天津市河西区2020-2021学年高二上学期期末数学试题

合集下载

天津市河西区2020至2021学年高二上学期期中数学试题及答案解析

天津市河西区2020至2021学年高二上学期期中数学试题及答案解析
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
则 PF PO 2 r 1 r 1 FO 4,
根据双曲线得定义可得圆心 P 在双曲线的一支上,
故选:B.
10.
6 7
【分析】
根据经过两点的直线的斜率公式,代入 A、B 两点的坐标加以计算,可得直线 l 的斜率.
17.在长方体 ABCD A1 B1C1 D1 中,点 E,F 分别在 BB1 ,DD1 上,且 AE A1B ,AF A1D .
(1)求证: A1C 平面 AEF;
(2)当 AD 3 ,AB 4 ,AA1 5时,求平面 AEF 与平面 D1B1BD 所成二面角的余弦值.
18.已知椭圆 C :
()
A. x2 y2 1 4 12
C. x2 y2 1 48 16
B. x2 y2 1 12 4
D. x2 y2 1 16 48
6.已知直线 l1 : x 2ay 1 0 与直线 l2 : (3a 1)x ay 1 0 平行,则 a ( )
A. 0
B. 0 或 1 6
C. 1 6
x2 a2
y2 b2
1(a
b 0 )的焦距为 2 ,离心率为
2. 2
(1)求椭圆 C 的标准方程;
(2)经过椭圆的左焦点 F1 作倾斜角为 60 的直线 l ,直线 l 与椭圆相交于 A , B 两点,
求线段 AB 的长.
试卷第 3页,共 3页
………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________

天津市河西区2020-2021学年高二上学期期末考试数学试卷 Word版含解析

天津市河西区2020-2021学年高二上学期期末考试数学试卷 Word版含解析

河西区2020—2021学年度第一学期高二年级期末质量调查数学试卷一、选择题:本大题共9小题,每小题4分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 数列1,-12,4-,14,…的一个通项公式为( ) A. 112n -⎛⎫-⎪⎝⎭B. 2n⎛- ⎝⎭C. ()112n n -⎛⎫-⎪ ⎪⎝⎭D. ()1112n n -+⎛-⎝⎭【答案】D 【解析】 【分析】可知该数列是一个以1为首项,2-为公比的等比数列,即可求出通项公式. 【详解】根据数列可知,该数列是一个以1为首项,所以该数列的通项公式为()()()11121+11111222n n n n n ----⎛⎛⎫⎛⨯-=-⨯-⨯=-⨯ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D.2. 设函数2()1f x x =-,当自变量x 由1变到1.1时,函数的平均变化率是( ) A. 2.1 B. 0.21 C. 1.21 D. 0.121【答案】A 【解析】 【分析】根据平均变化率的公式求解即可.【详解】 1.110.1x ∆=-=,22(1.1)(1) 1.11(11)0.21y f f ∆=-=---= 所以函数2()1f x x =-在区间[1,1.1]上的平均变化率为(1.1)(1)0.212.10.1y f f x x ∆-===∆∆.故选:A3. 已知数列{}n a 满足12a =,112n n a a -=-,则5a =( )A.65B.76C.54D.56【答案】A 【解析】 【分析】根据递推关系依次求出2345,,,a a a a 即可.【详解】12a =,112n n a a -=-,∴211322a a =-=,321423a a =-=,431524a a =-=,541625a a =-=. 故选:A.4. 记n S 为等差数列{}n a 的前n 项和,若4524a a +=,648S =,则{}n a 的公差为( ) A. 1 B. 2C. 4D. 8【答案】C 【解析】 【分析】根据等差数列的通项公式与求和公式,列出关于首项与公差的方程组,解方程组即可得到公差.【详解】设等差数列{}n a 的公差为d , 则45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=, 联立11272461548a d a d +=⎧⎨+=⎩,解得4d =. 故选:C.【点睛】本题考查了等差数列通项公式与求和公式的简单应用,注意计算,属于基础题.5. 已知函数()y f x =,其导函数()y f x '=的图象如图,则对于函数()y f x =的描述正确的是( )A. 在(),0-∞上为减函数B. 在0x =处取得最大值C. 在()4,+∞上为减函数D. 在2x =处取得最小值 【答案】C 【解析】分析:根据函数f (x )的导函数f′(x )的图象可知f′(0)=0,f′(2)=0,f′(4)=0,然后根据单调性与导数的关系以及极值的定义可进行判定即可. 详解:根据函数f (x )的导函数f′(x )的图象可知: f′(0)=0,f′(2)=0,f′(4)=0当x <0时,f′(x )>0,f (x )递增;当0<x2时,f′(x )<0,f (x )递减; 当2<x <4时,f′(x )>0,f (x )递增;当x >4时,f′(x )<0,f (x )递减. 可知C 正确,A 错误;由极值的定义可知,f (x )在x=0处函数f (x )取到极大值,x=2处函数f (x )的极小值点,但极大值不一定为最大值,极小值不一定是最小值;可知B 、D 错误. 故选C .点睛:由导函数图象推断原函数的性质,由f′(x )>0得增区间,由f′(x )<0得减区间,由f′(x )=0得到的不一定是极值点,需判断在此点左右f′(x )的符号是否发生改变. 6. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯.”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层的灯数是( ) A. 1 B. 2C. 3D. 6【答案】C【解析】 【分析】可知每一层灯数形成以2为公比的等比数列{}n a ,根据7381S =即可求出. 【详解】设顶层的灯数是1a ,则每一层灯数形成以2为公比的等比数列{}n a , 由题可得()7171238112a S -==-,解得13a =,故塔的顶层的灯数是3. 故选:C. 7. 函数()212cos x y e x x -+=-+的导数为( )A. ()()21222sin (21)cos x y ex x x x x -+⎡=-+--'⎣B. ()()21222cos (21)sin x y ex x x x x -+⎡⎤'=--+--⎣⎦C. ()()21222sin (21)cos x y e x x x x x -+⎡⎤'=--+--⎣⎦D. ()()21222cos (21)sin x y ex x x x x -+⎡⎤'=-+--⎣⎦【答案】B 【解析】 【分析】由导数运算法则可求出. 【详解】()212cos x y e x x -+=-+,()()()212212cos +cos x x e x x e x y x -+-+''⎡⎤-+-+'⎣∴⎦= ()()()2122122cos sin 2+1x x e x x e x x x -+-+=--+--+⋅-()()()2122cos +2+1si 2n x e x x x x x -+⎡⎤=--+--+⎣⎦()()21222cos (21)sin x e x x x x x -+⎡⎤=--+--⎣⎦.故选:B.8. 已知等比数列的首项为-1,前n 项和为n S ,若1053132S S =,则公比q =( )A. 2B. -2C.12D. 12-【答案】D 【解析】 【分析】根据等比数列前n 项和公式,可求得105,S S 表达式,结合题干条件,即可求得q 的值.【详解】当公比1q =时,1052S S =,不满足题意,当1q ≠时,101011q S q -=-,5511q S q-=-, 所以1051055131111321q S q q q S q--==+=--,解得12q =-, 故选:D9. 已知函数()ln ,111,14x x f x x x >⎧⎪=⎨+≤⎪⎩,()g x ax =则方程()()g x f x =恰有两个不同的实根时,实数a 的取值范围是( ). A. 10,e ⎛⎫ ⎪⎝⎭B. 11,4e ⎡⎫⎪⎢⎣⎭C. 10,4⎛⎤ ⎥⎝⎦D. 1,e 4⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】作出函数()f x 与()g x 的图象,讨论交点个数可求出a 的取值范围. 【详解】作出函数()f x 的图象,见下图. 若()g x 与()ln 1y x x =>相切,求导得1y x'=,设切点为()00,x y ,则00ln y x =,切线斜率为01x ,即切线方程为:()0001ln y x x x x -=-,该切线过原点,则()00010ln 0x x x -=-,解得0e x =,此时1e a =,显然()1eg x x =与()f x 的图象只有一个交点,即方程()()g x f x =只有一个实根;若11 4ea≤<,直线()g x与()f x的图象在1x≤时无交点,在1x>时有2个交点,符合题意; 若14a<<,直线()g x与()f x的图象在1x≤时有1个交点,在1x>时有2个交点,不符合题意;若0a≤,直线()g x与()f x的图象在1x≤时有1个交点,在1x>时无交点,不符合题意;若1e>a,,直线()g x与()f x的图象至多有一个交点,不符合题意.所以只有114ea≤<符合题意.故选:B.【点睛】本题考查了方程的解与函数图象的关系,考查了曲线的切线方程的求法,利用数形结合的数学方法是解决本题的关键,属于难题.二、填空题:本大题共6小题,每小题5分,共30分.请将答案填在题中横线上.10. 在等差数列{}n a中,n S为其前n项的和,若412S=,840S=,则16S=________. 【答案】144【解析】【分析】利用等差数列的前n项和公式求出首项和公差,即可求解.【详解】设等差数列的公差为d,则4181434+122878+402S a dS a d⨯⎧==⎪⎪⎨⨯⎪==⎪⎩,解得13,12a d==,163161516+114422S ⨯∴=⨯⨯=.故答案为:144. 11. 函数ln ()x f x x=,其导函数为函数()'f x ,则()f e '=________. 【答案】0 【解析】 【分析】根据()f x 解析式,可求得()'f x 解析式,代入数据,即可得答案.【详解】因为ln ()(0)x f x x x=≠,所以2221ln (ln )ln 1ln ()x xx x x x x x f x x x x ⋅-''--'===, 所以21ln ()0ef e e-'==, 故答案:012. 已知数列{}n a 的通项公式21n a n n=+,n S 为其前n 项的和,则99S =________. 【答案】99100【解析】 【分析】根据数列{}n a 的通项公式21111n a n n n n ==-++,利用裂项相消法求解. 【详解】因为数列{}n a 的通项公式21111n a n n n n ==-++, 所以99111111991122399100100100S ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故答案:9910013. 函数3()3f x x x =-的单调递增区间是________. 【答案】()1,1- 【解析】 【分析】求出函数的导数,令()0f x '>即可求出. 【详解】3()3f x x x =-,()233f x x '∴=-,令()0f x '>,即2330x ->,解得11x -<<,()f x ∴的单调递增区间是()1,1-.故答案为:()1,1-. 14. 已知数列{}n a 的通项公式为3217n n a n -=-,前n 项和为n S ,则n S 取得最小值时n 的值为_________. 【答案】8 【解析】 【分析】求出数列在n 的不同取值范围的正负判断出n S 的单调性可求出. 【详解】令30217n n a n -=≥-,解得3n ≤或172n ≥,∴当3n ≤时,0n a ≥,n S 单调递增,当47n ≤≤时,0n a <,n S 单调递减, 当8n ≥时,0n a >,n S 单调递增, 所以n S 取得最小值时n 的值为8. 故答案为:8.【点睛】本题考查数列前n 项和的最值的求法,解题的关键是根据数列的正负判断n S 的单调性.15. 将一个边长为6的正方形铁片的四角截去四个边长为x 的小正方形,做成一个无盖方盒.当方盒的容积V 取得最大值时,x 的值为_________. 【答案】1 【解析】 【分析】由题可得该方盒的容积()32424+36V x x x x =-,03x <<,利用导数判断其单调性可求出最值.【详解】由题可得03x <<,可知该方盒的底面是一个边长为62x -, 则该方盒的容积()()23262424+36V x x x x x x =-⋅=-,03x <<,()()()21248+361213V x x x x x '∴=-=--,则当()0,1x ∈时,()0V x '>,()V x 单调递增, 当()1,3x ∈时,()0V x '<,()V x 单调递减,∴当1x =时,()()max 116V x V ==,故当方盒的容积V 取得最大值时,x 的值为1. 故答案为:1.三、解答题:本大题共3小题,共34分.解答应写出文字说明,证明过程或演算步骤.16. 已知函数31()443f x x x =-+. (1)求()f x 的极值; (2)求()f x 在[]0,3上的最值. 【答案】(1)极大值为283,极小值为43-;(2)最大值为4,最小值为43-. 【解析】 【分析】(1)求导,解对应的不等式,可得函数的单调性,从而可知函数的极值. (2)根据(1)的结果,再计算端点值,比较大小,即可得出最值. 【详解】(1)()31443f x x x =-+,()()()2422f x x x x =-=+-'令()0f x '=,解得2x =-或2x =,当x 变化时,()'f x ,()f x 的变化情况如下表:故当2x =-时,()f x 取得极大值,()23f -=;当2x =时,()f x 取得极小值,()8428433f =-+=-;(2)由(1)可知()f x 的极大值为283,极小值为43-, 又()04f =,()391241f =-+=,因为4143-<<,所以()f x 在[]0,3上的最大值为4,最小值为43-. 【点睛】思路点睛:本题考查利用导数求函数的极值与闭区间上的最值,设函数()f x 在[],a b 上连续,在(),a b 内可导,求()f x 在[],a b 上的最大值和最小值的步骤如下: ①求函数()y f x =在(),a b 内的极值;②将函数()y f x =)的各极值与端点处的函数值()(),f a f b 比较,其中最大的一个为最大值,最小的一个为最小值. 17. 已知函数()()ln 2xf x e x =-+.(1)求()f x 在()()0,0f 处的切线方程; (2)求证:()0f x >. 【答案】(1)11ln 22y x =+-;(2)证明见解析. 【解析】 【分析】(1)求出()f x 的导函数,由()0k f '=,可得答案.(2)求出()f x 的导函数,讨论出函数()f x 的单调性,得出其最小值,可证明. 【详解】(1)解:1()2xf x e x '=-+, 当0x =时,()102k f '==,又()01ln 2f =-,所以切线方程为()11ln 22y x --=,即11ln 22y x =+-. (2)解:1()2x f x e x '=-+在区间()2,-+∞上单调递增, 又()10f '-<,()00f '>,故()0f x '=在区间()2,-+∞上有唯一实根0x ,且()01,0x ∈-,当()02,x x ∈-时,()0f x '<;当()0,x x ∈+∞时,()0f x '>,从而当0x x =时,()f x 取得最小值.由()00f x '=,得0012x e x =+,()00ln 2x x +=-, 故()()20000011()022x f x f x x x x +≥=+=>++. 【点睛】本题考查求函数在某点出的切线方程和利用导数证明不等式.解答本题的关键是由1()2x f x e x '=-+在区间()2,-+∞上单调递增,得出()0f x '=在区间()2,-+∞上有唯一实根0x ,从而得出()f x 的单调区,即()()20000011()22x f x f x x x x +≥=+=++,属于中档题. 18. 对于数列{}n a ,{}n b ,n S 为数列{}n a 是前n 项和,且1(1)n n n S n S a n +-+=++,111a b ==,132,n n b b n N *+=+∈.(1)求数列{}n a ,{}n b 的通项公式;(2)令2()(1)n n n a n c n b +=+,求数列{}n c 的前n 项和n T . 【答案】(1)2n a n =,1231n n b -=⋅-;(2)11525443n n n T -+=-⋅. 【解析】试题分析: (1)先根据和项与通项关系,将条件转化为项之间递推关系:121n n a a n +=++,再根据叠加法求数列{}n a 的通项公式;而求{}n b 通项公式,需变形构造一个等比数列{1}n b +,这是由于132n n b b +=+可变形得()1131n n b b ++=+,然后通过求等比数列通项公式,转化求{}n b 通项公式,(2)由于113n n n c -+=,所以利用错位相减法求和,求和时注意错位相减,减式中项的符号变化,合并时项数的确定,最后结果要除以1.q - 试题解析:(1))因为()11n n n S n S a n +-+=++,所以121n n a a n +=++, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()212331n n =-+-+++ ()2112n n -+= 2n =,所以数列{}n a 的通项公式为2n a n =,由132n n b b +=+,可得()1131n n b b ++=+,所以数列{1}n b +是首项为112b +=,公比为3的等比数列,所以1123n n b -+=⋅,所以数列{}n b 的通项公式为1231n n b -=⋅-.(2)由(1)可得()21121233nn n n n n c n --++==⋅, 所以01221234133333n n n n n T --+=+++++ ①, 0013223341333333n n n n n T --⨯+=+++++ ②, ②-①得122111111111115253261613333322313n n n n n n n n n T ------+++⎛⎫=++++⋯+-=+-=- ⎪⋅⎝⎭-, 所以11525443n n n T -+=-⋅.。

天津市四校(四十七中,一百中学)2020-2021学年高一上学期期末联考数学试题解析高中数学

天津市四校(四十七中,一百中学)2020-2021学年高一上学期期末联考数学试题解析高中数学
【详解】 ,
由 ,则 在 上单调递增.
所以函数 的零点所在的大致区间是
故选:B
5.已知扇形 的面积为8,且圆心角弧度数为2,则扇形 的周长为()
A.32B.24C. D.
【答案】D
【解析】
【分析】根据扇形面积和弧长公式即可求解.
【详解】圆心角 ,扇形面积 ,
即 ,得半径 ,
所以弧长 ,
故扇形 的周长 .
即实数m的取值范围为 .
故选:D.
二、填空题(5/30)
10.函数 的单调递减区间是___________.
【答案】
【解析】
【分析】根据复合函数单调性同增异减求得正确答案.
【详解】 ,

解得 或 .
函数 的开口向上,对称轴是 轴,
在 上递减,
根据复合函数单调性同增异减可知 的单调递减区间是 .
故答案为:
【详解】对于①,设 ,有 ,
故函数 是奇函数,且易知函数 在R上单调递增,故①正确;
对于②,当 时,不等式为 ,解集为R,
当 时,有 ,解得 ,
综上: ,②错误;
对于③, 中, ,解得 ,③错误;
对于④,若 为偶函数,则 , ,④错误.
综上:只有①正确.
故选:A
8.若 ,且 ,则 的最小值为()
A 8B.3C.2D.
故选:D
6.将函数 图象上各点的横坐标伸长到原来的2倍,再向左平移 个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()
A. B. C. D.
【答案】B
【解析】
【分析】根据图像的伸缩和平移变换得到 ,再整体代入即可求得对称轴方程.
【详解】将函数 图象上各点的横坐标伸长到原来的2倍,

