三角形角平分线地结论及应用
三角形角平分线定理
三角形角平分线定理三角形角平分线定理是指:三角形内一条角的角平分线把这条角分成两个相等角,并且这条角平分线所在的边与三角形外一边的两个对边的比等于被分角的两边的比。
三角形角平分线定理是一个重要且有用的几何定理,它可以帮助我们推导解决许多与三角形相关的问题。
本文将详细介绍三角形角平分线定理以及其应用。
一、三角形角平分线定理的定义与性质三角形角平分线定理可以描述为:设三角形ABC中,AD是角BAC的角平分线,则有以下两个性质成立:1. 角BAD与角DAC的度数相等,即∠BAD = ∠DAC。
2. AB/BC = BD/DC。
角平分线的定义是指一条线段或射线从一个角的顶点出发,将该角分成两个相等的角。
根据角平分线的定义,我们可以得出性质1。
性质2则是说明了角平分线所在边与三角形外一边的两个对边的比例关系。
这个比例关系在解决一些三角形相关问题时非常有用,比如计算未知边长或角度大小等。
二、三角形角平分线定理的证明现在我们来证明三角形角平分线定理中的性质2。
首先,我们假设角BAD = α,角CAD = β,角DAC = α,角BDA = β。
根据正弦定理,我们可以得到以下两个等式:sinα/BD = sinβ/AB (1)sinα/DC = sinβ/AC (2)将(1)除以(2),可以得到:(AB/BD)/(AC/DC) = sinα/sinα = 1由于左边等式的分数形式是BD/DC的比,因此我们可以得出:AB/BC = BD/DC这就证明了三角形角平分线定理中的性质2。
三、三角形角平分线定理的应用三角形角平分线定理有着广泛的应用,特别是在解决与三角形相关的题目时,可以通过应用该定理得到简洁而准确的答案。
以下是三个典型的应用案例:1. 求角平分线所分角的大小已知三角形ABC中,BD为角BAC的角平分线,要求角BAD的大小。
根据三角形角平分线定理的性质1,我们知道角BAD与角DAC的大小相等,即∠BAD = ∠DAC。
第3节 角平分线的性质及应用
第三节角平分线的性质及应用一、课标导航二、核心纲要1.角平分线的性质定理角的平分线上的点到角的两边的距离相等.如下左图所示:∵OC平分∠AOB,CD⊥OA,CE⊥OB,∴CD=CE.注:考查点到线的距离相等时,可以考虑角平分线的性质.2.角平分线的判定定理到角的两边距离相等的点在角的平分线上.如下中图所示:∵CD⊥OA,CE⊥OB,CD=CE,∴OC平分∠AO B.注:用来证明一条线是一个角的平分线.3.角平分线的画法如下右图所示,已知:∠AO B.作法;(1)以O为圆心,适当长为半径作弧,交OA于点M,交OB于点N.(2)分别以M、N为圆心,大于12MN的长为半径作弧,两弧在∠AOB的内部交于点C.(3)作射线O C.∴射线OC即为所求.4.三角形的角平分线三角形的三个内角的角平分线交于一点,且到三边的距离相等.5.与角平分线有关的辅助线模型(1)在角的平分线上取一点向角的两边作垂线.(点垂线,垂两边,线等全等都出现)如下左图所示,过点C作CD⊥OA,CE⊥OB,则CD=CE,△OCD≌△OCE.(2)在角两边截取相等的线段,构造全等三角形.(角分线,分两边,对称全等要记全)如下图所示:在OA、OB上分别截取OD=OE,连接CD、CE,则△OCD≌△OCE.(3)角平分线+垂线,全等必出现.如下右图所示:延长DC交OB于点E,则△OCD≌△OCE.本节重点讲解:两个定理,两个作法(角平分线的作法和与角平分线有关的辅助线).三、全能突破基础演练1.如图12-3-1所示,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,若ON=8cm,则OM长为().A.4cm B.5cm C.6cm D.8cm2.如图12-3-2所示,OP平分∠AOB,P A⊥OA,PB⊥OB,垂足分别为A、B.下列结论中不一定成立的是()A.P A=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP 3.如图12-3-3所示,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为().A.3:2 B.9:4 C.2:3 D.4:94.如图12-3-4所示,在Rt△ABC中,∠C=90°,BD是∠ABC的平分线,交AC于点D,若CD=n,AB=m,则△ABD的面积是.5.如图12-3-5所示,BD是∠ABC的平分线,AB=CB,点P在BD的延长线上,PM⊥AD,PN ⊥CD,垂足分别是点M、N,求证:PM=PN.6.如图12-3-6所示,在四边形ABCD中,BC>AB,AD=DC,DF⊥BC,BD平分∠AB C.(1)求证:∠BAD+∠BCD=180°.(2)若DF=3,BF=6,求四边形ABCD的面积.7.如图12-3-7所示,D、E、F分别是△ABC的三边上的点,CE=BF,△DCE和△DBF的面积相等,求证:AD平分∠BA C.能力提升8.如图12-3-8所示,∠AOB和一条定长线段a,在∠AOB内找一点P,使点P到OA、OB的距离都等于a,作法如下:(1)作OB的垂线NH,使NH=a,点H为垂足;(2)过点N作NM∥OB;(3)作∠AOB的平分线OP,与NM交于点P;(4)点P即为所求.其中(3)的依据是().A.平行线之间的距离处处相等B.到角的两边距离相等的点在角的平分线上C.角的平分线上的点到角的两边的距离相等D.到线段的两个端点距离相等的点在线段的垂直平分线上9.如图12-3-9所示,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S.若AQ=PQ,PR=PS,QD⊥AP,下列结论:①AS=AR;②AP平分∠BAC;③△BRP≌△CSP;④PQ∥AR.其中正确的是().A.①③B.②③C.①②④D.①②③④10.如图12-3-10所示,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()处.A.1 B.2 C.3D.411.如图12-3-11所示,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC 的延长线于F,E为垂足.则结论:①AD=BF;②CF=CD;③AC+CD=AB;④BE=CF;⑤BF=2BE,其中正确结论的个数是().A.1 B.2 C.3 D.412.如图12-3-12所示,已知AB平行CD,∠CAB,∠ACD的平分线交于点O,OE⊥AC,且OE=2,则两平行线AB、CD之间的距离等于.13.(1)如图12-3-13所示,△ABC的三边AB、BC、CA长分别是20、30、40,三条角平分线将△ABC分成三个三角形,则S△ABO:S△BCO:S△CAO等于.(2)如图12-3-14所示,已知△ABC的周长是18cm,OB、OC分别平分∠ABC和∠ACB,OD ⊥BC于点D,若△ABC的面积为54cm2,则OD= .14.如图12-3-15所示,∠B=∠C=90°,M是BC中点,AM平分∠DAB,求证:DM平分∠AD C.15.如图12-3-16所示,在河中有座水文观测台O,它到河岸以及河上大桥AB的距离相等,一水文数据记录员站在台上,发现桥上有辆漂亮的彩车,从桥头A走到桥头B,问记录员的视线转过多大角度?16.如图12-3-17所示,在△ABC中,PB、PC分别是△ABC的外角的平分线,求证:∠1=∠2.17.已知,如图12-3-18所示,在△ABC和△DCE中,BC=AC,DC=EC,∠ACB=∠DCE,B、C、E三点在一条直线上,A、B、C、D、E、F、G、O为“公交停靠点”,甲公共汽车从A站出发,按照A、F、G、E、C、F的顺序达到F站,乙公共汽车从B哦出发,按照BOFDGDF的顺序达到F站,(1)如果甲乙两公共汽车分别从AB站出发,在各站耽误的时间相同,两车的速度也相同,试问哪一辆公共汽车先达到指定站点?为什么?(2)求证:①∠AFB=∠CDE;②CF平分∠BFE.18.如图12-3-19所示,在△ABC中,BD是∠ABC的平分线,AD⊥BD,垂足为点D,(1)求证:∠2=∠1+∠C;(2)若ED∥BC,∠ABD=28°,求∠ADE的度数.19.如图12-3-20所示,在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点.求证:AB-AC>PB-P C.20.如图12-3-21所示,在△ABC中,AD是∠BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由.中考链接21.(2011·浙江衢州)如图12-3-22所示,OP平分∠MON,P A⊥ON于点A,点Q是射线OM 上的一个动点,若P A=2,则PQ的最小值为().A.1 B.2 C.3 D.422.(2010·青海西宁)八(1)班同学上数学活动课,利用角尺平分一个角(如图12-3-23所示)设计了如下方案:(I)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(II)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P 的射线OP就是∠AOB的平分线.(1)方案(I)、方案(II)是否可行?若可行,请证明;若不可行,请说明理由.(2)在方案(I)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥O B.此方案是否可行?请说明理由.巅峰突破23.如图12-3-24所示,在Rt△ABC中,∠ACB=90°,∠CAB=60°,∠ACB的平分线与∠ABC 的外角平分线交于点E,则∠AEB=().A.50° B.45° C.40°D.35°24.如图12-3-25所示,在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,且AE垂直BD的延长线于E,AE=12BD,求证:BD是∠ABC的平分线.。
