第二十讲容斥原理

合集下载

小学奥数教程之容斥原理

小学奥数教程之容斥原理

学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。

2、训练学生良好的数学思维习惯和思维品质。

要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。

3、锻炼学生优良的意志品质。

可以培养持之以恒的耐心和克服困难的信心,以及战胜难题的勇气。

可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。

容斥原理学生姓名授课日期教师姓名授课时长知识定位容斥原理中的知识点比较简单,是计数问题中比较浅的一支。

这个知识点经常和数论知识结合出综合型题目。

这个原理本身并不是很难理解,不过经常和数论知识结合出题,所以对学生的理解层次要求较高,学生必须充分理解、吃透。

1.充分理解和掌握容斥原理的基本概念2.利用图形分析解决容斥原理问题知识梳理授课批注:本讲的知识点必须让学生充分理解、吃透,这个原理本身并不是很难理解,不过经常和数论知识结合出题所以对学生的理解层次要求较高。

一. 容斥原理的概念定义在一些计数问题中,经常遇到有关集合元素个数的计算。

我们用|A|表示有限集A 的元素个数。

求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:|A∪B| = |A| + |B| - |A∩B|,我们称这一公式为包含与排除原理,简称容斥原理。

图示如右:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:A∩B,即阴影面积。

用法:包含与排除原理告诉我们,要计算两个集合A、B的并集A∪B的元素的个数,可分以下两步进行:第一步:分别计算集合A、B的元素个数,然后加起来,即先求|A|+|B|(意思是把A、B的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C=|A∩B|(意思是“排除”了重复计算的元素个数)二.竞赛考点1.容斥原理的基本概念2.与数论相结合的综合型题目例题精讲【试题来源】【题目】在一个炎热的夏日,10个小学生去冷饮店每人都买了冷饮。

(奥数典型题)容斥原理--2024年六年级下册小升初数学思维拓展

(奥数典型题)容斥原理--2024年六年级下册小升初数学思维拓展

容斥原理【知识点归纳】在日常生活中,人们常常需要统计一些数量,在统计的过程中,往往会发现有些数量重复出现,为了使重复出现的部分不致被重复计算,人们研究出一种新的计数方法,既先不考虑重复的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排除出去,使计算的结果既无遗漏又无重复.这种计数方法称为包含排除法,也叫做容斥原理或重叠问题.一般方法:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.容斥原理1:两量重叠问题A类与B类元素个数的总和=A类元素的个数+B类元素个数﹣既是A类又是B类的元素个数用符号可表示成:A∪B=A+B﹣A∩B(其中符号“∪”读作“并”,相当于中文“和”或者“或”的意思,符号“∩”读作“交”,相当于中文“且”的意思).容斥原理2:三量重叠问题A类、B类与C类元素个数的总和=A类元素的个数+B类元素个数+C类元素个数﹣既是A类又是B类的元素个数﹣既是B类又是C类的元素个数﹣既是A类又是C类的元素个数+同时是A类、B类、C类的元素个数.用符号表示为:A∪B∪C=A+B+C﹣A∩B﹣B∩C﹣A∩C+A∩B∩C1.三年级共有80名同学参加书法兴趣小组和美术兴趣小组,其中参加书法组的有52人,参加美术组的有48人.那么,既参加书法组又参加美术组的有多少人?2.我们班参入调查了饭后吃水果情况:30人喜欢吃苹果,27人喜欢吃梨,10人两种都喜欢,问我们班有多少人?3.同学们收集图片.张明、李红、蔡正明、王丹、熊威、高伟、梅芳7个人收集了名山图片,吴凤、李红、王丹、戴月红、高伟这5人收集了河流图片,吴心怡、张冬、李可这3人收集了奥运图片.(1)收集名山图片和奥运图片的共有多少人?(2)收集名山图片和河流图片的共有多少人?4.在校运动会上,共有30人参加跳远和跳高。

参加跳远的有18人,参加跳高的有22人,既参加跳远又参加跳高的有多少人?5.三(1)班有48人,其中订《少年报》的有32人,订《数学报》的有38人,有25人两份报都订。

初中数学重点梳理:容斥原理

初中数学重点梳理:容斥原理

容斥原理知识定位在计数时,常常遇到这样的情况,作合并运算时会把重复的部分多算,需要减去;作排除运算时会把重复部分多减,需要加上,这就是容斥原理。

它的基本形式是: 记A 、B 是两个集合,属于集合A 的东西有A个,属于集合B 的东西有B个,既属于集合A 又属于集合B 的东西记为B A ,有BA 个;属于集合A 或属于集合B 的东西记为B A ,有BA 个,则有:B A =A +B -BA 。

知识梳理知识梳理1.容斥原理容斥原理可以用一个直观的图形来解释。

如图,左圆表示集合A ,右圆表示集合B ,两圆的公共部分表示B A ,两圆合起来的部分表示B A ,由图可知:B A =A +B -BA 。

容斥原理又被称作包含排除原理或逐步淘汰原则。

例题精讲【试题来源】【题目】在1到200的整数中,既不能被2整除,又不能被3整除的整数有多少个? 【答案】67【解析】根据容斥原理,应是200减去能被2整除的整数个数,减去能被3整除的整数个数,还要加上既能被2整除又能被3整除,即能被6整除的整数个数。

A BAB在1到200的整数中,能被2整除的整数个数为:2⨯1,2⨯2,…,2⨯100,共100个;在1到200的整数中,能被3整除的整数个数为:3⨯1,3⨯2,…,3⨯66,共66个;在1到200的整数中,既能被2整除又能被3整除,即能被6整除的整数个数为: 6⨯1,6⨯2,…,6⨯33,共33个;所以,在1到200的整数中,既不能被2整除,又不能被3整除的整数个数为:200-100-66+33=67(个)【知识点】容斥原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】求1到100的自然数中,所有既不是2的倍数又不是3的倍数的整数之和S。

