) = x cos t dt 。(1)当 n 为正整数,且 nπ ≤ x < (n +1)π 时,证明 0
2!
n!
无穷小运算规律— xm ⋅ o(xn ) = o(xm+n ) ; o(xm ) ⋅ o(xn ) = o(xm+n ) ; ± o(xm ) ± o(xn ) = o(xm ) ( m ≤ n ); ko(xn ) = o(xn ) (k 是常数)。
例 10.计算
− x2
cos x − e 2
xn
−a
<
λ xn−1
−a
,则
lim
n→+∞
考研数学中求极限方法的总结
考研数学中求极限方法的总结1.引言19 世纪建立的极限理论奠定了微积分的基础[1],使数学这门古老的学科有了质的飞跃,由此建立起来的理论及其应用开创了一个崭新的数学时代。
但是对于数列及函数极限的求解问题,看似简单,但实则方法过于多种多样,往往就是一个比较难一点的极限问题,就会导致学者因选错方法而浪费大量的时间或者根本做不出来。
因此本文针对求极限的方法进行总结归纳,给学者梳理出了一些求极限的方法。
2.利用几种已知公式求极限2.1.和差化积公式积化和差公式解题思路:此方法一般求解的比较简单的极限,比较明显的是两个三角函数相减或相乘的形式。
2.2.伯努利不等式己知实数x>-1 ,当n≥1时,有(1+x)n≥1+ nx;当0≤n≤1,有(1+x)n≤1+ nx。
解题思路:此种类型一般是在求解极限的过程中,所以在这里就不举例说明。
2.3.泰勒公式[2]解题思路:对于型不定式中,如果运用洛必达则比较麻烦。
此类题目比较明显的特征是含有 e x,sin x,cos x,ln (1+ x)等混在一起的混合运算,此类题大多数是用洛必达做不出来的,而用泰勒公式进行简单的替换就很容易求出来的。
例1.3 求极限解:由泰勒公式展开到第三项得:3.利用洛必达法则求极限[3]定理:对在数列 x n与 y n间有一定关系的商的极限,我们可以用序列的洛比达法则。
满足4.利用单调有界性求极限单调有界定理[3]:在实数系中,有界的单调数列必有极限。
有上界的递增数列必有极限,有下界的递减数列必有极限。
5.利用迫敛性(两边夹定理)求极限迫敛性[3]:设收敛数列{a n },{b n }都是以a为极限,则数列{c n }满足,存在正数N0,当n >N0时有 a n≤c n≤b n,则数列收敛,且满足。
解题思路:一般适用于较复杂的通项。
首先要把从 x n的表达式写出来,然后通过放缩法找到两个有相同极限值的数列。
例题4.1 求极限解:因为由迫敛性得。
考研数学极限知识点总结
考研数学极限知识点总结一、数列极限1. 数列的概念数列是由一列数按照一定的规律排列组成的数集,用{an}或an来表示。
其中,an为数列的第n个元素。
2. 数列极限的定义对于一个数列{an},如果存在一个常数a,当n趋于无穷大时,数列的元素an无限地接近于a,那么称a为数列{an}的极限,记作lim(n→∞)an=a。
即对于任意正数ε,总存在正整数N,使得当n>N时,有|an−a|<ε。
3. 数列极限存在的判别法(1)夹逼定理:如果数列{an}、{bn}、{cn}满足an≤bn≤cn,且lim(n→∞)an=lim(n→∞)cn=a,那么必有lim(n→∞)bn=a。
(2)单调有界准则:如果数列{an}单调增加且有上界(或单调减少且有下界),那么该数列收敛。
4. 收敛数列的性质(1)收敛数列的极限唯一。
(2)收敛数列的有界性:收敛数列必有界,即存在正数M,使得|an|≤M。
(3)子数列的极限:如果数列{an}的极限为a,那么{an}的任意子数列也收敛且极限为a。
5. 重要极限(1)正整数幂极限:l im(n→∞)(1+1/n)n=e。
(2)调和数列极限:lim(n→∞)1/nlnn=0。
(3)几何数列极限:当−1<l<1时,lim(n→∞)ln=0。
二、函数极限1. 函数极限的概念设函数f(x)在点x0的某个去心邻域内有定义,如果存在常数A,对于任意的ε>0,总存在δ>0,使得当0<|x-x0|<δ时,有|f(x)-A|<ε,则称当x趋于x0时,函数f(x)的极限为A,记作lim(x→x0)f(x)=A。
2. 函数极限性质(1)函数极限的唯一性:如果lim(x→x0)f(x)存在,则其极限唯一。
(2)两函数之和的极限:lim(x→x0)(f(x)+g(x))=lim(x→x0)f(x)+lim(x→x0)g(x)。
(3)函数与常数的乘积的极限:lim(x→x0)c⋅f(x)=c⋅lim(x→x0)f(x)。
2013年考研数学复习指导--求函数的极限