专题02 三角形角平分线模型的应用(解析版)
专题02 三角形角平分线模型的应用参考答案与解析【考点1 双内角平分线】【条件】BP 、CP 分别为∠ABC 、∠ACB 的角平分线.【结论】∠P=90°+∠A.【例1】(2019春•东阿县期末)已知任意一个三角形的三个内角的和是180°.如图1,在△ABC 中,∠ABC 的角平分线BO 与∠ACB 的角平分线CO 的交点为O(1)若∠A =70°,求∠BOC 的度数;(2)若∠A =a ,求∠BOC 的度数;【答案】(1)∴∠BOC =125°(2)∴∠BOC =90°+21【直击考点】 【典例分析】【解答】解:(1)∵∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=110°,∵在△ABC中,∠ABC的角平分线BO与∠ACB的角平分线CO的交点为O,∴∠OBC=∠ABC,∠OCB=ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=125°;(2)∵∠A=α,∴∠ABC+∠ACB=180°﹣∠A=180°﹣α,∵在△ABC中,∠ABC的角平分线BO与∠ACB的角平分线CO的交点为O,∴∠OBC=∠ABC,∠OCB=ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣α)=90°﹣,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(90°﹣)=90°+【变式1】(2021秋•四川)如图,△ABC中,(1)若∠B=70°,点P是△ABC的∠BAC和∠ACB的平分线的交点,求∠APC的度数.(2)如果把(1)中∠B=70°这个条件去掉,试探索∠APC和∠B之间有怎样的数量关系.【答案】(1)∴∠P=180°﹣55°=125°(2)∠APC==90°+∠B【解答】解:(1)∵∠B=70°,∴∠BAC+∠BCA=110°,∵点P是△ABC的∠BAC和∠ACB的平分线的交点,∴∠P AC=∠BAC,∠PCA=∠BCA,∴∠P AC+∠PCA=(∠P AC+∠PCA)=×110°=55°,∴∠P=180°﹣55°=125°;(2)∵点P是△ABC的∠BAC和∠ACB的平分线的交点,∴∠P AC=∠BAC,∠PCA=∠BCA,∴∠P AC+∠PCA=(∠P AC+∠PCA),∴∠P=180°﹣(∠P AC+∠PCA)=180°﹣(∠BAC+∠BCA)=180°﹣(180°﹣∠B)=90°+∠B.【变式2】(2021春•松北区期末)如图,∠ABD=15°,∠ACD=30°,∠A=45°,则∠BDC的度数为°.【答案】90【解答】解:延长BD交AC于点E,∵∠CEB=∠A+∠ABD,∠BDC=∠CEB+∠ACD,∴∠BDC=∠A+∠ABD+∠ACD,∵∠ABD=15°,∠ACD=30°,∠A=45°,∴∠BDC=45°+30°+15°=90°,故答案为90.【考点2 双外角平分线】【条件】BP 、CP 分别为∠EBC 、∠BCD 的角平分线.【结论】∠P=90°-∠A.【例2】(2021春•沈丘县期末)如图,已知∠ABC 、∠ACB 的外角平分线交于D 点.∠A=40°,那么∠D = .【答案】70°【解答】解:∵∠A =40°,∠ABC +∠A +∠ACB =180°,∴∠ABC +∠ACB =180°﹣40°=140°,∵∠ABC +∠CBF =180°,∠ACB +∠BCE =180°,∴∠ABC +∠CBF +∠ACB +∠BCE =360°,∴∠CBF +∠BCE =360°﹣140°=220°,∵BD 平分∠CBF ,CD 平分∠BCE ,∴∠DBC +∠DCB =(∠CBF +∠BCE )=110°,∵∠DBC +∠DCB +∠D =180°,∴∠D =180°﹣110°=70°,故答案为70°.【变式1】(2020秋•讷河市期末)在△ABC 中,∠B =58°,三角形的外角∠DAC 和∠ACF的平分线交于点E ,则∠AEC = .21【答案】61°【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF,∵∠DAC=∠B+∠2,∠ACF=∠B+∠1∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2),∵∠B=58°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=119°∴∠AEC=180°﹣(∠DAC+∠ACF)=61°.故答案是:61°.【变式2】(2020秋•前郭县期末)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)【答案】(1)∠A=70°(2)∠BDC=90°﹣∠A【解答】解:(1)∵OB、OC分别是∠ABC和∠ACB的角平分线,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB),∵∠A=70°,∴∠OBC+∠OCB=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°;(2)∠BDC=90°﹣∠A.理由如下:∵BD、CD为△ABC两外角∠ABC、∠ACB的平分线,∴∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB),由三角形内角和定理得,∠BDC=180°﹣∠BCD﹣∠DBC,=180°﹣[∠A+(∠A+∠ABC+∠ACB)],=180°﹣(∠A+180°),=90°﹣∠A;【考点3内外角平分线】【条件】BP、CP分别为∠ABC、∠ACD的角平分线.【结论】∠A=2∠P.【例3】(2021春•莲湖区期末)如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,若∠ABP=20°,∠ACP=60°,则∠A﹣∠P=()A.70°B.60°C.50°D.40°【答案】B【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∠ABP =20°,∠ACP=60°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=120°,∠MCP=∠ACP=60°,∠CBP =∠ACP=20°,∴∠A=∠ACM﹣∠ABC=120°﹣40°=80°,∠P=∠PCM﹣∠CBP=60°﹣20°=40°,∴∠A﹣∠P=80°﹣40°=40°,故选:D.【变式1】(2020秋•莲湖区期末)如图,已知在△ABC中,CE是外角∠ACD的平分线,BE是∠ABC的平分线.(1)求证:∠A=2∠E;(2)若∠A=∠ABC,求证:AB∥CE.【答案】(1)略(2)略【解答】证明:(1)∵∠ACD是△ABC的一个外角,∠2是△BCE的一个外角,(已知),∴∠ACD=∠ABC+∠A,∠2=∠1+∠E(三角形外角的性质),∴∠A=∠ACD﹣∠ABC,∠E=∠2﹣∠1(等式的性质),∵CE是外角∠ACD的平分线,BE是∠ABC的平分线(已知),∴∠ACD=2∠2,∠ABC=2∠1(角平分线的性质),∴∠A=2∠2﹣2∠1(等量代换),=2(∠2﹣∠1)(提取公因数),=2∠E(等量代换);(2)由(1)可知:∠A=2∠E∵∠A=∠ABC,∠ABC=2∠ABE,∴2∠E=2∠ABE,即∠E=∠ABE,∴AB∥CE.