天津市二十五中学2020-2021学年度高二第一学期期末测试数学试题

天津市二十五中学2020-2021学年度高二第一学期期末测试数学试题

数学试卷第1页(共9页)天津市第二十五中学2020—2021学年度第一学期期末考试模拟试卷高二年级数学学科2021.01本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间100分钟.第Ⅰ卷一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)数列{}n a 的通项公式是22n n a n-=,则5a =().(A )165(B )4(C )185(D )6(2)直线3210x y +-=的一个方向向量是().(A )23-(,)(B )2 3(,)(C )3 2-(,)(D )3 2(,)(3)若两直线1:220l mx y m ++-=,2:4(2)20l x m y +-+=互相平行,则m 等于().(A )2-(B )4(C )2-或4(D )0(4)已知双曲线222210 0y x a b a b -=>>(,)的一条渐近线方程为2y x =,则该双曲线的离心率为().(A(B)2(C)2(D(5)圆221:9C x y +=与圆222:68110C x y x y ++--=的位置关系是().(A )相交(B )外切(C )内切(D )外离(6)经点01P -(,)作直线l ,若直线l 与连接12 2 1A B -(,),(,)的线段总有公共点,则直线l 的倾斜角的取值范围为().数学试卷第2页(共9页)(A )[0 ][ 44π3ππ) ,(B )[0 ]4π,(C )[ 43ππ),(D )[0 ][ 44π3ππ] ,(7)已知数列{}n a满足*110 ()n a a n +==∈N ,,则2020a 等于().(A )3-(B )0(C)(D )3(8)若{ },,a b c 构成空间的一个基底,则下列向量不共面的是().(A ) +-,,b c b b c (B ) +-,,a a b a b (C ) +-,,a b a b c(D ) +++,,a b a b c c备1:有以下命题:①如果向量 a b ,与任何向量不能构成空间向量的一组基底,那么 a b ,的关系是不共线;② O A B C ,,,为空间的四个点,且向量 O A O B O C,,不构成空间的一个基底,则点 O A B C ,,,一定共面;③已知{ }a b c ,,是空间的一个基底,则向量 +-,,a b a b c也是空间的一个基底.其中正确的命题是().(A )①②(B )①③(C )②③(D )①②①②(9)已知抛物线21:20C y px p =>()的焦点F 恰好与双曲线22222:10 0x y C a b a b-=>>(,)的右焦点重合,且两曲线交点的连线过点F ,则双曲线的离心率为().(A1(B)12(C)2+(D(9)备1:已知双曲线2222:10 0x y C a b a b-=>>(,)与抛物线220y px p =>()的交点为 A B ,,A B 、连线经过抛物线的焦点F ,且线段AB 的长等于双曲线的虚轴长,则双曲线的离心率().(A1(B )3(C)(D )2数学试卷第3页(共9页)(9)备2:双曲线222210 0y x a b a b-=>>(,)与抛物线218y x =有一个公共焦点F ,双曲线上过点F且垂直于实轴的弦长为3,则双曲线的离心率().(A )2(B(C)2(D)3(10)与圆221x y +=及228120x y x +-+=都外切的圆的圆心在().(A )椭圆上(B )双曲线的一支上(C )抛物线上(D )圆上(10)备1:与圆22650x y x +++=外切,同时与圆226910x y x +--=内切的动圆的圆心在().(A )椭圆上(B )双曲线的一支上(C )抛物线上(D )圆上(10)备2:线段AB 的端点B 的坐标是01-(,),端点A 在抛物线212x y =上运动,则线段AB 的中点M 的轨迹方程为().(A )220x y -=(B )280x y -=(C )28210x y --=(D )28210x y -+=第Ⅱ卷二、填空题:本大题共5个小题,每小题5分,共25分.(11)已知 4 1 2 1 32 a b c a b b c x y z ==--=-⊥(,,),(,,),(,,),, 则c =.(12)如图,在平行六面体1111ABCD A B C D -中,AC 与BD 交点为M .设11111 a b c A B A D A A === ,,,若1a b c B M x y z =++,则x y z ++=.数学试卷第4页(共9页)(12)备1:如图,在四面体OABC 中, a b c OA OB OC ===,,,点M 在OA 上,且2 OM MA N =,为BC 中点,若a b c MN x y z =++,则x y z ++=.(13)在等差数列{}n a 中,135792354a a a a a ++++=()(),则此数列的前10项和10S =.(13)备1:设n S 是等差数列{}n a 的前n 项和,若65911a a =,则119SS =.(13)备2:在等差数列{}n a 中,1010010010S S ==,,则110S =.(14)设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于 A B ,两点.若||3||A F B F =,则l 的方程为.(14)备1:设抛物线2:20C y px p =>()的焦点为F 的直线交抛物线于点 A B ,,交其准线l 于点C ,若||2||B C B F =,且||3A F =,则此抛物线的方程为.(15)椭圆221ax by +=与直线1y x =-交于 A B ,两点,过原点与线段AB 中点的直线的斜率为2,则ab的值为.(15)备1:过椭圆2222:10 0x y C a b a b+=>>(,)右焦点的直线0x y +=交椭圆于A B ,两点,P 为AB 的中点,且OP 的斜率12,则椭圆C 的标准方程为.数学试卷第5页(共9页)三、解答题:本大题共5个小题,共75分.解答应写出文字说明,证明过程或演算步骤.得分评卷人(16)(本小题满分14分)(Ⅰ)已知点34A-(,)和点5 8B (,),求过线段AB 中点且与AB 所在直线垂直的直线l 的方程;(Ⅱ)求过直线3210x y -+=和340x y ++=的交点,且平行于230x y -+=的直线l 的方程.数学试卷第6页(共9页)得分评卷人(17)(本小题满分15分)设{}n a 是等差数列,其前n 项和为*n S n ∈()N ;{}n b 是等比数列,公比大于0,其前n 项和为*n T n ∈()N ,已知1324355461 2 2b b b b a a b a a ==+=+=+,,,.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求n S 和n T ;(III )若124n n n n S T T T a b +++⋅⋅⋅+=+(),求正整数n 的值.备1:已知数列{}n a 的前n 项和为2*n n S S n n =∈,()N ,数列{}n b 为等比数列,且22341 1b a b a =+=+,,.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列221{}n n a b -+的前n 项和n T ;(III )若11n n n n n c a b a a +=+,求数列{}n c 的前n 项和n R ;.数学试卷第7页(共9页)得分评卷人(18)(本小题满分15分)已知圆心为C 的圆经过(1 1) (22)A B -,,,两点,且圆心C 在直线:10l x y -+=上.(Ⅰ)求圆C 的标准方程,并判断点21M --(,)是否在这个圆上;(Ⅱ)求过点M 作直线l ,截圆产生的最长弦所在的直线方程;(III )求过点M 作直线l 截圆产生的最短弦的弦长.备1:已知圆C 经过点0 2 0 6 2 4-(,),(,),(,).(Ⅰ)求圆心坐标及半径长,并写出圆的标准方程;(Ⅱ)若圆C 关于直线:20l ax y a++=对称,求a 的值;(Ⅱ)若直线l 被圆C 截得的弦长为l 的方程.数学试卷第8页(共9页)得分评卷人(19)(本小题满分15分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,作EF PB ⊥交PB 于点F .(Ⅰ)求证:PA 平面EDB ;(Ⅱ)求证:PB ⊥平面EFD ;(III )求平面CPB 与平面PBD 的夹角的大小.数学试卷第9页(共9页)得分评卷人(20)(本小题满分16分)已知点F 为椭圆222210 0x y a b a b+=>>(,)的一个焦点,点A 为椭圆的右顶点,点B 为椭圆的下顶点,椭圆上任意一点到F 距离的最大值为3,最小值为1.(Ⅰ)求椭圆的方程;(Ⅱ)若 M N ,在椭圆上,且异于椭圆的顶点,直线AM直线BN ,直线 AN BM ,的斜率分别为1k 和2k ,求证:2121k k e ⋅=-(e 为椭圆的离心率).备1:如图,椭圆22221(>>0)x y C a b a b +=:经过点3(1 ) 2P ,,离心率1=2e ,直线l 的方程为=4x .(Ⅰ)求椭圆C 的方程;(Ⅱ)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记 PA PB PM ,,的斜率分别为123 k k k ,,.问:是否存在常数λ,使得123+=k k k λ若存在求λ的值;若不存在,说明理由.备2:椭圆22221(>>0)x y C a b a b+=:的离心率3 32e a b =+=,.(Ⅰ)求椭圆C 的方程;(Ⅱ)如图,A ,B ,D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意点,直线DP 交x 轴于点N 直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m ,证明:2m -k 为定值.。

-天津市河西区2020-2021学年八年级上学期期末数学试卷(word解析版)

-天津市河西区2020-2021学年八年级上学期期末数学试卷(word解析版)

2020-2021学年天津市河西区八年级(上)期末数学试卷一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为()A.7.8×10﹣7B.7.8×10﹣8C.0.78×10﹣7D.78×10﹣82.(3分)下列运算正确的()A.a3﹣a2=a B.a2•a3=a6C.(a3)2=a6D.(3a)3=9a3 3.(3分)下列交通标志图案是轴对称图形的是()A.B.C.D.4.(3分)若a=1,则的值为()A.2B.﹣2C.D.5.(3分)如图,下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC6.(3分)若3x=15,3y=5,则3x﹣y等于()A.5B.3C.15D.107.(3分)如果把分式中的x和y的值都扩大为原来的3倍,那么分式的值()A.扩大为原来的3倍B.扩大为原来的6倍C.缩小为原来的3倍D.不变8.(3分)某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x套,则x应满足的方程为()A.B.C.D.9.(3分)已知a﹣b=3,则a2﹣b2﹣6b的值为()A.9B.6C.3D.﹣310.(3分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是()(用含a,b的代数式表示).A.ab B.2ab C.a2﹣ab D.b2+ab二、填空题:(本大题共6小题,每小题3分,共18分.务必将答案涂写在“答题卡”上,答案答在试卷上无效.)11.(3分)分解因式:2ax2﹣12axy+18ay2=.12.(3分)已知等腰三角形的一个内角为50°,则顶角为度.13.(3分)一个多边形的内角和是它外角和的2倍,则它的边数是.14.(3分)如图,OP平分∠AOB,∠AOP=15°,PC∥OB,PD⊥OB于点D,PD=4,则PC等于.15.(3分)已知﹣=3,则分式的值为.16.(3分)如图,在四边形ABCD中,∠DAB=130°,∠D=∠B=90°,点M,N分别是CD,BC上两个动点,当△AMN的周长最小时,∠AMN+∠ANM的度数为.三、解答题:(本大题共7小题,共52分.解答应写出文字说明、演算步骤或证明过程.务必将答案填写在“答题卡”上,答案答在试卷上无效.)17.(6分)计算:(Ⅰ)(2a﹣3b)2;化简:(Ⅱ)(a+1﹣).18.(6分)解方程﹣3=.19.(8分)如图,在△ABC中,点D是BC上的中点,DE⊥AB于E,DF⊥AC于F,BE =CF.求证:∠BAD=∠CAD.20.(8分)如图,点A、B在直线l同侧,请你在直线l上画出一点P,使得P A+PB的值最小,画出图形并证明.21.(8分)天津市奥林匹克中心体育场﹣﹣“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车同学速度的2倍,求骑车同学的速度.(Ⅰ)设骑车同学的速度为x千米/时,利用速度、时间、路程之间的关系填写下表(要求:填上适当的代数式,完成表格)速度(千米/时)所用时间(时)所走路程(千米)骑自行车x10乘汽车10(Ⅱ)列出方程(组),并求出问题的解.22.(8分)如图,△ABC和△BDE都是等边三角形,且A,E,D三点在一直线上.请你证明:DA﹣DB=DC.23.(8分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)证明:在运动过程中,点D是线段PQ的中点;(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.2020-2021学年天津市河西区八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为()A.7.8×10﹣7B.7.8×10﹣8C.0.78×10﹣7D.78×10﹣8【分析】绝对值<1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:数0.00000078用科学记数法表示为7.8×10﹣7.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.(3分)下列运算正确的()A.a3﹣a2=a B.a2•a3=a6C.(a3)2=a6D.(3a)3=9a3【分析】根据同底数幂的乘法、幂的乘方与积的乘方法则,分别进行各选项的判断即可.【解答】解:A、a3与a2不是同类项,不能直接合并,故本选项错误;B、a2•a3=a5,原式计算错误,故本选项错误;C、(a3)2=a6,计算正确,故本选项正确;D、(3a)3=27a3,原式计算错误,故本选项错误;故选:C.【点评】本题考查了同底数幂的乘法、幂的乘方与积的乘方,解答本题的关键是掌握各部分的运算法则.3.(3分)下列交通标志图案是轴对称图形的是()A.B.C.D.【分析】根据轴对称的定义结合选项所给的特点即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.【点评】本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.(3分)若a=1,则的值为()A.2B.﹣2C.D.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算即可.【解答】解:原式===a﹣3,当a=1时,原式=1﹣3=﹣2,故选:B.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.5.(3分)如图,下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC【分析】依据全等三角形的判定定理解答即可.【解答】解:A、依据SSS可知△ABD≌△ACD,故A不符合要求;B、依据SAS可知△ABD≌△ACD,故B不符合要求;C、依据AAS可知△ABD≌△ACD,故C不符合要求;D、依据SSA可知△ABD≌△ACD,故D符合要求.故选:D.【点评】本题主要考查的是全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.6.(3分)若3x=15,3y=5,则3x﹣y等于()A.5B.3C.15D.10【分析】根据同底数幂的除法,底数不变,指数相减,可得答案.【解答】解:3x﹣y=3x÷3y=15÷5=3,故选:B.【点评】本题考查了同底数幂的除法,底数不变,指数相减.7.(3分)如果把分式中的x和y的值都扩大为原来的3倍,那么分式的值()A.扩大为原来的3倍B.扩大为原来的6倍C.缩小为原来的3倍D.不变【分析】根据分式的基本性质,可得答案.【解答】解:把分式中的x和y的值都扩大为原来的3倍,得==3×,故选:A.【点评】本题考查了分式的基本性质,能够正确利用分式的基本性质变形是解题的关键.8.(3分)某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x套,则x应满足的方程为()A.B.C.D.【分析】要求的未知量是工作效率,有工作总量,一定是根据时间来列等量关系的.关键描述语是:“提前5天交货”;等量关系为:原来所用的时间﹣实际所用的时间=5.【解答】解:原来所用的时间为:,实际所用的时间为:,所列方程为:﹣=5.故选:D.【点评】本题考查了由实际问题抽象出分式方程,关键是时间做为等量关系,根据每天多做x套,结果提前5天加工完成,可列出方程求解.9.(3分)已知a﹣b=3,则a2﹣b2﹣6b的值为()A.9B.6C.3D.﹣3【分析】由已知得a=b+3,代入所求代数式,利用完全平方公式计算.【解答】解:∵a﹣b=3,∴a=b+3,∴a2﹣b2﹣6b=(b+3)2﹣b2﹣6b=b2+6b+9﹣b2﹣6b=9.故选:A.【点评】本题考查了完全平方公式的运用,关键是利用换元法消去所求代数式中的a.10.(3分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是()(用含a,b的代数式表示).A.ab B.2ab C.a2﹣ab D.b2+ab【分析】设小正方形边长为x,表示出大正方形的边长,由大正方形面积减去四个小正方形面积表示出阴影部分面积即可.【解答】解:设小正方形的边长为x,则大正方形的边长为a﹣2x=2x+b,可得x=,大正方形边长为a﹣==,则阴影部分面积为()2﹣4()2=﹣==ab,故选:A.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.二、填空题:(本大题共6小题,每小题3分,共18分.务必将答案涂写在“答题卡”上,答案答在试卷上无效.)11.(3分)分解因式:2ax2﹣12axy+18ay2=2a(x﹣3y)2.【分析】先提公因式2a,然后利用公式法分解因式.【解答】解:原式=2a(x2﹣6xy+9y2)=2a(x﹣3y)2.故答案为2a(x﹣3y)2.【点评】本题考查了提公因式法与公式法的综合运用,提取公因式后还能运用完全平方公式继续分解因式.12.(3分)已知等腰三角形的一个内角为50°,则顶角为50或80度.【分析】有两种情况(顶角是50°和底角是50°时),用三角形的内角和定理即可求出顶角的度数.【解答】解:如图所示,△ABC中,AB=AC.有两种情况:①顶角∠A=50°;②当底角是50°时,∵AB=AC,∴∠B=∠C=50°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣50°﹣50°=80°,∴这个等腰三角形的顶角为50°和80°.故答案为50或80【点评】本题考查了等腰三角形的性质和三角形的内角和定理的理解和掌握,能对有的问题正确地进行分类讨论是解答此题的关键.13.(3分)一个多边形的内角和是它外角和的2倍,则它的边数是6.【分析】根据多边形的内角和公式(n﹣2)•180°以及外角和定理列出方程,然后求解即可.【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°=2×360°,解得n=6.答:这个多边形的边数是6.故答案为:6.【点评】本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.14.(3分)如图,OP平分∠AOB,∠AOP=15°,PC∥OB,PD⊥OB于点D,PD=4,则PC等于8.【分析】作PE⊥OA于E,根据角平分线的性质求出PE,根据直角三角形的性质和平行线的性质解答即可.【解答】解:作PE⊥OA于E,∵OP平分∠AOB,PD⊥OB,PE⊥OA,∴PE=PD=4,∵OP平分∠AOB,∠AOP=15°,∴∠AOB=30°,∵PC∥OB,∴∠ECP=∠AOB=30°,∴PC=2PE=8,故答案为:8.【点评】本题考查的是角平分线的性质、直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.(3分)已知﹣=3,则分式的值为.【分析】由已知条件可知xy≠0,根据分式的基本性质,先将分式的分子、分母同时除以xy,再把﹣=3代入即可.【解答】解:∵﹣=3,∴x≠0,y≠0,∴xy≠0.∴=====.故答案为:.【点评】本题主要考查了分式的基本性质及求分式的值的方法,把﹣=3作为一个整体代入,可使运算简便.16.(3分)如图,在四边形ABCD中,∠DAB=130°,∠D=∠B=90°,点M,N分别是CD,BC上两个动点,当△AMN的周长最小时,∠AMN+∠ANM的度数为100°.【分析】作点A关于BC的对称点A′,关于CD的对称点A″,根据轴对称确定最短路线问题,连接A′A″与BC、CD的交点即为所求的点M、N,利用三角形的内角和定理列式求出∠A′+∠A″,再根据轴对称的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠AMN+∠ANM=2(∠A′+∠A″),然后计算即可得解.【解答】解:如图,作点A关于BC的对称点A′,关于CD的对称点A″,连接A′A″与BC、CD的交点即为所求的点N、M,∵∠BAD=130°,∠B=∠D=90°,∴∠A′+∠A″=180°﹣∠130°=50°,由轴对称的性质得:∠A′=∠A′AN,∠A″=∠A″AM,∴∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°.故答案为:100°【点评】本题考查了轴对称确定最短路线问题,轴对称的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,确定出点M、N的位置是解题的关键,要注意整体思想的利用.三、解答题:(本大题共7小题,共52分.解答应写出文字说明、演算步骤或证明过程.务必将答案填写在“答题卡”上,答案答在试卷上无效.)17.(6分)计算:(Ⅰ)(2a﹣3b)2;化简:(Ⅱ)(a+1﹣).【分析】(Ⅰ)原式利用完全平方公式计算即可求出值;(Ⅱ)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(Ⅰ)原式=4a2﹣12ab+9b2;(Ⅱ)原式=•=•=2(a﹣2)=2a﹣4.【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握公式及运算法则是解本题的关键.18.(6分)解方程﹣3=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;【解答】解:去分母得:x﹣1﹣3x+6=1,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,以及分式的混合运算,熟练掌握运算法则是解本题的关键.19.(8分)如图,在△ABC中,点D是BC上的中点,DE⊥AB于E,DF⊥AC于F,BE =CF.求证:∠BAD=∠CAD.【分析】由于D是BC的中点,那么BD=CD,而BE=CF,DE⊥AB,DF⊥AC,利用HL易证Rt△BDE≌Rt△CDF,得DE=DF,利用角平分线的判定定理可知点D在∠BAC 的平分线上,即AD平分∠BAC.【解答】证明:∵D是BC的中点,∴BD=CD,∵DE⊥AB,DF⊥AC,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∴点D在∠BAC的平分线上,∴AD平分∠BAC,∴∠BAD=∠CAD.【点评】本题考查了角平分线的判定定理、全等三角形的判定和性质.解题的关键是证明Rt△BDE≌Rt△CDF.20.(8分)如图,点A、B在直线l同侧,请你在直线l上画出一点P,使得P A+PB的值最小,画出图形并证明.【分析】作点B关于直线l的对称点B',连接AB',交直线l于点P,连接BP,则点P 即为所求.【解答】解:如图所示,作点B关于直线l的对称点B',连接AB',交直线l于点P,连接BP,则BP=B'P,∴AP+BP=AP+B'P=AB',∴P A+PB的值最小等于线段AB'的长,【点评】本题主要考查了最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.21.(8分)天津市奥林匹克中心体育场﹣﹣“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车同学速度的2倍,求骑车同学的速度.(Ⅰ)设骑车同学的速度为x千米/时,利用速度、时间、路程之间的关系填写下表(要求:填上适当的代数式,完成表格)速度(千米/时)所用时间(时)所走路程(千米)骑自行车x10乘汽车10(Ⅱ)列出方程(组),并求出问题的解.【分析】(1)时间=路程÷速度;速度=路程÷时间.(2)等量关系为:骑自行车同学所用时间=坐汽车同学所用时间+.【解答】解:(Ⅰ)速度(千米/时)所用时间(时)所走路程(千米)骑自行车x10乘汽车2x10(Ⅱ)∵骑自行车先走20分钟,即=小时,∴=+,解得:x=15,经检验,x=15是原方程的根.答:骑车同学的速度为每小时15千米.【点评】本题考查分式方程的应用,注意找好等量关系方可列出方程.求解后要注意检验,要满足两个方面:①要满足方程②要满足实际问题.22.(8分)如图,△ABC和△BDE都是等边三角形,且A,E,D三点在一直线上.请你证明:DA﹣DB=DC.【分析】根据等边三角形的性质,可得AB与BC的关系,BD、BE、DE的关系,根据三角形全等的判定,可得△ABE与△CBD的关系,根据全等三角形的性质,可得对应边相等,根据线段的和差,等量代换,可得证明结果.【解答】证明:△ABC和△BDE都是等边三角形,∴AB=BC,BE=BD=DE(等边三角形的边相等),∠ABC=∠EBD=60°(等边三角形的角是60°).∴∠ABC﹣∠EBC=∠EBD﹣∠EBC∠ABE=CBD(等式的性质),在△ABE和△CBD中,,∴△ABE≌△CBD(SAS)∴AE=DC(全等三角形的对应边相等).∵AD﹣DE=AE(线段的和差)∴AD﹣BD=DC(等量代换).【点评】本题考查了全等三角形的判定与性质,先证明三角形全等,再证明全等三角形的对应边相等,最后等量代换.23.(8分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)证明:在运动过程中,点D是线段PQ的中点;(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.【分析】(1)先判断出∠QPC是直角,再利用含30°的直角三角形的性质得出QC=2PC,建立方程求解决即可;(2)先作出PF∥BC得出∠PF A=∠FP A=∠A=60°,进而判断出△DQB≌△DPF得出DQ=DP即可得出结论;(3)利用等边三角形的性质得出EF=AF,借助DF=DB,即可得出DF=BF,最后用等量代换即可.【解答】(1)解:设AP=x,则BQ=x,∵∠BQD=30°,∠C=60°,∴∠QPC=90°,∴QC=2PC,即x+6=2(6﹣x),解得x=2,即AP=2.(2)证明:如图,过P点作PF∥BC,交AB于F,∵PF∥BC,∴∠PF A=∠FP A=∠A=60°,∴PF=AP=AF,∴PF=BQ,又∵∠BDQ=∠PDF,∠DBQ=∠DFP,∴△DQB≌△DPF,∴DQ=DP即D为PQ中点,(3)运动过程中线段ED的长不发生变化,是定值为3,理由:∵PF=AP=AF,PE⊥AF,∴,又∵△DQB≌△DPF,∴,∴.【点评】此题是三角形综合题,主要考查了含30°的直角三角形的性质,等边三角形的性质,全等三角形的判定和性质,判断出△DQB≌△DPF是解本题的关键,作出辅助线是解本题的难点,是一道比较简单的中考常考题.。