【答案】1633【解析】1到100的自然数中,所有自然数的和是:1+2+3+…+100=50501到100的自然数中,所有2的倍数的自然数和是:2⨯1+2⨯2+…+2⨯50=2⨯(1+2+3+…+50)= 2⨯1275=25501到100的自然数中,所有3的倍数的自然数和是:3⨯1+3⨯2+…+3⨯33=3⨯(1+2+3+…+33)= 3⨯561=16831到100的自然数中,所有既是2的倍数又是3的倍数,即是6的倍数的自然数和是:6⨯1+6⨯2+…+6⨯16=6⨯(1+2+3+…+16)= 6⨯136=816所以,1到100的自然数中,所有既不是2的倍数又不是3的倍数的整数之和S=5050-2550-1683+816=1633【知识点】容斥原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】求不大于500而至少能被2、3、5中一个整除的自然数的个数。

高二数学容斥原理

高二数学容斥原理

竞赛讲座20-容斥原理在一些计数问题中,经常遇到有关集合元素个数的计算。

我们用|A|表示有限集合A的元素个数(新教材中用CardA表示有限集合A的元素个数)。

原理一:给定两个集合A和B,要计算A∪B中元素的个数,可以分成两步进行:第一步:先求出∣A∣+∣B∣(或者说把A,B的一切元素都“包含”进来,加在一起);第二步:减去∣A∩B∣(即“排除”加了两次的元素)总结为公式:|A∪B|=∣A∣+∣B∣-∣A∩B∣。

原理二:给定三个集合A,B,C。

要计算A∪B∪C中元素的个数,可以分三步进行:第一步求|A|+|B|+|C|;第二步减去|A∩B|,|A∩C|,|B∩C|;第三步加上|A∩B∩C|。

例1求不超过20的正整数中是2的倍数或3的倍数的数共有多少个。

例2 某班统计考试成绩,数学得90分上的有25人;语文得90分以上的有21人;两科中至少有一科在90以上的有38人。

问两科都在90分以上的有多少人?例3 某校组织棋类比赛,分成围棋、中国象棋和国际象棋三个组进行。

参加围棋比赛的共有42人,参加中国象棋比赛的共有51人,参加国际象棋比赛的共有30人。

同时参加了围棋和中国象棋比赛的共有13人,同时参加了围棋和国际象棋比赛的7人,同时参加了中国象棋和国际象棋比赛的11人,其中三种棋赛都参加的3人。

问参加棋类比赛的共有多少人?例4边长分别为6,5,2的三个正方形,如图8—5所示放在桌面上。

问它们盖住的面积是多大?例5求1到200的自然数中不能被2、3、5中任何一个数整除的数有多少?练习题1. 某班共有48名学生,都参加了语文兴趣小组或数学兴趣小组,其中参加语文兴趣小组的有30人,参加数学兴趣小组的有28人,问同时参加语文、数学兴趣小组的人数是多少.2.纸片面积为7,一张边长为2的正方形纸片,把这两张纸片放在桌面上覆盖的面积为8,问两张纸片重合部分的面积是多少?3. 不超过110且与110互质的自然数有几个?4.求在1至1000的自然数中,不能被5或7整除的数有多少个。

容斥原理的三个公式

容斥原理的三个公式

容斥原理的三个公式容斥原理是数学中一个挺有意思的概念,它有三个重要的公式,今天咱们就来好好聊聊这三个公式。

我先跟您说啊,这容斥原理在解决集合相关的问题时,那可真是大显身手。

就拿咱们生活中的例子来说吧,比如说学校组织活动,有参加书法比赛的同学,有参加绘画比赛的同学,还有既参加书法又参加绘画比赛的同学。

那怎么算总共有多少同学参加了这两类比赛呢?这时候容斥原理就派上用场啦!咱们先来说说容斥原理的第一个公式。

这个公式可以表述为:两个集合 A 和 B 的并集的元素个数,等于 A 的元素个数加上 B 的元素个数,再减去 A 和 B 的交集的元素个数。

简单来说就是:|A∪B| = |A| + |B| -|A∩B| 。

举个例子哈,一个班级里,喜欢语文的有 20 个同学,喜欢数学的有 30 个同学,既喜欢语文又喜欢数学的有 10 个同学。

那喜欢语文或者喜欢数学的同学一共有多少个呢?咱们就可以用这个公式来算。

|A|就是喜欢语文的 20 个同学,|B|就是喜欢数学的 30 个同学,|A∩B|就是既喜欢语文又喜欢数学的 10 个同学。

把数字带进去,那就是 |A∪B| = 20 + 30 - 10 = 40 个同学。

您瞧,是不是很清楚明了?再来说说第二个公式。

如果是三个集合 A、B、C ,那它们的并集的元素个数就是:|A∪B∪C| = |A| + |B| + |C| - |A∩B| - |B∩C| - |C∩A| +|A∩B∩C| 。

咱们还是拿例子来说事儿。

比如说在一个班级里,喜欢体育的有 25 个同学,喜欢音乐的有 15 个同学,喜欢美术的有 20 个同学,既喜欢体育又喜欢音乐的有8 个同学,既喜欢音乐又喜欢美术的有6 个同学,既喜欢体育又喜欢美术的有 9 个同学,三个都喜欢的有 3 个同学。

那喜欢体育或者音乐或者美术的同学一共有多少个呢?咱们就把数字往公式里带:|A|是 25 ,|B|是 15 ,|C|是 20 ,|A∩B|是 8 ,|B∩C|是 6 ,|C∩A|是 9 ,|A∩B∩C|是 3 。