【变式2】(2021春•宽城县期末)如图,△ABC中,∠A=100°,BI、CI分别平分∠ABC,∠ACB,则∠BIC=,若BM、CM分别是∠ABC,∠ACB的外角平分线,则∠M=.【答案】140°;40°【解答】解:∵∠A =100°,∵∠ABC +∠ACB =180°﹣100°=80°,∵BI 、CI 分别平分∠ABC ,∠ACB ,∴∠IBC =∠ABC ,∠ICB =∠ACB ,∴∠IBC +∠ICB =∠ABC +∠ACB =(∠ABC +∠ACB )=×80°=40°,∴∠I =180°﹣(∠IBC +∠ICB )=180°﹣40°=140°;∵∠ABC +∠ACB =80°,∴∠DBC +∠ECB =180°﹣∠ABC +180°﹣∠ACB =360°﹣(∠ABC +∠ACB )=360°﹣80°=280°,∵BM 、CM 分别是∠ABC ,∠ACB 的外角平分线,∴∠1=∠DBC ,∠2=ECB ,∴∠1+∠2=×280°=140°,∴∠M =180°﹣∠1﹣∠2=40°.故答案为:140°;40°.1.(2020秋•薛城区期末)如图,CD 、BD 分别平分∠ACE 、∠ABC ,∠A =80°,则∠BDC 【跟踪训练】=()A.35°B.40°C.30°D.45°【答案】B【解答】解:∵∠ACE是△ABC的外角,∴∠A=∠ACE﹣∠ABC,∵CD、BD分别平分∠ACE、∠ABC,∴∠DCE=∠ACE,∠DBE=∠ABC,∵∠DCE是△BCD的外角,∴∠D=∠DCE﹣∠DBC=∠ACE﹣∠ABC=(∠ACE﹣∠ABC)===40°,故选:B.2.(2020春•江阴市期中)AD是∠CAE的平分线,∠B=35°,∠DAE=60°,则∠ACD =()A.25°B.60°C.85°D.95°【答案】D【解答】解:∵AD是∠CAE的平分线,∴∠EAC=2∠DAE=120°,∴∠ACB=∠EAC﹣∠B=85°,∴∠ACD=180°﹣85°=95°,故选:D.3.(2019秋•保山期末)如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.110°B.115°C.120°D.125°【答案】A【解答】解:∵∠A=27°,∠C=38°,∴∠AEB=∠A+∠C=65°,∵∠B=45°,∴∠DFE=65°+45°=110°,故选:A.4.(2021春•淮阳区期末)如图,在△ABC中,BP平分∠ABC,AP平分∠NAC,CP平分△ABC的外角∠ACM,连接AP,若∠BPC=40°,则∠NAP的度数是()A.30°B.40°C.50°D.60°【答案】C【解答】解:∵BP平分∠ABC,CP平分△ABC的外角∠ACM,∴∠PCM=ACM,∠PBC=ABC,∵∠ACM=∠ABC+∠BAC,∠PCM=∠PBC+∠BPC,∴∠PCM=ABC+BAC=+∠BPC,∴∠BPC=∠BAC=40°,∴∠BAC=80°,∴∠NAC=100°,∴∠NAP=50°,故选:C.5.(2021春•茌平区期末)如图,在△ABC中,∠ABC,∠ACB的平分线交于点O,D是∠ACF与∠ABC平分线的交点,E是△ABC的两外角平分线的交点,若∠BOC=130°,则∠D的度数为()A.25°B.30°C.40°D.50°【答案】C【解答】解:由题意得:CO,CD分别平分∠ACB,∠ACF,∴∠ACO=∠ACB,∠ACD=∠ACF,∵∠ACB+∠ACF=180°,∴∠OCD=∠ACO+∠ACD=90°,∵∠BOC=130°,且∠BOC是△OCD的外角,∴∠D=∠BOC﹣∠OCD=130°﹣90°=40°.故选:C.6.(2020秋•费县期末)如图,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线,CA2是∠A1CD的角平分线,BA3是∠A2BD的角平分线,CA3是∠A2CD的角平分线,…,若∠A=α,则∠A2021为.【答案】【解答】解:∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,∴(∠A+∠ABC)=∠ABC+∠A1,∴∠A1=∠A,同理可得∠A2=∠A1,∠A3=∠A2,……则∠A2021=∠A=.故答案为:.8.(2021春•衡阳县期末)如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.【解答】(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣(∠ABC+∠ACB)=180°﹣×100°=130°,(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=(∠MBC+∠NCB)=(360°﹣∠ABC﹣∠ACB)=(180°+∠A)=90°+∠A∴∠Q=180°﹣(90°+∠A)=90°﹣∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=∠A;∵∠EBQ=∠EBC+∠CBQ=∠ABC+∠MBC=(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;③∠Q=2∠E,则90°﹣∠A=∠A,解得∠A=60°;④∠E=2∠Q,则∠A=2(90°﹣∠A),解得∠A=120°.综上所述,∠A的度数是90°或60°或120°.15。
初中数学三角形内外角平分线有关命题的证明及应用
三角形内外角平分线一.命题的证明及应用在中考常有与三角形内外角平分线有关的题目,若平时不注意总结是很难一下子解决的.下面来一起学习一下.命题 1 如图1,点D是△ABC两个内角平分线的交点,则∠D=90°+∠A.证明:如图1:∵∠1=∠,∠2=∠,∴2∠1+2∠2+∠A=180°①∠1+∠2+∠D=180°②①-②得:∠1+∠2+∠A=∠D③由②得:∠1+∠2=180°-∠D④把③代入④得:∴180°-∠D+∠A=∠D∠D=90°+∠A.点评利用角平分线的定义和三角形的内角和等于180°,不难证明.命题2 如图2,点D是△ABC两个内角平分线的交点,则∠D=90°-∠A.证明:如图2:∵DB和DC是△ABC的两条外角平分线,∴∠D=180°-∠1-∠2=180°-(∠DBE+∠DCF)=180°-(∠A+∠4+∠A+∠3)=180°-(∠A+180°)=180°-∠A-90°=90°-∠A;点评利用角平分线的定义和三角形的一个外角等于与它不相邻两外角的和以及三角形的内角和等于180°,可以证明.命题3 如图3,点E是△ABC一个内角平分线与一个外角平分线的交点,则∠E=∠A.证明:如图3:∵∠1=∠2,∠3=∠4,∠A+2∠1=2∠4①∠1+∠E=∠4②①×代入②得:∠E=∠A.点评利用角平分线的定义和三角形的一个外角等于与它不相邻两外角的和,很容易证明.命题4如图4,点E是△ABC一个内角平分线BE与一个外角平分线CE的交点,证明:AE是△ABC的外角平分线.证明:如图3:∵BE是∠ABC的平分线,可得:EH=EFCE是∠ACD的平分线, 可得:EG=EF∴过点E分别向AB、AC、BC所在的直线引垂线,所得的垂线段相等.即EF=EG=EH∵EG=EH∴AE是△ABC的外角平分线.点评利用角平分线的性质和判定能够证明.应用上面的结论能轻松地解答一些相关的比较复杂的问题,下面来一起看.例1如图5,PB和PC是△ABC的两条外角平分线.①已知∠A=60°,请直接写出∠P的度数.②三角形的三条外角平分线所在的直线形成的三角形按角分类属于什么三角形?解析:①由命题2的结论直接得:∠P=90°-∠A=90°-×60°=60°②根据命题2的结论∠P=90°-∠A,知三角形的三条外角平分线所在的直线形成的三角形的三个角都是锐角,则该三角形是锐角三角形.点评此题直接运用命题2的结论很简单.同时要知道三角形按角分为锐角三角形、直角三角形和钝角三角形.例2如图6,在△ABC中,延长BC到D,∠ABC与∠ACD的角平分线相较于点,∠BC与∠CD的平分线交与点,以此类推,…,若∠A=96°,则∠= 度.解析:由命题③的结论不难发现规律∠∠A.可以直接得:∠=×96°=3°.点评此题是要找出规律的但对要有命题③的结论作为基础知识.例3(203陕西第一大题填空题第八小题,此题3分)如图7,△ABC的外角∠ACD 的平分线CP的内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP=_______________.解析:此题直接运用命题4的结论可以知道AP是△ABC的一个外角平分线,结合命题3的结论知道∠BAC=2∠BPC, CAP=(180°-∠BAC )= (180°-2∠BPC )=50°.点评对命题3、4研究过的读者此题不难,否则将是一道在考试的时候花时间也不一定做的出来的题目.例4(2003年山东省)如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,∠ACB的平分线与∠ABC的外角平分线交与E点,连接AE,则∠AEB= 度.解析:有题目和命题4的结论可以知道AE是△ABC的一个外角平分线, 结合命题2的结论知道∠AEB=∠ACB-∠ACB=90°-×90°=45°点评从上面的做题过程来看题目中给出的“∠A=30°”这个条件是可以不用的.二.角平分线定理使用中的几种辅助线作法一、已知角平分线,构造三角形例题、如图所示,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F。