2020-2021学年天津一中高二(上)期末数学试卷 (解析版)

2020-2021学年天津一中高二(上)期末数学试卷 (解析版)

2020-2021学年天津一中高二(上)期末数学试卷一、选择题(共8小题).1.抛物线y=x2的准线方程是()A.B.C.x=﹣1D.y=﹣12.已知圆(x﹣1)2+(y+2)2=9的一条直径通过直线2x+y﹣4=0被圆所截弦的中点,则该直径所在的直线方程为()A.x+2y﹣5=0B.x﹣2y﹣5=0C.x﹣2y+5=0D.x+2y+5=03.已知数列{a n}是等差数列,S n是数列{a n}的前n项和,S2+a6=9,则S5的值为()A.10B.15C.30D.34.在等差数列{a n}中,首项a1>0,公差d≠0,前n项和为,且满足S3=S15,则S n的最大项为()A.S7B.S8C.S9D.S105.已知等比数列{a n}的公比q<0,且a2=1,a n+2=a n+1+2a n,则{a n}的前2020项和等于()A.2020B.﹣1C.1D.06.已知数列{a n}中,a1=1,a n+1=a n+n,则数列{a n}的通项公式为()A.B.C.D.7.已知双曲线方程为x2﹣y2=4,过点A(3,1)作直线l与该双曲线交于M,N两点,若点A恰好为MN中点,则直线l的方程为()A.y=3x﹣8B.y=﹣3x+8C.y=3x﹣10D.y=﹣3x+10 8.在平面直角坐标系xOy中,双曲线的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为()A.B.C.D.二.填空题(共6小题).9.(4分)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为.10.(4分)记S n为递增等比数列{a n}的前n项和,若S1=1,S4=5S2,则a n=.11.(4分)已知直线l:4x﹣3y+8=0,抛物线C:y2=4x图象上的一动点到直线l与它到抛物线准线距离之和的最小值为.12.(4分)设双曲线=1(a>0,b>0)的两条渐近线分别为l1,l2,左焦点为F.若点F关于直线l1的对称点P在l2上,则双曲线的离心率为.13.(4分)已知数列{a n}满足a n=(n∈N*),若对于任意n∈N*都有a n>a n+1,则实数a的取值范围是.14.(4分)已知数列{a n}满足,定义使a1•a2•a3…a k(k∈N*)为整数的k叫做“幸福数”,则区间[1,2020]内所有“幸福数”的和为.三.解答题:(共52分)15.如图,AE⊥平面ABCD,CF∥AE,AD∥BC,AD⊥AB,AB=AD=1,AE=BC=2,CF =.(1)求直线CE与平面BDE所成角的正弦值;(2)求平面BDE与平面BDF夹角的余弦值.16.已知椭圆C:=1,F1,F2分别为椭圆的左、右焦点,P为椭圆上任意一点.(1)若|PF1|﹣|PF2|=1,求△PF1F2的面积;(2)是否存在着直线l,使得当经过椭圆左顶点A且与椭圆相交于点B,点D与点B关于X轴对称,满足•=﹣,若存在,请求出直线的方程;若不存在,请说明理由.17.已知数列{a n}是等差数列,其前n项和为S n,数列{b n}是等比数列,且a1=b1=2,a4+b4=27,s4﹣b4=10(1)求数列{a n}与{b n}的通项公式;(2)设c n=a n•b n,求数列{c n}的前n项的和T n.18.已知正项数列{a n}的前n项和S n满足2S n=a n2+a n﹣2.(1)求数列{a n}的通项公式;(2)若b n=(n∈N*),求数列{b n}的前n项和T n.(3)是否存在实数λ使得T n+2>λ•S n对n∈N+恒成立,若存在,求实数λ的取值范围,若不存在说明理由.参考答案一、选择题(共8小题).1.抛物线y=x2的准线方程是()A.B.C.x=﹣1D.y=﹣1解:由题得:x2=4y,所以:2p=4,即p=2所:,=1故准线方程为:y=﹣1.故选:D.2.已知圆(x﹣1)2+(y+2)2=9的一条直径通过直线2x+y﹣4=0被圆所截弦的中点,则该直径所在的直线方程为()A.x+2y﹣5=0B.x﹣2y﹣5=0C.x﹣2y+5=0D.x+2y+5=0解:由圆(x﹣1)2+(y+2)2=9的方程可得圆心坐标为(1,﹣2),联立直线2x+y﹣4=0与圆(x﹣1)2+(y+2)2=9可得:,整理可得:5x2﹣26x+28=0,所以x1+x2=,y1+y2=﹣2(x1+x2)+8=﹣,所以弦的中点坐标为:(,﹣),由题意可得该直径所在的方程为:y+2=(x﹣1),整理可得:x﹣2y﹣5=0.故选:B.3.已知数列{a n}是等差数列,S n是数列{a n}的前n项和,S2+a6=9,则S5的值为()A.10B.15C.30D.3解:设等差数列{a n}的公差为d,∵S2+a6=9,∴3a1+6d=9,化为:a1+2d=3=a3,则S5==5a3=15.故选:B.4.在等差数列{a n}中,首项a1>0,公差d≠0,前n项和为,且满足S3=S15,则S n的最大项为()A.S7B.S8C.S9D.S10解:等差数列{a n}中,且满足S3=S15,∴a4+a5+…+a15=0,由等差数列的性质可知,a9+a10=0,∵首项a1>0,公差d≠0,∴d<0,∴a9>0,a10<0,则S n的最大项为S9.故选:C.5.已知等比数列{a n}的公比q<0,且a2=1,a n+2=a n+1+2a n,则{a n}的前2020项和等于()A.2020B.﹣1C.1D.0解:由a n+2=a n+1+2a n,∴a n(q2﹣q)=2a n,化为q2﹣q﹣2=0,q<0,解得q=﹣1,又a2=1=a1×(﹣1),解得a1=﹣1.则{a n}的前2020项和==0,故选:D.6.已知数列{a n}中,a1=1,a n+1=a n+n,则数列{a n}的通项公式为()A.B.C.D.解:数列{a n}中,a1=1,a n+1=a n+n,当n≥2时,a n﹣a n﹣1=n﹣1,a n﹣1﹣a n﹣2=n﹣2,…,a2﹣a1=1,利用叠加法,整理得a n﹣a1=1+2+…+n﹣1=,所以(首项符合通项),则.故选:C.7.已知双曲线方程为x2﹣y2=4,过点A(3,1)作直线l与该双曲线交于M,N两点,若点A恰好为MN中点,则直线l的方程为()A.y=3x﹣8B.y=﹣3x+8C.y=3x﹣10D.y=﹣3x+10解:由双曲线方程为x2﹣y2=4为等轴双曲线,焦点在x轴上,过点A(3,1)作直线l与该双曲线交于M,N两点,M(x1,y1),N(x2,y2),∴,两式相减可得:(x1﹣x2)(x1+x2)﹣(y1+y2)(y1﹣y2)=0,A为MN的中点,∴x1+x2=2×3=6,y1+y2=2×1=2,∴6(x1﹣x2)﹣2(y1﹣y)=0,则==3,∴直线MN的斜率为k==3.由直线的点斜式方程可知:y﹣1=3(x﹣3),整理得:y=3x﹣8,故选:A.8.在平面直角坐标系xOy中,双曲线的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为()A.B.C.D.解:把x2=2py(p>0)代入双曲线(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,∴y A+y B=,∵|AF|+|BF|=4|OF|,∴y A+y B+2×=4×,∴=p,∴.∴该双曲线的渐近线方程为:y=±.故选:A.二.填空题:(每题4分)9.(4分)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为.解:等差数列{a n}中,∵a5=5,S5=15,∴,解得a1=1,d=1,∴a n=1+(n﹣1)=n,∴==,∴数列的前100项和S100=(1﹣)+()+()+…+()=1﹣=.故答案为:.10.(4分)记S n为递增等比数列{a n}的前n项和,若S1=1,S4=5S2,则a n=2n﹣1.解:∵S n为递增等比数列{a n}的前n项和,S1=1,S4=5S2,∴,且q>0,解得a1=1,q=2,∴a n=2n﹣1.故答案为:2n﹣1.11.(4分)已知直线l:4x﹣3y+8=0,抛物线C:y2=4x图象上的一动点到直线l与它到抛物线准线距离之和的最小值为.解:∵动点P在抛物线C:y2=4x上,∴设点P的坐标为(a2,2a),可得P到y轴的距离d1=a2.P到直线l:4x﹣3y+8=0的距离d2==|4a2﹣6a+8|,∵4a2﹣6a+8=4(a﹣)2+>0,∴d2=(4a2﹣6a+8),可得动点P到直线l与y轴的距离之和为:d1+d2=a2+(4a2﹣6a+8)=a2﹣a+,由此可得当a=时,d1+d2的最小值为,动点P到直线l与y轴的距离之和的最小值为.故答案为:.12.(4分)设双曲线=1(a>0,b>0)的两条渐近线分别为l1,l2,左焦点为F.若点F关于直线l1的对称点P在l2上,则双曲线的离心率为2.解:由题意知,双曲线的渐近线方程为y=±x,点F(﹣c,0),不妨取直线l1为y=﹣x,直线l2为y=x,设点P的坐标为(m,m),则线段PF的中点坐标为(,),∵点F关于直线l1的对称点P在l2上,∴,即,∴b=a,∴离心率e===2.故答案为:2.13.(4分)已知数列{a n}满足a n=(n∈N*),若对于任意n∈N*都有a n>a n+1,则实数a的取值范围是(,1.解:∵对于任意的n∈N*都有a n>a n+1,∴数列{a n}单调递减,可知0<a<1.①当<a<1时,n>8,a n=(﹣a)n+2单调递减,而a n=a n﹣7(n≤8)单调递减,∴(﹣a)×9+2<a8﹣7,解得a>,因此<a<1.②当0<a<时,n>8,a n=(﹣a)n+2单调递增,应舍去.综上可知:实数a的取值范围是(,1).故答案为:(,1).14.(4分)已知数列{a n}满足,定义使a1•a2•a3…a k(k∈N*)为整数的k叫做“幸福数”,则区间[1,2020]内所有“幸福数”的和为1349.解:由于数列{a n}满足,当n=1时,T1=a1=1,当n≥2时,T n=1×log45×log56×…×log n+2(n+3)==log4(n+3).又n=1时,1=log44,成立.所以T n=log4(n+3)∈Z,(1≤n≤2020),设log4(n+3)=m∈Z,所以n+3=4m∈[4,2023],由于45=210=1024,46=212=4096>2023,所以1≤m≤5,共5个数,所以(41﹣3)+(42﹣3)+…+(45﹣3)=.故答案为:1349.三.解答题:(共52分)15.如图,AE⊥平面ABCD,CF∥AE,AD∥BC,AD⊥AB,AB=AD=1,AE=BC=2,CF =.(1)求直线CE与平面BDE所成角的正弦值;(2)求平面BDE与平面BDF夹角的余弦值.解:∵AE⊥平面ABCD,AD⊥AB,∴以A为坐标原点,分别以AB,AD,AE所在直线为x,y,z轴建立空间直角坐标系.又CF∥AE,AB=AD=1,AE=BC=2,CF=,∴B(1,0,0),D(0,1,0),C(1,2,0),E(0,0,2),F(1,2,),=(﹣1,1,0),,,.(1)设平面BDE的一个法向量为,由,取z=1,可得,设直线CE与平面BDE所成角为θ,则sinθ=|cos<>|=||=,即直线CE与平面BDE所成角的正弦值为;(2)设平面BDF的一个法向量为,则,取z1=﹣7,得,设平面BDE与平面BDF的夹角为φ,则cosφ=,由图可知,平面BDE与平面BDF的夹角为锐角,故平面BDE与平面BDF夹角的余弦值为.16.已知椭圆C:=1,F1,F2分别为椭圆的左、右焦点,P为椭圆上任意一点.(1)若|PF1|﹣|PF2|=1,求△PF1F2的面积;(2)是否存在着直线l,使得当经过椭圆左顶点A且与椭圆相交于点B,点D与点B关于X轴对称,满足•=﹣,若存在,请求出直线的方程;若不存在,请说明理由.解:(1)由题意可知,解得:|PF1|=,|PF2|=,又∵|F1F2|=2,∴,即PF1⊥F1F2,∴Rt△PF1F2的面积为=.(2)由题意可知A(﹣2,0),直线l的斜率显然存在,设直线l的方程为:y=k(x+2),联立方程,消去y得:(3+4k2)x2+16k2x+16k2﹣12=0,∴,∴,∴=,∴D(,),∵•=﹣,∴()2+=﹣,整理得:16k4﹣25k2+9=0,解得:k=±1或k=,∴y=±(x+2)或y=,即存在直线l满足题意,直线l的方程为:x﹣y+2=0或x+y+2=0或3x﹣4y+6=0或3x+4y+6=0.17.已知数列{a n}是等差数列,其前n项和为S n,数列{b n}是等比数列,且a1=b1=2,a4+b4=27,s4﹣b4=10(1)求数列{a n}与{b n}的通项公式;(2)设c n=a n•b n,求数列{c n}的前n项的和T n.解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由a1=b1=2,得a4=2+3d,b4=2q3,S4=8+6d.由条件,得方程组,解得,所以a n=3n﹣1,b n=2n,n∈N*.(2)证明:由题意可得①②由①﹣②,得=4+3•﹣(3n﹣1)•2n+1,∴.18.已知正项数列{a n}的前n项和S n满足2S n=a n2+a n﹣2.(1)求数列{a n}的通项公式;(2)若b n=(n∈N*),求数列{b n}的前n项和T n.(3)是否存在实数λ使得T n+2>λ•S n对n∈N+恒成立,若存在,求实数λ的取值范围,若不存在说明理由.解:(1)当n=1时,a1=2.当n≥2时,,整理可得:(a n+a n﹣1)(a n﹣a n﹣1﹣1)=0,可得a n﹣a n﹣1=1,∴{a n}是以a1=2为首项,d=1为公差的等差数列.∴.(2)由(Ⅰ)得a n=n+1,∴.∴.(3)假设存在实数λ,使得对一切正整数恒成立,即对一切正整数恒成立,只需满足即可,令,由数列的单调性可得,所以f(1)=1,f(2)=,f(3)=,<f(5)<f(6)<…当n=3时有最小值.所以.。