求函数的极限一.函数极限的概念1.函数极限的定义定义1: 设函数)(x f y =在0x 的某个去心邻域内有定义,若对0>∀ε,0>∃δ,当δ<-<00x x 时,恒有ε<-a x f )(,则称)(x f y =在0x x →的极限为a ,记为a x f x x =→)(lim 0.(直观地说a x f x x =→)(lim 0:当x 无限趋近0x 时,函数)(x f 无限趋近常数a .)定义2:设函数)(x f y =在0>>E x 内有定义,若对0>∀ε,0>∃M ,使得当M x >时,恒有ε<-a x f )(,则称)(x f y =在∞→x 的极限为a ,记为a x f x =∞→)(lim .2.左、右极限的定义右极限:⇔==+→+a x f x f x x )(lim )(000,0>∃>∀δε当δ<-<00x x 时,恒有ε<-a x f )(. 左极限:⇔==-→-a x f x f x x )(lim )(000>∀ε,0>∃δ当00<-<-x x δ时,恒有ε<-a x f )(.⇔=+∞→a x f x )(lim 0>∀ε,0>∃M ,当M x >时,恒有ε<-a x f )(. ⇔=-∞→a x f x )(lim 0>∀ε,0>∃M ,当M x -<时,恒有ε<-a x f )(.3.极限存在的充要条件:a x f x x =→)(lim 0⇔=+→)(lim 00x f x x a x f x x =-→)(lim 0a x f x =∞→)(lim ⇔=+∞→)(lim x f x a x f x =-∞→)(lim .例1.(1)xx e ∞→lim ; x x e 10lim →; 111lim -→x x e;(2),ln lim 00x x +→ x x ln lim +∞→;(3)x x sin lim ∞→; x x 1sinlim 0→; ∞=→x x 1lim 0;(4)x x arctan lim ∞→;x x tan lim 2π→.二.求极限的方法1.极限的四则运算法则:设)(lim 0x f x x →和)(lim 0x g x x →都存在,则(1)=±→))()((lim 0x g x f x x ±→)(lim 0x f x x )(lim 0x g x x →;(2)=→)()(lim 0x g x f x x )(lim 0x f x x →)(lim 0x g x x →;(3))(lim )(lim )()(lim 00x g x f x g x f x x x x x x →→→=(0)(lim 0≠→x g x x ).例2 (1))1224(lim 22---+++∞→x x x x x =122436lim22--+++++∞→x x x x x x=312124136lim22=--+++++∞→xx x x xx .(2)x x x x x x cos sin 2cos lim 20+→ =x x x x x x x cos sin 2lim cos lim 020⋅+⋅→→=31cos sin 21lim0=+⋅→xxx x .(3)x x x x 220tan cos sin 1lim -+→ xx x x x x cos sin 11cos sin 1lim 2220++⋅-+=→ 220cos sin 1lim 21x x x x -+=→]sin cos 1[lim 212220xx x x x +-=→.43cos 1lim 212120=-+=→x x x (4))sin 12(lim 41xxee xx x +++→. 解)sin 12(lim 4100x x e e x x x ++++→=)sin 12(lim 4100xx e e x xx ++++→=x xx e e 410012lim 1++++→=x x xx x e e ee 444100/)1(/)2(lim 1++++→=1 =+++-→)sin 12(lim 4100x x ee xx x )sin 12(lim 4100xxe e xxx -++-→=1. 所以 1)sin 12(lim 410=+++→xxee xx x .2.利用等价无穷小求极限.(1)无穷小的定义:若0)(lim 0=→x x x α,则称)(x α为0x x →时的无穷小.(2)无穷小的运算.(3)无穷小的比较:若0)(lim 0=→x x x α, 0)(lim 0=→x x x β且l x x x x =→)()(limβα 若0≠l ,则称)(x α与)(x β是同阶无穷小;若1=l ,则称)(x α与)(x β是等价无穷小,记为)(~)(x x βα; 若0=l ,则称)(x α是)(x β的高阶无穷小,记为))(()(x o x βα=.(4)常用等价无穷小(a)当0→x 时,x x ~sin ; 221~cos 1x x -;x x ~)1ln(+;x x ~arcsin ; x x ~arctan ; x e x ~1-;a x a x ln ~1-;x x αα~1)1(-+.