初中数学-三角形内外角平分线有关命题的证明及应用
三角形内外角平分线一.命题的证明及应用在中考常有与三角形内外角平分线有关的题目,若平时不注意总结是很难一下子解决的.下面来一起学习一下.命题1 如图1,点D是△ABC两个内角平分线的交点,则∠D=90°+∠A.证明:如图1:∵∠1=∠,∠2=∠,∴2∠1+2∠2+∠A=180°①∠1+∠2+∠D=180°②①-②得:∠1+∠2+∠A=∠D③由②得:∠1+∠2=180°-∠D④把③代入④得:∴180°-∠D+∠A=∠D∠D=90°+∠A.点评利用角平分线的定义和三角形的内角和等于180°,不难证明.命题2 如图2,点D是△ABC两个内角平分线的交点,则∠D=90°-∠A.证明:如图2:∵DB和DC是△ABC的两条外角平分线,∴∠D=180°-∠1-∠2=180°-(∠DBE+∠DCF)=180°-(∠A+∠4+∠A+∠3)=180°-(∠A+180°)=180°-∠A-90°=90°-∠A;点评利用角平分线的定义和三角形的一个外角等于与它不相邻两外角的和以及三角形的内角和等于180°,可以证明.命题3 如图3,点E是△ABC一个内角平分线与一个外角平分线的交点,则∠E=∠A.证明:如图3:∵∠1=∠2,∠3=∠4,∠A+2∠1=2∠4①∠1+∠E=∠4②①×代入②得:∠E=∠A.点评利用角平分线的定义和三角形的一个外角等于与它不相邻两外角的和,很容易证明.命题4如图4,点E是△ABC一个内角平分线BE与一个外角平分线CE 的交点,证明:AE是△ABC的外角平分线.证明:如图3:∵BE是∠ABC的平分线,可得:EH=EFCE是∠ACD的平分线, 可得:EG=EF∴过点E分别向AB、AC、BC所在的直线引垂线,所得的垂线段相等.即EF=EG=EH∵EG=EH∴AE是△ABC的外角平分线.点评利用角平分线的性质和判定能够证明.应用上面的结论能轻松地解答一些相关的比较复杂的问题,下面来一起看.例1如图5,PB和PC是△ABC的两条外角平分线.①已知∠A=60°,请直接写出∠P的度数.②三角形的三条外角平分线所在的直线形成的三角形按角分类属于什么三角形?解析:①由命题2的结论直接得:∠P=90°-∠A=90°-×60°=60°②根据命题2的结论∠P=90°-∠A,知三角形的三条外角平分线所在的直线形成的三角形的三个角都是锐角,则该三角形是锐角三角形.点评此题直接运用命题2的结论很简单.同时要知道三角形按角分为锐角三角形、直角三角形和钝角三角形.例2如图6,在△ABC中,延长BC到D,∠ABC与∠ACD的角平分线相较于点,∠BC与∠CD 的平分线交与点,以此类推,…,若∠A=96°,则∠= 度.解析:由命题③的结论不难发现规律∠∠A .可以直接得:∠=×96°=3°.点评 此题是要找出规律的但对要有命题③的结论作为基础知识.例3(203陕西第一大题填空题第八小题,此题3分)如图7,△ABC 的外角∠ACD 的平分线CP 的内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP=_______________.解析:此题直接运用命题4的结论可以知道AP是△ABC 的一个外角平分线,结合命题3的结论知道∠BAC=2∠BPC, CAP=(180°-∠BAC )= (180°-2∠BPC )=50°.点评 对命题3、4研究过的读者此题不难,否则将是一道在考试的时候花时间也不一定做的出来的题目. 例4 (2003年山东省)如图,在Rt △ABC 中,∠ACB=90°,∠BAC=30°,∠ACB 的平分线与∠ABC 的外角平分线交与E 点,连接AE ,则∠AEB= 度.解析:有题目和命题4的结论可以知道AE 是△ABC 的一个外角平分线, 结合命题2的结论知道∠AEB=∠ACB -∠ACB=90°-×90°=45°点评 从上面的做题过程来看题目中给出的“∠A=30°”这个条件是可以不用的.二.角平分线定理使用中的几种辅助线作法一、已知角平分线,构造三角形例题、如图所示,在△ABC 中,∠ABC=3∠C ,AD 是∠BAC 的平分线,BE ⊥AD 于F 。
三角形角平分线地结论及应用
浅议三角形角平分线的结论及应用摘要:一个角的平分线是一条射线,而三角形的角平分线是一条线段。
本文主要谈两点:关于三角形的、外角平分线的夹角的问题和关于三角形、外角平分线的交点问题。
关于三角形的、外角平分线的夹角问题:(1)三角形两角平分线的夹角等于90度与三角形第三个角的一半的和。
(2)三角形两外角平分线的夹角等于90度与三角形第三个角的一半的差。
(3)三角形一个角的平分线与一个外角平分线的夹角等于三角形第三个角的一半(4)三角形两角平分线的夹角与两外角平分线的夹角互补或相等。
关于三角形外角平分线的交点问题:(5)三角形的三条角平分线相交于一点,这点到三角形的三边的距离相等(6)三角形两外角平分线的交点到三角形三边所在的直线相等,并且这点在三角形第三个角的平分线上等关键词:三角形角平分线夹角交点变式练习一个三角形的角平分线不外乎就是角的平分线和外角的角平分线。
在学习过程中,教师要指导学生善于对三角形的角平分线的基本图形进行归纳,对角平分线的性质和结论做好总结,这样对以后知识的积累有很大的帮助,对解决复杂的几何证明题也更便捷。
下面就三角形角平分线的相关结论逐一探讨。
结论一:如图1、在△ABC中,∠ABC、∠ACB的角平分线的交与点D,1∠A。
试探究:∠D=90°+2解:∵BD、CD为角平分线1∠ABC,(图1)∴∠CBD=21∠ACB。
∠BCD=2在△BCD中:∠D=180°-(∠CBD+∠BCD)1(∠ABC+∠ACB)=180°-21(180°-∠A)=180°-21∠A=90°+2变式练习的题目有(1)如图2、在△ABC中,∠ABC、∠ACB的角平分线的交与点D,∠D=100°,则∠A的度数是度。
1∠A。
则∠A=2∠D―180°,解:由结论1得知,∠D=90°+2容易得出∠A=20°(图2)(2)如图3:在四边形ABCD中,∠D=120°,∠A=100°∠ABC、∠ACB的角平分线的交与点E,试求∠BEC的度数。
专题 角平分线四大模型在三角形中的应用(知识解读)-中考数学(全国通用)
N M O A B PPO N M B A专题01 角平分线四大模型在三角形中的应用(知识解读)【专题说明】角平分线在几何中占有重要地位,是解决许多问题的桥梁和纽带,角平分线把一个角分成相等的两个部分,其“轴承对称功能”衍生出“角平分线上的点到角两边的距离相等”以及“等腰三角形三线合一”、“三角形的内心到三边的距离相等”等性质,而角平分线与平行线相结合构造出等腰三角形,也常在解题中给我们带来帮助,本专题介绍四种常考解题方法。
【方法技巧】模型1 角平分线上的点向两边作垂线如图,P 是∠MON 的平分线上一点,过点P 作PA ⊥OM 于点A ,PB ⊥ON 于点B 。
结论:PB=PA 。
【模型分析】利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。
模型2 截取构造对称全等如图,P 是∠MON 的平分线上一点,点A 是射线OM 上任意一点,在ON 上截取OB=OA ,连接PB 。
结论:△OPB ≌△OPA 。
P O N M B AQP O N M 【模型分析】利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等。
利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。
模型3 角平分线+垂线构造等腰三角形如图,P 是∠MO 的平分线上一点,AP⊥OP 于P 点,延长AP 于点B 。
结论:△AOB 是等腰三角形。
【模型分析】构造此模型可以利用等腰三角形的“三线合一”,也可以得到两个全等的直角三角形,进而得到对应边、对应角相等。
这个模型巧妙地把角平分线和三线合一联系了起来。
模型4 角平分线+平行线如图,P 是∠MO 的平分线上一点,过点P 作PQ ∥ON ,交OM 于点Q 。
结论:△POQ 是等腰三角形。
【模型分析】有角平分线时,常过角平分线上一点作角的一边的平行线,构造等腰三角形,为证明结论提供更多的条件,体现了角平分线与等腰三角形之间的密切关系。