2020-2021学年天津市和平区高二(上)期末数学试卷(含答案解析)

2020-2021学年天津市和平区高二(上)期末数学试卷(含答案解析)

2020-2021学年天津市和平区高二(上)期末数学试卷一、选择题:本卷共9小题,每小题4分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)圆心为(1,﹣1),半径为2的圆的方程为()A.(x+1)2+(y﹣1)2=4B.(x﹣1)2+(y+1)2=2C.(x﹣1)2+(y+1)2=4D.(x+1)2+(y﹣1)2=22.(4分)已知数列{a n},满足a n+1=,若a1=,则a10=()A.B.2C.1D.﹣13.(4分)已知双曲线的一个焦点在直线x+2y=5上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x 4.(4分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0平行,则a=()A.2B.1C.D.5.(4分)已知等差数列{a n}、{b n}的前n项和分别为S n、T n,且有,则=()A.B.C.D.6.(4分)等比数列{a n}中,若a2、a4是方程2x2﹣11x+8=0的两根,则a3的值为()A.2B.±2C.D.±7.(4分)抛物线x2=4y上一点A的纵坐标为4,则点A与抛物线焦点的距离为()A.2B.3C.4D.58.(4分)已知圆C1:x2+y2=4和圆C2:x2+y2+2ay﹣6=0(a>0)的公共弦长为2,则实数a的值为()A.B.C.D.9.(4分)设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.B.C.D.二、填空题:本大题共5小题.每小题4分,共20分.10.(4分)抛物线y2=﹣8x的焦点坐标是.11.(4分)设直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,若l1⊥l2,则实数m =.12.(4分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,则点B到平面D1EC的距离为.13.(4分)已知数列{a n},a1=1,a n+1=a n+2n﹣1(n∈N*),则a n=.14.(4分)若直线y=x+b与曲线y=3﹣有公共点,则b的取值范围是.三、解答题:本大题共4题,共44分,要求写出文字说明,解答过程或演算步骤.15.(10分)已知等差数列{a n}满足:a4=7,a10=19,其前n项和为S n.(1)求数列{a n}的通项公式a n及S n;(2)若b n=,求数列{b n}的前n项和为T n.16.(10分)如图,四棱锥P﹣ABCD中,ABCD为正方形,PD⊥平面ABCD,PD=DC=2,E是PC的中点.(1)证明:P A∥平面BDE;(2)求平面BDE与平面DEC的夹角的余弦值.17.(12分)已知椭圆C:+=1(a>b>0)的离心率为e=,过点(2,0).(Ⅰ)求椭圆C的标准方程;(Ⅱ)设左、右焦点分别为F1,F2,经过右焦点F2的直线l与椭圆C相交于A、B两点,若⊥,求直线l方程.18.(12分)已知数列{a n}的前n项和S n=1﹣a n(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n,并证明:T n<2.2020-2021学年天津市和平区高二(上)期末数学试卷参考答案与试题解析一、选择题:本卷共9小题,每小题4分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)圆心为(1,﹣1),半径为2的圆的方程为()A.(x+1)2+(y﹣1)2=4B.(x﹣1)2+(y+1)2=2C.(x﹣1)2+(y+1)2=4D.(x+1)2+(y﹣1)2=2【解答】解:圆心为(1,﹣1),半径为2的圆的标准方程是:(x﹣1)2+(y+1)2=4.故选:C.2.(4分)已知数列{a n},满足a n+1=,若a1=,则a10=()A.B.2C.1D.﹣1【解答】解:数列{a n},满足a n+1=,当a1=时,解得a2=2,当n=2,解得,当n=3时,解得,所以数列的周期为3.故.故选:A.3.(4分)已知双曲线的一个焦点在直线x+2y=5上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x 【解答】解:根据题意,双曲线的焦点在x轴上,而直线x+2y=5与x轴交点为(5,0),则c=5,进而有9+a2=25,解可得a2=16,则双曲线的方程为:,其渐近线方程为:y=±x;故选:A.4.(4分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0平行,则a=()A.2B.1C.D.【解答】解:已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,将点P(2,2)代入圆(x﹣1)2+y2=5恒成立,则点P在圆上.即过点P(2,2)的直线与圆(x﹣1)2+y2=5相切的切线只有一条,令过点P(2,2)的切线的方程为y﹣2=k(x﹣2),即kx﹣y﹣2k+2=0,由此切线与ax﹣y+1=0平行,两直线的斜率相等且y轴截距不等,可得k=a且﹣2k+2≠1;由圆心到切线的距离等于圆的半径,可得圆的半径r==,k=﹣,即a=﹣;故选:C.5.(4分)已知等差数列{a n}、{b n}的前n项和分别为S n、T n,且有,则=()A.B.C.D.【解答】解:由等差数列的性质可得:====.故选:C.6.(4分)等比数列{a n}中,若a2、a4是方程2x2﹣11x+8=0的两根,则a3的值为()A.2B.±2C.D.±【解答】解:由题意a2、a4是方程2x2﹣11x+8=0的两根,故有a2a4=4又{a n}为等比数列∴a2a4=a32,∴a3=±2.故选:B.7.(4分)抛物线x2=4y上一点A的纵坐标为4,则点A与抛物线焦点的距离为()A.2B.3C.4D.5【解答】解:依题意可知抛物线的准线方程为y=﹣1,∴点A到准线的距离为4+1=5,根据抛物线的定义可知点A与抛物线焦点的距离就是点A与抛物线准线的距离,∴点A与抛物线焦点的距离为5,故选:D.8.(4分)已知圆C1:x2+y2=4和圆C2:x2+y2+2ay﹣6=0(a>0)的公共弦长为2,则实数a的值为()A.B.C.D.【解答】解:根据题意,圆C1:x2+y2=4和圆C2:x2+y2+2ay﹣6=0(a>0),则有,联立可得:y=,即两圆公共弦所在直线的方程为y=,圆C1:x2+y2=4,其圆心为(0,0),半径r=2,若公共弦的弦长为2,则圆C1的圆心C1到公共弦的距离d==,又由a>0,则有=,解可得a=,故选:A.9.(4分)设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.B.C.D.【解答】解:设点P在x轴上方,坐标为,∵△F1PF2为等腰直角三角形∴|PF2|=|F1F2|,即,即故椭圆的离心率e=故选:D.二、填空题:本大题共5小题.每小题4分,共20分.10.(4分)抛物线y2=﹣8x的焦点坐标是(﹣2,0).【解答】解:∵抛物线方程y2=﹣8x,∴焦点在x轴,p=4,∴焦点坐标为(﹣2,0)故答案为(﹣2,0).11.(4分)设直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,若l1⊥l2,则实数m=.【解答】解:直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,由l1⊥l2,得3m+(m﹣2)=0,即4m=2,解得m=.故答案为:.12.(4分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,则点B到平面D1EC的距离为.【解答】解:∵在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,以D为原点,建立空间直角坐标系,如图∴B(1,2,0),C(0,2,0)E(1,1,0),D1(0,0,1),=(0,1,0),=(﹣1,1,0),=(﹣1,﹣1,1),设平面D1EC的法向量=(x,y,z),则,取x=1,得=(1,1,2),∴点B到平面D1EC的距离:d===.故答案为:.13.(4分)已知数列{a n},a1=1,a n+1=a n+2n﹣1(n∈N*),则a n=2n﹣1.【解答】解:数列{a n},a1=1,a n+1=a n+2n﹣1(n∈N*),所以,,…,,所以=,所以.故答案为:2n﹣1.14.(4分)若直线y=x+b与曲线y=3﹣有公共点,则b的取值范围是[1﹣,3].【解答】解:如图所示:曲线y=3﹣,即y﹣3=﹣,平方可得(x﹣2)2+(y﹣3)2=4(1≤y≤3,0≤x≤4),表示以A(2,3)为圆心,以2为半径的一个半圆.由圆心到直线y=x+b的距离等于半径2,可得=2,∴b=1+,或b=1﹣.结合图象可得1﹣≤b≤3,故答案为:[1﹣,3].三、解答题:本大题共4题,共44分,要求写出文字说明,解答过程或演算步骤.15.(10分)已知等差数列{a n}满足:a4=7,a10=19,其前n项和为S n.(1)求数列{a n}的通项公式a n及S n;(2)若b n=,求数列{b n}的前n项和为T n.【解答】解:(1)设等差数列{a n}的公差为d,则,解得:a1=1,d=2,∴a n=1+2(n﹣1)=2n﹣1,S n==n2.(2)b n===,∴数列{b n}的前n项和为T n=+…+==.16.(10分)如图,四棱锥P﹣ABCD中,ABCD为正方形,PD⊥平面ABCD,PD=DC=2,E是PC的中点.(1)证明:P A∥平面BDE;(2)求平面BDE与平面DEC的夹角的余弦值.【解答】解:(1)证明:连接AC,交BD于点O,连接OE,∵ABCD为正方形,∴O是AC的中点,∵E是PC的中点,∴OE∥P A,∵P A⊄平面BDE,OE⊂平面BDE,∴P A∥平面BDE.(2)以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,则B(2,2,0),D(0,0,0),E(0,1,1),C(0,2,0),=(2,2,0),=(0,1,1),设平面BDE的法向量=(x,y,z),则,设x=1,则=(1,﹣1,1),平面DEC的法向量=(1,0,0),设平面BDE与平面DEC的夹角为θ,则cosθ===,∴平面BDE与平面DEC的夹角的余弦值为.17.(12分)已知椭圆C:+=1(a>b>0)的离心率为e=,过点(2,0).(Ⅰ)求椭圆C的标准方程;(Ⅱ)设左、右焦点分别为F1,F2,经过右焦点F2的直线l与椭圆C相交于A、B两点,若⊥,求直线l方程.【解答】解:(Ⅰ)由e==,且a=2,则c=1,b==,故椭圆C的方程为+=1;(Ⅱ)F1(﹣1,0),F2(1,0),设经过右焦点F2的直线l的方程为x=my+1,与椭圆方程3x2+4y2=12联立,可得(4+3m2)y2+6my﹣9=0,设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=﹣,由⊥,即AF1⊥BF1,k•k=•=﹣1,即有(x1+1)(x2+1)+y1y2=(my1+2)(my2+2)+y1y2=(1+m2)y1y2+2m(y1+y2)+4=(1+m2)•(﹣)+2m•(﹣)+4=0,解得m=±,则直线l的方程为x=±y+1,即为y=±(x﹣1).18.(12分)已知数列{a n}的前n项和S n=1﹣a n(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n,并证明:T n<2.【解答】解:(1)数列{a n}的前n项和S n=1﹣a n①.所以当n=1时,.当n≥2时,S n﹣1=1﹣a n﹣1②,①﹣②得:a n=S n﹣S n﹣1=a n﹣1﹣a n,整理得2a n=a n﹣1,故(常数),所以数列{a n}是以为首项,为公比的等比数列;所以,首项符合通项,所以.证明:(2)设,所以①,②,①﹣②得:=,所以.。

2023-2024学年天津市河西区高二上学期期末数学试题(含解析)

2023-2024学年天津市河西区高二上学期期末数学试题(含解析)