(b ))1)((1)(~)(ln →-x f x f x f .(5)利用等价无穷小求极限当0x x →时,)(~)(x x αα',)(~)(x x ββ',则=→)()()()(limx x g x x f x x βα)()()()(lim 0x x g x x f x x βα''→.例3(1)30sin tan limx xx x -→30)1cos 1(sin limxx x x -=→ x x x x x cos )cos 1(sin lim 30⋅-=→20cos 1lim x x x -=→2121lim 220==→x xx .(2))1sin 1(cot lim 0x x x x -→ xx xx x x x sin sin sin cos lim 0-⋅=→30sin lim x x x x -=→203cos 1lim xx x -=→616sin lim 0==→x x x .例4.当+→0x 时,与x 等价的无穷小量是 (A )x e -1;(B )xx-+11ln;(C )11-+x ;(D )x cos 1-.解(A )x ex--~1 (B )x x -+11lnxxx x x -+=--+1111~x x x ~~+ (C )x x 21~11-+ (D ) x x 21~cos 1- 答案(B )例5.设dt t x f x⎰-=cos 102sin )(,65)(65x x x g +=,则当0→x 时,)(x f 是)(x g 的( ). (A)低阶无穷小; (B)高阶无穷小; (C)等价无穷小; (D)同阶但不等价.解 )()(lim 0x g x f x →65sin lim65cos 1020x x dtt xx +=⎰-→5420sin ])cos 1[sin(lim xx xx x +-=→ 4320)cos 1(lim x x x x +-=→041lim 4340=+=→x x xx . 答案)(B 例6.设当0→x 时,)1ln()cos 1(2x x +-是比n x x sin 高阶的无穷小,而n x x sin 是比12-x e 高阶的无穷小,求正整数n .解 n x x x x x sin )1ln()cos 1(lim 20⋅+-→122021lim +→=n x xx x 0lim 2130==-→n x x 303<⇒>-⇒n n . 1sin lim 2-→x nx e x x 210lim xx n x +→=0lim 10==-→n x x 101>⇒>-⇒n n , 2=∴n .例7.())11sin 11(lim 1x x x x --+→πππx x x x x πππππsin )1(sin )1(lim 11---+=→tt t t t πππππsin sin lim10-+=→ 220sin lim 1t t t t ππππ-+=→t t t 202cos lim 1πππππ-+=→ πππππ12sin lim 1220=+=→t t .3.利用洛必达法则求未定式极限的方法 法则I():设函数)(),(x g x f 满足条件: ①()()0lim ,0lim 0==→→x g x f x x x x②)(),(x g x f 在0x 的去心邻域内可导,且0)(≠'x g ; ③()()x g x f x x ''lim→存在(或∞),则()()()()x g x f x g x f x x x x ''lim lim 00→→=.法则Ⅱ⎪⎭⎫⎝⎛∞∞:设函数()()x g x f ,满足条件 ①()()∞=∞=→→x g x f x x x x 0lim ,lim ;②()()x g x f ,在0x 的去心邻域内可导,且()0'≠x g ; ③()()x g x f x x ''lim→存在(或∞),则()()()()x g x f x g x f x x x x ''limlim 00→→=.例8.(1) )sin sin cos 1(lim 220xx x x e x x x +-+→x x e x xx 220sin cos 1lim 1-++=→201lim 1xe x x x -++=→x e xx 21lim 10-+=→x x x -+=→0lim 211=21.(2)x x x x x 40sin )]tan 1ln()[cos 1(lim +--→202)tan 1ln(lim xx x x +-=→x x xx 4tan 1sec 1lim 20+-=→ x x x x 4sec tan 1lim 20-+=→414tan lim 4120=-=→x x .