4章 容斥原理

4章 容斥原理

第四章 容斥原理容斥原理又称为“入与出原理”、“包含排斥原理”或“交互分类原理”。

它是组合学中的一个基本计数理论。

用加法法则解决一些集合的计数问题时,一般要求将计数的集合划分为若干个互不相交的子集,且这些子集都比较容易计数。

然而,实际中又有很多计数问题要找到容易计数而又两两不相交的子集并非易事。

但往往能够知道某一集合的若干相交子集的计数,进而把所要求的集合中的元素个数计算出来。

这一计数方法就是下面所要介绍的容斥原理。

§4.1 引 言(一) 研究内容(1)实例求不超过20的正整数中是2的倍数或3的倍数的数的个数。

①不超过20 的正整数中是2的倍数的数有⎥⎦⎥⎢⎣⎢220=10个,即2,4,6,8,10,12,14,16,18,20; ②是3的倍数的数有⎥⎦⎥⎢⎣⎢320=6个,即3,6,9,12.15,18;③二者相加为16个。

但实际上满足条件的数只有13个:即2,3,4,6,8,9,10,12,14,15,16,18,20;原因在于把既是2的倍数,又是3的倍数的数重复算了一次,这样的数恰好有⎥⎦⎥⎢⎣⎢⨯3220=3个,即6,12,18。

④正确的统计方法应为:16+6-3=13个。

(2)内容容斥原理所要研究的就是若干个有限集合的交或并的计数问题。

(二) 集合运算由于讨论过程中要涉及到有关集合的概念及性质。

故这里不加证明地给出集合论中一些简单的结果。

用大写字母表示一个集合,如A 、B 、C 、S 等,用小写字母表示集合的元素,如a 、b 、c 、x 、y 、z 等。

元素a 属于集合A ,记为A a ∈,不属于A ,记为A a ∉ . 空集记为φ。

关于集合的运算,有(1) 并(和):记为B A 或A +B ; (2) 交(积):记为B A 或AB ; (3) 差:记为A -B ,A -B =B A ⋅=A -AB (4) 对立集(非):即A =S -A(三) 优先级类似于数字的四则运算,我们这里规定在混合算式中的优先级为:先取非,次为交,再次为并或差。

容斥原理讲义

容斥原理讲义

容斥原理例题在很多计数问题中常用到数学上的一个包含与排除原理,也称为容斥原理。

为了说明这个原理,我们先介绍一些集合的初步知识。

在讨论问题时,常常需要把具有某种性质的同类事物放在一起考虑。

如:A={五(1)班全体同学}。

我们称一些事物的全体为一个集合。

A={五(1)班全体同学}就是一个集合。

例1. B={全体自然数}={1,2,3,4,…}是一个具体的有无限多个元素的集合。

例2. C={在1,2,3,…,100 中能被3 整除的数}={3,6,9,12,…,99}是一个具有有限多个元素的集合。

例3. 通常集合用大写的英文字母A、B、C、…表示。

构成这个集合的事物称为这个集合的元素。

如上面例子中五(1)班的每一位同学均是集合A 的一个元素。

又如在例1 中任何一个自然数都是集合B 的元素。

像集合B 这种含有无限多个元素的集合称为无限集。

像集合C 这样含有有限多个元素的集合称为有限集。

有限集合所含元素的个数常用符合︱A︱、︱B︱、︱C︱、…表示。

例4. 记号A∪B 表示所有属于集合A 或属于集合B 的元素所组成的集合,就是下边示意图中两个圆所覆盖的部分。

集合A∪B 叫做集合A与的并集。

“∪”读作“并”,“A∪B”读例5. 设集合A={1,2,3,4},集合B={2,4,6,8},则A∪B={1,2,3,4,6,8}。

元素2,4 在集合A、B 中都有,在并集中只写一个。

记号A∩B 表示所有既属于集合A 也属于集合B 中的元素的全体。

就是上面图中阴影部分所表示的集合。

即是由集合A、B 的公共元素所组成的集合。

它称为集合A、B 的交集。

符号“∩”读作“交”,“A∩B”读作“A 交B”。

如例3 中的集合A、B,则A∩B={2,4}。

例6. 设集合I={1,3,5,7,9},集合A={3,5,7},A={属于集合,但不属于集合A 的全体元素}={1,9}。

我们称属于集合I 但不属于集合A 的元素的集合为集合A 在集合I 中的补集(或余集),如下图中阴影部分表示的集合(整个长方形表示集合I),常记作A。

专题26 容斥原理(解析)【网店:教师学科网资料】

专题26 容斥原理(解析)【网店:教师学科网资料】

2022-2023学年学校四班级思维拓展举一反三精编讲义专题26 容斥原理专题简析:容斥问题涉及到一个重要原理——包含与排解原理,也叫容斥原理。

即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排解重复部分。

容斥原理:对n 个事物,假如接受不同的分类标准,按性质a 分类与性质b 分类(如图),那么具有性质a 或性质b 的事物的个数=N a +N b -N ab 。

【典例分析01】一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。

又问:“谁做完数学作业?请举手!”有42人举手。

最终问:“谁语文、数学作业都没有做完?”没有人举手。

求这个班语文、数学作业都完成的人数。

分析 完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。

这是由于语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。

所以,这个班语文、数作业都完成的有:79-48=31人。

【典例分析02】某班有36个同学在一项测试中,答对第一题的有25人,答对其次题的有23人,两题都答对的有15人。

问多少个同学两题都答得不对?分析与解答:已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。

又已知答对其次题的有23人,用只答对第一题的人数,加上答对其次题的人数就得到至少有一题答对的人数:10+23=33人。

所以,两题都答得不对的有36-33=3人。

Nab Nb Na 学问精讲典例分析【典例分析03】某班有56人,参与语文竞赛的有28人,参与数学竞赛的有27人,假如两科都没有参与的有25人,那么同时参与语文、数学两科竞赛的有多少人?分析与解答:要求两科竞赛同时参与的人数,应先求出至少参与一科竞赛的人数:56-25=31人,再求两科竞赛同时参与的人数:28+27-31=24人。