三角形的角平分线与相似三角形综合
三角形的角平分线与相似三角形综合三角形是几何学中重要的概念,它具有许多特性和性质。
本文将探讨三角形中的角平分线和相似三角形之间的关系以及其综合应用。
一、角平分线的概念和性质角平分线是指从一个角的顶点出发,将该角分成两个相等的角的线段。
在三角形中,角平分线有如下性质:1. 角平分线将角分为两个相等的角:设三角形ABC中,∠BAC的角平分线交边BC于点D,则∠BAD = ∠DAC。
2. 角平分线与对边的关系:设三角形ABC中,∠BAC的角平分线交边BC于点D,则BD/DC = AB/AC。
3. 角平分线的唯一性:在一个三角形中,每个角都有唯一的角平分线。
二、相似三角形的概念和性质相似三角形是指具有相同形状但可能不同大小的三角形。
在相似三角形中,角度相等且对应边的比例相等。
相似三角形的性质如下:1. AAA相似定理:如果两个三角形的对应角度相等,那么它们相似。
2. AA相似定理:如果两个三角形的两个对应角度相等,那么它们相似。
3. SSS相似定理:如果两个三角形的对应边的比例相等,那么它们相似。
三、角平分线与相似三角形的关系在三角形中,角平分线与相似三角形之间存在一定的关系。
具体如下:1. 角平分线分割相似三角形:设三角形ABC中,∠BAC的角平分线交对边BC于点D,令AD与角平分线交BC的延长线于点E。
则有∆ABD ∼ ∆ACE。
2. 相似三角形的角平分线:设∆ABD ∼ ∆ACE,∠BAD的角平分线交BD于点F,∠CAE的角平分线交CE于点G。
则有∆ABF ∼∆ACG。
通过以上关系,我们可以在解决三角形相关问题时应用角平分线和相似三角形的知识。
四、综合应用1. 证明角平分线的长度关系:设三角形ABC中,∠BAC的角平分线交对边BC于点D。
通过角平分线与对边的关系可得BD/DC =AB/AC。
进一步利用相似三角形的性质,我们可以得到如下结论:AD/DC = AB/BC。
2. 判断角平分线存在问题:当一个三角形的三个内角都被其角平分线平分时,可以推断该三角形是等边三角形。
角平分线的题设和结论
角平分线的题设和结论角平分线是指将一个角的两条边平分的直线,也就是将一个角分成两个相等的角的直线。
它在几何学中有着重要的应用和意义,是许多定理的基础。
在三角形中,角平分线分为内角平分线和外角平分线。
内角平分线是指从一个角的顶点出发,将这个角的对边分成两个相等的线段的直线。
外角平分线则是指从一个三角形的一个角的外部出发,将相邻两个内角的非公共边分成两个相等的线段的直线。
在研究角平分线时,我们需要掌握一些基本的定理和结论。
下面是一些常见的定理和结论:1. 内角平分线定理:三角形中,从一个角的顶点出发,将这个角的对边分成两个相等的线段的直线称为这个角的内角平分线。
内角平分线定理指出,一条内角平分线将这个角所对的边分成两条比例相等的线段。
2. 角平分线定理:在一个三角形中,如果一条直线既是一个角的内角平分线,又是另一个角的内角平分线,那么这条直线将这个三角形分成两个面积相等的三角形。
3. 外角平分线定理:在一个三角形中,如果一条直线是一个角的外角平分线,那么这条直线所对的另一个内角等于这个三角形另外两个内角之和。
4. 角平分线定理(外部):在一个三角形中,如果一条直线既是一个内角的外部平分线,又是另一个内角的外部平分线,那么这条直线将这个三角形分成两个面积比例相等的三角形。
5. 角平分线定理(相似三角形):在两个相似三角形中,它们对应的顶点所对应的两个内角所对应的边上的点连成一条直线,这条直线就是它们所对应内角的平分线。
除了以上定理和结论之外,还有一些与角平分线相关的重要定理和结论,如垂心定理、欧拉定理等等。
这些定理和结论在几何学中有着广泛的应用和意义。
总之,掌握好角平分线相关的知识对于我们学习几何学和解决几何问题都有着重要的帮助。
初中数学 如何使用三角形的角平分线解决实际问题
初中数学如何使用三角形的角平分线解决实际问题三角形的角平分线是初中数学中一个重要的概念,它可以帮助我们解决各种与三角形有关的实际问题。
在本文中,我们将深入探讨如何使用三角形的角平分线解决实际问题,并通过具体的例题来帮助读者更好地理解和掌握这一概念。
首先,让我们回顾一下三角形的角平分线的定义。
对于一个任意三角形ABC,如果从顶点A 引出一条线段AD,使得∠BAD和∠CAD的度数相等,那么AD就是∠BAC的角平分线。
利用三角形的角平分线,我们可以解决许多实际问题。
其中最常见的问题是确定角平分线的长度和角的度数。
接下来,我们将通过一些具体的例题来演示如何使用三角形的角平分线解决实际问题。
例题1:在图中,已知三角形ABC的角A的角平分线AD的长度为4cm,求角A的度数。
解析:根据题目中的已知条件,我们可以利用三角形的角平分线来解决这个问题。
根据角平分线的性质,角平分线将对应的角分成两个度数相等的角。
因此,我们可以得到∠BAD = ∠CAD。
由于我们已知角平分线AD的长度为4cm,我们可以利用这个已知条件来求解角A的度数。
根据三角形的角度和为180度的性质,我们可以得到∠BAC = ∠BAD + ∠CAD = 2∠BAD。
因此,我们可以得到∠BAD = ∠CAD = (∠BAC) / 2。
由于我们已知∠BAD = ∠CAD,我们可以得到(∠BAC) / 2 = 4。
通过计算,我们可以得到∠BAC = 8度。
因此,角A的度数为8度。
例题2:在图中,已知三角形ABC的角A的度数为60度,求角A的角平分线AD的长度。
解析:根据题目中的已知条件,我们可以利用三角形的角平分线来解决这个问题。
根据角平分线的性质,角平分线将对应的角分成两个度数相等的角。
因此,我们可以得到∠BAD = ∠CAD。
由于我们已知角A的度数为60度,我们可以利用这个已知条件来求解角平分线AD的长度。
根据三角形的角度和为180度的性质,我们可以得到∠BAC = 180 - 60 - 60 = 60度。
三角形角平分线的结论及应用
浅议三角形角平分线的结论及应用摘要:一个角的平分线是一条射线,而三角形的角平分线是一条线段。
本文主要谈两点:关于三角形的内、外角平分线的夹角的问题和关于三角形内、外角平分线的交点问题。
关于三角形的内、外角平分线的夹角问题:(1)三角形两内角平分线的夹角等于90度与三角形第三个内角的一半的和。
(2)三角形两外角平分线的夹角等于90度与三角形第三个内角的一半的差。
(3)三角形一个内角的平分线与一个外角平分线的夹角等于三角形第三个内角的一半(4)三角形两内角平分线的夹角与两外角平分线的夹角互补或相等。
关于三角形内外角平分线的交点问题:(5)三角形的三条内角平分线相交于一点,这点到三角形的三边的距离相等(6)三角形两外角平分线的交点到三角形三边所在的直线相等,并且这点在三角形第三个内角的平分线上等关键词:三角形角平分线夹角交点变式练习一个三角形的角平分线不外乎就是内角的平分线和外角的角平分线。
在学习过程中,教师要指导学生善于对三角形的角平分线的基本图形进行归纳,对角平分线的性质和结论做好总结,这样对以后知识的积累有很大的帮助,对解决复杂的几何证明题也更便捷。
下面就三角形角平分线的相关结论逐一探讨。
结论一:如图1、在△ABC中,∠ABC、∠ACB的角平分线的交与点D,1∠A。
试探究:∠D=90°+2解:∵BD、CD为角平分线1∠ABC,(图1)∴∠CBD=21∠ACB。
∠BCD=2在△BCD中:∠D=180°-(∠CBD+∠BCD)1(∠ABC+∠ACB)=180°-21(180°-∠A)=180°-21∠A=90°+2变式练习的题目有(1)如图2、在△ABC中,∠ABC、∠ACB的角平分线的交与点D,∠D=100°,则∠A的度数是度。
1∠A。
则∠A=2∠D―180°,解:由结论1得知,∠D=90°+2容易得出∠A=20°(图2)(2)如图3:在四边形ABCD中,∠D=120°,∠A=100°∠ABC、∠ACB的角平分线的交与点E,试求∠BEC的度数。
三角形角平分线地结论及应用
浅议三角形角平分线的结论及应用摘要:一个角的平分线是一条射线,而三角形的角平分线是一条线段。
本文主要谈两点:关于三角形的内、外角平分线的夹角的问题和关于三角形内、外角平分线的交点问题。
关于三角形的内、外角平分线的夹角问题:(1)三角形两内角平分线的夹角等于90度与三角形第三个内角的一半的和。
(2)三角形两外角平分线的夹角等于90度与三角形第三个内角的一半的差。
(3)三角形一个内角的平分线与一个外角平分线的夹角等于三角形第三个内角的一半(4)三角形两内角平分线的夹角与两外角平分线的夹角互补或相等。
关于三角形内外角平分线的交点问题:(5)三角形的三条内角平分线相交于一点,这点到三角形的三边的距离相等(6)三角形两外角平分线的交点到三角形三边所在的直线相等,并且这点在三角形第三个内角的平分线上等关键词:三角形角平分线夹角交点变式练习一个三角形的角平分线不外乎就是内角的平分线和外角的角平分线。