2023-2024学年天津市河西区高二上册期末数学试题一、单选题1.观察数列2221111,,(),,,(),379 的特点,则括号中应填入的适当的数为()A .3311,310B .2211,510C .2211,511D .2211,410【正确答案】C【分析】将数列中的每个项进行改写为()211211=⨯-、()22113221=⨯-、()22117241=⨯-、()22119251=⨯-,由此可得出两个括号内应填入的数.【详解】因为()211211=⨯-、()22113221=⨯-、()22117241=⨯-、()22119251=⨯-,所以,该数列的第()n n *∈N 项为()2121n -,因此,第一个括号内填入的数为()22115231=⨯-,第二个括号内填入的数为()221111261=⨯-,故选:C.2.某质点的运动规律为23s t =+,则在时间(3,3)t +∆内,质点的位移增量等于()A .26()t t ∆+∆B .96t t+∆+∆C .23()t t ∆+∆D .9t+∆【正确答案】A根据平均变化率的定义计算.【详解】位移增量()222(3Δ)(3)(3Δ)3336Δ(Δ)s t s t t t =+-=++-+=+.故选:A.3.准线方程为2x =的抛物线的标准方程为()A .28y x =B .28y x=-C .28x y=D .28x y=-【正确答案】B【分析】结合抛物线的定义求得正确答案.【详解】由于抛物线的准线方程是2x =,所以抛物线的开口向左,设抛物线的方程为()220y px p =->,则2,282pp ==,所以抛物线的标准方程为28y x =-.故选:B4.已知数列{}n a 满足10a =,)1n a n *+=∈N ,则2022a =()A .0B.CD.3【正确答案】B【分析】写出数列{}n a 的前4项,可得出数列{}n a 为周期数列,利用数列的周期性可求得2022a 的值.【详解】因为数列{}n a 满足10a =,)1n a n *+=∈N,则2a =313a ==-40a ==,以此类推可知,()3n n a a n *+=∈N,因此,6320223733a a a ⨯+===故选:B.5.已知实数列1-、x 、y 、z 、2-成等比数列,则xyz =()A.B .±4C.-D.±【正确答案】C【分析】求出y 的值,利用等比中项的性质可求得结果.【详解】设等比数列1-、x 、y 、z 、2-的公比为()0q q ≠,则210y q =-⨯<,由等比中项的性质可得()()2122y =-⨯-=,所以,y =,因此,(33xyz y ===-故选:C.6.设中心在原点,焦点在x 轴上的双曲线的焦距为16,且双曲线上的任意一点到两个焦点的距离的差的绝对值等于6,双曲线的方程为()A .221955x y -=B .22197x y -=C .22110064x y -=D .22179x y -=【正确答案】A【分析】根据题意列式求解,,a b c ,即可得结果.【详解】∵双曲线的焦点在x 轴上,设双曲线的方程为22221x y a b-=,且222,0,0,0c a b a b c =+>>>,由题意可得22221626c a b c a ⎧=+⎪=⎨⎪=⎩,解得38a b c =⎧⎪=⎨⎪=⎩∴双曲线的方程为221955x y -=.故选:A.7.如图,直线l 和圆C ,当l 从l 0开始在平面上绕点O 按逆时针方向匀速转到(转到角不超过90°)时,它扫过的圆内阴影部分的面积S 是时间t的函数,这个函数的图像大致是A .B .C.D.【正确答案】D【分析】由题意可知:S 变化情况为“一直增加,先慢后快,过圆心后又变慢”,据此确定函数的大致图像即可.【详解】观察可知面积S 变化情况为“一直增加,先慢后快,过圆心后又变慢”,对应的函数的图象是变化率先变大再变小,由此知D 符合要求.故选D .本题主要考查实际问题中的函数图像,函数图像的变化趋势等知识,意在考查学生的转化能力和计算求解能力.8.函数y =)A.y 'B.y '=C.y ='D.y '=【正确答案】B【分析】利用复合函数的求导法则以及商的导数运算法可求得结果.【详解】因为y)()2sin 2sin 2x x y ''-'==故选:B.9.设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,离心率为e ,过2F 的直线与双曲线的右支交于A 、B 两点,若1F AB 是以A 为直角顶点的等腰直角三角形,则2e =()A.3+B.5-C.1+D.4-【正确答案】B【分析】根据双曲线的定义,设出焦半径,利用余弦定理,可得答案.【详解】设2AF x =,则12AF x a =+,所以22BF a =,也就是14BF a =,由余弦定理,可得222121212122cos F F BF BF BF BF F BF =+-⋅⋅⋅∠,则2224164242cos4c a a a a π=+-⨯⨯⨯,因此25c a ⎛⎫=- ⎪⎝⎭故选:B .二、填空题10.设数列{}n a 是公差为d 的等差数列,若25a =,617a =,则d =__________.【正确答案】3【分析】根据6262a a d -=-即可得解.【详解】因为数列{}n a 是公差为d 的等差数列,且25a =,617a =,则621753624a a d --===-.故答案为.311.双曲线2213y x -=的离心率为_________.【正确答案】2【详解】221,32,2c a b c a b e a===+=== 12.在等比数列{}n a 中,21,2a q ==6a =__________.【正确答案】4【分析】根据等比数列性质运算求解.【详解】由题意可得.4462124a a q ==⨯=故4.13.若函数()1f x x x=-,则()1f '=__________.【正确答案】2【分析】利用常见函数的导数和导数的运算法则即可求出结果.【详解】因为()1f x x x =-,所以()211f x x'=+,所以()11121f '=+=,故2.14.若函数ln y x x =上在点P 处的切线平行于双曲线22:14y C x -=的渐近线,则点P 的坐标是__________.【正确答案】()e,e 或()33e ,3e ---【分析】先求出双曲线的渐近线方程为2y x =±,再对函数ln y x x =求导,再利用导数的几何意义,建立方程012x +=ln 或0ln 21x =-+,从而求出0x ,得到点P 的坐标.【详解】设00(,)P x y ,因为ln y x x =,所以ln 1y x '=+,又双曲线22:14y C x -=,所以双曲线的渐近线方程为2y x =±,因为函数ln y x x =上在点P 处的切线平行于双曲线22:14y C x -=的渐近线,所以由导数的几何意义知,012x +=ln 或0ln 21x =-+,得到0e x =或30e x -=,当0e x =时,e ln e e y ==,当30e x -=时,333e ln e 3e y ---==-,从而得到(e,e)P 或33(e ,3e )P ---,故(e,e)或33(e ,3e )---15.已知等比数列{}n a ,231a a >=,则使不等式12121110n n a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立的最大自然数n 为____________【正确答案】5【详解】只需23231105n n q q n q q ---≥⇒≤⇒≤,故答案为5.三、解答题16.数列{}n a 满足()1111,122n n a a a n -==+≥.(1)若2n n b a =-,求证:{}n b 为等比数列;(2)求{}n a 的通项公式.【正确答案】(1)证明见解析(2)1122n n a -=-【分析】(1)由112n n b b -=证得{}n b 为等比数列.(2)先求得n b ,然后求得n a .【详解】(1)由于()1111,122n n a a a n -==+≥,所以()()112222n n a a n --=-≥,即()1221n n b n b -≥=,所以数列{}n b 是首项为121a -=-,公比为12的等比数列.(2)由(1)得112n n b -=-,所以11112,222n n n n a a ---=-=-.17.已知抛物线的方程为22y px =,它的准线过双曲线22221(0,0)x y a b a b-=>>的一个焦点,且抛物线与双曲线的一个交点为32⎛ ⎝,求抛物线与双曲线的方程.【正确答案】抛物线方程为24y x =,双曲线的方程为224413y x -=【分析】根据题意代入点32⎛ ⎝,即可求得抛物线的方程,进而可得双曲线的左焦点,根据题意列式求解,即可得双曲线方程.【详解】∵抛物线过点32⎛ ⎝,则2322p ⨯=,解得2p =故抛物线方程为24y x =,可得抛物线的准线为=1x -,则准线与x 轴的交点坐标为()1,0-即双曲线的左焦点为()1,0-,且双曲线过点32⎛ ⎝,设双曲线的半焦距为0c >,则可得2222219641c c a b a b ⎧⎪⎪=⎪⎪=+⎨⎪⎪⎪-=⎪⎩,解得221434a b ⎧=⎪⎪⎨⎪=⎪⎩故双曲线方程为2211344x y -=,即224413y x -=.18.已知数列{a n }的前n 项和为S n ,且满足a 1=2,na n +1=S n +n (n +1).(Ⅰ)求数列{a n }的通项公式a n ;(Ⅱ)设T n 为数列2n n a ⎧⎫⎨⎬⎩⎭}的前n 项和,求T n ;(Ⅲ)设121n n n n b a a a ++=,证明:123132n b b b b ++++<【正确答案】(Ⅰ) 2n a n =(Ⅱ)1242n n n T -+=-(Ⅲ)见试题解析【详解】试题分析:(Ⅰ)由已知()11n n na S n n +=++当2n ≥时()()111n n n a S n n --=+-,两式项减,得到.求出12a =,则数列的通项公式可得(Ⅱ)由题意可得122n n n a n-=,直接利用错位相减法即可求出1242nn n T -+=-(Ⅲ)(Ⅰ),得利用裂项相消法即可得试题解析:(Ⅰ)由题意,当2n ≥时,有()()()111.{11n n n n na S n n n a S n n +-=++-=+-两式相减得()11122n n n n n na n a a n a a ++--=+⇒-=由12121112{22a a S a a S a ==+⇒-==,所以对任意*n ∈N,都有故()1122n a a n n =+-=(Ⅱ)由(Ⅰ)得12222n n n n a n n -==,因此212341 (22232)n n n T -=+++++,两边同乘以12得2341112341...2222222n n n n nT --=++++++.两式错位相减得234111112111121 (122222222212)n n n n n n n n T T --=++++++-⇒=--1242n n n T -+⇒=-(Ⅲ)由(Ⅰ),得.数列的通项公式,错位相减法,裂项相消法。

天津市河西区2020-2021学年高二上学期期中数学试题

天津市河西区2020-2021学年高二上学期期中数学试题

河西区2020-2021学年度第一学期高二年级期中质量调查数学试卷一、选择题:本大题共9小题,每小题4分,共36分,在每小题给出的四个选项中,有一项是符合题目要求的.1.已知直线的倾斜角是2π3,则该直线的斜率是( )A.1B.C.D.-12.已知两条平行直线1l :3460x y −+=与2l :340x y C −+=间的距离为3,则C =( )A.9或21B.-9或21C.9或-9D.9或33.直线3210x y +−=的一个方向向量是( )A.(2,3)−B.(2,3)C.(3,2)−D.(3,2)4.若{,,}a b c 构成空间的一个基底,则下列向量不共面的是( )A.b c +,b ,b c −B.a ,a b +,a b −C.a b +,a b −,cD.a b +,a b c ++,c5.焦点在x 轴,一条渐近线的方程为y =,虚轴长为 ) A.221412x y −= B.221124x y −= C.2214816x y −= D.2211648x y −= 6.已知直线1l :210x ay +−=与直线2l :(31)10a x ay −−−=平行,则a =( )A.0B.0或16−C.16 D.0或167.在平行六面体1111ABCD A B C D −中,AC 与BD 的交点为M ,设11A B a =,11A D b =,1A A c =,则下列向量中与1B M 相等的向量是( ) A.1122a b c −++ B.1122a b c ++ C.1122a b c −+ D.1122a b c −−+ 8.已知点是点(3,4,5)A 在坐标平面Oxy 内的射影,则||OB =( )C.5D.9.与圆221x y +=及圆228120x y x +−+=都外切的圆的圆心在( )A.椭圆上B.双曲线的一支上C.线段上D.圆上二、填空题:本大题共6小题,每小题5分,共30分.请将答案填在题中横线上.10.经过(18,8)A ,(4,4)B −两点的直线的斜率k =________.11.双曲线224640x y −+=上一点P 与它的一个焦点的距离等于1,那么点P 与另一个焦点的距离等于________.12.已知直线/经过两条直线23100x y −+=和3420x y +−=的交点,且垂直于直线3240x y −+=,则直线l 方程为________.13.已知空间三点(0,2,3)A ,(2,1,6)B −,(1,1,5)C −,向量a 分别与AB ,AC 都垂直,且||3a =,且a 的横、纵、竖坐标均为正,则向量a 的坐标为________.14.设椭圆的两个焦点分别为1F ,2F ,过2F 作椭圆长轴的垂线交椭圆于点P ,12F PF △为等腰直角三角形,则椭圆的离心率为________.15.动点(,)M x y 与定点(4,0)F 的距离和M 到定直线l :254x =的距离的比是常数45,则动点M 的轨迹方程是________.三、解答题:本大题共3小题,共34分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分10分)已知圆P :2240x y +−=,圆Q :2244120x y x y +−+−=.(Ⅰ)分别写出这两个圆的圆心坐标和半径的长,并求两个圆心的距离;(Ⅱ)求这两个圆的公共弦的长.17.(本小题满分12分)在长方体1111ABCD A B C D −中,点E ,F 分别在1BB ,1DD 上,且1AE A B ⊥,1AF A D ⊥.(Ⅰ)求证:1AC ⊥平面AEF ; (Ⅱ)当4AB =,3AD =,15AA =时,求平面AEF 与平面11D B BD 的夹角的余弦值.18.(本小题满分12分)已知椭圆C :22221x y a b +=(0a b >>)的焦距为2,离心率为2. (1)求椭圆C 的标准方程;(Ⅱ)经过椭圆的左焦点1F 作倾斜角为60°的直线l ,直线l 与椭圆相交于A ,B 两点,求线段AB 的长.参考答案一、选择题BBAC ADACB二、填空题10.6711.17 12.2320x y +−= 13.(1,1,1) 1 15.221259x y += 三、解答题16.(Ⅰ)根据题意,圆P :2240x y +−=,即224x y +=,圆心P 为(0,0),半径2R =,圆Q :2244120x y x y +−+−=,即22(2)(2)20x y −++=,其圆心Q 为(2,2)−,半径r =d ==,(Ⅱ)根据题意,22224044120x y x y x y ⎧+−=⎨+−+−=⎩,联立可得:444120x y −+−=,变形可得20x y −+=,即公共弦所在直线的方程为20x y −+=,圆心P 到直线20x y −+=的距离d '==则公共弦的弦长2l ==17.解析1.在长方体1111ABCD A B C D −中,BC ⊥平面11AA B B ,AE ⊂平面11AA B B ,所以:BC AE ⊥, 由于1AE A B ⊥,BC ,1A B ⊂平面1A BC ,所以:AE ⊥平面1A BC ,1AE AC ⊥①, 同理:DC ⊥平面11ADD A ,AF⊂平面11ADD A ,所以:DC AF ⊥,由于:1AF A D ⊥, 所以:AF ⊥平面1A CD ,1AF AC ⊥②,由①②知:1AC ⊥平面AEF .2.分别以AB ,AD ,1AA 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系,连接AC , 由于:4AB =,4AD =,15AA =,所以:(4,3,0)AC =,(4,3,0)BD =−,1(0,0,5)DD =,由于:10AC DD ⋅=,0AC BD ⋅=,所以:1AC DD ⊥,AC BD ⊥,AC ⊥平面11DBB D ,所以可以把AC 看做是平面11DBB D 的法向量,又由于:1AC ⊥平面AEF ,所以:1AC 看做是平面AEF 的法向量,1(4,3,5)AC =−,设平面AEF 和平面11D B BD 所成的角为θ,则:1112cos 25||AC AC AC AC θ⋅==⋅, 所以:平面AEF 和平面11D B BD所成的角的余弦值为25. 18.(Ⅰ)设椭圆的半焦距为c ,由题意可得1c =,2c e a ==,解得a =1b ==, 则椭圆的方程为2212x y+=; (Ⅰ)过椭圆的左焦点1(2,0)F −,倾斜角为60°的直线l 的方程为1)y x =+,与椭圆方程2222x y +=联立,可得271240x x ++=,设A ,B 的横坐标分别为1x ,2x ,可得12127x x +=−,1247x x =,则||27AB ===.。

2023-2024学年天津市河西区高一上册期末数学试题(含解析)

2023-2024学年天津市河西区高一上册期末数学试题(含解析)

2
2
2
2
3
sin
2 x
π 3

所以 T π ;
【小问 2 详解】
故选:C.
7. 设 a , b , c 都是正数,且 3a 4b 6c ,那么( )
A. 1 1 1
B. 2 2 1
C. 1 2 2
D.
c ab
c ab
c ab
212 c ab
【正确答案】B
【分析】令 3a 4b 6c M ,根据指数与对数的关系将指数式化为对数式,再由换底公
式及对数的运算法则计算可得.
因为
f
( 4
)
2 sin 4
1 | |
2 1
0 ,所以排除 C
4
4
故选:A
本题主要考查了函数图像的识别,属于中等题.
9.
下述四条性质:①最小正周期是 π ,②图象关于直线 x
π 3
对称,③图象关于点
π 12
,
0

称,④在
-
π 6
,
π 3
上是增函数.下列函数同时具有上述性质的一个函数是(
所以 为第二象限角, tan 0 ,
1
由三角函数的定义可得 tan
2 3
3 3 ,故答案为
3. 3
2
本题主要考查任意角的正切函数值,意在考查对基础知识的掌握情况,属于基础题.
12. 函数 y log0.5 4x 3 的定义域为_________.
【正确答案】{x | 3 x 1} 4
32 42
logM 144 ,
所以 1 2 2 ,故 C 错误; c ab
对于
D:
1 a

2020-2021学年高二上学期期末考试数学试卷(含解析)

2020-2021学年高二上学期期末考试数学试卷(含解析)