【典例分析04】在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?分析与解答:从1到100的自然数中,减去5或6的倍数的个数。

【小学四年级奥数讲义】 容斥原理

【小学四年级奥数讲义】 容斥原理

【小学四年级奥数讲义】容斥原理一、专题简析:容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。

即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b 分类(如图),那么具有性质a或性质b的事物的个数=N a+N b-N ab。

Nab NbNa二、精讲精练:例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。

又问:“谁做完数学作业?请举手!”有42人举手。

最后问:“谁语文、数学作业都没有做完?”没有人举手。

求这个班语文、数学作业都完成的人数。

练习一1、五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。

其中语文成绩优秀的有65人,数学优秀的有87人。

语文、数学都优秀的有多少人?2、四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。

问多少个同学两题都答得不对?练习二1、五(1)班有40个学生,其中25人参加数学小组,23人参加科技小组,有19人两个小组都参加了。

那么,有多少人两个小组都没有参加?2、一个班有55名学生,订阅《小学生数学报》的有32人,订阅《中国少年报》的有29人,两种报纸都订阅的有25人。

两种报纸都没有订阅的有多少人?例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?练习三1、一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。

两样都会的有多少人?2、一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人。

容斥原理及其应用

容斥原理及其应用

容斥原理及其应用容斥原理是组合数学中一种重要的计数技巧,被广泛运用于排列组合、概率统计等领域。

它的核心思想是通过求出多个集合的交集和并集来计算所需的数量,从而避免重复计数,确保准确性和全面性。

本文将介绍容斥原理的基本概念、推导过程以及其在实际问题中的应用。

一、容斥原理的基本概念容斥原理是根据集合的性质和运算规则推导出的一种计数方法。

在给定一组集合时,容斥原理可以帮助我们计算这些集合的交集和并集的元素个数。

在具体运用中,我们将问题转化成求解几个集合的元素个数之和的问题。

容斥原理表达式如下:∣A1∪A2∪⋯∪An∣=∣A1∣+∣A2∣+⋯+∣An∣−∣A1∩A2∣−∣A1∩A3∣−⋯−∣An−1∩An∣+⋯+(−1)^n−1∣An−1∩An∣其中,∣A∣表示集合A的元素个数,∪表示集合的并集,∩表示集合的交集,n表示集合的数量。

二、容斥原理的推导过程容斥原理的推导过程可以通过数学归纳法来实现,下面简要介绍:首先,我们给定两个集合A和B,我们用∣A∣表示集合A的元素个数,用∣B∣表示集合B的元素个数。

如果我们要计算A和B的并集∣A∪B∣,那么可以采取如下步骤:1. 首先,我们直接将∣A∣和∣B∣相加,得到∣A∣+∣B∣。

2. 然后,我们需要减去重复计算的部分,即集合A和B的交集∣A∩B∣。

因为∣A∩B∣这部分元素已经在∣A∣和∣B∣中被计算了一次,所以需要减去∣A∩B∣。

通过以上步骤,我们得到了∣A∪B∣=∣A∣+∣B∣−∣A∩B∣。

这就是容斥原理的基本推导过程。

接下来,我们将容斥原理推广到更多集合的情况。

假设我们有三个集合A、B和C,我们想要计算它们的并集∣A∪B∪C∣,我们可以按照以下步骤进行:1. 首先,我们将∣A∣、∣B∣和∣C∣相加,得到∣A∣+∣B∣+∣C∣。

2. 然后,我们需要减去两两集合的交集部分,即∣A∩B∣、∣A∩C∣和∣B∩C∣。

这是因为这些部分元素在∣A∣、∣B∣和∣C∣中都被计算了一次,所以需要减去。

组合数学讲义 4章 容斥原理

组合数学讲义 4章 容斥原理

第四章 容斥原理● 是组合学中的一个基本计数理论。

也称 “包容与排斥原理”、“入与出原理”、“包含排斥原理”或“交互分类原理”。

● 加法法则的限制:要求将计数的集合划分为若干个互不相交的子集,且这些子集都比较容易计数。

● 问题:实际中又有很多计数问题要找到容易计数而又两两不相交的子集并非易事。

但往往能够知道某一集合的若干相交子集的计数,进而把所要求的集合中的元素个数计算出来。

§4.1 引 言(一) 研究内容(1)实例【例】求不超过20的正整数中是2的倍数或3的倍数的数的个数。

①不超过20 的正整数中是2的倍数的数有⎥⎦⎥⎢⎣⎢220=10个,即A={2,4,6,8,10,12,14,16,18,20};②是3的倍数的数有⎥⎦⎥⎢⎣⎢320=6个,即B ={3,6,9,12.15,18}; ③二者相加为16个。

但实际上满足条件的数只有13个:即2,3,4,6,8,9,10,12,14,15,16,18,20;原因在于把既是2的倍数,又是3的倍数的数重复算了一次,这样的数恰好有⎥⎦⎥⎢⎣⎢⨯3220=3个,即6,12,18。

④正确的统计方法应为:10+6-3=13个。

(2)内容容斥原理所要研究的就是若干个有限集合的交或并的计数问题。

(二) 集合的表示用大写字母表示一个集合,如A 、B 、C 、S 等,用小写字母表示集合的元素,如a 、b 、c 、x 、y 、z 等。

元素a 属于集合A ,记为A a ∈,不属于A ,记为A a ∉ . 空集记为φ。

(三) 集合的运算(1) 并(和):记为B A 或A +B ; (2) 交(积):记为B A 或AB ; (3) 差:记为A -B (4) 对立集(非):即A =S -A 显然有 A -B =B A ⋅=A -AB(四) 优先级类似于数字的四则运算,规定在混合算式中的优先级为:先取非,次为交,再次为并或差。