在学习过程中,教师要指导学生善于对三角形的角平分线的基本图形进行归纳,对角平分线的性质和结论做好总结,这样对以后知识的积累有很大的帮助,对解决复杂的几何证明题也更便捷。
下面就三角形角平分线的相关结论逐一探讨。
结论一:如图1、在△ABC中,∠ABC、∠ACB的角平分线的交与点D,1∠A。
试探究:∠D=90°+2解:∵BD、CD为角平分线1∠ABC,(图1)∴∠CBD=21∠ACB。
∠BCD=2在△BCD中:∠D=180°-(∠CBD+∠BCD)1(∠ABC+∠ACB)=180°-21(180°-∠A)=180°-21∠A=90°+2变式练习的题目有(1)如图2、在△ABC中,∠ABC、∠ACB的角平分线的交与点D,∠D=100°,则∠A的度数是度。
1∠A。
则∠A=2∠D―180°,解:由结论1得知,∠D=90°+2容易得出∠A=20°(图2)(2)如图3:在四边形ABCD中,∠D=120°,∠A=100°∠ABC、∠ACB的角平分线的交与点E,试求∠BEC的度数。
三角形角平分线的定理
三角形角平分线的定理角平分线是指将一个角分成两个相等角的直线。
在三角形中,角平分线起着重要的作用。
本文将介绍三角形角平分线的定理以及其相关性质。
一、三角形角平分线的定理三角形角平分线的定理是指:在一个三角形中,如果一条直线从一个顶点平分对角的两个角,那么这条直线将平分对角的对边。
具体而言,设△ABC为一个三角形,AD是∠BAC的角平分线,交BC于点D。
那么有以下结论:1.∠BAD = ∠DAC,即∠BAD和∠DAC是相等的。
2.∠ABD = ∠CAD,即∠ABD和∠CAD是相等的。
3.BD/CD = AB/AC,即BD与CD的比值等于AB与AC的比值。
二、三角形角平分线的证明要证明三角形角平分线的定理,首先我们可以通过角平分线的定义得出∠BAD = ∠DAC和∠ABD = ∠CAD。
接下来,我们需要证明BD/CD = AB/AC。
根据正弦定理,我们可以得到以下等式:AB/AC = sin∠BAC/sin∠ABCBD/CD = sin∠BAC/sin∠CBD由于∠ABC = ∠CBD,所以sin∠ABC = sin∠CBD。
因此,我们可以得出BD/CD = AB/AC。
三、三角形角平分线的应用三角形角平分线的定理在几何学中有广泛的应用。
以下是一些常见的应用场景:1.角平分线定理可以用来解决三角形内角的问题。
通过已知条件,我们可以利用角平分线的性质来求解未知角度的大小。
2.角平分线定理可以用来证明三角形的相似性。
当两个三角形的角平分线相交于同一点时,我们可以利用角平分线的性质证明这两个三角形是相似的。
3.角平分线定理可以用来证明三角形的内心存在。
内心是三角形内切圆的圆心,它同时也是三条角平分线的交点。
4.角平分线定理可以用来证明三角形的垂心存在。
垂心是三角形三条高的交点,其中两条高与第三条高的交点恰好是角平分线的交点。
四、总结三角形角平分线的定理是几何学中的重要定理之一。
通过角平分线的性质,我们可以解决三角形内角的问题,证明三角形的相似性以及存在性等问题。
三角形中的双角平分线问题
三角形中的双角平分线问题
三角形双角平分线模型结论为在三角形中,如果一个线段将一个角平分成两个相等的角,那么这个线段被称为该角的双角平分线。
关于三角形双角平分线的结论有:双角平分线相交于内心、内心到三角形三边的距离相等、双角平分线垂直对边、双角平分线相互垂直。
1、双角平分线相交于内心:在任何三角形中,三条角的双角平分线会相交于一个点,该点被称为三角形的内心。
内心是三角形内切圆的圆心,与三角形的三边都相切。
2、内心到三角形三边的距离相等:内心到三角形的各边的距离相等,也就是说,内心到三角形任一边的距离相等。
这个距离等于内切圆的半径。
3、双角平分线垂直对边:如果一个角的双角平分线与对边相交,那么该双角平分线垂直于对边。
这意味着,如果一个角的双角平分线与对边相交于某点,那么这个点与对边上的点以及该角的顶点形成的线段是垂直的。
4、双角平分线相互垂直:三角形的三条双角平分线相互垂直于彼此。
也就是说,如果一个角的双角平分线与另外一个角的双角平分线相交于某点,那么这个点与两个角的顶点形成的线段是垂直的。
三角形双角平分线模型结论的运用
1、求三角形内心:根据双角平分线的性质,可以通过三角形三个角的双角平分线交点求出三角形内心的位置。
内心是三角形内切圆的圆心,内切圆与三角形的三边都相切,因此内角平分线是该圆心所在的位置。
2、求三角形的面积:通过三角形两个角的双角平分线可以将三角形分成四个小三角形,面积可以通过这些小三角形的面积来计算。
三角形角平分线的三个结论
三角形角平分线的三个结论嘿,大家好,今天咱们来聊聊一个看似简单却特别有意思的几何话题——三角形的角平分线!哎呀,这可不是枯燥的数学课,而是我们生活中也能碰到的东西呢!如果你也曾经想过,三角形的角平分线到底有什么神奇的地方,那就跟我一块儿来看看吧!1. 角平分线的定义首先,咱们得搞清楚什么是角平分线。
简单来说,角平分线就是从三角形一个角的顶点出发,分开这个角,让两边的夹角大小完全相同的那条线。
就像你把一个大蛋糕切成两半一样,切得又整齐又美观!如果你在三角形里画上一条这样的线,哇,那可是绝对的“完美切割”呀!它让我们了解到,几何的世界里也有分寸和和谐美。
2. 角平分线的三个神奇结论2.1. 角平分线的比例性质那么,咱们的角平分线有什么特别的性质呢?首先,第一条就是这个著名的比例性质。
想象一下,你有一个三角形ABC,角平分线AD把角A分开了。
根据数学的定律,BD和DC的长度比例正好等于AB和AC的长度比例。
这就像是分蛋糕的时候,能让大家都吃得开心,吃得满意,完全不怕有人吃亏!是不是觉得三角形有点人情味呢?2.2. 角平分线交点的奇妙之处接下来,咱们再来聊聊角平分线的交点——它叫做“内心点”。
想象一下,这个点就像是三角形的“心脏”,它能把三角形的三条角平分线交汇在一起,形成一个叫做“内心”的地方。
这个地方可不是随便的,它其实是三角形内部的一个特殊点,距离三角形的三条边都很近,简直就像三角形的“老朋友”一样,随时待命!如果你需要一个稳定的点,这可就是你要找的地方了。
3. 角平分线的实际应用3.1. 生活中的角平分线别以为角平分线只存在于数学书里哦!它在我们生活中也大有用处呢。
比如,设计房间的时候,咱们常常需要把空间分隔得合理又美观。
角平分线就可以帮助我们确定最佳的位置,把空间划分得既舒服又实用!就像找个好位置吃火锅,锅子放得正好,大家都能吃得尽兴!3.2. 在建筑和工程中的应用再者,在建筑和工程设计中,角平分线也是个大帮手!工程师们用它来确保建筑的对称性和稳定性。
三角形角平分线的结论及应用
浅议三角形角平分线的结论及应用摘要:一个角的平分线是一条射线,而三角形的角平分线是一条线段。
本文主要谈两点:关于三角形的内、外角平分线的夹角的问题和关于三角形内、外角平分线的交点问题。
关于三角形的内、外角平分线的夹角问题:(1)三角形两内角平分线的夹角等于90度与三角形第三个内角的一半的和。
(2)三角形两外角平分线的夹角等于90度与三角形第三个内角的一半的差。
(3)三角形一个内角的平分线与一个外角平分线的夹角等于三角形第三个内角的一半(4)三角形两内角平分线的夹角与两外角平分线的夹角互补或相等。
关于三角形内外角平分线的交点问题:(5)三角形的三条内角平分线相交于一点,这点到三角形的三边的距离相等(6)三角形两外角平分线的交点到三角形三边所在的直线相等,并且这点在三角形第三个内角的平分线上等关键词:三角形角平分线夹角交点变式练习一个三角形的角平分线不外乎就是内角的平分线和外角的角平分线。
在学习过程中,教师要指导学生善于对三角形的角平分线的基本图形进行归纳,对角平分线的性质和结论做好总结,这样对以后知识的积累有很大的帮助,对解决复杂的几何证明题也更便捷。
下面就三角形角平分线的相关结论逐一探讨。
结论一:如图1、在△ABC中,∠ABC、∠ACB的角平分线的交与点D,试探究:∠D=90°+1∠A。
2解:∵BD、CD为角平分线∴∠CBD=1∠ABC,(图1)2∠BCD=1∠ACB。
2在△BCD中:∠D=180°-(∠CBD+∠BCD)=180°-1(∠ABC+∠ACB)2=180°-1(180°-∠A)2=90°+1∠A2变式练习的题目有(1)如图△2、在ABC中,∠ABC、∠ACB的角平分线的交与点D,∠D=100°,则∠A的度数是度。
解:由结论1得知,∠D=90°+1∠A。
则∠A=2∠D―180°,2容易得出∠A=20°(图2)(2)如图3:在四边形ABCD中,∠D=120°,∠A=100°∠ABC、∠ACB的角平分线的交与点E,试求∠BEC的度数。
三角形角平分线性质的引申及应用
-
1 2
( 180°
-
∠A)
=
90°
+
1 2
∠A.