(3) )1ln()cos 1(1cossin 3lim20x x x x x x +++→=23)1cos sin 3(lim 210=⋅+→x x x x x .4.其它未定式:∞⋅0,∞-∞,00,0∞,∞1)(ln )()())((x f x g x g e x f =)例9.(1)xx x e x sin 120)(lim +→)}ln(sin 1lim exp{20xx e x x +=→}1lim exp{20x e x x x -+=→ 320}1lim 1exp{e xe x x =-+=→.(2)xx xxx sin 1)321(lim ++∞→++}sin )321ln(lim exp{xx x x x +++=+∞→ }/)sin (/)321ln(lim exp{xx x xx x x +++=+∞→})321ln(limexp{x x x x ++=+∞→ 3}3213ln 32ln 2lim exp{=+++=+∞→x x x x x .(3)))}ln 1(ln(ln 1lim exp{)}1ln(ln 1lim exp{)1(lim ln 1ln 1x xx e x x x x x x xx x +∞→+∞→+∞→=-=-}1exp{}ln lim exp{}ln ln )ln(ln lim exp{-=-=-=+∞→+∞→ttt x x x t x综述:求极限的问题,主要是求未定型的极限,而它们都可以化为00型或∞∞型: )a 先化简(代数变形、等价无穷小、代换、非零极限因子),最后化成简单函数的00或∞∞; )b 用分子(或分母)同除(或提取)无穷小或无穷大使分母极限存在且非零,再用四则运算; )c 用洛必达法则.三.极限值已知求其中的未知常数例10.(1)83lim2=-++→a x bbx x a x ,求b a ,的值. 解:0)3(lim 2=++→b bx x ax 032=++⇒b ba a .b a bx a x +=+→212lim82=+⇒b a⎩⎨⎧=+=++82032b a b ab a ⎩⎨⎧-==⇒46b a 或⎩⎨⎧=-=164b a .验证这二组数据都符合条件.(2)设当0→x 时,)1(2++-bx ax e x是比2x 高阶的无穷小,求b a ,的值.解 根据题意 0)1(lim 220=++-→xbx ax e x x =++-→220)1(lim x bx ax e x x x bax e x x 22lim 0--→有0)2(lim 0=--→b ax e xx 1=⇒b .x axe x x 221lim 0--∴→a a x e x x -=--=→21]21[lim 0. 从而有021=-a ,所以21=a .(3)当0→x 时,ax x x f sin )(-=与)1ln()(2bx x x g -=是等价无穷小,则(A )61,1-==b a (B )61,1==b a (C )61,1-=-=b a (D )61,1=-=b a解:由于ax x x f sin )(-=与)1ln()(2bx x x g -=为等价无穷小,则有)()(lim 0x g x f x →)1ln(sin lim 20bx x ax x x --=→)(sin lim 20bx x axx x --=→203cos 1lim bx ax a x --=→ 故有0cos 1lim 0=-→ax a x , 所以1=a .)()(lim 0x g x f x →bbx x bx x x x 6132/lim 3cos 1lim 22020-=-=--=→→,有161=-b 得61-=b .高等数学(同济大学第六版)线性代数(同济大学第五版)概率论与数理统计(浙江大学第四版)。
考研数学-专题1-2-求极限的方法和技巧
n
=
________ .
[1] 1 − 2a
1
1
1
【例 4】 lim( a x + b x + c x )x ,其中 a > 0, b > 0, c > 0.
x→∞
3
⎡
1
1
1
⎤x
【解】原式 =
lim
→∞
⎢⎢1
+
ax
+
bx + 3
cx
方法 3 利用等价无穷小代换求极限
1.等价无穷小代换的原则 1)乘、除关系可以换;
若α
~ α1,β
~
β1
,
则
lim
α β
= lim α1 . β1
2)加、减关系在一定条件下可以换;
(1)
若α
~ α1, β
~
β
1
,
且
lim
α1 β1
=
A ≠ 1. 则α
−β
~ α1 − β1.
(2)
若α
~ α1,β
~
β1,
(B)仅有一个跳跃间断点;
(C)有两个可去间断点;
(D)有两个跳跃间断点;
答案
1.1;
β 2 −α 2
n ( n +1)
2.(D); 3. − 2; 4. e 2 ;5. e 2 6.(B); 7.(D).