对于出现在同一算式中的同级运算,按从左向右的顺序进行。

四年级 容斥原理 大班精品课课件

四年级 容斥原理  大班精品课课件

容斥原理1.理解什么是容斥原理,能画图分析其中的关系.2.利⽤容斥原理解决实际问题容斥原理原理:包含与排除,也称容斥原理即当两个计数部分有重复包含时,为了不重复计数,从他们的和中排除重复部分例题⼀学校开办运动会,报名参加⻓跑的有10个⼈,报名参加跳远的有7⼈,两样都报名的有3个⼈,最后统计可得,参加运动会的由14⼈,⼩朋友,这个统计数字对吗?练习⼀有两对⽗⼦上⼭打猎,每⼈各打⼀只野兔,可是放到⼀起数⼀数,⼀只、两只、三只。

再数⼀遍,还是3只,怎么回事呢?例题11453836单选题三()班有学⽣⼈,喜欢喜⽺⽺的有⼈,喜欢美⽺⽺的有⼈,既喜欢喜⽺⽺⼜喜欢美⽺⽺的有( )⼈。

A12B29C33例题⼆李⽼师出了两道题,全班40⼈中,第⼀题有30⼈对,第⼆题有12⼈没有做对,两道题都做对的⼈有20⼈。

(1)⾄少答对⼀题的有多少⼈?(2)两题都不对的有多少⼈练习⼆某班56⼈在⼀次测试中,答对⼀题的有50⼈,答对第⼆题的有43⼈,两题都答对的有40⼈,⾄少答对⼀题的有多少⼈,两题都没答对的有多少⼈?点 拨1.利⽤⻙恩图解题公式总结:A、B、C总数=A+B+C-ABC重叠部分例题三在⼀群⼩朋友中,有27个⼈看过《千与千寻》,有15个⼈看过《天空之城》,并且有10个⼈两部影⽚都看过。

已知每个⼩朋友⾄少都看过其中⼀部,那么这群⼩朋友⼀共有多少⼈?练习三某班学⽣⼿中分别拿红⻩两种颜⾊的⼩旗,已知⼿中有红旗的共有34⼈,⼿中有⻩旗的共有26⼈,⼿中有红⻩两种⼩旗的有9⼈,那么这个班共有( )⼈。

(每个学⽣⼿上都拿着⼩旗)例题2单选题学校开设两个兴趣⼩组,三⼈参加书画⼩组,⼈参加棋艺⼩组,两个⼩组都参加的有⼈,那么三⼀共有( )⼈参加了书画和棋艺⼩组。

(1)27243(1)A 51B 54C 48D30例题四海军突击队共有⼠兵30⼈,每个⼈都擅⻓射击和空⼿格⽃中的⼀项或两项,如果⼠兵中擅⻓射击的有12⼈,擅⻓空⼿格⽃的有23⼈,那么,这两项均擅⻓的⼠兵有多少⼈?练习五科技节那天,学校的科技室⾥展出了每个年级学⽣的科技作品,其中有110件不是⼀年级的,有100件不是⼆年级的,⼀、⼆年级参展的作品共有32件。

四年级奥数专题-容斥原理

四年级奥数专题-容斥原理

四年级奥数专题-容斥原理专题简析:容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理.即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分.容斥原理:对n 个事物,如果采用不同的分类标准,按性质a 分类与性质b 分类(如图),那么具有性质a 或性质b 的事物的个数=N a +N b -N ab .例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手.又问:“谁做完数学作业?请举手!”有42人举手.最后问:“谁语文、数学作业都没有做完?”没有人举手.求这个班语文、数学作业都完成的人数.分析 完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数.这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次.所以,这个班语文、数作业都完成的有:79-48=31人.练 习 一1,五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩.其中语文成绩优秀的有65人,数学优秀的有87人.语文、数学都优秀的有多少人?Nab NbNa2,四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?3,学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人.这个文艺组一共有多少人?例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人.问多少个同学两题都答得不对?分析与解答:已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人.又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人.所以,两题都答得不对的有36-33=3人.练习二1,五(1)班有40个学生,其中25人参加数学小组,23人参加科技小组,有19人两个小组都参加了.那么,有多少人两个小组都没有参加?2,一个班有55名学生,订阅《小学生数学报》的有32人,订阅《中国少年报》的有29人,两种报纸都订阅的有25人.两种报纸都没有订阅的有多少人?3,某校选出50名学生参加区作文比赛和数学比赛,结果3人两项比赛都获奖了,有27人两项比赛都没有获奖.已知作文比赛获奖的有14人,问数学比赛获奖的有多少人?例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?分析与解答:要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人.练习三1,一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人.两样都会的有多少人?2,一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人.问这两种棋都会下的有多少人?3,三年级一班参加合唱队的有40人,参加舞蹈队的有20人,既参加合唱队又参加舞蹈队的有14人.这两队都没有参加的有10人.请算一算,这个班共有多少人?例4:在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?分析与解答:从1到100的自然数中,减去5或6的倍数的个数.从1到100的自然数中,5的倍数有100÷5=20个,6的倍数有16个(100÷6=16……4),其中既是5的倍数又是6的倍数(即5和6的公倍数)的数有3个(100÷30=3……10).因此,是6或5的倍数的个数是16+20-3=33个,既不是5的倍数又不是6的倍数的数的个数是:100-33=67个.练习四1,在1到200的全部自然数中,既不是5的倍数又不是8的倍数的数有多少个?2,在1到130的全部自然数中,既不是6的倍数又不是5的倍数的数有多少个?3,五(1)班做广播操,全班排成4行,每行的人数相等.小华排的位置是:从前面数第5个,从后面数第8个.这个班共有多少个学生?例5:光明小学举办学生书法展览.学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22幅不是六年级的,五、六年级参展的书法作品共有10幅,其他年级参展的书法作品共有多少幅?分析与解答:由题意知,24幅作品是一、二、三、四、六年级参展作品的总数,22幅是一、二、三、四、五年级参展作品的总数.24+22=46幅,这是一个五、六年级和两个一、二、三、四年级参展的作品数,从其中去掉五、六两个年级共参展的10幅作品,即得到两个一、二、三、四年级参展作品的总数,再除以2,即可求出其他年级参展作品的总数.(24+22-10)÷2=18幅.练习五1,科技节那天,学校的科技室里展出了每个年级学生的科技作品,其中有110件不是一年级的,有100件不是二年级的,一、二年级参展的作品共有32件.其他年级参展的作品共有多少件?2,六(1)儿童节那天,学校的画廊里展出了每个年级学生的图画作品,其中有25幅画不是三年级的,有19幅画不是四年级的,三、四两个年级参展的画共有8幅.其他年级参展的画共有多少幅?3,实验小学举办学生书法展,学校的橱窗里展出每个年级学生的书法作品,其中有28幅不是五年级的,有24幅不是六年级的,五、六年级参展的书法作品共有20幅.一、二年级参展的作品总数比三、四年级参展作品的总数少4幅.一、二年级参展的书法作品共有多少幅?。