性质 2 由三角形两条外角平分线所组
成的角等于 90° 与第三角一半的差.
如图 2,在 ABC 中,∠ABC、∠ACB 的外
角平分线交于点 P,则 ∠P
=
90° -
1 2
∠A.
%
A
B 1
D
C 2
E
P
图2
证明 因 为 BP、CP 分 别 平 分 ∠DBC,
∠ECB,
所以 ∠1
=
1 2
∠DBC,∠2
=
1 2
∠ECB.
在 PBC 中,
∠P = 180° - ( ∠1 + ∠2)
=
180° -
1 2
(
∠DBC
+
∠ECB)
= 180°
-
1 2
(
180°
- ∠ABC + 180°
-
∠ACB)
=
180°
-
1 2
[360°
- ( ∠ABC
+ ∠ACB) ]
=
1 2
( 180° - 2∠BPC)
= 50°.
例 3 如图 11,已知线段 AB、CD 相交于
点 O,连结 AD、CB,我们把形如图 11 的图形称
之为“8 字 形”. 如 图 12,在 图 11 的 条 件 下,
∠DAB 和 ∠BCD 的平分线 AP 和 CP 相交于点
P,并且与 CD、AB 分别相交于点 M、N.
叫做“规形图”. 观察如图 7 的“规形图”,若
∠ABC、∠ADC 的 平 分 线 相 交 于 点 O,则
角平分线的原理及应用
角平分线的原理及应用角平分线的原理及应用1. 介绍角平分线的概念和定义角平分线是指将一个角分成两个相等的角的直线。
具体来说,对于一个角ABC,如果有一条线段AD,且AD等于BD,那么AD就是角ABC的平分线。
角平分线可以通过作图和计算来确定,它从角的顶点向角的两边延伸。
2. 角平分线的原理与性质角平分线有一些重要的原理和性质,下面将逐一介绍。
2.1 角平分线将角分成相等的两个角根据角平分线的定义,角平分线将一个角分成两个相等的角。
这是角平分线的基本性质之一。
2.2 角平分线与角的两边相交于角的顶点角平分线与角的两边相交于角的顶点。
这是角平分线的另一个重要性质。
具体来说,如果一条线段与角的两边相交于角的顶点,并且将这个角分成两个相等的角,那么这条线段就是角的平分线。
2.3 角平分线对称地分割角的两边角平分线将角的两边对称地分割成相等的线段。
也就是说,将角的两边上的点与角的顶点连线后,由角平分线分割的两个线段的长度相等。
3. 角平分线的一些常见应用3.1 三角形内部角平分线定理在一个三角形中,如果一条线段从一个角的顶点出发,并且平分了这个角,那么这条线段分割了相对应的边,并且这些分割线段的比值等于相邻两边的比值。
这个定理可以用于解决一些与三角形有关的问题。
3.2 角平分线判定角的大小关系通过角平分线可以判断两个角的大小关系。
如果两个角的平分线相交且交点在角的内部,那么这两个角的大小关系可以根据平分线分割角的两边的长度来确定,长度较长的一边对应的角较大。
3.3 三角形外角平分线定理在一个三角形中,如果从三角形的一个外角作出一条平分线,那么这条平分线将另外两个内角分割成相等的角。
这个定理可以应用于解决一些与三角形外角有关的问题。
总结回顾:角平分线是将一个角分成相等的两个角的直线。
它具有多个重要性质,如:将角分成相等的两个角、与角的两边相交于角的顶点等。
角平分线可以运用于三角形内部角平分线定理、判定角的大小关系以及三角形外角平分线定理等问题的求解。
角平分线的性质在特殊图形中的一般结论
角平分线的性质在特殊图形中的一般结论通过将角平分线的性质拓展到三角形、四边形等特殊图形中内、外角平分线的性质,可以形成一般性结论;结合这些特殊图形可以很好地解决一些与角平分线有关的几何问题。
笔者通过例举角平分线的性质在特殊图形中的一般结论以及其简单的应用,得到学习平面几何的一些感悟。
一、角平分线的性质在三角形中的一般结论(一)三角形中角平分线性质及证明性质1:如图(1),若bo、co分别为∠abc、∠acb的平分线,则∠boc=90°+1/2∠a。
性质2:如图(2),若bo、co分别为∠dbc、∠ecb的平分线,则∠boc=90°+1/2∠a。
性质3:如图(3),若be、ce分别为∠abc、∠acd的平分线,则∠e=1/2∠a。
性质4:如图(4),若ad平分∠bac交bc于点d,则ab∶ac=bd∶dc。
对于性质1、2、3的证明利用角平分线的定义及三角形内角和,外角的性质可证的;性质4利用角平分线性质及三角形面积可证,或利用构造三角形相似证明。
方法一:作de⊥ab于e,df⊥ac于f,ah⊥bc于h,∵ ad平分∠bac∴ de=df∵又∵∴ab/ac=bd/cd方法二:过b作ac的平行线交ad的延长线于点g,构造△acd∽△gbd可证。
(二)三角形中角平分线性质的应用例1 如图(5),已知射线ox⊥oy,a、b为ox,oy上两动点,∠a的平分线与∠b的外角平分线相交于c。
试问:∠c的大小是否随a、b运动而发生变化?若变化,请说明理由;若不变,求出∠c 的值。
解析:直接利用性质3求解。
例2 如图(6),△abc中,ab=1,ac=2,d是bc的中点,ae平分∠bac交bc于e,且df∥ae,求cf。
解析:利用性质4,得出be与ec的比,再根据中点定义和平行线分线段成比例性质求出cf与fa的比,从而算出cf的值。
二、角平分线的性质在四边形中的一般结论(一)四边形中角平分线性质及证明性质1:如图(7),在凸四边形abcd中,若ec、ed分别是∠bcd、∠adc的平分线,则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅议三角形角平分线的结论及应用摘要:一个角的平分线是一条射线,而三角形的角平分线是一条线段。
本文主要谈两点:关于三角形的内、外角平分线的夹角的问题和关于三角形内、外角平分线的交点问题。
关于三角形的内、外角平分线的夹角问题:(1)三角形两内角平分线的夹角等于90度与三角形第三个内角的一半的和。
(2)三角形两外角平分线的夹角等于90度与三角形第三个内角的一半的差。
(3)三角形一个内角的平分线与一个外角平分线的夹角等于三角形第三个内角的一半(4)三角形两内角平分线的夹角与两外角平分线的夹角互补或相等。
关于三角形内外角平分线的交点问题:(5)三角形的三条内角平分线相交于一点,这点到三角形的三边的距离相等(6)三角形两外角平分线的交点到三角形三边所在的直线相等,并且这点在三角形第三个内角的平分线上等关键词:三角形角平分线夹角交点变式练习一个三角形的角平分线不外乎就是内角的平分线和外角的角平分线。
在学习过程中,教师要指导学生善于对三角形的角平分线的基本图形进行归纳,对角平分线的性质和结论做好总结,这样对以后知识的积累有很大的帮助,对解决复杂的几何证明题也更便捷。
下面就三角形角平分线的相关结论逐一探讨。
结论一:如图1、在△ABC中,∠ABC、∠ACB的角平分线的交与点D,1∠A。
试探究:∠D=90°+2解:∵BD、CD为角平分线1∠ABC,(图1)∴∠CBD=21∠ACB。