2020-2021学年高二上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.若3324A 10A n n =,则n =( )A .1B .8C .9D .102.期末考试结束后,某班要安排6节课进行试卷讲评,要求课程表中要排入语文、数学、英语、物理、化学、生物共六节课,如果第一节课只能排语文或数学,最后一节不能排语文,则不同的排法共有( ) A .192种B .216种C .240种D .288种3.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8,有4台这种型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( ) A .0.1536B .0.1808C .0.5632D .0.97284.某市气象部门根据2021年各月的每天最高气温平均值与最低气温平均值(单位:℃)数据,绘制如下折线图:那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10℃的月份有5个D .从2021年7月至12月该市每天最高气温平均值与最低气温平均值都呈下降趋势5.若()2N 1,X σ~,则()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,已知()21,3X N ~,则(47)P X <≤=( )A .0.4077B .0.2718C .0.1359D .0.04536.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算()200.01P K k ≥=,根据这一数据分析,下列说法正确的是( )A .有1%的人认为该栏目优秀;B .有1%的把握认为该栏目是否优秀与改革有关系;C .有99%的把握认为电视栏目是否优秀与改革有关系;D .没有理由认为电视栏目是否优秀与改革有关系.7.若1021001210)x a a x a x a x =++++,则012310a a a a a -+-++的值为.A 1B 1C .101)D .101)8.关于()72x +的二项展开式,下列说法正确的是( ) A .()72x +的二项展开式的各项系数和为73B .()72x +的二项展开式的第五项与()72x +的二项展开式的第五项相同C .()72x +的二项展开式的第三项系数为4372CD .()72x +的二项展开式第二项的二项式系数为712C9.如图,某建筑工地搭建的脚手架局部类似于一个3×2×3的长方体框架,一个建筑工人欲从A 处沿脚手架攀登至B 处,则其最近的行走路线中不连续向上攀登的概率为( )A .528B .514C .29D .1210.三棱锥P ABC -中P A 、PB 、PC 两两互相垂直,4PA PB +=,3PC =,则其体积( ) A .有最大值4B .有最大值2C .有最小值2D .有最小值4二、填空题11.最小二乘法得到一组数据(),(1,2,3,4,5)i i x y i =的线性回归方程为ˆ23yx =+,若5125ii x==∑,则51i i y ==∑___________.12.某班举行的联欢会由5个节目组成,节目演出顺序要求如下: 节目甲不能排在第一个,并且节目甲必须和节目乙相邻.则该班联欢会节目演出顺序的编排方案共有____种. 13.若随机变量X 的概率分布如表,则表中a 的值为______.14.设随机变量ξ~B (2,p ),若P (ξ≥1)=59,则D (ξ)的值为_________.15.已知等差数列{}n a 中,33a =,则1a 和5a 乘积的最大值是______.16.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了5个问题就晋级下一轮的概率为___________.17.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:则该营业窗口上午9点钟时,至少有2人排队的概率是_____.18.点A ,B ,C 在球O 表面上,2AB =,BC =90ABC ∠=︒,若球心O 到截面ABC的距离为___________.19.如图,在三棱柱111ABC A B C -中,四边形11AAC C 是边长为4的正方形,平面ABC ⊥平面11AAC C ,3AB =,5BC =.(℃)求证:1AA ⊥平面;(℃)若点E 是线段的中点,请问在线段是否存在点E ,使得面11AAC C ?若存在,请说明点E 的位置,若不存在,请说明理由; (℃)求二面角的大小.20.四根绳子上共挂有10只气球,绳子上的球数依次为1,2,3,4,每枪只能打破一只球,而且规定只有打破下面的球才能打上面的球,则将这些气球都打破的不同打法数是________.三、解答题21.已知集合(){}()12,,,|,1,2,,1nn i R x x x x R i n n =∈=≥,定义n R 上两点()12,,,n A a a a ,()12,,,n B b b b 的距离()1,ni i i d A B a b ==-∑.(1)当2n =时,以下命题正确的有__________(不需证明): ℃若()1,2A ,()4,6B ,则(),7d A B =;℃在ABC 中,若90C =∠,则()()()222,,,d A C d C B d A B ⎡⎤⎡⎤⎡⎤+=⎣⎦⎣⎦⎣⎦; ℃在ABC 中,若()(),,d A B d A C =,则B C ∠=∠;(2)当2n =时,证明2R 中任意三点A B C ,,满足关系()()(),,,d A B d A C d C B ≤+;(3)当3n =时,设()0,0,0A ,()4,4,4B ,(),,P x y z ,其中x y z Z ∈,,,()()(),,,d A P d P B d A B +=.求满足P 点的个数n ,并证明从这n 个点中任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.22.今年4月,教育部办公厅印发了《关于加强义务教育学校作业管理的通知》,规定初中学生书面作业平均完成时长不超过90分钟.某市为了更好地贯彻落实“双减”工作要求,作教育决策,该市教育科学研究院就当前全市初三学生每天完成书面作业时长抽样调查,结果是学生书面作业时长(单位:分钟)都在区间[]50,100内,书面作业时长的频率分布直方图如下:(1)若决策要求:在国家政策范围内,若当前初三学生书面作业时长的中位数估计值大于或等于平均数(计算平均数时,同一组中的数据用该区间的中点值代表)估计值,则减少作业时长;若中位数估计值小于平均数,则维持现状.请问:根据这次调查,该市应该如何决策?(2)调查统计时约定:书面作业时长在区间[]90,100内的为A 层次学生,在区间[)80,90内的为B 层次学生,在区间[70,80)内的为C 层次学生,在其它区间内的为D 层次学生.现对书面作业时长在70分钟以上(含70分钟)的初三学生,按作业时长出现的频率用分层抽样的方法随机抽取8人,再从这8人中随机抽取3人作进一步调查,设这3人来自X 个不同层次,求随机变量X 的分布列及数学期望.23.国家文明城市评审委员会对甲、乙两个城市是否能入围“国家文明城市”进行走访调查.派出10人的调查组.先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分).他们给出甲、乙两个城市分数的茎叶图如图所示:(1)请你用统计学的知识分析哪个城市更应该入围“国家文明城市”,请说明理由;(2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率;(3)从对乙城市的打分中任取2个,设这2个分数中不小于80分的个数为X,求X的分布列和期望.参考答案:1.B【分析】根据排列数的运算求解即可.【详解】由332A 10A n n =得,2(21)(22)10(1)(2)n n n n n n --=--,又3,n n *≥∈N ,所以2(21)5(2)n n -=-,解得8n =, 所以正整数n 为8. 故选:B. 2.B【分析】对第一节课的安排进行分类讨论,结合分步乘法计数原理和分类加法计数原理可得结果.【详解】分以下两种情况讨论:℃若第一节课安排语文,则后面五节课的安排无限制,此时共有55A 种;℃若第一节课安排数学,则语文可安排在中间四节课中的任何一节,此时共有444A 种.综上所述,不同的排法共有54544216A A +=种.故选:B. 3.D【详解】设在一个小时内有ξ台机床需要工人照看,则ξ~B (4,0.2),所以P (ξ≤2)=04C (0.8)4+14C (0.8)3×0.2+24C (0.8)2×(0.2)2=0.972 8. 故选D 4.D【分析】利用折线图可以判断选项ABC 正确,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,所以选项D 错误.【详解】解:由2021年各月的每天最高气温平均值和最低气温平均值(单位:C)︒数据,绘制出的折线图,知:在A 中,各月最高气温平均值与最低气温平均值为正相关,故A 正确;在B 中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B 正确; 在C 中,全年中各月最低气温平均值不高于10C ︒的月份有1月,2月,3月,11月,12月,共5个,故C 正确;在D 中,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D 错误. 故选:D . 5.C【分析】由题意,得(47)(2)P X P X μσμσ<≤=+<≤+,再利用3σ原则代入计算即可.【详解】℃()21,3X N ~,由()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,℃1(47)(2)(0.95450.6827)0.13592P X P X μσμσ<≤=+<≤+=-=.故选:C 6.C【分析】利用独立性检验的基本原理即可求出答案.【详解】解:℃()200.01P K k ≥=表示“电视栏目是否优秀与改革没有关系”的概率,℃有99%的把握认为电视栏目是否优秀与改革有关系, 故选:C .【点睛】本题主要考查独立性检验的基本应用,准确的理解判断方法是解决本题的关键,属于基础题. 7.D【详解】分析:令1021001210())f x x a a x a x a x ==++++,再求f(-1)的值得解.详解:令1021001210())f x x a a x a x a x ==++++,1001210(1)1)f a a a a -==-+++.故答案为D .点睛:(1)本题主要考查二项式定理中的系数求法问题,意在考查学生对这些基础知识 的掌握水平.(2) 二项展开式的系数0123,,,,n a a a a a ⋅⋅⋅的性质:对于2012()?··n n f x a a x a x a x =++++,0123(1)n a a a a a f ++++⋅⋅⋅+=, 0123(1)(1)n n a a a a a f -+-+⋅⋅⋅+-=-.8.A【分析】利用赋值法求出展开式各项系数和,即可判断A ,根据二项式展开式的通项,即可判断B 、C 、D ;【详解】解:()72x +展开式的通项为7172rrr r T C x -+=⋅⋅,故第二项的二项式系数为177C =,故D 错误; 第三项的系数为2572C ⋅,故C 错误;()72x +的展开式的第五项为43472C x ⋅⋅,()72x +的展开式的第五项为44372C x ⋅⋅,故B 错误; 令1x =则()7723x +=,即()72x +的二项展开式的各项系数和为73,故A 正确; 故选:A 9.B【解析】将问题抽象成“向左三次,向前两次,向上三次”,计算出总的方法数,然后利用插空法计算出最近的行走路线中不连续向上攀登的事件数,最后根据古典概型概率计算公式,计算出所求概率.【详解】从A 的方向看,行走方向有三个:左、前、上. 从A 到B 的最近的行走线路,需要向左三次,向前两次,向上三次,共8次.所以从A 到B 的最近的行走线路,总的方法数有88332332560A A A A =⋅⋅种. 不连续向上攀登的安排方法是:先将向左、向前的安排好,再对向上的方法进行插空.故方法数有:53563232200A C A A ⨯=⋅.所以最近的行走路线中不连续向上攀登的概率为200556014=. 故选:B【点睛】本小题主要考查古典概型的计算,考查有重复的排列组合问题,考查插空法,属于中档题. 10.B【分析】依题意可得1113332P ABC PABV PC SPA PB -=⋅=⨯⨯⋅再利用基本不等式计算可得; 【详解】解:依题意21111132332222P ABCPABPA PB V PC S PA PB PA PB -+⎛⎫=⋅=⨯⨯⋅=⋅≤= ⎪⎝⎭,当且仅当2PA PB ==时取等号,所以()max 2P ABC V -=, 故选:B11.65【分析】由最小二乘法得到的线性回归方程过点(),x y ,代入即可解决 【详解】由5125i i x ==∑可知,数据的平均数2555x ==, 又线性回归方程ˆ23yx =+过点(),x y , 所以25313y =⨯+=,故51551365i i y y ===⨯=∑故答案为:65 12.42【分析】由题意可知,甲可排在第二、三、四、五个,再根据甲、乙相邻,分别计算. 【详解】由题意可知,甲可排在第二、三、四、五个,当甲排在第二、三、四个时,甲乙相邻,有22A 种排法,将甲乙当做一个整体,剩下三个节目全排列,共3×22A ×33A =36种当甲排在第五个时,甲乙相邻,只有一种排法,剩下三个节目全排列,共33A =6种 综上,编排方案共36+6=42种【点睛】本题考查了分类计数原理,分类时要注意不重不漏;解决排列问题时,相邻问题常用捆绑法,特殊位置要优先考虑. 13.0.2【解析】利用概率和为1可求出答案. 【详解】由随机变量X 的概率分布表得: 0.20.30.31a +++=,解得0.2a =. 故答案为:0.2【点睛】本题考查的是分布列的性质,较简单. 14.49【分析】由二项分布的特征,先求出13p =,套公式即可求出D (ξ). 【详解】因为随机变量ξ~B (2,p ),且P (ξ≥1)=59,所以P (ξ≥1)=()11P ξ-<= ()10P ξ-==()25119p --=. 解得:13p =. 所以D (ξ)()12412339np p =-=⨯⨯=.故答案为:4915.9【分析】设出公差,根据等差数列的性质,表示出15,a a ,再列式即可求得结果. 【详解】因为{}n a 是等差数列,设公差为d ,可得13532,2a a d a a d =-=+,于是得()()2153322949a a a d a d d =-+=-≤,当且仅当d =0,即153a a ==时,取得最大值. 故答案为:9.【点睛】本题考查等差数列的下标和性质,属基础题. 16.1443125##0.04608 【分析】认真分析该选手所有可能的答题情况,是本题的关键【详解】由该选手恰好回答了5个问题就晋级下一轮,说明他第4、第5两个问题是连续答对的,第3个问题没有答对,第1和第2两个问题也没有全部答对,即他答题结果可能有三种情况:⨯⨯⨯√√或⨯√⨯√√或√⨯⨯√√,根据独立事件同时发生的概率公式,可得该选手恰好回答了5个问题就晋级下一轮的概率为0.20.20.20.80.8+0.20.80.20.80.8+0.80.20.20.80.8=0.04608⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯故答案为:0.04608 17.0.74【详解】试题分析:x 表示人数,(2)(2)(3)(4)(5)P x P x P x P x P x ≥==+=+=+≥0.30.30.10.040.74=+++=.考点:互斥事件的概率.18.【分析】根据截面圆性质,先求出截面圆半径,然后由求得球半径,从而求得体积.【详解】因为2AB =,BC =90ABC ∠=︒,所以4AC ==,所以三角形外接圆半径22ACr ==,又球心O 到截面ABC 的距离为R =球体积为(334433V R ππ==⨯=.故答案为:.19.(℃)(℃)(℃)见解析【详解】试题分析:(℃)由正方形的性质得1AC AA ⊥,然后由面面垂直的性质定理可证得结果;(℃)当点E 是线段1AB 的中点时,利用中位线定理可得1DE AC ,进而得出DE 面11AAC C ;(℃)利用二面角的定义先确定11C AC ∠是二面角111C A B C --的平面角,易求得11tan C A C ∠,从而求得二面角的平面角为的度数.试题解析:(℃)因为四边形11AAC C 为正方形,所以1AC AA ⊥. 因为平面ABC ⊥平面11AAC C ,且平面ABC ⋂平面11AAC C AC =, 所以1AA ⊥平面ABC .(℃)当点E 是线段1AB 的中点时,有DE 面11AAC C , 连结1AB 交1AB 于点E ,连结BC ,因为点E 是1AB 中点,点⊄是线段DE 的中点,所以1DE AC . 又因为BC ⊂面11AAC C ,11A C 面11AAC C ,所以DE 面11AAC C .(℃)因为1AA ⊥平面ABC ,所以.又因为,所以面11AAC C ,所以11A B ⊥面11AAC C ,所以11A B ⊥1A C ,11A B ⊥11A C ,所以11C AC ∠是二面角111C A B C --的平面角, 易得,所以二面角111C A B C --的平面角为45°.考点:1、线面垂直的判定;2、线面平行的判定;2、二面角.【方法点睛】立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究.解决这类问题时一般根据探索性问题的设问,假设其存在并探索出结论,然后在假设下进行推理,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设. 20.12600【详解】问题等价于编号为1,2,3,10的10个小球排列,其中2,3号,4,5,6号,7,8,9,10号的排列顺序是固定的,据此可得:将这些气球都打破的不同打法数是101023423412600A A A A =⨯⨯. 21.(1)℃;(2)证明见解析;(3)125n =,证明见解析.【解析】(1)℃根据新定义直接计算.℃根据新定义,写出等式两边的表达式,观察它们是否相同,即可判断;℃由新定义写出等式()(),,d A B d A C =的表达式,观察有无AB AC =; (2)由新定义,写出不等式两边的表达式,根据绝对值的性质证明;(3)根据新定义,及绝对值的性质得P 点是以AB 为对角线的正方体的表面和内部的整数点,共125个,把它们分布在五个平面(0,1,2,3,4)z =上,这五个面一个面取3个点,相邻面上取一个点,以它们为顶点构成三棱锥(能构成时),棱锥的体积不超过83,然后任取11点中如果没有4点共面,但至少有一个平面内有3个点.根据这3点所在平面分类讨论可得. 【详解】(1)当2n =时,℃若()1,2A ,()4,6B ,则(),41627d A B =-+-=,℃正确;℃在ABC 中,若90C =∠,则222AC BC AB +=,设112233(,),(,),(,)A x y B x y C x y ,所以222222131323231212()()()()()()x x y y x x y y x x y y -+-+-+-=-+-而()2221212121221212()()()2)),((x x y y x x y y d A x B x y y =⎡⎤⎣-+-+⎦=--+--, ()()22,,d A C d C B ⎡⎤⎡⎤+=⎣⎦⎣⎦22221313232313132323()()()()2()()2()()x x y y x x y y x x y y x x y y -+-+-+-+--+--,但1313232312122()()2()()2()()x x y y x x y y x x y y --+--=--不一定成立,℃错误; ℃在ABC 中,若()(),,d A B d A C =,在℃中的点坐标,有12121313x x y y x x y y -+-=-+-,但1212131322x x y y x x y y -⋅-=-⋅-不一定成立,因此AB AC =不一定成立,从而B C ∠=∠不一定成立,℃错误.空格处填℃(2)证明:设112233(,),(,),(,)A x y B x y C x y ,根据绝对值的性质有132312x x x x x x -+-≥-,132312y y y y y y -+-≥-,所以(,)(,)(,)d A C d B C d A B +≥.,(3)(,)12d A B =,44,44,44x x y y z z +-≥+-≥+-≥,所以(,)(,)12d A P d B P +≥,当且仅当以上三个等号同时成立,(,)(,)12d A P d B P +=又由已知()()(),,,d A P d P B d A B +=,℃04,04,04x y z ≤≤≤≤≤≤, 又,,x y z Z ∈,℃,,0,1,2,3,4x y z =,555125⨯⨯=,点P 是以AB 为对角线的正方体内部(含面上)的整数点,共125个,125n =. 这125个点在0,1,2,3,4z z z z z =====这五面内.这三个平面内,一个面上取不共线的3点,相邻面上再取一点构成一个三棱锥.则这个三棱锥的体积最大为118441323V =⨯⨯⨯⨯=,现在任取11个点,若有四点共面,则命题已成立,若其中无4点共面,但11个点分在5个平面上至少有一个平面内有3个点(显然不共线),若这三点在1,2,3z z z ===这三个平面中的一个上,与这个面相邻的两个面上如果有一点,那么这一点与平面上的三点这四点可构成三棱锥的四个顶点,其体积不超过83,否则还有8个点在平面0z =和4z =上,不合题意,若这三个点在平面0z =或5z =上,不妨设在平面0z =,若在平面1z =在一个点,则同样四点构成的三棱锥体积不超过83,否则剩下的8个点在2,3,4z z z ===三个平面上,只能是3,3,2分布,不管哪一种分布都有四点构成的三棱锥体积不超过83,综上,任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.【点睛】关键点点睛:本题新定义距离(,)d A B ,解题关键是利用新定义转化为绝对值,利用绝对值的性质解决一些问题.本题还考查了抽屉原理,11个放在5个平面上,至少有一个平面内至少有3点,由此分类讨论可证明结论成立. 22.(1)该市应该作出减少作业时长的决策; (2)分布列见解析;期望为167.【分析】(1)根据题意,结合频率分布直方图,分别求出中位数和平均数,即可求解; (2)根据题意,结合分层抽样以及离散型随机变量的分布列与期望求法,即可求解. (1)作业时长中位数的估计值为直方图中等分面积的线对立的值,设为x .0.01100.01100.02100.5⨯+⨯+⨯<. 0.01100.01100.02100.03100.5⨯+⨯+⨯+⨯>,()0.01100.01100.02100.03800.5x ∴⨯+⨯+⨯+⨯-=.解得2503x =,即中位数的故计值2503分钟.又作业时长平均数估计值为0.0110550.0110650.021075⨯⨯+⨯⨯+⨯⨯ 2500.0310850.031095813+⨯⨯+⨯⨯=<. 因为中位数的估计值2503分钟大于平均数估计值81分钟, 所以,根据这次调查,该市应该作出减少作业时长的决策. (2)由题,作业时长在70分钟以上(含70分钟)为[90.100],[80,90),[70,80)三个区间,其频率比为3:3:2,分别对应A ,B ,C 三个层次.根据分层抽样的方法,易知各层次抽取的人数分别为3,3,2, 因此X 的所有可能值为1,2,3.因为333821(1)28C P X C ⨯===,111233389(3)28C C C P X C ⋅⋅===, 121221333232382229(2)14C C C C C C P X C ⨯⋅+⨯⋅+⨯⋅===, 所以X 的分在列为:故数学期望19916()1232814287E X =⨯+⨯+⨯=. 23.(1)乙城市更应该入围“国家文明城市”.理由见解析. (2)425; (3)分布列见解析,期望为1.【分析】(1)根据得分的平均值与方差说明,极差最值也可用来说明;(2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,由()()(|)()()P AC P C P C A P A P A ==计算; (2)X 的可能值是0,1,2,分别求得概率得概率分布列,由期望公式计算出期望. (1)乙城市更应该入围“国家文明城市”. 理由如下:由茎叶图,计算两个城市的得分的均值为 甲:6365987910x +++==,乙:6568927910y +++==,均值相等,方差为甲:222211[(16)(14)19]13610s =-+-++=, 乙:222221[(14)(11)13]59.810s =-+-++=,甲的方差远大于乙的方差,说明乙的得分较稳定,甲极其不稳定,因此乙城市更应该入围“国家文明城市”. (2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,262102()13C P B C =-=,252107()19C P C C =-=,2725()1(1)(1)3927P A =--⨯-=,7()()9P AC P C ==, 所以()()()()749(|)1(|)111252527P AC P C P C A P C A P A P A =-=-=-=-=;(3)乙城市10个人中5个大于80分,5个小于80,X 的可能是0,1,2,252102(0)9C P X C ===,11552105(1)9C C P X C ===,252102(2)9C P X C ===,所以X 的分布列为:52()12199E X =⨯+⨯=.。