最新容斥原理PPT课件

最新容斥原理PPT课件

n !S (m ,m )A 1 A 2 ... A n n m C (n ,1 )(n 1 )m
( 1 )kC (n ,k)(nk)m ( 1 )nC (n ,n )0 m .
即:
S(m ,n)1 nC(n,k)(nk)m.
n!k0
例11 求方程x1+x2+x3=15的非负整数解的数目。 这个问题相当于15个相同的球放入3个不同的盒子的 不同方案数,为C(15+3-1,15)=C(17,2)。
A BC D 1 2 3 4
如左图,斜线区域表示禁区。
R(
)=1+6x+10x2+4x3,
方案数为:4!-6×3!+10×2!-4×1!=4。
例14 再解错排问题。 对应于棋盘上对角线格子为禁区的布子问题。
棋盘多项式为:
n
C = ··· R(C)(1x)n C(n,k)xk, k0 即:rk(C)=C(n,k)。
类似有:|A2∩A3|=0,|A2∩A4|=20!, |A2∩A5|=20!, |A3∩A4|=20!, |A3∩A5|=20!, |A4∩A5|=19!。
A1 A2 A3 0, A1 A2 A4 0,
A1 A2 A5 0, A1 A3 A4 0,
A1 A3 A5 0, A1 A4 A5 0,
ABCUA BCABBC
ACABC 4 n 3 3 n 3 2 n 1 .
例7 用26个英文字母作不允许重复的全排列,要求 排除dog,god,gum,depth,thing字样的出现,求 满足这些条件的排列数。
令Ai (i=1,2,3,4,5)分别表示出现以上五个单词之一的 排列的集合。
下面回到有禁区的排列问题,有如下的定理:

五年级奥数-容斥原理最新解读

五年级奥数-容斥原理最新解读

例如:一次期末考试,某班有15人数学得满分,有12 人语文得满分,并且有4人语、数都是满分,那么这个 班至少有一门得满分的同学有多少人? 分析:依题意,被计数的事物有语、数得满分两类, “数学得满分”称为“A类元素”,“语文得满分” 称为“B类元素”,“语、数都是满分”称为“既是A 类又是B类的元素”,“至少有一门得满分的同学” 称为“A类和B类元素个数”的总和。为15+12-4=23。
练1.C班的同学都至少喜欢一项运动,有37人喜欢 乒乓球,26人喜欢篮球,21人两种球都喜欢, 问C班有多少人? 解: 练2.自然数1,2,3…,99,100当中,能被3整除或能被4整除的 数共有几个?
Байду номын сангаас
解: 练3.某校参加数学竞赛的有120名男生、80名女生,语文竞赛的有 120女生,80男生,总共参赛人数有260名,其中75名男生两科都 参加了,问,只参加数学没参加语文的女生有多少?
问题1.十月国庆节,学校门口挂了一行彩 旗。小张从前数起,红旗是第8面;从后数 起,红旗是第10面。这行彩旗共多少面?
问题2.同学们排队做操,每行人数同样多。小明的位 置从左数起是第4个,从右数起是第3个,从前数起是 第5个,从后数起是第6个。做操的同学共有多少个? 问题3.把两块一样长的木板像下图这样钉在一起成 了一块木板。如果这块钉在一起的木板长120厘米, 中间重叠部分是16厘米,这两块木板各长多少厘米?
例1. A班共有40人,同学们都喜欢打篮球或者打羽毛球。 喜欢打篮球的有26人,喜欢打羽毛球的有24人,问两 种球都喜欢的同学有多少人? 解:
原理1:既是A又是B的数量=A的数量+B的数量-A或B的数量。
A或B的数量=A的数量+B的数量-既是A又是B的数量

第二十讲 容斥原理

第二十讲 容斥原理

第二十讲容斥原理(2)[知识提要]前面讲述过简单的容斥原理,“容”就是相容,相加,而“斥”就是相斥,相减,容斥原理作为一种计数方法,说简单点,就是从多的往下减,减过头了在加回来,加多了再减,减多了再加……最终得到正确结果。

对于计数中容易出现重复的题目,我们常常采用容斥原理,去掉重复的情况。

应用于计数集合划分有重叠,无法简单应用加法原理的情况下。

在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

如果被计数的事物有A、B两类,那么,具体公式为:A类或B类元素个数= A类元素个数+ B类元素个数—既是A类又是B类的元素个数。

如果被计数的事物有A、B、C三类,那么,具体公式为:A类或B类或C类元素个数= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A 类又是B类而且是C类的元素个数。