∠BCD=2在△BCD中:∠D=180°-(∠CBD+∠BCD)1(∠ABC+∠ACB)=180°-21(180°-∠A)=180°-21∠A=90°+2变式练习的题目有(1)如图2、在△ABC中,∠ABC、∠ACB的角平分线的交与点D,∠D=100°,则∠A的度数是度。
1∠A。
则∠A=2∠D―180°,解:由结论1得知,∠D=90°+2容易得出∠A=20°(图2)(2)如图3:在四边形ABCD中,∠D=120°,∠A=100°∠ABC、∠ACB的角平分线的交与点E,试求∠BEC的度数。
解:∵∠A+∠ABC+∠ACB+∠D=360°又∵∠D=120°,∠A=100°∴∠ABC+∠ACB=140°∵BE、CE分别是ABC、∠ACB的角平分线∴∠EBC+∠ECB=70°. (图3)∴∠BEC=110°.结论二、如图4,△ABC中,D为△ABC的两条外角平分线的交点,试探究:1∠A∠D=90°-2解:∵BD、CD为角平分线1∠CBE∴∠CBD=21∠BCF(图4)∠BCD=2在△BCD中:∠D=180°-(∠CBD+∠BCD) =180°-(21∠CBE+21∠BCF)=180°-21(∠CBE+∠BCF)=180°-21(∠A+180)=90°-21∠A变式练习的题目:(1)如图5,△ABC 中,∠A=60°,D为△ABC的两外角∠CBE 与∠BCE 的三等分线的交点,则∠D 的度数是 。
解:∵BD、CD为∠CBE 与∠BCE 三等分线 ∴∠CBD=31∠CBE ∠BCD=31∠BCF在△BCD中:∠D=180°-(∠CBD+∠BCD) (图5) =180°-(31∠CBE+31∠BCF)=180°-31(∠CBE+∠BCF) =180°-31(∠A+180)=120°-31∠A =100°. (图6)(2)如图6,在△ABC中,三个外角的平分线所在的直线相交构成 △DEF ,试判断△DEF 的形状。
解:由结论二容易得出∠D =90°-21∠ACB, ∠E =90°-21∠BCA 、 ∠F =90°-21∠ABC , 由于∠D 、∠E 、∠F 都小于90°,所以△DEF 是锐角三角形结论三、 如图7,在△ABC中,∠ABC与△ABC的外角∠ACE的平分线交与点D ,试探究:∠D=21∠A。
解:∵BD为角平分线,∴∠CBD=21∠ABC,又∵CD为∠ACE的平分线.∴∠DCE=21∠ACE , (图7) ∴∠D=21∠ACE -21∠ABC=21(∠ACE -∠ABC) =21∠A。
变式练习的题目有;(1)如图8,如图,在△ABC 中,延长BC 到D,∠ABC 与∠ACD 的角平分线相较于A1点,∠A1BC 与∠C A1D 的平分线交与A1点,以此类推,…,若∠A=96°,则∠A5=度.解:由命题③的结论不难发现规律∠An=n⎪⎪⎭⎫⎝⎛21∠A .可以直接得:∠A5=321×96°=3°. (图8)结论四、如图9,在△ABC 中,∠ABC、∠ACB的角平分线的交与点D ,△ABC的两条外角平分线交与点E ,试探究:∠D+∠E=180° 证明:由结论一可知;∠D=90°+21∠A 则∠A=2∠D -180°①由结论二可知:∠E =90°-21∠A ∠A=180°- 2∠E ②由①②可知2∠D-180°= 180°-2∠E (图9)由此得出∠D+∠E=180°变式练习的题目:如图10,点M是△ABC两个内角的平分线的交点,点N是△ABC两个外角的平分线的交点,如果∠CMB∶∠CNB=3∶2,那么∠CAB=度由结论四可知,∠CMB+∠CNB=180°,∵∠CMB∶∠CNB=3∶2,∴∠CMB=180°×3=108°,由结3可知,90°+12∠CAB=∠CMB=108°,∴∠CAB=36°.(图10)结论五:如图11, △ABC中∠ABC、∠ACB的角平分线BN、CM的交与点P,, 求证:点P到三边AB、BC、CA的距离相等证明;过点P作PD ⊥AB、PE⊥BC、PF⊥CA,垂足分别是D、E、F∵BN是的角平分线,PD ⊥AB、PE⊥BC∴PD=PE同理PE=PF. (图11)∴PD=PE=PF.即点P到边AB、BC、CA的距离相等变式练习的题目有:(1)已知,如图12,△ABC,求证:△ABC的三条角平分线相交于一点P证明;假设∠ABC、∠ACB的平分线交于点P.则过点P作过点P作PD ⊥AB、PE⊥BC、PF⊥CA, 垂足分别是D、E、F ∵BN是的角平分线,PD ⊥AB、PE⊥BC∴PD=PE同理PE=PF.∴PD=PF.∵PD ⊥AB、PF⊥CA,∴点P在∠A的平分线上(图12)即∠A、∠ABC、∠ACB的平分线相交于一点P(2)已知△ABC中∠B、∠C的角平分线的交与点D,,求证:点D在∠A的平分线上(证明略)结论六:如图13,点E是△ABC一个内角平分线BE与一个外角平分线CE的交点,求证:AE是△ABC的外角平分线.证明:如图:则过点E作过点P作EG ⊥AC、EF⊥BD、EH⊥BH,垂足分别是G、F 、H∵BE是∠ABC的平分线, EF⊥BD、EH⊥BH,即EF=EG=EH可得:EH=EF 同理:EG=EF∵EG=EH EG ⊥AC、EH⊥BH, (图13)∴AE是△ABC的外角平分线.变式练习题目:(1)如图14,直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有:( )A.一处B. 两处C.三处D.四处 (图14) 解:由以上很容易得到答案:D(2)如图15,△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点F .求证:点F 到三边AB,BC,CA所在直线的距离相等. (证明略) (3) 点D 是△ABC 两个外角平分线BD 、CD 的交点, 求证:AD 是∠CAB 的角平分线。
(证明略) (图15) 掌握以上知识,那么完成以下题目就很轻松哟!1、( 2011年湖北省鄂州是中考题)△ABC 的外角∠ACD 的平分线CP 的内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP=_______________. 解:由结论六可知:AP 是△ABC 的一个外角的平分线 由结论三可知:∠BPC =21∠A. ∠BPC=40°∴∠A=80°. ∠A 的相邻外角是100°, (图16) 所以∠CAP=50°2、(2003年山东省“KLT 快乐灵通杯”初中数学竞赛试题)如图17,在Rt △ABC 中,∠ACB=90°,∠BAC=30°,∠ACB 的平分线与∠ABC 的外角平分线交与E 点,连接AE ,则∠AEB=度.解:由结论六可以知道:AE 是△ABC 的一个外角平分线,由结论二可知:∠AEB=90°-21∠ACB由此可得∠AEB=90°-21×90°=45° (图17)从上面的做题过程来看题目中给出的“∠A=30°”这个条件也可以不用的.总之,关于角平分线的题目类型多样,难度不一,要求教师要深挖教材,指导学生归纳总结关于角平分线的基本图形和基本结论,根据学生的“最近发展区”,做好变式,做深变式,真正做好知识的正迁移,时刻着眼于数学思维能力的和解决问题能力的落实与提高。