方法 2 利用有理运算法则求极限
若 lim f (x) = A, lim g(x) = B ,则
4.
lxi→m0⎜⎜⎝⎛
1 1
+ +
sin sin
求极限方法汇总(含例题及考研真题)
求极限⽅法汇总(含例题及考研真题)1、常⽤等价⽆穷⼩:当0x →时, sin x x :,tan x x :,arcsin x x :, 211cos 2x x -:,ln(1+x)~x ,ex-1~x ,(1+x)a-1~ax ,ax-1~xlna ) 2、泰勒公式(麦克劳林公式) n n x n f x f x f f x f !)0( !2)0()0()0()()(2++''+'+≈ n x x n x x e !1 !2112++++≈)()!12()1(!51!31sin 212153x R x m x x x x m m m +--+++-=-- 3、洛必达法则定理1 (洛必达法则Ⅰ)若函数)(),(x g x f 满⾜条件: (1) ;0)(lim ,0)(lim ==x g x f(2) )(),(x g x f 在点0x 的某个邻域内(点0x 可除外)可导,且0)(0≠'x g ; (3) A x g x f ='')()(lim(或∞) 则 A x g x f x g x f =='')()(lim )()(lim(或∞). 定理2 (洛必达法则Ⅱ)若函数)(),(x g x f 满⾜条件: (1) ;)(lim ,)(lim ∞=∞=x g x f (2) )(),(x g x f 在点0x 的某个邻域内(点0x 可除外)可导,且0)(0≠'x g ; (3) A x g x f ='')()(lim(或∞) 则 A x g x f x g x f =='')()(lim )()(lim(或∞). 4、定积分定义定积分是⽤极限来定义的∑?=→?=ni i i bax f dx x f 1)(lim )(ξλ5、两个重要极限1sin lim 0=→x x x ,e xx x =+∞→)11(lim1(2010数学⼀)2013(1) 设cos 1sin ()x x x α-=,其中()2x πα<,则当0x →时,()x α是( )(A) ⽐x ⾼阶的⽆穷⼩ (B) ⽐x 低阶的⽆穷⼩ (C) 与x 同阶但不等价的⽆穷⼩ (D) 与x 等价的⽆穷⼩【答案】(C)【解析】cos 1sin ()x x x α-=?Q ,(已知条件)21cos 1~2x x --21sin ()~2x x x α∴?- 1sin ()~2x x α∴-⼜sin ()~()x x ααQ (sin x x :) 1()~2x x α∴-∴()x α与x 同阶但不等价的⽆穷⼩. 所以选(C ).3(2010数学三)若1])1(1[lim =--→x o x e a x x 则a =A0 B1 C2 D3 答案:C6(2010数学三)求极限xx x x ln 11)1(lim -+∞→答案:1ln 11ln 2ln ln )1(lim 1ln ln 1lim ln 1ln lim ln )1ln(lim,0ln ,,ln 11lim ln )1ln(limln ln -+∞→+∞→+∞→+∞→∞→∞→=-∴-=-=-?=-→+∞→-?-=-e x x xx x xx e x e xxx x x e xe x e xxx x xx x x x x xx xx 故⽽当Θe^x-1~x9(2011数学⼀)求极限110ln(1)lim xex x x -→+??【答案】12e-【考点分析】:本题考查极限的计算,属于1∞形式的极限。
2022考研数学讲解之求极限的11种方法
例 13
求极限
ax ax 2
lim
,
x0
x2
(a 0).
【解】 a x e x ln a 1 x ln a x 2 ln 2 a ( x 2 ) , 2
a x 1 x ln a x 2 ln 2 a ( x2 ) ; 2
a x a x 2 x 2 ln 2 a ( x 2 ).
(Ⅰ)证明
lim
n
xn
存在,并求该极限;
1
(Ⅱ)计算
lim
n
xn1 xn
xn2
.
【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列
极限的存在.
【详解】 (Ⅰ)因为 0 x1 ,则 0 x2 sin x1 1 .
可推得 0 xn1 sin xn 1 , n 1, 2,,则数列xn 有界.