2020-2021学年天津市河西区九年级(上)期中数学试卷

2020-2021学年天津市河西区九年级(上)期中数学试卷

2020-2021学年天津市河西区九年级(上)期中数学试卷一、选择题:本大题共12小题,每小题3分,共30分.在每小题给出的四个选项中,只有-项是符合题目要求的.1.(3分)在平面直角坐标系中,点(2,0)关于原点对称的点的坐标为()A.(﹣2,0)B.(0,2)C.(0,﹣2)D.(2,﹣2)2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)在抛物线y=x2﹣4x﹣4上的一个点是()A.(4,4)B.(3,﹣1)C.(﹣2,﹣8)D.()4.(3分)二次函数y=ax2+bx的图象如图所示,则()A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0 5.(3分)如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B 等于()A.30°B.35°C.40°D.50°6.(3分)函数y=(x+1)2+2的图象与y轴的交点坐标为()A.(0,2)B.(﹣1,2)C.(0,3)D.(0,4)7.(3分)一个矩形的长比宽多2,面积是99,则矩形的两边长分别为()A.9和7B.11和9C.1+,﹣1+D.1+3,﹣1+38.(3分)如图,四边形ABCD是⊙O的内接四边形,∠B=135°,则∠AOC的度数()A.60°B.70°C.90°D.180°9.(3分)抛物线y=x2﹣2x﹣3与x轴两交点间的距离是()A.4B.3C.2D.110.(3分)如图,将等边三角形OAB放在平面直角坐标系中,A点坐标(1,0),将△OAB 绕点O逆时针旋转60°,则旋转后点B的对应点B′的坐标为()A.(﹣,)B.(﹣1,)C.(﹣,)D.(﹣,)11.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC 12.(3分)已知一元二次方程ax2+bx+c=0(a≠0),有下列叙述:①若a>0,则方程有两个不等实根;②若b2﹣4ac>0,方程的两根为x1=,x2=.③若b2﹣4ac<0,则方程没有实数根;④若b2﹣4ac=0,则抛物线y=ax2+bx+c的顶点在x轴上.其中,正确结论的个数是()A.1B.2C.3D.4二.填空题(本大题共6小题,每小题3分,共18分)13.(3分)方程x2=2的根是.14.(3分)若正方形的边长为x,面积为y,则y与x之间的关系式为(x>0).15.(3分)若平行四边形ABCD是圆内接四边形,则∠A的度数为.16.(3分)如图,在半径为5的⊙O中,∠AOB=120°,则弦AB的长度为.17.(3分)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度得到△DEC,点A、B的对应点分别是D、E.当点E恰好在AC上时,则∠ADE的度数为.18.(3分)如图,C是线段AB上一动点,△ACD,△CBE都是等边三角形,M,N分别是CD,BE的中点,若AB=6,则线段MN的最小值为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤推理过程)19.(8分)(Ⅰ)先填表,并在同一平面直角坐标系中画出二次函数y=x2和y=(x+1)2的图象;x﹣3﹣2﹣10123y=x2y=(x+1)2(Ⅱ)分别写出它们顶点坐标.20.(8分)如图,△ABC中,∠C=90°.(1)将△ABC绕点B逆时针旋转90°,画出旋转后的三角形;(2)若BC=3,AC=4.点A旋转后的对应点为A′,求A′A的长.21.(10分)如图,⊙O的半径OA为50mm,弦AB的长50mm.(Ⅰ)求∠OAB的度数;(Ⅱ)求点O到AB的距离.22.(10分)二次函数y=ax2+bx+c(a,b,c是常数)的自变量x与函数值y的部分对应值如下表:x…﹣2﹣1012…y…m0﹣3﹣4﹣3…(Ⅰ)求这个二次函数的解析式;(Ⅱ)求m的值;(Ⅲ)当﹣1≤x≤5时,求y的最值(最大值和最小值)及此时x的值.23.(10分)某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是91,每个枝干长出多少小分支?若设每个枝干长出x个小分支.(Ⅰ)分析:根据问题中的数量关系,填表:①主干的数目为;②从主干中长出的枝干的数目为;(用含x的式子表示)③又从上述枝干中长出的小分支的数目为;(用含x的式子表示)(Ⅱ)完成问题的求解.24.(10分)如图,已知平行四边形ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°.(Ⅰ)求∠DA′E′的大小;(Ⅱ)若延长AE和A′E′相交于点P,求∠AP A′的大小?(Ⅲ)连接PB,若AB=a,求PB的长度.25.(10分)如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y.(Ⅰ)当x=1时,求y的值;(Ⅱ)在这一变化过程中,写出y关于x的函数解析式及x的取值范围;(Ⅲ)当x取何范围时,<y<(直接写出结果即可).2020-2021学年天津市河西区九年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共30分.在每小题给出的四个选项中,只有-项是符合题目要求的.1.(3分)在平面直角坐标系中,点(2,0)关于原点对称的点的坐标为()A.(﹣2,0)B.(0,2)C.(0,﹣2)D.(2,﹣2)【分析】直接利用关于原点对称点的性质得出答案.【解答】解:点(2,0)关于原点对称的点的坐标为(﹣2,0).故选:A.【点评】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项不合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)在抛物线y=x2﹣4x﹣4上的一个点是()A.(4,4)B.(3,﹣1)C.(﹣2,﹣8)D.()【分析】把各点的横坐标代入函数式,比较纵坐标是否相符,逐一检验.【解答】解:A、x=4时,y=x2﹣4x﹣4=﹣4≠4,点(4,4)不在抛物线上;B、x=3时,y=x2﹣4x﹣4=﹣7≠﹣1,点(3,﹣1)不在抛物线上;C、x=﹣2时,y=x2﹣4x﹣4=8≠﹣8,点(﹣2,﹣8)不在抛物线上;D、x=﹣时,y=x2﹣4x﹣4=﹣,点()在抛物线上.故选:D.【点评】本题考查了函数图象上的点的坐标与函数解析式的关系.4.(3分)二次函数y=ax2+bx的图象如图所示,则()A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0【分析】根据抛物线的开口方向判定a的符号,根据对称轴的位置判定a与b符号间的关系.【解答】解:如图,抛物线的开口向下,则a<0,抛物线的对称轴位于y轴的左侧,则a、b同号,即b<0.综上所述,a<0,b<0.故选:D.【点评】本题主要考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与x轴交点的个数确定.5.(3分)如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B 等于()A.30°B.35°C.40°D.50°【分析】欲求∠B的度数,需求出同弧所对的圆周角∠C的度数;△APC中,已知了∠A 及外角∠APD的度数,即可由三角形的外角性质求出∠C的度数,由此得解.【解答】解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°;∴∠B=∠C=40°;故选:C.【点评】此题主要考查了圆周角定理的应用及三角形的外角性质.熟练掌握定理及性质是解题的关键.6.(3分)函数y=(x+1)2+2的图象与y轴的交点坐标为()A.(0,2)B.(﹣1,2)C.(0,3)D.(0,4)【分析】代入x=0求出y值,此题得解.【解答】解:当x=0时,y=(x+1)2+2=3,∴函数y=(x+1)2+2的图象与y轴的交点坐标为(0,3).故选:C.【点评】本题考查了二次函数图象上点的坐标特征,牢记图象上点的坐标都满足函数关系式是解题的关键.7.(3分)一个矩形的长比宽多2,面积是99,则矩形的两边长分别为()A.9和7B.11和9C.1+,﹣1+D.1+3,﹣1+3【分析】设矩形的长为x,则宽为(x﹣2),根据矩形的面积公式列出方程并解答.【解答】解:设矩形的长为x,则宽为(x﹣2),则x(x﹣2)=99,解得x=11,(舍去负值).则x﹣2=9,答:矩形的两边长分别为11和9,故选:B.【点评】本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.8.(3分)如图,四边形ABCD是⊙O的内接四边形,∠B=135°,则∠AOC的度数()A.60°B.70°C.90°D.180°【分析】连接OA,OC,由圆内接四边形对角互补求出∠D的度数,再利用圆周角定理求出所求角度数即可.【解答】解:连接OA,OC,∵四边形ABCD为圆内接四边形,∠B=135°,∴∠D=45°,∵∠AOC与∠D都对,∴∠AOC=2∠D=90°,故选:C.【点评】此题考查了圆内接四边形的性质,以及圆周角定理,熟练掌握圆内接四边形的性质是解本题的关键.9.(3分)抛物线y=x2﹣2x﹣3与x轴两交点间的距离是()A.4B.3C.2D.1【分析】求出抛物线与x轴的交点坐标,即可根据坐标求出两点间的距离.【解答】解:当y=0时,x2﹣2x﹣3=0,解得(x+1)(x﹣3)=0,x1=﹣1,x2=3.与x轴的交点坐标为(﹣1,0),(3,0).则抛物线与x轴两交点间的距离为3﹣(﹣1)=4.故选:A.【点评】本题考查了抛物线与x轴的交点,令y=0,将函数转化为关于x的一元二次方程是解题的关键.10.(3分)如图,将等边三角形OAB放在平面直角坐标系中,A点坐标(1,0),将△OAB 绕点O逆时针旋转60°,则旋转后点B的对应点B′的坐标为()A.(﹣,)B.(﹣1,)C.(﹣,)D.(﹣,)【分析】如图,故点B作BH⊥OA于H,设BB′交y轴于J.求出点B的坐标,证明B ,B′关于y轴对称,即可解决问题.【解答】解:如图,故点B作BH⊥OA于H,设BB′交y轴于J.∵A(1,0),∴OA=1,∵△AOB是等边三角形,BH⊥OA,∴OH=AH=OA=,BH=OH=,∴B(,),∵∠AOB=∠BOB′=60°,∠JOA=90°,∴∠BOJ=∠JOB′=30°,∵OB=OB′,∴BB′⊥OJ,∴BJ=JB′,∴B,B′关于y轴对称,∴B′(﹣,),故选:A.【点评】本题考查坐标与图形的性质,旋转变换,轴对称,等边三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.11.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC【分析】由旋转的性质得到∠ABD=∠CBE=60°,AB=BD,推出△ABD是等边三角形,得到∠DAB=∠CBE,于是得到结论.【解答】解:∵△ABC绕点B顺时针旋转60°得△DBE,∴∠ABD=∠CBE=60°,AB=BD,∴△ABD是等边三角形,∴∠DAB=60°,∴∠DAB=∠CBE,∴AD∥BC,故选:C.【点评】本题考查了旋转的性质,等边三角形的判定和性质,平行线的判定,熟练掌握旋转的性质是解题的关键.12.(3分)已知一元二次方程ax2+bx+c=0(a≠0),有下列叙述:①若a>0,则方程有两个不等实根;②若b2﹣4ac>0,方程的两根为x1=,x2=.③若b2﹣4ac<0,则方程没有实数根;④若b2﹣4ac=0,则抛物线y=ax2+bx+c的顶点在x轴上.其中,正确结论的个数是()A.1B.2C.3D.4【分析】根据一元二次方程根的判别式和抛物线的性质逐一求解即可.【解答】解:①若a>0,Δ>0时,方程有两个不等实根,故①错误,不符合题意;②若b2﹣4ac>0,方程的两根为x1=,x2=,故②正确,符合题意;③若b2﹣4ac<0,则方程没有实数根,故③正确,符合题意;④若b2﹣4ac=0,抛物线和x轴只有一个交点,故抛物线y=ax2+bx+c的顶点在x轴上,故④正确,符合题意.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.二.填空题(本大题共6小题,每小题3分,共18分)13.(3分)方程x2=2的根是±.【分析】直接利用开平方法求出方程的根即可.【解答】解:x2=2解得:x=±.故答案为:±.【点评】此题主要考查了直接开平方法解方程,正确开平方是解题关键.14.(3分)若正方形的边长为x,面积为y,则y与x之间的关系式为y=x2(x>0).【分析】根据正方形的面积计算公式可得面积与边长之间的函数关系式.【解答】解:∵正方形的面积等于边长乘以边长,∴y=x•x=x2,故答案为:y=x2;【点评】本题考查列函数关系式,掌握正方形的面积公式是得出函数关系式的前提.15.(3分)若平行四边形ABCD是圆内接四边形,则∠A的度数为90°.【分析】由平行四边形的性质可得∠A=∠C,由圆内接四边形的性质得到∠A+∠C=180°,由此可求得结果.【解答】解:∵四边形ABCD为平行四边形,∴∠A=∠C,∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,∴2∠A=180°,∴∠A=90°,故答案为90°.【点评】本题主要考查了平行四边形的性质,圆内接四边形的性质,熟记这两个性质是解决问题的关键.16.(3分)如图,在半径为5的⊙O中,∠AOB=120°,则弦AB的长度为5.【分析】作OC⊥AB,根据垂径定理得到AC=BC=AB,根据直角三角形的性质求出OC,根据勾股定理求出AC,得到答案.【解答】解:作OC⊥AB于C,则AC=BC=AB,∵OA=OB,∠AOB=120°,∴∠A=30°,∴OC=OA=,由勾股定理得,AC==,∴AB=2AC=5,故答案为:5.【点评】本题考查的是垂径定理、圆心角、弧、弦的关系定理,正确作出辅助性、灵活运用定理是解题的关键.17.(3分)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度得到△DEC,点A、B的对应点分别是D、E.当点E恰好在AC上时,则∠ADE的度数为15°.【分析】由旋转的性质可得∠ABC=∠DEC=90°,CA=CD,∠ACB=∠ACD=30°,由等腰三角形的性质和外角性质可求解.【解答】解:∵将△ABC绕点C顺时针旋转一定的角度得到△DEC,∴∠ABC=∠DEC=90°,CA=CD,∠ACB=∠ACD=30°,∴∠CAD=∠CDA=75°,∴∠ADE=∠DEC﹣∠DAC=15°,故答案为:15°.【点评】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.18.(3分)如图,C是线段AB上一动点,△ACD,△CBE都是等边三角形,M,N分别是CD,BE的中点,若AB=6,则线段MN的最小值为.【分析】连接CN.首先证明∠MCN=90°,设AC=a,则BC=6﹣a,构建二次函数,利用二次函数的性质即可解决问题.【解答】解:连接CN,∵△ACD和△BCE为等边三角形,∴AC=CD,BC=CE,∠ACD=∠BCE=∠B=60°,∠DCE=60°,∵N是BE的中点,∴CN⊥BE,∠ECN=30°,∴∠DCN=90°,设AC=a,∵AB=6,∴CM=a,CN=(6﹣a),∴MN===,∴当a=时,MN的值最小为.故答案为:.【点评】本题主要考查了等边三角形的性质、勾股定理、二次函数的性质等知识,解题的关键是学会添加常用辅助线,构建二次函数解决最值问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤推理过程)19.(8分)(Ⅰ)先填表,并在同一平面直角坐标系中画出二次函数y=x2和y=(x+1)2的图象;x﹣3﹣2﹣10123y=x29410149 y=(x+1)241014916(Ⅱ)分别写出它们顶点坐标.【分析】(Ⅰ)列表,描点,画出函数图象即可;(Ⅱ)根据图象即可写出二次函数的顶点坐标.【解答】解:(Ⅰ)列表:x﹣3﹣2﹣10123y=x29410149y=(x+1)241014916在同一平面直角坐标系中画出二次函数y=x2和y=(x+1)2的图象如图:(Ⅱ)二次函数y=x2的顶点坐标为(0,0),y=(x+1)2的顶点坐标为(﹣1,0)【点评】本题考查了二次函数图象,利用描点法得出函数图象,熟练掌握二次函数的性质是解题的关键.20.(8分)如图,△ABC中,∠C=90°.(1)将△ABC绕点B逆时针旋转90°,画出旋转后的三角形;(2)若BC=3,AC=4.点A旋转后的对应点为A′,求A′A的长.【分析】(1)利用旋转的性质画出点A和点C的对应点A′、C′即可得到△BA′C′;(2)先利用勾股定理计算出AB=5,再利用旋转的性质得BA′=BA=5,∠A′BA=90°,则可判断△A′BA为等腰直角三角形,然后根据等腰直角三角形的性质求解.【解答】解:(1)如图,△BA′C′为所作;(2)△ABC中,∵∠C=90°,BC=3,AC=4,∴AB===5,∵△ABC绕点B逆时针旋转90°得到△BA′C′,∴BA′=BA=5,∠A′BA=90°,∴△A′BA为等腰直角三角形,∴A′A=BA=5.【点评】本题考查了作图:旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.(10分)如图,⊙O的半径OA为50mm,弦AB的长50mm.(Ⅰ)求∠OAB的度数;(Ⅱ)求点O到AB的距离.【分析】(Ⅰ)连接OB,根据等边三角形的判定定理得到△AOB为等边三角形,根据等边三角形的性质解答即可;(Ⅱ)作OC⊥AB于C,根据垂径定理求出AC,根据勾股定理计算,得到答案.【解答】解:(Ⅰ)连接OB,∵OA=OB=50,AB=50,∴OA=OB=AB,∴△AOB为等边三角形,∴∠OAB=60°;(Ⅱ)过点O作OC⊥AB于C,则AC=BC=AB=25,由勾股定理得,OC==25,答:点O到AB的距离为25mm.【点评】本题考查的是垂径定理、等边三角形的判定和性质,掌握相关的性质定理是解题的关键.22.(10分)二次函数y=ax2+bx+c(a,b,c是常数)的自变量x与函数值y的部分对应值如下表:x…﹣2﹣1012…y…m0﹣3﹣4﹣3…(Ⅰ)求这个二次函数的解析式;(Ⅱ)求m的值;(Ⅲ)当﹣1≤x≤5时,求y的最值(最大值和最小值)及此时x的值.【分析】(Ⅰ)直接利用待定系数法求出二次函数解析式即可;(Ⅱ)将x=﹣2代入抛物线解析式即可得出答案;(Ⅲ)利用表格中数据结合二次函数增减性得出最值.【解答】解:(Ⅰ)设y=a(x﹣1)2﹣4,将(0,﹣3)代入y=a(x﹣1)2﹣4得,a﹣4=﹣3,解得a=1,∴这个二次函数的解析式为y=(x﹣1)2﹣4.(Ⅱ)当x=﹣2时,m=(﹣2﹣1)2﹣4=5.(Ⅲ)当x=1时,y有最小值为﹣4,当x=5时,y有最大值为(5﹣1)2﹣4=16﹣4=12.【点评】本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键.23.(10分)某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是91,每个枝干长出多少小分支?若设每个枝干长出x个小分支.(Ⅰ)分析:根据问题中的数量关系,填表:①主干的数目为1;②从主干中长出的枝干的数目为x;(用含x的式子表示)③又从上述枝干中长出的小分支的数目为x2;(用含x的式子表示)(Ⅱ)完成问题的求解.【分析】(I)根据主干为1及每个枝干长出x个小分支,即可得出各小问的结论;(II)根据主干+枝干数目+枝干数目×枝干数目=91,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:(Ⅰ)根据题意得:①主干的数目为1;②从主干中长出的枝干的数目为x;③又从上述枝干中长出的小分支的数目为x2;故答案为:①1;②x;③x2;(Ⅱ)依题意,得:1+x+x2=91,整理,得:x2+x﹣90=0,解得:x1=9,x2=﹣10(不合题意,舍去).答:每个枝干长出9个小分支.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.24.(10分)如图,已知平行四边形ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°.(Ⅰ)求∠DA′E′的大小;(Ⅱ)若延长AE和A′E′相交于点P,求∠AP A′的大小?(Ⅲ)连接PB,若AB=a,求PB的长度.【分析】(Ⅰ)平行四边形的性质可得∠ADC=∠ABC=60°,AD∥BC,由旋转的性质可得∠BA'E'=∠BAE=30°,即可求解;(Ⅱ)由直角三角形的性质可求解,(Ⅲ)由直角三角形性质可得AB=2BE,由线段的中垂线的性质可得∠P A'B=∠PBA'=30°,由直角三角形的性质可求解.【解答】解:(Ⅰ)∵四边形ABCD是平行四边形,∴∠ADC=∠ABC=60°,AD∥BC,∴∠ADA'+∠DA'B=180°,∴∠DA'B=130°,∵AE⊥BC,∴∠AEB=90°,∴∠BAE=30°,∵把△BAE顺时针旋转,得到△BA′E′,∴∠BA'E'=∠BAE=30°,AB=A'B,∴∠DA'E'=∠DA'B+∠BA'E'=160°;(Ⅱ)∵∠A'EP=90°,∠P A'E=30°,∴∠A'P A=60°;(Ⅲ)连接PB,∵∠BAP=30°,∠AEB=90°,∴AB=2BE,∴BE=,∴A'E==BE,∵AP⊥A'B,∴A'P=PB,∴∠P A'B=∠PBA'=30°,∴BE=PE=,BP=2PE,∴PB=a.【点评】本题考查了旋转的性质,平行四边形的性质,勾股定理,直角三角形的性质等知识,灵活运用这些性质解决问题是本题的关键.25.(10分)如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y.(Ⅰ)当x=1时,求y的值;(Ⅱ)在这一变化过程中,写出y关于x的函数解析式及x的取值范围;(Ⅲ)当x取何范围时,<y<(直接写出结果即可).【分析】(Ⅰ)△ABC是等腰直角三角形,则∠B=∠C=45°,则△PBD为等腰直角三角形,故BD=PD=x,则y=×BD×PD=x2,即可求解;(Ⅱ)当点P在AB上运动时,由(1)知,y=x2,当点P在AB上运动时,y=×BD ×PD=×x(4﹣x)=﹣x2+2x,即可求解;(Ⅲ)①当0≤x≤2时,则y=x2,当y=时,即y=x2=,解得x=±1(舍去负值),当y=时,即y=x2=,解得x=±(舍去负值),故1<x<;②当2<x<4时,同理可得:3<x<2.【解答】解:(Ⅰ)∵△ABC是等腰直角三角形,则∠B=∠C=45°,则△PBD为等腰直角三角形,故BD=PD=x,则y=×BD×PD=x2,当x=1时,y=;(Ⅱ)当点P在AB上运动时,由(1)知,y=x2,当点P在AB上运动时,同理可得△PDC为等腰直角三角形,则CD=BC﹣BD=4﹣x=PD,则y=×BD×PD=×x(4﹣x)=﹣x2+2x,故y=;(Ⅲ)①当0≤x≤2时,则y=x2,当y=时,即y=x2=,解得x=±1(舍去负值),当y=时,即y=x2=,解得x=±(舍去负值),故1<x<;②当2<x<4时,同理可得:3<x<2;综上,x的取值范围为:1<x<或3<x<2.【点评】本题三角形综合题,涉及到二次函数的基本性质、等腰三角形的性质、面积的计算等,其中(2)、(3),都要注意分类求解,避免遗漏.。