有了以上的容斥原理,一些看起来头绪很多的问题就可以比较方便地得到解决。

[经典例题][例1]五(1)班有学生42人,参加体育代表队的有30人,参加文艺代表队的25人,并且每个人都至少参加了一个队,这个班两队都参加的有几个人?[分析]我们可以画一个图帮助思考,画两个相交的圆圈:其中一个表示体育代表队,另一个表示文艺代表队,那么两圆的内部共有42人,而体育代表队的圆中有30人,文艺代表队的图中有25人,但:30+25=55>42,这是因为两队都参加的人被计算了两次,因此55-42=13,即是两队都参加的人数。

[解答]解:(30+25)-42=13(人)答:两队都参加的有13人。

[评注]可能有很多同学还是刚刚接触容斥原理,所以我们用图形来形象地描绘整个问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十讲容斥原理(2)[知识提要]前面讲述过简单的容斥原理,“容”就是相容,相加,而“斥”就是相斥,相减,容斥原理作为一种计数方法,说简单点,就是从多的往下减,减过头了在加回来,加多了再减,减多了再加……最终得到正确结果。

对于计数中容易出现重复的题目,我们常常采用容斥原理,去掉重复的情况。

应用于计数集合划分有重叠,无法简单应用加法原理的情况下。

在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

如果被计数的事物有A、B两类,那么,具体公式为:A类或B类元素个数= A类元素个数+ B类元素个数—既是A类又是B类的元素个数。

如果被计数的事物有A、B、C三类,那么,具体公式为:A类或B类或C类元素个数= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A 类又是B类而且是C类的元素个数。

有了以上的容斥原理,一些看起来头绪很多的问题就可以比较方便地得到解决。

[经典例题][例1]五(1)班有学生42人,参加体育代表队的有30人,参加文艺代表队的25人,并且每个人都至少参加了一个队,这个班两队都参加的有几个人?[分析]我们可以画一个图帮助思考,画两个相交的圆圈:其中一个表示体育代表队,另一个表示文艺代表队,那么两圆的内部共有42人,而体育代表队的圆中有30人,文艺代表队的图中有25人,但:30+25=55>42,这是因为两队都参加的人被计算了两次,因此55-42=13,即是两队都参加的人数。

[解答]解:(30+25)-42=13(人)答:两队都参加的有13人。

[评注]可能有很多同学还是刚刚接触容斥原理,所以我们用图形来形象地描绘整个问题。

当容斥原理的题目做多了之后,很多基本的题目就不再需要一个一个的画图了。

但是,当遇到复杂的问题时,图形还是帮助我们理解和解决问题的一个帮手。

[举一反三]1、某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人?2、六年级共有96人,两种刊物每人至少订其中一种,有23的人订《少年报》,有12的人订《数学报》,两种刊物都订的有多少人?3、森林中住着很多动物,据说狮子大王派仙鹤去统计鸟的种数,蝙蝠跑去说:“我有翅膀,我算鸟类。

”仙鹤把蝙蝠统计进去了,结果得出森林中共有80种鸟类,狮子大王又派大象去统计兽类的种数,蝙蝠又跑去说:“我没有羽毛,我应该算兽类。

”大家又把蝙蝠算为兽类,统计出森林中共有70种兽类。

最后狮子大王问:森林中共有鸟类和兽类多少种?狐狸军师听了仙鹤和大象的统计结果,向狮子大王报告:“森林中鸟类与兽类共计150种。

”听了上面的故事,请你说说狐狸军师这样统计对吗?为什么,正确的答案应该是多少种呢?[思路拓展][例2]在一个炎热的夏日,几个小朋友去冷饮店,每人至少要了一样冷饮,其中有6人要了冰棍,6人要了汽水,4人要了雪碧,只要冰棍和汽水的有3人,只要冰棍和雪碧的没明白每一种人的数量应该填在哪个空位里,题目就变得非常容易了。

同学们还要注意的一点是,最外圈的6,6,4三个数,并不是指的数字所在范围里的人数,而是指的整个圆里(即买了某种冷饮而并非只买这种冷饮)的人数。

另外,方法二里,为什么要减去1×2,同学们能明白吗?[举一反三]1,三年级一班的同学们报名参加趣味体育运动会,比赛内容共三项,分别是跳绳、拍球跑和踢毽子,每个人至少报了一项。

报跳绳的有15人,报拍球跑的有18人,报踢毽子的有20人,同时包跳绳和拍球跑的有8人,同时报跳绳和踢毽子的有5人,没有报了拍球跑和踢毽子,但是没报跳绳的同学。

三样都报的有2人。

那么三年级一班有多少名同学呢?2,班里组织了一次语数外三科的小测验,每名同学都至少有一门得满分,但是没有人拿到三个满分。

语文得满分的有10人,数学得满分的有20人,外语得满分的有25人,语文数学都得满分的有6人,数学外语都得满分的有12人,语文外语都得满分的有2人。

那么全班一共有多少人?3,一次中、美、俄三方的学术交流会上,有28人会说中文,有25人会说英文,有20人会说俄文,有13人会说中文和英文,有10人会说中文和俄文,有6人会说英文和俄文,仅有大会组织者一人三种语言全会。

那么这次交流会一共有多少人参与?[例3] 某班同学参加升学考试,得满分的人数如下:数学20人,语文20人,英语20人,数学、英语两科满分者8人,数学、语文两科满分者7人,语文、英语两科满分者9人,三科都没得满分者3人。

问这个班最多多少人?最少多少人?分的人数,即x x ≤≤78,且x ≤9,由此我们得到x ≤7。

另一方面x 最小可能是0,即没有三科都得满分的。

当x 取最大值7时,全班有39746+=人,当x 取最小值0时,全班有390+=39人。

答:这个班最多有46人,最少有39人。

[评注]这道题目里,我们不知道三科都得满分者的人数,也就无法直接用容斥原理来计算班里的总人数。

但是我们可以假设出三科都得满分的人数,再利用包含原则,即三科都得满分的人数不能小于0,也不能超过某两科得满分的人数,从而确定了三科都满分的人数的一个范围,再代入全班人数的计算式子,便可得出最多的人数与最少的人数。