2
例 8:求极限 lim sin x x x0 tan3 x
【解】 lim sin x x
lim sin x x
lim
cos x 1 lim
1 2
x2
1
x0 tan3 x x0
x3
x0 3x 2
x0 3x 2
6
6.用罗必塔法则求极限
例 9:求极限 lim ln cos 2x ln(1 sin 2 x)
1 cosx ~ 1 x2 , 1 axb 1 ~ abx ;
2 (2) 等价无穷小量代换,只能代换极限式中的因.式.;
(3)此方法在各种求极限的方法中应.作.为.首.选.。
例 7:求极限 lim x ln(1 x) x0 1 cos x
【解】
lim x ln(1 x) lim x x 2 . x0 1 cos x x0 1 x2
年考研数学函数与极限解题技巧与方法分享
考研数学函数与极限解题方法总结
解题方法的归纳与总结
极限的定义和性质:理解极限的概念,掌握极限的性质和运算法则
极限的计算方法:掌握极限的计算方法,如洛必达法则、泰勒公式等
函数的连续性:理解函数的连续性,掌握连续函数的性质和运算法则
导数的定义和性质:理解导数的概念,掌握导数的性质和运算法则
添加标题
导数与积分的关系:导数是积分的基础,积分是导数的推广
添加标题
导数在函数与极限中的应用:通过求导,可以找到函数的极值点,从而求解极限问题
添加标题
积分在函数与极限中的应用:通过积分,可以求解一些复杂的极限问题,如无穷小量、无穷大量等
添加标题
函数与极限的应用题解题技巧
掌握解题式法:将函数展开为泰勒级数,然后求极限
直接代入法:将函数值代入极限表达式,直接求解
极限的存在性定理
极限的存在性定理与连续性的关系:如果函数在某一点处的极限值存在,那么该点处的函数值也存在,即函数在该点处连续
极限的存在性定理的应用:判断函数在某一点处的极限值是否存在,以及求解极限值
极限的存在性定理:如果函数在某一点处的极限值存在,那么该点处的函数值也存在
/单击此处添加副标题内容/
考研数学函数与极限解题技巧与方法分享
汇报人:XX
目录
Part One.
添加目录标题
Part Two.
考研数学函数与极限概述
Part Three.
考研数学函数解题技巧
Part Four.
考研数学极限解题技巧
Part Five.
考研数学函数与极限综合解题技巧
Part Six.
极限的应用,如求极值、最值、凹凸性等
Part Three
考研数学:用定积分定义计算极限的方法和技巧
考研数学:用定积分定义计算极限的方法和技巧求极限是考研数学中的一个重要考点,每年都考,因此,各位考生应该学会如何熟练地求极限。
求极限的方法很多,包括:利用四则运算、两个准则、两个重要公式、变量代换、等价代换、恒等变形(指数化,有理化,三角变换等)、洛必达法则、泰勒公式、导数定义、定积分定义、中值定理和无穷级数。
为了帮助各位考生掌握好求极限的各种方法,文都考研辅导老师会向大家逐步地介绍这些方法,今天将向大家介绍如何用定积分定义求极限的方法,供各位考生参考。
用定积分定义求极限的基本思路:根据定积分的定义:若()f x 在[,]a b 上可积,则01lim()()nbiiak f x f x dx λξ→=∆=∑⎰,其中1max{}i i n x λ≤≤=∆,若取(),i i b a b a kx a n nξ--∆==+,则得1()lim []()nb a n k b a k b af a f x dx n n→∞=--+=∑⎰,特别是,当0,1a b ==时,1011lim ()=()n n k kf f x dx n n →∞=∑⎰。
如果所求极限可以转化为这些和式的极限形式,则可以运用定积分定义计算极限。
适用情形:利用定积分定义计算极限,主要用于n 项和式(或可以化为n 项和式)的极限计算,n 项和式中的每项须具有同样的表示形式(是某个函数()f x 的函数值),如果是分式,则分子的次数须相同,分母的次数须相同,且分母的次数须比分子的次数高1次。
一般求解步骤:1)先对和式进行恒等变形化简,使之符合11()n k k f n n =∑或1()[]nk b a k b af a n n =--+∑的表示形式;2)利用定积分的性质计算出积分值;3)由定积分值得出原和式的值(有时结合使用夹逼准则)。
典型例题:例1.求2lim+nn →∞+解:2lim+n In →∞=+111lim nn i n →∞==⎰,令tan x t =,则2444000sec sec ln sec tan ln(1sec tI dt tdt t ttπππ===+=+⎰⎰例2.求1lim()(1)nn k kn k n k →∞=+++∑ 解:先进行恒等变形化简,然后用定积分定义计算极限,具体过程如下:11()()(1)1nnk k k k kn k n k n k n k ===-=++++++∑∑ 112233()()()()1223341n nn n n n n n n n n n -+-+-++-=+++++++++1121nk n n kn =-++∑,1112122n n n=→++,1100111111lim lim ln(1)ln 211nn n n k k dx x k n k n x n→∞→∞===⋅==+=+++∑∑⎰,所以,原式=1ln 22- 例3. 