2020-2021学年天津市河西区九年级(上)期末数学试卷

2020-2021学年天津市河西区九年级(上)期末数学试卷

2020-2021学年天津市河西区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)已知⊙O的半径为10cm,点M到圆心O的距离为10cm,则该点M与⊙O的位置关系为()A.点M在圆内B.点M在圆上C.点M在圆外D.无法判断2.(3分)如图,五角星的五个顶点等分圆周,把这个图形绕着圆心顺时针旋转一定的角度后能与自身重合,那么这个角度至少为()A.60°B.72°C.75°D.90°3.(3分)下列图案中,可以看作是中心对称图形的是()A.B.C.D.4.(3分)下列多边形一定相似的是()A.两个平行四边形B.两个菱形C.两个矩形D.两个正方形5.(3分)下列说法错误的是()A.已知圆心和半径可以作一个圆B.经过一个已知点A的圆能作无数个C.经过两个已知点A,B的圆能作两个D.经过不在同一直线上的三个点A,B,C只能作一个圆6.(3分)已知△ABC和△DEF的相似比是1:2,则△ABC和△DEF的面积比是()A.2:1B.1:2C.4:1D.1:47.(3分)当x≥2时,二次函数y=x2﹣2x﹣3有()A.最大值﹣3B.最小值﹣3C.最大值﹣4D.最小值﹣48.(3分)如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线P A交OC 延长线于点P,则P A的长为()A.2B.C.D.9.(3分)如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F ,则EF:FC等于()A.3:2B.3:1C.1:1D.1:210.(3分)一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A.100πB.200πC.100πD.200π11.(3分)如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为()A.70°B.84°C.80°D.86°12.(3分)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)点(3,﹣2)关于原点的对称点的坐标为.14.(3分)抛物线y=x2+2x﹣3与y轴的交点为.15.(3分)一个质地均匀的小正方体,六个面分别标有数字“1”、“2”、“3”、“4”、“5”、“6”,掷一次小正方体后,观察朝上一面的数字出现偶数的概率是.16.(3分)如图,铁道路口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高为.(杆的宽度忽略不计)17.(3分)如图,菱形ABCD的边长为10,面积为80,∠BAD<90°,⊙O与边AB,AD 都相切,菱形的顶点A到圆心O的距离为5,则⊙O的半径长等于.18.(3分)如图,在每个小正方形的边长为1的网格中,矩形ABCD的四个顶点均在格点上,连接对角线BD.(Ⅰ)对角线BD的长等于;(Ⅱ)将矩形ABCD绕点A顺时针旋转,使得点B的对应点B′恰好落在对角线BD上,得到矩形AB′C′D′.请用无刻度的直尺,画出矩形AB′C′D′,并简要说明这个矩形的各个顶点是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分。

天津市河西区2020-2021学年高三上学期期末数学试题(含答案解析)

天津市河西区2020-2021学年高三上学期期末数学试题(含答案解析)
天津市河西区2020-2021学年高三上学期期末数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.设全集 , , ,则
A. B. C. D.
2.已知命题 , ,则命题 的否定是
A. , B. ,
C. , D. ,
3.某中学高一、高二、高三年级的学生人数之比依次为6:5:7,防疫站欲对该校学生进行身体健康调查,用分层抽样的方法从该校高中三个年级的学生中抽取容量为n的样本,样本中高三年级的学生有21人,则n等于()
又双曲线的一条渐近线与抛物线的准线的交点坐标为 ,
点 在直线 上, 即 ,
抛物线的焦点为 ,
又双曲线的左顶点与抛物线的焦点的距离为4, 双曲线的左顶点为 , ,
双曲线的渐近线方程为 ,
由点 在双曲线的其中一条渐近线上可得 即 ,
双曲线的焦距 .
故选:D.
【点睛】
本题考查了双曲线与抛物线的综合应用,考查了运算求解能力与推理能力,关键是对于圆锥曲线性质的熟练掌握,属于中档题.
∴高三年级学生的数量占总数的 ,
∵分层抽样的方法从三个年级的学生中抽取一个容量为n的样本,若已知高三年级被抽到的人数为21人,
∴n=21 54.
故选:C.
【点睛】
本题考查分层抽样的应用,是基础题.
4.D
【分析】
由题意结合奇函数的性质可得 ,可得当 时, ,利用 即可得解.
【详解】
函数 是定义在 上的奇函数,当 时, ,
【详解】
是实数,
,得 ,故答案为2.
【点睛】
复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.

2020-2021学年天津市河西区高二(上)期末数学试卷 (解析版)

2020-2021学年天津市河西区高二(上)期末数学试卷 (解析版)
S4,S8﹣S4,S12﹣S8,S16﹣S12是等差数列,
且首项为12,公差为d=(40﹣12)﹣12=16,
∴S12﹣S8=(40﹣12)+16=44,∴S12=44+40=84,
S16﹣S12=44+16=60,
∴S16=60+84=144.
故答案为:144.
11.(5分)函数 ,其导函数为函数f′(x),则f'(e)=0.
∴Sn+1﹣Sn=an+2n+1,
∴an+1﹣an=2n+1,
∴a2﹣a1=2×1+1,
a3﹣a2=2×2+1,
a4﹣a3=2×3+1,

an﹣an﹣1=2(n﹣1)+1,n≥2,
A.1B.2C.4D.8
解:∵Sn为等差数列{an}的前n项和,a4+a5=24,S6=48,
∴ ,
解得a1=﹣2,d=4,
∴{an}的公差为4.
故选:C.
5.(4分)已知函数y=f(x),其导函数y=f'(x)的图象如图,则对于函数y=f(x)的描述正确的是( )
A.在(﹣∞,0)上为减函数B.在x=0处取得最大值
得V′(x)=12x2﹣48x+36,
令V′(x)=12x2﹣48x+36>0,
解得x<1或x>3;
令V′(x)=12x2﹣48x+36<0,解得1<x<3,
∵函数V(x)的定义域为x∈(0,3),
∴函数V(x)的单调增区间是:(0,1),
函数V(x)的单调减区间是:(1,3),
令V′(x)=12x2﹣48x+36=0,
A. B. C. D.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津市河西区2020-2021学年高二上学期期末数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.在复平面内,复数 (i为虚数单位)对应的点在( )
A.第一象限B.第二象限C.第三象限D.第四象限
2.已知 , ,且 ,则下列不等式恒成立的是
7.已知抛物线 的焦点F恰好是双曲线 的右焦点,且两条曲线的交点的连线过点F,则该双曲线的离心率为()
A. B.2C. +1D. -1
8.若不等式 对任意实数 均成立,则实数 的取值范围是()
A. B. C. D.
二、填空题
9.已知复数 的共轭复数为 , ,则复数 的虚部是_______
10.已知等差数列 的前 项和为 ,若 , ,则 _____
三、解答题
15.已知复数 .
(1)当 时,求复数 的模.
(2)若复数 为纯虚数,求 的值.
16.求下列不等式的解集:
(1) ;
(2) .
17.已知双曲线的标准方程为 .
(1)求双曲线的实轴长和离心率.
(2)求双曲线的焦点到渐近线的距离.
18.如图,四棱锥 中,底面 为平行四边形, 底面 , 是棱 的中点,且 , .
故选:D
【点睛】
本题主要考查了抛物线的性质,属于基础题型.
5.C
【分析】
由向量平行,坐标对应成比例可求得x.
【详解】
由题意可知,因为 ,所以 ,所以x=-4,选C.
【点睛】
本题考查空间向量平行的坐标关系,两向量平行,坐标对应成比例.
6.B
【分析】
根据充分必要条件的定义,结合不等式的性质,即可判断.
【详解】
故选: .
【点睛】
本题考查复数的除法运算和复数与复平面的对应关系,属于基本概念、基本运算的考查.
2.D
【分析】
直接根据不等式的性质和指数函数单调性可得答案.
【详解】
对 , 才能成立,故 错误;
对 ,若 ,但 不成立,故 错误;
对 ,若 ,但 不成立,故 错误;
对 ,因为函数 在 上单调递减,所以 ,则 ,故 正确;
A. B. C. D.
3.命题“ , ”的否定是()
A. , B. ,
C. , D. ,
4.抛物线y=4x2的焦点到准线的距离为()
A.2B.1C. D.
5.已知 ,且 ,则x=( )
A.5B.4C.-4D.-5
6.“ ”是“ ”的
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
13.
【分析】
由“ ”是“ 或 ”的充分不必要条件,得“ ” “ 或 ”,由此能求出实数 的取值范围.
【详解】
“ ”是“ 或 ”的充分不必要条件,
“ ” “ 或 ”, 前面是后面的真子集,
考点:抛物线的简单性质;双曲线的简单性质.
8.C
【分析】
将不等式转化为 ,再对二次项系数进行分类讨论,结合一元二次不等式在 上恒成立,即可求得参数范围.
【详解】
由题意,不等式 ,可化为 ,
当 ,即 时,不等式恒成立,符合题意;
当 时,要使不等式恒成立,需 ,
解得 ,
综上所述,所以 的取值范围为 ,
故选: .
(1)求证: 平面 .
(2)求二面角 的大小;
(3)如果 是棱 的中点,求直线 与平面 所成角的正弦值.
19.已知公差不为零的等差数列 的前 项和为 ,若 ,且 , , 成等比数列.
(1)求数列 的通项公式;
(2)若 ,求数列 的前 项和为 .
20.已知椭圆 的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4
11.已知椭圆 上一点 到椭圆的左焦点 的距离为3,点 是 的中点,则点 到坐标原点 的距离为_______.
12.已知正实数 满足 ,则 的最小值为_____.
13.若“ ”是“ 或 ”的充分不必要条件,则实数 的取值范围是_____.
14.在空间直角坐标系中, , ,且 ,则 的取值范围是_____.
【点睛】
本题考查一元二次不等式恒成立求参数范围的问题,属基础题.
9.
【分析】
化简 ,求出 ,从而求出复数 的虚部.
【详解】

,故 的虚部是 .
故答案为: .
【点睛】
本题考查复数的四则运算、共轭复数概念,考查运算求解能力,属于基础题.
10.126
【分析】
由数列的通项公式代入 ,求得公差 ,再根据求和公式计算即可得 .
由 可推出 ,
若 ,满足 ,但不能推出 ,
故“ ”是“ ”的必要不充分条件.
故选: .
【点睛】
本题考查不等式的性质、充分必要条件的定义,考查对概念的理解与应用,属于基础题.
7.C
【解析】
试题分析:如图所示,,∵两条曲线交点的连线过点F,∴两条曲线交点为( ),代入双曲线方程得 1,又 , 化简得 , , , ,故选C.
(1)求椭圆 的方程;
(2)若 是椭圆 的左顶点,经过左焦点 的直线 与椭圆 交于 、 两点,求 与 的面积之差的绝对值的最大值,并求取得最大值时直线 的方程. 为坐标原点)
参考答案
1.A
【解析】
【分析】
利用复数的除法将式子 化简为 形式,则它在复平面内对应点为 ,判断点所在的象限即可.
【详解】
因为 ,所以 在第一象限.
【详解】
设公差为 ,由 , ,
则 ,解得 ,
.
故答案为:126.
【点睛】
本题考查等差数列的通项公式和求和公式,考查运算求解能力,求解时注意基本量法的应用.
11.
【分析】
根据椭圆的定义,得 ,可得 ,在△ 中利用中位线定理,即可得到的 值.
【详解】
椭圆 中, ,

结合 ,得 ,
是】
本题考查不等式的性质及指数函数的单调性,考查函数与方程思想,属于基础题.
3.C
【解析】
试题分析:特称命题的否定是全称命题,并将结论加以否定,所以命题的否定为: ,
考点:全称命题与特称命题
4.D
【解析】
【分析】
将抛物线方程写成标准形式再分析即可.
【详解】
由y=4x2得 ,所以 , 则抛物线的焦点到准线的距离为 .
【点睛】
本题给出椭圆的焦点三角形的一边长,求另一边中点到原点的距离,着重考查椭圆的定义和标准方程和简单几何性质等知识.
12.9
【分析】
由已知可得, ,根据 利用1的代换可得 ,展开利用基本不等式即可求解.
【详解】
, ,且 ,


则 ,
当且仅当 ,即 时取得最小值9.
故答案为:9.
【点睛】
本题主要考查利用基本不等式求解最值,解题的关键是灵活利用基本公式,进行配凑符合条件的形式.
相关文档
最新文档