遇到这种需要假设的题目,同学们一定要注意设,并且要知道设哪个。

如果这道题目假设了语文、数学得满分但英语没得满分的人数,虽然也能计算,但是会麻烦很多。

[举一反三]1, 在四年级二班里,有25名男生,有30名少先队员,有13名三好学生。

男少先队员有12人,男三好学生有6人,少先队员里的三好学生有5人,有3名女生既不是少先队员又不是三好学生。

那么四年级二班最少有多少人,最多有多少人?2, 某公司的员工为地震灾区捐款、献血和游行鼓励,每位员工至少参加了一项。

捐款的有40人,献血的有35人,游行的有25人,捐款、献血但是没有游行的有8人,捐款、游行但是没有献血的有12人,同时献血和游行的有10人。

那么这个公司最少有多少名员工,最多又有多少名呢?3, 小玉在黑板上写下了一些数,其中每个数都至少能被2、3、5之一整除。

被2整除的数有10个,被3整除的数有9个,被5整除的数有6个。

被2、3整除但是不被5整除的有4个,被2、5整除但是不被3整除的有3个、被3、5整除但是不被2整除的有2个。

那么小玉最少写下了几个数?最多又写下了几个呢?[例4]有28人参加田径运动会,每人至少参加跑、跳、投中的两种比赛。

已知有8人没参加跑的项目,参加投掷项目的人数与参加跑和跳两项的人数都是17人。

问:只参加跑和投掷两项的有多少人?题目就变画图来得清晰与直接。

[举一反三]1,有28人参加田径运动会,没有人同时参加跑、跳、投三种比赛。

已知有20人参加了跑的项目,参加投掷项目的人数与参加跑和跳两项的人数都是10人,只参加跳项目的有5人。

问:只参加跑和投掷两项的有多少人?2,56名小朋友,每名小朋友胸前都戴着红、白、蓝三种颜色的花,每人每种花至多戴一朵。

有30名小朋友戴了红花,有15名小朋友戴了白花和蓝花,只戴一种花的有21人,他们中戴每个颜色的花的人数都相同。

那么有多少名小朋友三种花都戴了呢?3,一次聚会,对参与聚会的人规定,如果穿了西服,打了领带,则必须穿黑皮鞋。

来的50人里穿西服、打领带、穿黑皮鞋的各有20人,穿西服和黑皮鞋的有12人,穿黑皮鞋打领带但是没有穿西服的有6人。

那么有多少人没穿西服,没打领带,并且没穿黑皮鞋?[例5]某校六年级二班有49人参加了数学、英语、语文学习小组,其中数学有30人参加,英语有20人参加,语文小组有10人。

老师告诉同学既参加数学小组又参加语文小组的有3人,既参加数学又参加英语和既参加英语又参加语文的人数均为质数,而三种全参加的。

答:既参加英语又参加数学小组的为2人或7人。

[评注]所以,我们应该按容斥原理的方法来解决此问题。

用容斥原理的那一个呢?想一想,被计数的事物有那几类?每一类的元素个数是多少?另外,这道题目也帮助我们复习了质数与合数的概念和性质。

[举一反三]1,某校五年级三班有51人参加了数学、英语、语文学习小组,其中数学有30人参加,英语有20人参加,语文小组有20人。

老师告诉同学既参加数学小组又参加语文小组的有8人,既参加数学又参加英语和既参加英语又参加语文的人数均为质数,而三种全参加的只有1人,求既参加英语又参加数学小组的人数。

2,27块立方体,每个都用红、黄、蓝三种颜料中的一种或几种涂上了色。

已知涂了红色的有21块,涂了黄色和蓝色的立方体个数都各自是一个整数的平方。

同时涂了红、黄两色的有10块,同时涂了黄、蓝两色的有3块,同时涂了红、蓝两色的有2块。

仅有一块立方体三种颜色都涂了。

那么有多少块涂了黄色呢?3,有20名同学,爱唱歌的有8人,爱跳舞的有9人,爱演奏乐器的有10人,爱唱歌跳舞的有5人,爱唱歌和演奏乐器的有4人,爱跳舞和演奏乐器的有5人。

三种都爱的和三种都不爱的同学的个数都是一个质数,那么有多少名同学至少有一个爱好?[例6]有25人参加跳远达标赛,每人跳三次,每人至少有一次达到优秀。

第一次达到优秀的有10人,第二次达到优秀的有13人,第三次达到优秀的有15人,三次都达到优秀的只有1人。

只有两次达到优秀的有多少人?在容斥中进行扣除。

准确地画出“只有两次达到优秀”的人数在图中的位置,是解决此问题的关键。

[举一反三]1、学校先后举行数学、作文、自然三科竞赛,某班有25人报名参加。

其中14人参加数学竞赛,12人参加作文竞赛,10人参加自然竞赛,并且有4人参加数学作文两科竞赛,有2人参加数学、自然两科竞赛;只有1人三科竞赛都参加。

问有多少人参加作文、自然两科的竞赛?2、有A、B、C三本书,至少读过其中一本的有20人,读过A书的有10人,读过B书的有12人,读过C书的有15人,读过A、B两书的有12人,读过B、C两书的有9人,读过A、C两书的有7人,三本书全都读过有多少人?3、某班四年级时,五年级时和六年级时分别评出10名三好学生,又知四、五年级连续三好生4人,五、六年级连续三好生3人,四年级、六年级两年评上三好生的有5人,四、五、六三年没评过三好生的有20人,问这个班最多有多少名同学,最少有多少名同学?[例7]在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个?[分析]显然,这是一个重复计数问题(当然,如果不怕麻烦你可以分别去数3的倍数,5的倍数)。

我们可以把“能被3或5整除的数”分别看成A类元素和B类元素,能“同时被3或5整除的数(15的倍数)”就是被重复计算的数,即“既是A类又是B类的元素”。

相关文档
最新文档