求2sinsinsinlim (+++)1112n n n n n n n n n πππ→∞+++ 解:此题须结合夹逼准则求极限:112sinsinsin11sin +++sin 11112nn i i n i i n n n n n n n n n n n πππππ==≤≤++++∑∑,1011112lim sin lim sin sin 11n n n ni i i n i xdx n n n n n ππππ→∞→∞===⋅==++∑∑⎰,由夹逼准则得,所求极限为2π 例4. 求limn n→∞解:此题表达式是乘积的形式,通过指数化方法可以化为n 项和的形式:11011limlnln 12lim lim()nn i ixdxn n nn n nI e e n n nn→∞=→∞→∞∑⎰==⋅⋅⋅==,1111ln lim ln lim[(ln )]lim [ln 1+]=1xdx xdx x x dx εεεεεεεεε+++→→→==-=---⎰⎰⎰,故1I e -= 上面就是考研数学中如何用定积分定义求极限这类问题的解题方法,供考生们参考借鉴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研数学:求极限的16个方法
极限问题一直是考研数学中的考察重点,很多考研er在面对题型的变化时,会觉得有些无从下手,下面给大家盘点一下求极限的16个方法,让你轻松应对各种情况。
首先对极限的总结如下。
极限的保号性很重要就是说在一定区间内函数的正负与极限一致。
1、极限分为一般极限,还有个数列极限(区别在于数列极限是发散的,是一般极限的一种)
2、解决极限的方法如下1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a 次方-1等价于Ax等等。
全部熟记。
(x趋近无穷的时候还原成无穷小)
2)洛必达法则(大题目有时候会有暗示要你使用这个方法)
首先他的使用有严格的使用前提。
必须是X趋近而不是N趋近。
(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件。
还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存
在!(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)必须是0比0,无穷大比无穷大!当然还要注意分母不能为0.洛必达法则分为三种情况1)0比0无穷比无穷时候直接用2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了3)0的0次方,1的无穷次方,无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,ln(x)两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候ln(x)趋近于0)
3、泰勒公式(含有e^x的时候,尤其是含有正余旋的加减的时候要特变注意!)e^x展开,sinx展开,cos展开,ln(1+x)展开对题目简化有很好帮助
4、面对无穷大比上无穷大形式的解决办法。
取大头原则最大项除分子分母!看上去复杂处理很简单。
5、无穷小与有界函数的处理办法面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!
6、夹逼定理(主要对付的是数列极限)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
7、等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)
8、各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数。
9、求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,Xn的极限与Xn+1的极限是一样的,应为极限去掉有限项目极限值不变化。
10、两个重要极限的应用。
这两个很重要!对第一个而言是x趋近0时候的sinx与x比值。
第2个就如果x趋近无穷大无穷小都有对有对应的形式(第二个实际上是用于函数是1的无穷的形式)(当底数是1的时候要特别注意可能是用第二个重要极限)
11、还有个方法,非常方便的方法。
就是当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的。
x的x次方快于x!,快于指数函数,快于幂数函数,快于对数函数(画图也能看出速率的快慢)当x趋近无穷的时候他们的比值的极限一眼就能看出来了12、换元法是一种技巧,不会对某一道题目而言就只需要换元,但是换元会夹杂其中13、假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的。
14、还有对付数列极限的一种方法,就是当你面对题目实在是没有办法走投无路的时候可以考虑转化为定积分。
一般是从0到1的形式。
15、单调有界的性质对付递推数列时候使用证明单调性。
16、直接使用求导数的定义来求极限(一般都是x趋近于0时候,在分子上f(x)加减某个值)加减f(x)的形式,看见了有特别注意)(当题目中告诉你F(0)=0时,f(0)的导数=0的时候就是暗示你一定要用导数定义!)。